
A new structural attack for GPT and variants

May 31, 2005

Abstract

In this paper we look at the Gabidulin version of the McEliece cryp-
tosystem (GPT) and its variants. We propose a new polynomial time
attack on the private key, which is applicable to all variants proposed
so far, breaking some of them completely.
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1 Introduction

The security of cryptosystems based on error correcting codes is connected
to the hardness of the general decoding problem. In 1991 Gabidulin, Para-
monov and Tretjakov proposed a variant of the McEliece scheme (GPT)
[6] using rank distance codes instead of hamming distance codes. Smaller
public-key sizes have been proposed for GPT than for the original McEliece
cryptosystem, as general decoding algorithms are much slower for for the
rank metric than for the hamming-metric.

Gibson developed two structural attacks for the GPT cryptosystem (see
e.g. [4] and [7]) and proved the parameter sets proposed in [6] and [4] to
be insecure. A drawback of Gibson’s attacks is, that they have exponential
runtime if the secret key was carefully chosen. Several variants of GPT have
been proposed in order to avoid Gibson’s attacks (see e.g. [1] and [10] ).

In this paper we build a new structural attack on the GPT cryptosystem.
This new attack runs in polynomial time and is applicable to all other GPT
variants proposed so far.

The paper is structured as follows: First we give a short introduction to
rank distance codes. Then we present the Niederreiter variant of the GPT
cryptosystem [1] and show how to attack it. Finally we extend our attack
to the GPT cryptosystem.
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2 Rank distance codes

Rank distance codes were presented by Gabidulin in 1985 They are linear
codes over the finite field Fqm for q (power of a) prime and m ∈ N. As their
name suggests they use a special concept of distance.

Definition 2.1 Let x = (x1, · · · , xn) ∈ Fnqm and b1, · · · , bm a basis of Fqm
over Fq. We can write xi =

∑m
j=1 xijbj for each i = 1, · · · , n with xij ∈ Fq.

The rank norm ‖ · ‖r is defined as follows:

‖x‖r := rank
(

(xij)1≤i≤n, 1≤j≤m

)
.

The rank norm of a vector x ∈ Fnqm is uniquely determined (independent
of the choice of basis) and induces a metric, called rank distance.

Definition 2.2 An (n, k)-code C over a finite field F is a k-dimensional
subvectorspace of the vector space Fn. We call the code C an (n, k, d) rank
distance code if d = minx,y∈C ‖x− y‖r. The matrix C ∈ Fk×n is a generator
matrix for the (n, k) code C over F, if the rows of C span C over F. The
matrix H ∈ Fn×(n−k) is called check matrix for the code C if it is the right
kernel of C. The code generated by H> is called dual code of C and denoted
by C⊥. We write G⊥ = H>.

In [9] Ourivski and Johansson presented an algorithm which solves the
general decoding problem in O

(
(md−1

2 )3q(d−3)(k+1)/2
)

operations over Fq for
(n, k, d) rank distance codes over Fqm . A special class of rank distance codes
are the Gabidulin codes for which an efficient decoding algorithm exists [4].
We will define these codes by their generator matrix.

Definition 2.3 Let g ∈ Fnqm be a vector s.t. the components gi, i = 1, · · · , n
are linearly independent over Fq. This implies that n ≤ m. The (n, k, d)
Gabidulin code G is the rank distance code with generator matrix

G =




g1 g2 · · · gn
gq1 gq2 · · · gqn
...

. . .
...

gq
k−1

1 gq
k−1

2 · · · gq
k−1

n


 ∈ F

k×n
qm . (1)

An (n, k) Gabidulin code G corrects
⌊
n−k

2

⌋
errors and has a minimum

distance of d = n − k + 1. The dual code of an (n, k) Gabidulin code is a
(n, n− k) Gabidulin code (see [4]). The vector g is said to be the generator
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vector of the Gabidulin code G. A decoding algorithm based on the “right
Euclidian division algorithm” runs in O

(
d log2

2 d+ dn
)

operations over Fqm
for (n, k, d) Gabidulin codes [4].

Throughout this paper we will use the following notation. We write
G = 〈G〉 if the linear (n, k)-code G over the field F has the generator matrix
G. We will identify x ∈ Fn with (x1, · · · , xn) , xi ∈ F for i = 1, · · · , n.
For any (ordered) subset {j1, · · · jm} = J ⊆ {1, · · · n} we denote the vector
(xj1 , · · · , xjm) ∈ Fm with xJ . Similary, we denote by M·J the submatrix of
a k × n matrix M consisting of the columns corresponding to the indizes of

J and MJ ′· =
((
M>

)
·J ′
)>

for any (ordered) subset J ′ of {1, · · · , k}. Block
matrices will be given in brackets.

3 The Niederreiter variant of GPT

In this section, we briefly introduce the Niederreiter variant of the GPT
cryptosystem presented in [1].

• System Parameters: q, n ≤ m, k, l, where l < k.

• Key Generation: First generate the following matrices over Fqm :

G: k × n generator matrix of an (n, k) Gabidulin code G over Fqm .
S: (n− k + l)× (n− k + l) random non-singular matrix
A: l × n random matrix with rank l over Fqm and rank n over Fq.

Then, compute e = n−k
2 and the k × n matrix

(
H ′
)>

= S

[
G⊥

A

]
.

Further let DG be an efficient syndrome decoding algorithm for G.

• Public Key: (H ′, e)

• Private Key: (DG , S,A) or (G,S,A) where G is of the form in (1).

• Encryption: To encode a plaintext x ∈ Fnqm of rank norm less then
e, compute the ciphertext c as follows:

c = xH ′ .

• Decryption: To decode a ciphertext c apply the syndrome decoding
algorithm DG for G to the syndrome build from the first n−k columns
of s = S−1c>.
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Parameters Size Public WF general
m k l Key (Bytes) decoding

25 17 4 487 271

25 15 5 469 282

32 24 4 960 293

Figure 3.1: Parameter sets for the Niederreiter GPT

In all examples and figures we will choose n = m and q = 2. Figure 3.1
shows public key sizes and approximate workfactors (operations over Fq) for
the fastest general decoding attack. Parameters were taken from [2]. Note
that the matrix H ′ describes a Fqm-linear subcode of G, i.e. the intersection
of G with the left kernel of A>.

3.1 Attacking the Niederreiter variant of GPT

The Niederreiter variant of the GPT cryptosystem was first attacked by A.
Ourivski in [8]. In this section we introduce a new attack, which we will
need later on, to attack the original GPT cryptosystem. We show how to
attack the Niederreiter version of GPT. We don’t consider the dual code of
the code described by the public key (as it was done e.g. in [2]), but the
code itself.

Theorem 3.1 Let H ′ be a public check matrix of an instance of the Nieder-
reiter variant of GPT with parameters q, m, n, k and l, where the private
matrix S was generated at random with no more conditions than being non-
singular. If k − l > 1 and n− k − 1 ≥ dl/ (k − l − 1)e, then we may recover
the private key corresponding to H ′ in O

(
n3
)

operations over Fqm with high
probability.

Proof. Let G be a generator matrix of an (n, k) Gabidulin code over

Fqm with n ≤ m and generating vector g1, · · · , gn. Let S̄ ∈ F(k−l)×k
qm be a

matrix of full rank over Fqm . Then ((H ′)> = (G′)⊥ , e = (n − k)/2) with
G′ = S̄G is a public key of an instance of the Niederreiter variant of the
GPT cryptosystem.

Given the public key we choose f ∈ N with n−k−1 ≥ f ≥ dl/ (k − l − 1)e.
(For the parameter sets proposed e.g. in [2], the choice of f = 1 will be suf-
ficient.) Let Ḡ be the generator matrix of an (n, k+ f) Gabidulin code over
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Fqm with generator vector g1, · · · , gn. Then we have

G′ =
[
S̄ 0 · · · 0

]
Ḡ.

For a matrix M let M [j] denote the result of rising every element of M to
the power of j. To recover the Gabidulin code 〈G〉 we define the following
matrix:

Ġf :=




G′

(G′)[q]

...

(G′)[q
f ]




(2)

The matrix Ġf is a generator matrix of
〈
Ḡ
〉

with high probability, which
can be seen easily by writing it as

Ġf =




S̄ 0 · · · 0

0 S̄[q]
...

...
. . . 0

0 · · · 0 S̄[qf ]



Ḡ.

Employing e.g. the algorithm described in [4], we may recover the generator
vector g and thus G⊥ in O

(
(k + f)3

)
Operations over Fqm .

We still have to recover S and A from H ′ and G⊥. In order to do so, we
choose a set L1 of l rows ofH ′, s.t. SL1L2 with L2 = {n− k + 1, · · · , n− k + l}
is invertible. This may be done easily by successively appending rows from
H ′ to G⊥, s.t. the rank increases with each row added. We may assume
that L1 = L2 and thus

(
H ′
)>

=


 S′

[
G⊥

A

]

A




for some S ′ ∈ F(n−k)×(n−k+l)
qm . Knowing A, G⊥ and H ′ we can solve this

system of (n− k) · n equations and (n− k) · (n− k+ l) variables, to recover
S′. This may be done in O

(
(n− k)3

)
operations.

Figure 3.2 shows modified parameter sets for which the presented at-
tack does not work. These parameters are not necessarily secure, anyway
(compare [8]).
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Parameters Size Public WF general
m k l Key (Bytes) decoding

32 24 20 448 293

64 52 47 2360 2288

Figure 3.2: Modified parameter sets for the Niederreiter GPT

4 Attacking the GPT cryptosystem

The attack presented in the previous section may be extended to the GPT
cryptosystem. This extension is applicable to all variants of GPT as well.

First we give a short description of a generalized version of the GPT
cryptosystem (GGPT). The public generator matrix of an instance of the
GPT cryptosystem may be described as

G′ = S
([

X 0
]

+G
)
T ∈ Fk×nqm

for a special k× t matrix X, S non-singular, G generator matrix of an (n, k)
Gabidulin code and T an non-singular matrix over Fq [10]. In general the
distortion matrix X is of rank t over Fq and of rank s ≤ t over Fqm . The
matrix T is called column scrambler. To encrypt a plaintext x ∈ Fkqm we
compute the ciphertext c = xG′+z, where z is a random error vector of rank
norm (n− k − t) /2. At decryption, we apply the error correction algorithm
for G·{t+1,··· ,n} to

(
c · T−1

)
{t+1,··· ,n} to recover the plaintext. Example pa-

rameter sets are given in figure 4.3. In the original GPT cryptosystem from
[6] the random error z has rank norm (n− k)/2− t and the error correction
algorithm for G · T (which is an (n, k) Gabidulin code, too) is applied to c
to recover the plaintext.

4.1 A first attack aproach

To attack the GPT cryptosystem for special parameter sets, it is sufficient
to analyze the structure of the check matrix of the public generator matrix.
The code generated by G′ has a check matrix of the form

(
H ′
)>

=

[
0

(
G·{t+1,··· ,n}

)⊥
A1 A2

]
·
(
T−1

)>
(3)

for some matrices A1 and A2 of appropiate dimensions. An attacker could
guess a set N1 of n−t rows of H ′ s.t.

(
T−1

)
N1N2

with N2 = {t+ 1, · · · , n} is
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invertible. Because of the special structure of
(
G·{t+1,··· ,n}

)⊥
we may assume

without loss of generality that
(
T−1

)
N1N2

is the identity matrix. The matrix

H ′N1· corresponds to an instance of the Niederreiter version of GPT as long
as k − t > 1, which is fulfilled for most parameter sets proposed (compare
[7], [2] and [10]). If k − t > 1 and n − k − t − 1 > dt/ (k − t− 1)e, we

can try to recover
(
G·{t+1,··· ,n}

)⊥
by applying the attack presented in the

previous section. If the attack succeeds, it reveals the private key of the
GPT cryptosystem as we are now able to determine an alternative column
scrambler T .

For random instances of the GPT cryptosystem, the subcodes we get
from H ′·N1

don’t seem to be uniformly distributed subcodes of the underlying
Gabidulin code. In our experiments we noticed that the success probability
of our attack decreases, as s decreases. The attack of Ourivsky might have
better performance for this instances of the Niederreiter GPT, but we did
not make experiments on that. However, our results for the Niederreiter
variant are not affected by this observation.

4.2 Generalization of the attack

The attack described above is limited to parameter sets, where k−t > 1 and
does not succed with satisfying probability if s is small. Using the approach
described in the section 3.1 we want to augment k and the dimension of the
dual code in a preprocessing step. Afterwards we apply our attack on the
Niederreiter GPT to recover the private key.

Let Ḡ be the generator matrix of the (n, k + f) Gabidulin code with
generator vector build by the last n − t entries of the generator of G and
f ≤ n−k− t− 1. Let Ġf the matrix build from G′ as described in equation
(2). Then Ġf has a dual matrix of the form

Ġ⊥f =

[
0

(
Ḡ
)⊥

B1 B2

]
·
(
T−1

)>
, (4)

where B1 is a l × t matrix with l ≤ t. Again, a random set of n − t
rows of Ġ⊥f are very likely to correspond to an instance of the Niederreiter
GPT. Therefore we can try to apply the methods described in theorem 3.1 to
recover an alternative private key. Note that if l = 0, then Ġ⊥f reveals enough
information to recover an alternatrive column scrambler immediately.

Based on our experiments we make the following assumption for s < k:

Assumption 1 The dual matrix of Ġf is of the form given in equation (4),
where the number of rows of B1 is smaller than t− fs with high probability.
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If this assumption is true, then l drops down to zero for most instances
of the original GPT cryptosystem if we choose f = n − k − t − 1. In our
experiments we did not find any counterexample for random instances. We
are going to give more arguments on why we consider this assumption to be
true in the following sections.

4.3 Analysis of the new attack

The presented attack only succeeds for all parameter sets of the original GPT
cryptosystem with high probability, if assumption 1 is true. It is obvious,
that if the attack succeeds in recovering an alternative private key, it runs
in O

(
m5
)

operations over Fq.
To verify the crucial assumption, we have to estimate the rank of Ġf

for given G′ = S
([

X 0
]

+G
)
T and f . Therefore we view the following

matrices for 1 ≤ i ≤ f :

((
S[qi−1]

)−1
(G′)[q

i−1]
)

{2,··· ,k}
+

((
S[qi]

)−1
(G′)[q

i]
)

{1,··· ,k−1}

=

((
X[qi−1]

)
{2,··· ,k}

+
(
X[qi]

)
{1,··· ,k−1}

)
· T

, (5)

which are linear combinations of submatrices of Ġf . These matrices have
rank ≥ min(s, k − 1) if the matrix

Ẋi :=




X

X[q1]

...

X[qi]




has rank (f + 1) · s, which is very probable if s or i is small. The rank of
Ġf thus should be larger than R = min (k + f + t, k + f + fs, k + fk) for

random X. The latter can be seen, if we replace (G′)
[qi]
{1,··· ,k−1} in Ġf by

the matrix given in equation (5) for every 1 ≤ i ≤ f . This corroborates
assumption 1.

4.4 Experimental Results

Figure 4.3 shows absolute runtimes for this last version of our attack in com-
parison to the theoretical workfactors (operations over Fq ) of the previous
attacks. For all parameter sets we chose q = 2, m = n and f = n− t−k−1.
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Parameters average runtime WF best of WF general
m k t s of our attack Gibson’s attacks decoding

48 10 16 3 51 min 2139 2134

48 16 18 4 58 min 2200 2124

48 24 8 2 102 min 2122 2198

Figure 4.3: Attacking the GPT cryptosystem

Operations were performed on a 500Mhz Pentium III running Linux using
an implementation in Java.

In our experiments we chose X as the product of a random k× s matrix
SX of rank s < k over Fqm and a random s× t matrix X̄ (of rank s over Fqm
and rank t over Fq). For such choices of X the matrix Ġf almost always had
rank (k + f + (s+ 1) ·min(f, s) + s ·max(0, f − s)) or k+f+ t. For special
choices of SX and random X̄ , we were able to create instances, where the
rank of Ġf reached the bound R. To reduce the rank of Ġf even more, it
seems, that we would have to choose X̄ of a special form, too. The latter
removes further degrees of freedom in choosing the private key and thus does
not seem to be a good choice.

4.5 On Secure Instances of GGPT

We have seen, that instances of the GPT cryptosystem and its variants,
where

t ≤ s · (n− t− k − 1)

holds, are insecure if assumption 1 holds. For the GGPT variant however,
we may choose parameter sets, s.t. this equation does not hold. Even
though, we might be able recover the private key if we can choose a f s.t.
k+f− l > 1 and n−k− t−f−1 ≥ dl/ (k + f − l − 1)e, where l = t−fs. If
these conditions are fulfilled, a selection of n− t columns of Ġ⊥f corresponds
to an instance of the Niederreiter GPT, and we may apply the methods
described in theorem 3.1.

To get secure instances of the GGPT cryptosystem, one could try to
choose parameters in a way, such that l > f + k for every possible choice of
f . The latter is e.g. the case, if

s ≤ 2t− n
n− t− k
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A parameter set satisfying this condition would e.g. be n = m = 64, k = 8,
t = 40 and s = 1 with a public key size of 3584 bytes. The attack in the
given form is not applicable for such parameter sets. However, it seems very
likely that the attack may be modified in such a way, that these parameter
sets may be attacked, too.

5 Conclusion

The attacks proposed in this paper succeed with good probability. We con-
clude that the original GPT cryptosystem from [6] and the 2001 variant
with column scrambler [3] may not be considered to be secure. Our attack
can even be extended to the GPT cryptosystem using reducible rank codes
(compare [5], [10]). After several attacks on the GPT cryptosystem and its
variants, it seems to be difficult to name secure parameter sets for the GPT
variant from [10], if there exist any. Even if we would consider the parameter
set mentioned above to be secure, the GPT cryptosystem looses much of its
advantages over the McEliece cryptosystem.
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