
Security notions for disk encryption

Kristian Gjøsteen

March 17, 2005

Abstract

We define security goals and attack models for disk encryption, and

prove several relationships between the resulting security notions, and

some general results about disk encryption. We give concrete construc-

tions for every security notion along with security proofs. Finally, we

briefly discuss the security of some implementations and standards for

disk encryption.

1 Introduction

It is quite common for confidential and important data to be written to some
storage medium (laptop computers, memory sticks, optical or magnetic media,
etc.), but where the physical integrity of the storage medium cannot be guar-
anteed. Conventional file encryption programs are ineffective in this situation,
since the creation of temporary files, as well as working copies leave traces on
the physical disk.

One popular solution is disk encryption, where data is encrypted before it
is written to the storage medium. This is an attractive solution, because it is
potentially very easy to use (it can be almost transparent to the user).

We shall consider four different attack scenarios for disk encryption.

Theft The simplest situation is that of theft, where the goal will be confiden-
tiality. The thief should not be able to read the confidential information
stored.

Passive monitoring There are situations where the adversary is able to mon-
itor the data being read and written to and from the storage medium,
but he is not able to modify the data. One somewhat far-fetched example
could be electromagnetic radiation leaking from the cables between the
user device and the storage medium. A more plausible example is a stor-
age device connected to a network, where the attacker can read network
traffic, but is unable or unwilling to modify traffic. A third example is
read-only storage media used for transport.

Theft with recovery A slightly more complicated situation is where the stor-
age medium is first stolen, the theft is discovered, and the medium is

1

subsequently recovered. Obviously, confidentiality remains a goal, but in
addition, the storage medium may have been tampered with. We need to
be confident in its integrity.

Active attack The most difficult situation is when the adversary has surrep-
titious read and write access to the storage medium while it is in use
(or between sessions). The most extreme example is out-sourced storage
accessed via a network, where the adversary either controls the network,
or is in complete control of the storage medium (we could say that the
adversary is the storage medium).

We define precisely what a disk encryptor is in Section 2. In Section 3 we
define attack models and security goals (combinations of which form security
notions). In Section 4 we discuss relationships between various security notions,
and in Section 5 we give two general results about what is required to reach
various security notions.

In Section 6, we give several constructions for disk encryptors, meeting every
interesting security notion discussed in Section 3. In Section 7 we look briefly
at two practical implementations of disk encryptors, as well as the work of a
standards group.

2 Disk encryptor

medium
Disk
Encryptor

key

User
Storage

Figure 1: Disk encryptor model

Figure 1 describes the disk encryptor model.

Storage medium We first define what a sector-based storage medium is. Let
S be a set of possible sector values (typically S = {0, 1}l for some l). A storage
medium for n sectors is an interactive deterministic algorithm. It accepts as
input write or read requests, and keeps a list of pairs from {0, 1, . . . , n− 1}×S.
The list is initially empty.

The write request is a pair (i, s) ∈ {0, 1, . . . , n−1}×S (“store s at index i”).
The storage medium stores the pair (i, s) in a list, discarding any previously
stored pair (i, s′), and replies with the special symbol >.

The read request is a number i ∈ {0, 1, . . . , n − 1} (“read from index i”).
If the storage medium has a pair (i, s) in its list, it outputs s. Otherwise, it
outputs some (fixed) value from S.

2

Let x = (x1, x2, . . . , xr) ∈ Sr, and let I be a subset of {0, 1, . . . , n − 1} of
cardinality r. Order the elements of I and denote the jth element by ij . Reading
(writing) x according to I means to read (write) xj from (to) sector ij .

Disk encryptor A disk encryptor DE for N plaintext sectors with values in
S is an interactive algorithm, accepting input from a user and giving input to
a storage medium1(see Figure 1).

The disk encryptor accepts as its first input a key from a set K and possibly
a state. As part of its initialization, it may issue read and write requests to the
storage medium. After initialization, the disk encryptor accepts as input read
and write requests.

The disk encryptor may keep a state between read and write requests. We
shall assume that this state is publicly known at all times, but that no adversary
may modify it. A disk encryptor that does not keep a state is stateless.

The write request is a pair (i, s) ∈ {0, 1, . . . , N − 1} × S. The processing of
the write request is probabilistic, and may result in read requests as well as write
requests to the storage medium. All the read requests must be completed before
any write request occurs. After all the read requests are complete, but before
the first write request has been issued, the disk encryptor may stop processing
and reply with the special symbol ⊥ (signifying encryption error). Otherwise,
the disk encryptor issues its write requests to the storage medium and replies
with the special symbol > (signifying no error) when processing is complete.

The read request is a number i ∈ {0, 1, . . . , N − 1}. The processing of the
read request is deterministic, and will only result in read requests to the storage
medium. When the processing is complete, the disk encryptor replies either
with a sector value from S, or with the special symbol ⊥, signaling decryption
error. The disk encryptor’s state should not change as a result of a read request.

We require that the indexes of the read and write requests issued to the
storage medium should only depend on the index of the input request, not on
the key or state.

The disk encryptor must guarantee that, in normal operation, if (i, s) was
the last write request issued for i, then the read request i will return s. If no
write request (i, s′) for any s′ has been issued, the disk encryptor may respond
arbitrarily to the read request i.

To provide secure storage of N sectors with values from S, the disk encryptor
requires n ≥ N sectors of storage medium. The ratio n/N is the expansion ratio
of the disk encryptor.

We impose one more requirement on a disk encryptor: Any read and write
request to the storage medium should result in at most a constant times log N
reads and writes to the storage medium.

The sectors read and written through the user interface of a disk encryptor
are the plaintext sectors. The sectors on the storage medium are the ciphertext
sectors.

1It is possible (and desirable) to allow the disk encryptor and the storage medium to have
different sector sizes. To simplify the presentation, we keep sector sizes equal.

3

3 Security goals and attack models

As usual, we model an attack as a game played between an adversary and a
simulator. At the start of the game, the simulator initializes a disk encryptor
instance with a randomly chosen key. The adversary is given access to the disk
encryptor and the storage medium through the simulator.

Adversary
Disk encryptor

Storage medium

Simulator

Figure 2: Attack model

In practice, much of the information written to the disk encryptor will either
be influenced, known or guessable by the adversary. This means that we should
allow the adversary to write arbitrary data of his choice to the disk encryptor.

The adversary should have read access to any data written by himself (when
relevant). The intuition is that most users would not hesitate in giving the
adversary access to data supplied by the adversary.

The simulator must of course bar read access to any data it has written to
the disk encryptor, to keep the games from becoming trivial.

The four scenarios in the introduction give us the following attack models2,
which describe the attack conditions.

Single chosen plaintext attack (SCPA) The adversary is given write ac-
cess to the disk encryptor. When he is finished writing, he is given read
access to the storage medium for the duration of the game. (This corre-
sponds to the theft scenario.)

Chosen plaintext attack (CPA) The adversary is given read and write ac-
cess to the disk encryptor. Everything read from and written to the storage
medium is simultaneously copied to the adversary. (This corresponds to
the passive monitoring scenario.)

Single chosen ciphertext attack (SCCA) The adversary is given write ac-
cess to the disk encryptor. When he is finished writing, he is given read
and write access to the storage medium. When he is finished with the
storage medium, he is given read access to the disk encryptor. (This
corresponds to the theft with recovery scenario.)

2Technically, many more attack models are possible, but we consider only those that seem
interesting.

4

Chosen ciphertext attack (CCA) The adversary is given read and write
access to the disk encryptor, and the simulator uses the adversary as
storage medium. (This corresponds to the active attack scenario.)

SCPA is the weakest attack, SCCA and CPA are not comparable, and CCA
is the strongest attack.

We shall now describe a series of security goals for disk encryption. Throughout,
we consider a disk encryptor DE providing N plaintext sectors with values from
a set S.

The classic security goal is confidentiality. Following the standard notion of
semantic security, an adversary that has partial information about the plain-
text sectors must not be able to deduce anything new by studying the storage
medium.

Definition. An adversary A against semantic security works as follows: First
the adversary specifies a probability space X over Sr, an index set I ⊆ {0, 1, . . . ,
N − 1} of cardinality r, and a function f : Sr → {0, 1} such that Pr[f(x) = 0 |
x

r
← X] = Pr[f(x) = 1 | x

r
← X] = 1/2. The simulator samples x from X and

writes x to the disk encryptor according to I. The adversary then outputs a bit
b ∈ {0, 1}.

Let E be the event that f(x) = b. The adversary’s advantage is

AdvDE,IND,·
A = |Pr[E]− 1/2|.

Another important security goal in is that of non-malleability, where the
adversary should not be able to change the ciphertext sectors to cause any
meaningful change in the plaintext sectors.

Definition. An adversary A against non-malleability works as follows: First the
adversary specifies a probability space X over Sr, and an index set I ⊆ {0, 1, . . . ,
N − 1} of cardinality r. The simulator samples x = (x1, x2, . . . , xr) from X and
writes x to the disk encryptor according to I.

The simulator will deny any read requests from the sectors in I. The adver-
sary may choose to write to any sector in I (though he must refrain from writing
to at least one sector). When the ith sector in I is written to, we remove its
index from I, decrease r by one, and replace X by the conditional probability
space where the ith coordinate is fixed to the value xi.

When the adversary terminates, he outputs a relation R on Sr × Sr. The
simulator reads x′ = (x′

1, x
′
2, . . . , x

′
r) from the disk encryptor according to I.

Now we replace X with the conditional probability space where the ith coordi-
nate is fixed to the value xi if xi = x′

i, and sample x′′ from X.
Let E0 be the event that there was no decryption error when reading x′, and

x R x′. Let E1 be the event that there was no decryption error when reading
x′, and x′′ R x′. The adversary’s advantage is

AdvDE,NM,·
A =

1

2
|Pr[E0]− Pr[E1]|.

5

Remark. If the adversary cannot change the ciphertext sectors, it is clear that
x = x′′, and the adversary has zero advantage. Therefore, non-malleability is
only relevant for the chosen ciphertext attacks.

In public key cryptography, the adversary is free to construct ciphertexts
using the public key. In this way, adversaries can defeat non-malleability without
ever tampering with a ciphertext.

For private key cryptography, the standard definition [7] allows ciphertexts
output by an encryption oracle in the final answer. This mirrors the public key
case.

For disk encryption, the equivalent notion would be to allow the adversary to
write to the sectors in I without changing the probability space X. We disallow
this, thereby separating the goals of indistinguishability and non-malleability.

The following two goals are slightly different. The first (weaker) goal says
that the adversary should not be able to cause the encrypted data to change in
any way (even randomly). The second (stronger) goal says that any change the
adversary makes to the storage medium will result in a decryption error.

Definition. An adversary A against plaintext integrity works as follows: The
simulator keeps a private copy of anything written to the disk encryptor. When
data is read from the disk encryptor, it is compared with the private copy.

Let E be the event that data successfully read from the disk encryptor is
different from the private copy. The adversary’s advantage is

AdvDE,PTXT,·
A = Pr[E].

Definition. An adversary A against ciphertext integrity works as follows: The
simulator keeps a private copy of anything the disk encryptor writes to the
storage medium. Whenever the disk encryptor reads from the storage medium,
it is compared with the private copy.

Let E be the event that something the disk encryptor reads from the storage
medium is different from the private copy, but the disk encryptor does not signal
an error. The adversary’s advantage is

AdvDE,CTXT,·
A = Pr[E].

4 Relationships

We first establish certain relationships between the security notions. None are
surprising, but some of them are useful.

It is obvious that any successful adversary against non-malleability must be
a successful adversary against plaintext integrity. The converse is not true.

Theorem 1. Let DE be a disk encryptor. Then there exists a disk encryp-
tor DE′ and a single chosen ciphertext adversary A against plaintext integrity

6

such that AdvDE′,PTXT,SCCA
A = 1. Further, for any adversary A′ against non-

malleability for DE′, there exists an adversary A′′ against non-malleability for
DE such that

AdvDE,NM,·
A′′ = AdvDE′,NM,·

A′ .

Proof. If DE requires n ciphertext sectors to provide N plaintext sectors, and
has key set K, DE′ requires 2n ciphertext sectors to provide 2N plaintext
sectors, and has key set K ×K.

DE′ employs two instances of DE initialized with independent keys. Each
instance has its own storage medium.

When DE′ receives a write request (i, s), it samples s′ independently at
random and issues the write request (i, s′) to the second instance of DE. If the
write request returns an error, DE ′ will stop and return an error.

If there was not error, DE′ caches the storage medium write requests made
by the second instance. Then it issues the write request (i, s) to the first instance
of DE. If the write request completes successfully, all the storage medium write
requests are issued to the storage medium.

If the write request returns an error, we discard the cached storage medium
write requests, and rewind the state of the second disk encryptor. This com-
pletes the description of write request handling.

When DE′ receives a read request i, it passes the read request to the first
instance. If the read completes, the answer is returned, otherwise the read
request is passed to the second instance and its answer is output.

Replacing the first instance’s storage medium with random data, but keeping
the second instance’s storage medium intact, will give us an adversary against
plaintext integrity.

Now we note that the second instance can be simulated, and causing random
changes does not defeat non-malleability. This concludes the proof.

It is trivial to show that any adversary against plaintext integrity is also an
adversary against ciphertext integrity, but the converse is not true.

Theorem 2. Let DE be a disk encryptor. There exists a disk encryptor DE ′

and a single chosen ciphertext adversary A against ciphertext integrity such

that AdvDE′,CTXT,SCCA
A = 1. Further, for any adversary A′ against plaintext

integrity for DE′, there exists an adversary A′′ against plaintext integrity for
DE such that

AdvDE′,PTXT,·
A′ = AdvDE,PTXT,·

A′′ .

Proof. DE′ uses one extra sector of storage space. Whenever it receives a write
request, gives the write request to DE, then writes a random value to the extra
sector. Whenever it receives a read request, it reads the extra sector, then passes
the read request to DE.

It is clear that any adversary that changes the extra sector in an arbitrary
fashion, and then read any sector from the disk encryptor, will win the ciphertext
integrity game.

The extra sector can clearly be simulated by any adversary, so any adversary
against plaintext integrity can be used against DE as well.

7

The following theorem says that plaintext integrity does not imply semantic
security.

Theorem 3. Let DE be a disk encryptor. There exists a disk encryptor DE ′

and a single chosen plaintext adversary A against semantic security for DE ′

with AdvDE′,IND,SCPA
A = 1/2. Further, for any adversary A′ against plaintext

integrity for DE′, there exists an adversary A′′ against plaintext integrity for
DE such that

AdvDE,PTXT,·
A′′ = AdvDE′,PTXT,·

A′ .

Proof. If DE provides N plaintext sectors using n ciphertext sectors, DE ′ will
provide N plaintext sectors using n + N ciphertext sectors.

The idea is that DE′ keeps an unencrypted copy of the plaintext in the extra
N sectors. When reading, this unencrypted copy is ignored. The adversary
against semantic security is then clear.

In the game that defines plaintext integrity, the adversary is the only one
writing data to the disk encryptor. This means that the extra plaintext copy
can easily be simulated, and the theorem follows.

The most interesting result in this section is the following: Semantic security
against (single) chosen ciphertext attacks follows from semantic security against
(single) chosen plaintext attacks and ciphertext integrity against (single) chosen
ciphertext attacks.

Theorem 4. Let DE be a disk encryptor, and let A be a (single) chosen ci-
phertext adversary against semantic security. Then there exists a (single) cho-
sen ciphertext adversary A′ against ciphertext integrity, and a (single) chosen
plaintext adversary A′′ against semantic security such that

Adv
DE,IND,(S)CCA
A ≤ Adv

DE,CTXT,(S)CCA
A′ + Adv

DE,IND,(S)CPA
A′′ .

Proof. We only consider the chosen ciphertext attack. The adversaries derived
from the single chosen ciphertext adversary are similar, and we leave them to
the reader.

Consider first the chosen ciphertext attack game between the adversary and
a simulator. Let E be the event that the bit output by the adversary is correct
in this game.

Now we change the game as follows: A copy of anything the disk encryptor
writes to the storage medium is kept. If the result of any read request made
by the disk encryptor differs from this copy, the disk encryptor’s output for the
operation is ignored and ⊥ is returned. Let E ′ be the event that the bit output
by the adversary is correct in this modified game.

We have that

AdvDE,IND,CCA
A = |Pr[E]− 1/2| ≤ |Pr[E]− Pr[E′]|+ |Pr[E′]− 1/2|.

As usual in game hopping, we want to bound |Pr[E]−Pr[E ′]| and |Pr[E′]−1/2|.

8

The two games proceed identically until ⊥ is returned in the modified game,
but not in the original game. Let F be the event that this happens. Now
we observe that F is the event that leads to success against chosen ciphertext
attack.

The adversary A′ is then simply A, augmented with parts simulating the at-
tack against semantic security. The advantage of A′ against ciphertext integrity
is Pr[F], and as usual we have that

|Pr[E]− Pr[E′]| ≤ Pr[F] = AdvDE,CTXT,CCA
A′ .

The chosen plaintext adversary A′′ encapsulates A. It keeps a copy of the
storage medium state. Whenever a read or write request for the storage medium
is copied to A′′, A′′ fakes a corresponding read or write request for A.

When A issues a read or write request to the disk encryptor, A′′ first issues
the read queries for the simulator. (It can do this because the unknown key is
not involved in determining these reads.) If A’s answers correspond to the copy
kept by A′′, A’s request is forwarded to the simulator. Otherwise, ⊥ is returned.

A′′ provides A with the same environment as in the modified game. Hence
A’s success probability in the modified game is equal to the success probability
of A′′. Therefore,

|Pr[E′]− 1/2| = AdvDE,IND,CPA
A′′ .

This concludes the proof.

5 General results

If no redundancy is added to the stored data, the best security that can be
achieved is semantic security and non-malleability against a single chosen ci-
phertext attack.

Theorem 5. Suppose a disk encryptor DE has expansion ratio 1. Then there
exists a chosen plaintext adversary against semantic security, a chosen cipher-
text adversary against non-malleability, and a single chosen ciphertext adversary
against plaintext integrity, all with advantage at least 1/2.

Proof. First, we note that any disk encryptor with expansion ratio 1 must be de-
terministic, and no matter what the storage medium contains, no read operation
will result in a decryption error.

The chosen plaintext adversary against semantic security simply picks two
distinct values x(0) and x(1) from SN , and writes x(0) to the disk encryptor.
It makes a copy of the storage medium state. Then it outputs the probability
space X over SN such that Pr[x = x(0) | x

r
← X] = Pr[x = x(1) | x

r
← X] = 1/2

and f(x(b)) = b for b ∈ {0, 1}.
After the simulator has written x(b) to the disk encryptor, the adversary

compares the contents of the storage medium with its copy. If it matches, 0 is
output, otherwise 1 is output. This adversary has advantage 1/2.

9

The adversary against non-malleability writes both x(0) and x(1) to the disk
encryptor, saving the storage medium states. It then outputs the probability
space X. When the simulator writes x(b) to the disk encryptor, it replaces the
storage medium contents with the one corresponding to x(1−b), and outputs the
relation R = ((x(0), x(1)), (x(1), x(0))). Again, this adversary has advantage 1/2.

Finally, the adversary against plaintext integrity writes arbitrary data to the
disk encryptor. Then it makes some arbitrary change to the storage medium,
and reads back from the disk encryptor. Again, it is clear that this adversary
has advantage 1.

The next result shows that to achieve security against chosen ciphertext
attacks, the disk encryptor must keep a state. The attack uses what is commonly
known as rollback or replay attacks.

Theorem 6. Let DE be a stateless disk encryptor. Then chosen ciphertext ad-
versaries A and A′ against semantic security and non-malleability, respectively,
exist such that

AdvDE,IND,CCA
A = AdvDE,NM,CCA

A′ = 1/2.

Proof. We only describe the chosen ciphertext adversary against semantic secu-
rity. The adversary against non-malleability is similar and is left to the reader.

The idea is that since the disk encryptor is stateless, if a state for the storage
medium results in a valid read once, that state will always result in a valid read.

The adversary plays the role of the storage medium for the simulator. He
chooses (arbitrarily) two different values x(0) and x(1) from S, and outputs the
probability space X on S satisfying Pr[X = x(0)] = Pr[X = x(1)] = 1/2, the set
I = {0}, and a function f : S → {0, 1} such that f(x(j)) = j.

The simulator samples b and writes x(b) to the disk encryptor. At this point,
reading from the disk encryptor will return x(b).

The adversary now saves the storage medium state. Then he writes x(0) to
the disk encryptor. Since he has written to this sector, the simulator will allow
him to read it again. So the adversary restores the saved storage medium state,
and reads x(b) from the disk encryptor. The adversary now knows b.

6 Concrete constructions

We give several constructions for meeting the various security notions described
in Section 3.

Let l and m be integers larger than zero. Throughout this section, the set
of sector values S will be the set of bit strings of length lm, S = {0, 1}lm. N
will denote the number of plaintext sectors provided by the disk encryptor, and
n will be the number of ciphertext sectors required. Let l0 = dlog2 me and
l1 = dlog2 Ne.

When convenient, we shall also consider integers as bit strings, and vice
versa, in the usual manner.

10

6.1 Building blocks

We are interested in indistinguishable subsets of function families. So let F̄ be
a function family, and let F be a subset of F̄ . A distinguisher A for F plays
the following game with a simulator: First, the simulator samples a function
either from F or from F̄ . A is allowed to query the function (and its inverse, if
relevant) at up to q points. Then A outputs 0 or 1.

Let E be the event that A outputs 0 when the simulator sampled from F̄ ,
or 1 when the simulator sampled from F . Then A’s distinguishing advantage is

AdvF,q
A = |Pr[E]− 1/2|.

Pseudo-random function families Let Map(S, S ′) denote the set of all
functions from the set S to the set S ′. We are interested in finding subsets
of Map(S, S′) where the functions are easy to evaluate, but it difficult it is to
distinguish random elements of the subset from random elements of Map(S, S ′).

Definition. Let S, S′ and K be sets. A pseudo-random function family (PRF)
Φ from S to S′ indexed by K is a subset Φ = {fk : S → S′ | k ∈ K} of
Map(S, S′), along with a deterministic algorithm that on input of k ∈ K and
s ∈ S computes fk(s).

We denote an adversary’s distinguishing advantage by AdvPRF,Φ,q
A .

Typical examples of interesting PRFs are message authentication codes, such
as HMAC [1] and OMAC [5].

Block ciphers Let Perm(S) denote the set of all permutations on the set S.
We are interested in finding subsets of Perm(S) where the permutations are
easy to evaluate, but it is difficult to distinguish random elements of the subset
from random elements of Perm(S).

Definition. Let S and K be sets. A pseudo-random permutation family (PRP)
Π on S indexed by K is a subset Π = {fk | k ∈ K} of Perm(S), along with two
deterministic algorithms that on input of k ∈ K and s ∈ S computes fk(s) and
f−1

k (s), respectively.

We denote an adversary’s distinguishing advantage by AdvPRP,Π,q
A .

Typical examples of interesting PRPs are block ciphers, such as AES [2].
We note that any PRP Π on S can be used as a PRF from S to S, and it is

easy to show that for any PRF-distinguisher A, there exists a PRP-distinguisher
A′ such that

AdvPRF,Π,q
A ≤ AdvPRP,Π,q

A′ + q2/|S|.

Tweakable block ciphers Let S and T be sets. A tweakable permutation
on S tweaked by T is a function f : T → Perm(S). When convenient, we abuse
notation and denote the action of f(t) on s by f(t, s), considering f as a function
f : T × S → S. Let PermT (S) denote the set of tweakable permutations on S.

11

Definition. Let S, T and K be sets. A tweakable pseudo-random permutation
family Π̃ on S indexed by K and tweaked by T is a subset Π̃ = {φk | k ∈ K}
of PermT (S), along with two deterministic algorithms that on input of k ∈ K,
t ∈ T and s ∈ S computes (fk(t))(s) and (fk(t)−1)(s), respectively.

We denote an adversary’s distinguishing advantage by AdvTPRP,Π̃,q
A .

We refer to [3, 8] for further background on tweakable permutations and
concrete constructions. We restrict ourselves to noting that there are practical
constructions based on block ciphers.

6.2 Semantic security against single chosen plaintext at-

tack

It is fairly easy to see that a block cipher used in Electronic Code Book mode
does not provide semantic security against a single chosen plaintext attack. We
outline two simple constructions that provide semantic security.

Our first construction is also our simplest construction. It is based on the
well-known counter mode construction. Let Φ be a pseudo-random function
family from {0, 1}l to {0, 1}l indexed by K.

Define the function r : Map({0, 1}l, {0, 1}l)× {1, 2, . . . , N} → S to be func-
tion that takes (f, i) to the concatenation of the value of f(im+j) for 0 ≤ j < m,
that is,

(f, i) 7→ f(i2l0 + 0)||f(i2l0 + 1)|| . . . ||f(i2l0 + m− 1).

(Remember that m ≤ 2l0 .)
The disk encryptor DE1(Φ) takes keys from K, and n = N . Suppose the

disk encryptor is initialized with the key k ∈ K. Given the write request (i, s),
the disk encryptor issues the write request (i, s⊕r(fk, i)) to the storage medium.
Given the read request i, the disk encryptor reads s′ from the ith sector of the
storage medium and outputs s′ ⊕ r(fk, i).

Theorem 7. Let DE1(Φ) be as above, providing N sectors of storage, and let
A be a single chosen plaintext adversary against semantic security. Then there
exists a distinguisher A′ for Φ such that

AdvPRF,Φ,Nm
A′ =

1

2
AdvDE,IND,SCPA

A .

Proof. We play two games. In the first game, we sample fk from Φ and run the
disk encryptor as specified above. Then we simulate a single chosen plaintext
attack on DE1 for A. Let E be the event that the bit output by A is correct.

In the second game, we sample f from Map({0, 1}l, {0, 1}l) and use it instead
of fk in the disk encryptor. Then we simulate a single chosen plaintext attack
on DE1 for A, exactly as in the first game. If E ′ is the event that the bit output
by A is correct, we must have that Pr[E ′] = 1/2.

Let A′ be the distinguisher that computes the function r by requesting func-
tion values for the points im + j, 0 ≤ j < m. Then it simulates a single chosen

12

plaintext attack on DE1 for A. If A guesses correctly, the simulator outputs 0,
otherwise 1.

If the function A′ tries to distinguish was sampled from Φ, everything pro-
ceeds as in the first game. The probability that A′ correctly answers 0 is Pr[E].
Otherwise, everything proceeds as in the second game, and the probability that
A′ correctly answers 1 is Pr[E′] = 1/2.

We get that

AdvPRF,Φ,Nm
A′ = |Pr[E]/2 + Pr[E′]/2− 1/2|

=
1

2
|Pr[E]− 1/2| =

1

2
AdvDE,IND,SCPA

A ,

which concludes the proof.

We note that block ciphers are good candidates for efficient pseudo-random
function families.

The next construction is based on Cipher Block Chaining mode. CBC mode
requires an initialization vector, and using the sector index does not provide
security. But if we run the sector index through the block cipher and use that
as an initialization vector, we should get security.

Let Π be a pseudo-random permutation family on {0, 1}l indexed by K.
The disk encryptor DE2(Π) takes keys from K, and n = N . Let DE2(Π)

be initialized with the key k ∈ K. Given the write request (i, s), the value s is
split into blocks s1, . . . , sm ∈ {0, 1}

l. The IV is derived as c0 = fk(i). Then ci

is computed as fk(ci−1 ⊕ si), and the write request (i, c1||c2|| . . . ||cm) is issued
to the storage medium.

While we believe this construction to be secure (when a secure block cipher is
used), it has only disadvantages over counter mode. We leave the read operation
and the security proof to the interested reader.

6.3 Non-malleability against single chosen ciphertext at-

tack

This construction uses a tweakable permutation on the sector level to encrypt
the data. Note that the permutation has to be tweakable, otherwise the usual
attacks on ECB mode apply. (See also Section 7.2.)

Let K be a set and T = {0, 1, . . . , N − 1}. Let Π̃ be a tweakable pseudo-
random permutation family on S indexed by K and tweakable by T .

The disk encryptor DE3(Π̃) takes keys from K, and n = N . Let DE3(Π̃)
be initialized with the key k ∈ K. Given the write request (i, s), it issues the
write request (i, fk(i, s)) to the storage medium. Given the read request i, it
passes it on to the storage medium and gets a value s′. It then returns the value
fk(i)−1(s).

13

Theorem 8. Let DE3(Π̃) be as above, and let A be a single chosen cipher-
text adversary against semantic security (non-malleability). Then there exists a
distinguisher A′ for Π̃ such that

AdvTPRP,Π̃,N
A′ =

1

2
Adv

DE3(Π̃),IND,SCCA
A (

1

2
Adv

DE3(Π̃),NM,SCCA
A).

Proof. We play two games. The first game is the unmodified attack game. In
the second game, instead of sampling fk from Π̃, we sample f from PermT (S)
and use it instead of fk.

In the second game, two different sectors are encrypted with independent
permutations, so any change in the storage medium will induce a random change
in the corresponding plaintext sector.

Therefore, the adversary cannot have any advantage against semantic secu-
rity or non-malleability for the second game. The theorem follows.

Note that by Theorem 5, this is the best we can do when n = N .

6.4 Ciphertext integrity against single chosen ciphertext

attack

The following construction provides ciphertext integrity using a pseudo-random
function family. To provide semantic security against single chosen plaintext
attacks, this disk encryptor should be combined with DE1. By Theorem 4,
the combination will have semantic security and non-malleability against single
chosen ciphertext attack.

Let T = {0, 1, . . . , N − 1}, and let Φ be a pseudo-random function family
from T × S to {0, 1}l indexed by K.

The disk encryptor DE4(Φ) takes keys from K, and n = 2N . Let DE4(Φ)
be initialized with the key k ∈ K. Given the write request (i, s), it issues the
write requests (2i, s) and (2i + 1, fk(i, s)) to the storage medium (the bit string
fk(i, s) is padded with zeros to get a string of length ml). Given the read request
i, it issues the read requests 2i and 2i+1 to the storage medium, getting values
s′ and s′′. If s′′ = fk(i, s) (including zero padding), s′ is output, otherwise ⊥.

Theorem 9. Let DE4(Φ) be as above, and let A be a single chosen ciphertext
adversary against ciphertext integrity. Then there exists a distinguisher A′ for
Φ such that

Adv
DE4(Φ),CTXT,SCCA
A ≤ AdvPRF,Φ,N

A′ +
N

2l
.

Proof. Again, we play two games: One where a function is sampled from Φ, and
one where it is sampled from Map(T × S, {0, 1}l).

To succeed in the latter game, the adversary A has to find a value s, an
index i, as well as the function value fk(i, s). When fk is replaced by a random
function, then for any s′ ∈ S we have that f(i, s) = s′ with probability 2−l.
It has at most N chances of getting at least one sector right, giving a success
probability of at most N/2l. This concludes the proof.

14

We note that the zero padding is rather wasteful, but it is required for
technical reasons. However, the storage medium can easily arrange to store
several checksums in one physical sector, giving an expansion rate of (m+1)/m.

We also note that it is easy to construct Φ using HMAC [1] or OMAC [5].

6.5 Semantic security against chosen plaintext attack

The following construction provides semantic security against a chosen plaintext
attack using a pseudo-random function family. It is based on counter mode, but
each sector is given its own initialization vector.

Let Φ be a pseudo-random function family from {0, 1}l to {0, 1}l indexed by
K. Let r : Map({0, 1}l, {0, 1}l)× {0, 1}l−l0 → S be the function defined by

(f, t) 7→ f(t2l0 + 0)||f(t2l0 + 1)|| . . . ||f(t2l0 + m− 1).

(Remember that m ≤ 2l0 .)
The disk encryptor DE5(Φ) takes keys from K, and n = 2N . Let DE5(Φ) be

initialized with the key k ∈ K. Given the write request (i, s), DE5(Φ) samples
j from {0, 1}l−l0 , then issues the write requests (2i, j) (where j is padded with
zeros) and (2i + 1, s⊕ r(fk, j)).

Given the read request i, the disk encryptor issues the read requests 2i
and 2i + 1 to the storage medium, getting values s′ and s′′. It then outputs
s′′ ⊕ r(fk, s′) (where the zero padding in s′ is ignored).

Theorem 10. Let DE5(Φ) be as above, and let A be a chosen plaintext adver-
sary against semantic security that writes at most q sectors to the disk encryptor.
Then there exists a distinguisher A′ for Φ such that such that

Adv
DE5(Φ),IND,CPA
A ≤ AdvPRF,Φ,qm

A′ + q2/2l−l0 .

Proof. As usual, we play two games: One where a function is sampled from Φ,
and one where it is sampled from Map({0, 1}l, {0, 1}l).

In the latter game, unless the same j is sampled for two different write
operations, the adversary has no advantage. The probability that one j is
sampled at least twice is at most q2/2l−l0 , which concludes the proof.

We note that a similar technique can be used for CBC-mode with no im-
mediate advantage. It could also be used with a tweakable block cipher, again
with no immediate advantage.

We also note that the storage medium could arrange to store several initial
values in one physical sector, reducing the expansion rate to (m + 1)/m.

6.6 Ciphertext integrity against chosen ciphertext attack

By Theorem 6, a disk encryptor must keep a state to achieve security against
chosen ciphertext attack. Our goal is to keep the state as small and simple as
possible. The idea is to use an m-ary tree of checksums. The root of the tree is
authenticated using the state, and the state changes with every write.

15

Let T be the set {0, 1, . . . , 2l − 1}, and let Φ be a pseudo-random family of
functions from T × S to {0, 1}l indexed by K.

Set N1 = N , and define the sequence Nj by Nj = dNj−1/me. Let h be
the smallest integer such that Nh = 1. Set n1 = N , n2 = 2N , and define the
sequence nj by nj−1 + Nj−1. For an integer i, we let ij = bi/mj−1c.

The disk encryptor DE6(Φ) takes keys from K, and n = nh+1 + 1. Let
DE6(Φ) be initialized with the key k. It sets the state σ to the integer 1.

Denote the value of the sector nj + t, 0 ≤ t < Nj , by s
(j)
t , and the sector

nh+1 = nh +1 by s(h+1). The initialization process first zeros s
(1)
i for all i. Then

it computes the correct checksums s
(j)
ij

for all i and 1 < j ≤ h using

s
(j)
ij

= fk(j2l1 + ij , s
(j−1)
mij+0||s

(j−1)
mij+1|| . . . ||s

(j−1)
max{mij+m−1,Nj}

). (1)

Note that in the concatenation, the zero padding of each s
(j)
t is discarded. Fi-

nally, it computes s(h+1) using

s(h+1) = fk(σ22l1 , s
(h)
0). (2)

Then the disk encryptor issues the writes (nj + ij , s
(j)
ij

) for all 0 ≤ i < N ,

1 ≤ j ≤ h, and finally the write (nh+1, s
(h+1)).

Let the write request be (i, s). The disk encryptor reads s
(j)
t from the index

nj + t, for ij+1m ≤ t < max{ij+1m + m − 1, Nj}, 1 ≤ j ≤ h. Then it reads
s(h+1) from the index nh+1.

It verifies that any zero padding remains zero, that for all 1 < j ≤ h, (1)
holds, and that (2) holds. If any verification fails, ⊥ is output and processing
terminated.

If all of these checks are correct, the disk encryptor changes s
(1)
i to be fk(i, s),

updates every s
(j)
ij

for 1 < j ≤ h according to (1). Finally, it increases σ by 1

and updates s(h+1) according to (2).

Then it issues the write requests (i, s), (nj + ij , s
(j)
ij

) for 1 ≤ j ≤ h, and

(nh, s(h+1)), and outputs >.

Given the read request i, the disk encryptor reads s
(j)
t from index nj + t, for

ij+1m ≤ t < max{ij+1m + m− 1, Nj}, 1 ≤ j ≤ h. Then it reads si from index
i and s(h+1) from index nh+1.

Now the disk encryptor verifies that s
(1)
i = fk(i, si), that any zero padding

remains zero, that the s
(j)
ij

satisfy (1) for 1 < j ≤ h, and that s(h+1) satisfies

(2). If any verification fails, ⊥ is output, otherwise si is output.

Theorem 11. Let DE6(Φ) be as above, and let A be a chosen ciphertext ad-
versary against ciphertext integrity that writes and reads at most q sectors to
the disk encryptor. Then there exists a distinguisher A′ for Φ such that

Adv
DE6(Φ),CTXT,CCA
A ≤ AdvPRF,Φ,qmh

A′ + hq2/2l + q/2l.

16

Proof. As usual, we play two games: One where a function is sampled from Φ,
and one where it is sampled from Map(T × S, {0, 1}l). The first game proceeds
exactly as in a real attack.

In the second game, we note that the value of every checksum sector is
written using different values from T . So all checksums will be independent.
Also, the master checksum denoted by s(h+1) will never be written twice using
the same value from T .

Every time the adversary attempts a read after making a change to the

checksum tree such that s
(h)
0 changes, the probability that the read succeeds is

1/2l.

The only way the adversary can change the checksum tree without s
(h)
0

changing, is by finding a checksum collision. This means that the adversary’s
advantage in the second game is at most q2/2l + q/2l. The theorem follows.

Again, we note that the storage medium can easily arrange to store several
checksums in one physical sector, giving an expansion rate of less than 2. This
also reduces the number of extra reads to h + 1.

If this construction is used in conjunction with the one from Section 6.5, we
get semantic security and non-malleability against chosen ciphertext attacks by
Theorem 4.

We also note that it is easy to replace the state σ with something that is
easier for a user to remember (or write down), such as a date.

As an example, we compute the numbers for providing one gigabyte of stor-
age (or 233 bits of storage), using 512 byte sectors (212 bits). Let l = 7 and
m = 25. We get that n1 = 221, n2 = 216, n3 = 211, n4 = 26, n5 = 2 and n6 = 1.
The expansion rate is roughly 1.03. Every read operation requires 8 reads from
the storage medium, and every write operations requires 7 reads and 8 writes.
In practice, caching can potentially reduce the number of reads and writes.

7 Existing implementations and standards

The following presentation includes three concrete examples of implementations
or standards, and briefly investigates what security level they reach. It is inter-
esting to compare these systems with the constructions in Section 6.

7.1 LoopAES

LoopAES [9] is a disk encryptor for Linux-based computer operating systems.
Its stated aim is to provide confidentiality, but not integrity. It encrypts sectors
using a block cipher in CBC mode, and has three modes of operation, one using
a single key and two different modes using multiple keys.

The documentation is somewhat unclear, but one multiple-key mode appar-
ently uses a pseudo-random function family to derive the initialization vector
from the sector index. This may provide semantic security against single chosen
plaintext attacks.

17

The (possibly deprecated) single key mode uses the sector index as initial-
ization vector for CBC mode, which is insecure.

7.2 Security in Storage Working Group

We quote from the purpose of the Security in Storage Working Group [4]:

This standard provides a standard architecture for media security
and enabling components. Present non-standard, insecure encrypted
storage methodologies are augmented, and users will be able to cre-
ate higher-assurance, standard, interoperable solutions.

They restrict their attention to disk encryptors with expansion rate 1, which
makes Theorem 5 apply. One of their proposed methods for disk sector encryp-
tion is the construction in Section 6.3. This construction is essentially the best
possible, given the restriction imposed on the work.

7.3 FreeBSD’s GDBE

The disk encryptor called GEOM Based Disk Encryption (GDBE) [6] is part of
the computer operating system FreeBSD.

The main idea is that every sector is encrypted using a block cipher in CBC
mode. A constant initialization vector is used together with a one-time key.
The one-time key is encrypted and written to a different sector using a block
cipher in CBC mode. The key for this encryption is derived from a master key,
sector index and a salt using a pseudo-random function family.

The system seems likely to provide security against chosen plaintext attacks,
but it does not make any attempt to protect against chosen ciphertext attacks.

The author’s distrust of standard cryptographic algorithms leads him to
use the block cipher in a way that puts a great stress on the key scheduling
algorithm, which is somewhat unfortunate.

8 Concluding remarks

While the Security in Storage Working Group does an excellent job, providing
solutions that are as good as possible under the circumstances, we believe that
the restrictions they have imposed on themselves makes it impossible to reach
certain worthwhile security notions.

This paper is an attempt at defining all useful which security notions for
disk encryption, and determining what is required to achieve those notions.
This will allow users of disk encryption to consider their threat model first, and
then choose the solution. If the available solutions turn out to have unacceptable
costs, the users can make an informed choice about what to do.

One example is encryption of swap space. It is quite clear that if the file
system is initialized with a random key when the system starts, all that is
required to protect the swap space is semantic security against single chosen

18

plaintext attacks. Using FreeBSD’s GDBE or SISWG’s tweakable block ciphers
is simply overkill.

One common feature of most disk encryption implementations (SISWG’s
standards work and FreeBSD’s GDBE being notable exceptions) is that the
documentation says very little about the cryptographic reasoning behind the
system, and there is little in the way of useful security analysis. This paper
provides a set of security notions and constructions, and against which it is
possible to measure the implementations.

References

[1] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In Neal Koblitz, editor, Proceedings of CRYPTO ’96, volume
1109 of LNCS, pages 1–15. Springer-Verlag, 1996.

[2] FIPS 197. Advanced Encryption Standard. Federal Information Processing
Standards Publication. National Technical Information Service, Springfield,
Virginia, November 2001.

[3] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan
Boneh, editor, Proceedings of CRYPTO 2003, volume 2729 of LNCS, pages
482–499. Springer-Verlag, 2003.

[4] J. Hughes. Chair of the IEEE security in storage working group, 2004.
http://www.siswg.org/.

[5] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-key CBC MAC. In Thomas
Johansson, editor, Fast Software Encryption, volume 2887 of LNCS, pages
129–153. Springer-Verlag, 2003.

[6] Poul-Henning Kamp. GBDE – GEOM based disk encryption. BSDCON
’03, 2003. http://phk.freebsd.dk/pubs/bsdcon-03.gbde.paper.pdf.

[7] J. Katz and M. Yung. Complete characterization of security notions for prob-
abilistic private-key encryption. In Proceedings of the 32nd Annual Sympo-
sium on Theory of Computing, pages 245–254. ACM, 2000.

[8] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ci-
phers. In Moti Yung, editor, Proceedings of CRYPTO 2002, volume 2442 of
LNCS, pages 31–46. Springer-Verlag, 2002.

[9] Jari Ruusu. LoopAES, 2005. http://loop-aes.sourceforge.net/.

19

