
A new structural attack for GPT and variants
(preprint)

R. Overbeck

GK Electronic Commerce,
TU-Darmstadt,

Department of Computer Science,
Cryptography and Computer Algebra Group.
overbeck@cdc.informatik.tu-darmstadt.de

Abstract. In this paper we look at the Gabidulin version of the McEliece
cryptosystem (GPT) and its variants. We propose a new polynomial time
attack on the private key, which is applicable to all variants proposed so
far, breaking some of them completely.

Keywords: GPT, Gabidulin codes, code based cryptography, public key
cryptography.

1 Introduction

The security of cryptosystems based on error correcting codes is connected to
the hardness of the general decoding problem. In 1991 Gabidulin, Paramonov
and Tretjakov proposed a variant of the McEliece scheme (GPT) [4] using rank
distance codes instead of hamming distance codes. Smaller public-key sizes have
been proposed for GPT than for the original McEliece cryptosystem, as gen-
eral decoding algorithms are much slower for for the rank metric than for the
hamming-metric.

Gibson developed two structural attacks for the GPT cryptosystem (see e.g.
[3] and [5]) and proved the parameter sets proposed in [4] and [3] to be insecure.
A drawback of Gibson’s attacks is, that they are very slow if t ≥ k or if the
secret key was carefully chosen in the case that t < k. Several variants of GPT
have been proposed in order to avoid Gibson’s attacks (see e.g. [1] and [7] ).

In this paper we build a structural attack on the Niederreiter variant of GPT
[1] for popular parameter sets. This new attack may be extended to a polynomial
time attack on the GPT cryptosystem and all other variants proposed so far.

The paper is structured as follows: First we give a short introduction to rank
distance codes and the Niederreiter variant of the GPT cryptosystem. Then we
attack this variant and finally extend our attack to the original GPT cryptosys-
tem.



2 Rank distance codes

Rank distance codes were presented by Gabidulin in 1985 They are linear codes
over the finite field Fqm for q (power of a) prime and m ∈ N. As their name
suggests they use a special concept of distance.

Definition 1. Let x = (x1, · · · , xn) ∈ Fnqm and b1, · · · , bm a basis of Fqm over
Fq. We can write xi =

∑m
j=1 xijbj for each i = 1, · · · , n with xij ∈ Fq. The rank

norm ‖ · ‖r is defined as follows:

‖x‖r := rank
(

(xij)1≤i≤n, 1≤j≤m

)
.

The rank norm of a vector x ∈ Fnqm is uniquely determined (independent of
the choice of basis) and induces a metric, called rank distance.

Definition 2. An (n, k)-code C over a finite field F is a k-dimensional subvec-
torspace of the vector space Fn. We call the code C an (n, k, d) rank distance code
if d = minx,y∈C ‖x − y‖r. The matrix C ∈ Fk×n is a generator matrix for the
(n, k) code C over F, if the rows of C span C over F. The matrix H ∈ Fn×(n−k)

is called check matrix for the code C if it is the right kernel of C. The code
generated by H> is called dual code of C and denoted by C⊥.

In [6] Ourivski and Johansson presented an algorithm which solves the general
decoding problem in O

(
(md−1

2 )3q(d−3)(k+1)/2
)

operations over Fq for (n, k, d)
rank distance codes over Fqm . A special class of rank distance codes are the
Gabidulin codes for which an efficient decoding algorithm exists [3]. We will
define these codes by their generator matrix.

Definition 3. Let g ∈ Fnqm be a vector s.t. the components gi, i = 1, · · · , n are
linearly independent over Fq. This implies that n ≤ m. The (n, k, d) Gabidulin
code G is the rank distance code with generator matrix

G =


g1 g2 · · · gn
gq1 gq2 · · · gqn
...

. . .
...

gq
k−1

1 gq
k−1

2 · · · gqk−1

n

 ∈ Fk×nqm . (1)

An (n, k) Gabidulin code G corrects
⌊
n−k

2

⌋
errors and has a minimum dis-

tance of d = n− k+ 1. The dual code of an (n, k) Gabidulin code is a (n, n− k)
Gabidulin code (see [3]). The vector g is said to be the generator vector of the
Gabidulin code G. A decoding algorithm based on the “right Euclidian division
algorithm” runs in O

(
d log2

2 d+ dn
)

operations over Fqm for (n, k, d) Gabidulin
codes [3].

Throughout this paper we will use the following notation. We write G = 〈G〉
if the linear (n, k)-code G over the field F has the generator matrix G. We will
identify x ∈ Fn with (x1, · · · , xn) , xi ∈ F for i = 1, · · · , n. For any (ordered)



subset {j1, · · · jm} = J ⊆ {1, · · ·n} we denote the vector (xj1 , · · · , xjm) ∈ Fm
with xJ . Similary, we denote by M·J the submatrix of a k×n matrix M consisting
of the columns corresponding to the indizes of J and MJ′· =

((
M>

)
·J′
)> for

any (ordered) subset J ′ of {1, · · · , k}. Block matrices will be given in brackets.

3 The Niederreiter variant of GPT

In this section, we briefly introduce the Niederreiter variant of the GPT cryp-
tosystem presented in [1].

– System Parameters: q, n ≤ m, k, l, where l < k.
– Key Generation: First generate the following matrices over Fqm :

G: k × n generator matrix of an (n, k, d) Gabidulin code G over Fqm .
S: (n− k + l)× (n− k + l) random non-singular matrix
A: l × n random matrix with rank l over Fqm and rank n over Fq.
Then, compute e = n−k

2 and the k × n matrix

(H ′)> = S

[
G⊥

A

]
.

Further let DG be an efficient syndrome decoding algorithm for G.
– Public Key: (H ′, e)
– Private Key: (DG , S, A) or (G,S,A) where G is of the form in (1).
– Encryption: To encode a plaintext x ∈ Fnqm of rank norm less then e,

compute the ciphertext c as follows:

c = xH ′ .

– Decryption: To decode a ciphertext c apply the decoding algorithm DG for
G to the syndrome build from the first n− k columns of s = S−1c>.

In all examples and figures we will choose n = m and q = 2. Figure 3.1 shows
public key sizes and approximate workfactors (operations over Fq) for the fastest
general decoding attack. Parameters were taken from [2]. Note that the matrix
H ′ describes a Fqm -linear subcode of G, i.e. the intersection of G with the left
kernel of A>.

Parameters Size Public WF general
m k l Key (Bytes) decoding

25 17 4 487 271

25 15 5 469 282

32 24 4 960 293

Fig. 3.1. Parameter sets for the Niederreiter GPT



4 Attacking the Niederreiter variant of GPT

In this section we show how to break the Niederreiter version of GPT with the
aid of either one of Gibson’s attacks or of an attack on GPT without distortion
matrix. To attack this GPT variant we don’t consider the dual code of the code
described by the public key (as it was done in [2]), but the code itself.

Theorem 1. Let H ′ be a public check matrix of an instance of the Niederreiter
variant of GPT with parameters q, m, n, k and l, where the private matrix S
was generated at random with no more conditions than being non-singular. If
k − l > 1 and n− k − 2 ≥ dl/ (k − l − 1)e, then we may recover the private key
corresponding to H ′ in O

(
n3
)

operations over Fqm with high probability.

Proof. Let G be a generator matrix of an (n, k) Gabidulin code over Fqm with
n ≤ m and generating vector g1, · · · , gn. Let S̄ ∈ F(k−l)×k

qm be a matrix of full
rank over Fqm . Then ((H ′)> = (G′)⊥ , e = (n− k)/2) with G′ = S̄G is a public
key of an instance of the Niederreiter variant of the GPT cryptosystem.

Given the public key we choose f ∈ N with n− k − 2 ≥ f ≥ dl/ (k − l − 1)e.
(For the parameter sets proposed e.g. in [2], the choice of f = 1 will be sufficient.)
Let Ḡ be the generator matrix of an (n, k + f) Gabidulin code over Fqm with
generator vector g1, · · · , gn. Then we have

G′ =
[
S̄ 0 · · · 0

]
Ḡ.

For a matrix M let M [j] denote the result of rising every element of M to the
power of j. It is easy to see that

Ġ :=


G′

(G′)[q]

...

(G′)[q
f ]

 may be written as


S̄ 0 · · · 0

0 S̄[q]
...

...
. . . 0

0 · · · 0 S̄[qf ]

 Ḡ. (2)

Further, Ġ is a generator matrix of
〈
Ḡ
〉

with high probability. Employing e.g.
the algorithm described in [5], we may recover the generator vector g and thus
G⊥ in O

(
(k + f)3

)
Operations over Fqm .

We still have to recover S and A from H ′ and G⊥. In order to do so, we
guess a set L1 of l rows of H ′, s.t. SL1L2 with L2 = {n− k + 1, · · · , n− k + l}
is invertible. For a random guess, SL1L2 is invertible with high probability, if S
was generated at random with no more conditions than being non-singular. We
may assume that L1 = L2 and thus

(H ′)> =

S′ [G⊥A
]

A


for some S′ ∈ F(n−k)×(n−k+l)

qm . Knowing A, G⊥ and H ′ we can solve this system
of (n − k) · n equations with (n − k) · (n − k + l) variables, to recover S′. This
may be done in O

(
(n− k)3

)
operations.



Figure 4.2 shows modified parameter sets for which the presented attack does
not work. Parameters should be chosen, taking into account the attack proposed
in [2]. Further, it is evident that k − l should not be too small.

Parameters Size Public WF general
m k l Key (Bytes) decoding

32 24 20 448 293

64 52 47 2360 2288

Fig. 4.2. Modified parameter sets for the Niederreiter GPT

5 Attacking the original GPT cryptosystem

In this section we want to show, how to extend our attack to the GPT cryptosys-
tem. This extension will also be applicable to “GPT with column scrambler” and
the variant presented in [7].

5.1 The case where t� k

The public generator matrix of an instance of the GPT cryptosystem may be
described as

G′ = S
[
X G

]
T ∈ Fk×nqm

for a special k× t matrix X, S non-singular, G generator matrix of an (n− t, k)
Gabidulin code and T an non-singular matrix over Fq [7]. The code generated
by G′ has a check matrix of the form

(H ′)> =
[

0 G⊥

Idt A

]
·
(
T−1

)>
(3)

for some matrix A and the t-dimensional identity matrix Idt. An attacker could
guess a set N1 of n − t rows of H ′ s.t.

(
T−1

)
N1N2

with N2 = {t+ 1, · · · , n} is
invertible. Because of the special structure of G⊥ we may assume without loss of
generality that

(
T−1

)
N1N2

is the identity matrix. The matrix H ′N1· corresponds
to an instance of the Niederreiter version of GPT as long as k − t > 1, which is
fulfilled for most parameter sets proposed (compare [5], [2] and [7]). As k− t > 1
implies that n−k− t−2 > dt/ (k − t− 1)e, the attack described in the previous
section may be employed to recover G⊥ and A. This reveals the private key of
the GPT cryptosystem.



5.2 Generalization of the attack

The attack described above is limited to parameter sets, where k− t > 1. Using
the approach described in the section 4 we want to augment k and lower the
dimension of the dual code in a preprocessing step. Afterwards we apply our
attack to recover the private key.

In order to augment k we take a row of the public generator matrix G′ and
apply the frobenius automorphism to its entries. Let G′i be the chosen row and
suggest, that Sik 6= 0, which is fulfilled with high probability for a random
choice. Then for f ≤ n− t−k the matrix build from the rows of G′ and (G′i·)

[qj ]

for j = 1, · · · , f is the public generator matrix of an GPT instance with larger
dimension of the Gabidulin code. If we can choose f in a way s.t. k+ f − t > 1,
then we can apply our attack on the GPT cryptosystem, to recover G. In a
second step, we would be able to compute an alternative private key.

Still, it might be possible to choose the GPT parameter t larger than n/2
to avoid the attacks presented so far. (This is not possible for the original GPT
cryptosystem, but for some of its variants.) Let Ḡ be the generator matrix of the
(n, k + f) Gabidulin code with the same generator vector as G and f ≤ n−k−t.
Let Ġ the matrix build from G′ as described in equation (2). Then Ġ has a check
matrix of the form

(H ′)> =
[

0
(
Ḡ
)⊥

A1 A2

]
·
(
T−1

)>
,

where A1 is a l× t matrix with l ≤ t. With a little bit of luck (i.e. if k+f − l > 1
and n − t − k − f − 2 ≥ dl/ (k + f − l − 1)e), we now may continue as above
and compute G and thus an alternative private key. In almost all experiments
we were able to choose f in a way, such that l decreased to 0, especially for
popular parameter sets. If l = 0, the check matrix reveals enough information
to determine the set N1 mentioned above and to recover an alternatrive column
scrambler.

6 Conclusion

The attacks proposed in this paper are far from being deterministic, but succeed
with good probability. We conclude that the original GPT cryptosystem from
[4] may not be considered to be secure. Hopefully our results may be extended
to the GPT cryptosystem using reducible rank codes (compare [7]). However,
after several attacks on the GPT cryptosystem and its variants, it seems to be
difficult to name secure parameter sets for the GPT cryptosystem.

References

1. T. Berger and P. Loidreau. Security of the niederreiter form of the GPT public-key
cryptosystem. In IEEE International Symposium on Information Theory, Lausanne,
Suisse. IEEE, July 2002.



2. T.P. Berger and P. Loidreau. How to mask the structure of codes for a cryptographic
use. to appear.

3. E.M. Gabidulin. On public-key cryptosystems based on linear codes. In Proc of
4th IMA Conference on Cryptography and Coding 1993, Codes and Ciphers. IMA
Press, 1995.

4. E.M. Gabidulin, A.V. Paramonov, and O.V. Tretjakov. Ideals over a non-
commutative ring and their applications to cryptography. In Proc. Eurocrypt ’91,
volume 547 of LNCS. Springer Verlag, 1991.

5. K. Gibson. The security of the Gabidulin public key cryptosystem. In Proc. of
Eurocrypt’96, volume 1070 of LNCS, pages 212–223. Springer Verlag, 1996.

6. A.V. Ourivski and T. Johansson. New technique for decoding codes in the rank
metric and its cryptography applications. Problems of Information Transmission,
38, No. 3:237–246, 2002.

7. R. Overbeck. Extending Gibson’s attacks on the GPT cryptosystem. In Proc. of
WCC 2005, 2005. to appear.


