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Abstract. We present new a MAC function based on Rijndael that is a
factor 2.5 more efficient than CBC-MAC with Rijndael, while providing
a comparable claimed security level. This MAC function has the Alred
construction [5] and can be seen as an optimized version of Alpha-MAC
introduced in the same paper.

1 Introduction

Message Authentication Codes (MAC functions) are symmetric primitives, used
to ensure authenticity of messages. They take as input a secret key and the
message, and produce as output a short tag. The basic property of a MAC
function is that it provides an unpredictable mapping between messages and the
tag for someone who does not know, or only partially knows the key.

We propose here Pelican as a new MAC function. The design is based on
the Alred construction, which was presented in [5]. Our reasoning about the
security of Alpha-MAC, the concrete design presented in [5], resulted in sev-
eral suggestions for modifications. The modifications result in a simpler design,
because the injection layout map is removed. Secondly, the new design has a
slightly better performance.

Pelican is based on Rijndael [4]. We have chosen for Rijndael mainly because
we expect it to be widely available thanks to its status as the AES standard.
Additionally, Rijndael is efficient in hardware and software and it has withstood
intense public scrutiny very well since its publication [3].

The purpose of this paper is to provide to the cryptographic community a
clear description of a MAC function that we announced at the Fast Software
Encryption 2005 workshop under the (working) name Beta-MAC.

We specify Pelican in Section 2. In Section 3, we briefly repeat the security
claims introduced in [5], and in Section 4 we recall the provable security prop-
erties of the Alred construction, that apply to Pelican. We discuss briefly
internal collisions of Pelican in Section 5 and performance in Section 6. We
conclude in Section 7.



2 Specification

Pelican is an Alred construction with Rijndael [4], restricted to a block length
of 128 bits, as underlying block cipher. As Rijndael, Pelican supports keys of
16, 20, 24, 28 and 32 bytes. For the key lengths 16, 24 and 32 bytes, Rijndael co-
incides with AES [1]. Pelican can take a message m of any length and generates
tags with length up to 128 bits.

In the Pelican algorithm we can distinguish a number of steps. First the
message is padded and split in message words. These message words are applied
to a state that is initialized using the key and that afterwards undergoes a final
step again using the key. More exactly:

Message padding and splitting: pad the message by appending a single 1
bit followed by the minimum number of 0 bits so that the resulting length is
a multiple of 128 bits (padding method 2 in [2]). Split the result in 128-bit
message words x1, x2, . . . xq.

State initialization: fill the 128-bit state with binary zeroes and subsequently
apply Rijndael encryption to it using the key.

Chaining: XOR the first message word x1 to the state. For each additional
message word xi, apply to the state the iteration function and then XOR
the message word xi to the state. The iteration function consists of four
Rijndael rounds with round keys set to 0.

Finalization: Apply Rijndael encryption to the state using the key and form
the tag by taking the first �m bits of the state.

Pelican is illustrated in Figure 1.

3 Security claims

Pelican is an iterative MAC function. Iterative MAC functions have the disad-
vantage that different messages may be found that lead to the same value of the
state before the final transformation. This is called an internal collision [6]. We
have proposed in [5] a set of three orthogonal security claims for iterative MAC
functions that reflect this limitation. We repeat them here for clarity.

The claims are formulated in terms of three dimension parameters: the tag
length �m, the key length �k and the capacity �c. The capacity is the size of
the internal memory of a random map with the same probability for internal
collisions as the MAC function and the designer must fix its value used in the
security claim.

Claim 1 The probability of success of any forgery attack not involving key re-
covery or internal collisions is 2−�m.

Claim 2 There are no key recovery attacks faster than exhaustive key search,
i.e. with an expected complexity less than 2�k−1 MAC function executions.
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Fig. 1. Block scheme of Pelican.

Claim 3 The probability that an internal collision occurs in a set of A ((adap-
tively) chosen message, tag) pairs, with A < 2�c/2, is not above 1−exp(−A2/2�c+1).

Pelican should satisfy these three claims for the following range of values of
the dimension parameters:

– Tag length �m: any value up to 128 bits.
– Key length �k: 128, 160, 192, 224 and 256 bits.
– Capacity �c: 120 bits

4 Provability

Pelican has the Alred structure [5]. For this structure, the security with
respect to forgery in the absence of collisions and with respect to key recovery



can be provably reduced to security properties of the used block cipher. This
results in the following theorems for Pelican.

Theorem 1. Every key recovery attack on Pelican, requiring t (adaptively)
chosen messages, can be converted to a key recovery attack on Rijndael, requiring
t + 1 adaptively chosen plaintexts.

Theorem 2. Every forgery attack on Pelican not involving internal collisions,
requiring t (adaptively) chosen messages, can be converted to a ciphertext guess-
ing attack on Rijndael , requiring t + 1 adaptively chosen plaintexts.

For the proofs of these theorems we refer to [5].

5 On internal collisions in Pelican

We have based the value of the capacity used in our security claims on a prelim-
inary analysis of generating internal collisions for Pelican. We have considered
two types of internal collisions: extinguishing differentials and fixed points. We
refer to [5] for more background. The value of the capacity is based on a pre-
liminary analysis. We are continuing the research. New results may lead us to
modify the capacity.

6 Performance

In this section we express the performance of Pelican in terms of Rijndael oper-
ations, more particularly, the Rijndael key schedule and the Rijndael encryption
operation. This allows to use Rijndael (or AES) benchmarks for software imple-
mentations on any platform or even hardware implementations to get a pretty
good idea on the performance of Pelican. We restrict ourselves to the case of
128-bit keys.

In a 32-bit implementation, one iteration of Pelican corresponds roughly to
4 rounds of Rijndael, hence roughly 4/10 of a Rijndael encryption. It is actually
better because the XORs with 0 in the round key addition don’t have to be
implemented. Some implementations of Rijndael recompute the round keys for
every encryption. This overhead is not present in Pelican. As the first message
word is simply XORed without additional rounds, the message processing of the
first message word must be subtracted from the message processing. Using these
rough approximations, we can state that MACing a message requires:

setup: 1 Rijndael key schedule and 1 Rijndael encryption,
message processing: 0.4 Rijndael encryptions per 16-byte message word,
finalization: 0.6 Rijndael encryptions.

Hence, for long messages Pelican is more than a factor 2.5 faster than Rijndael
encryption, for short messages the minimum cost is 1 Rijndael encryption for
generating a tag and 1 additional Rijndael encryption and key schedule at key
setup.



7 Conclusions

We introduced Pelican, a new MAC function based on the Alred construc-
tion. It is simpler and faster than its predecessor Alpha-MAC. The Alred
construction comes with some security proofs, which are also applicable to this
primitive. Further analysis of the security of this primitive is underway.
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