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Abstract

By almost classification of R(4,7)/R(2,7) under the action of general
affine group, and by a sieve algorithm, we gave almost all cosets of R(2,7)
which can be used to construct 7-variable plateaued functions of degree
4. And an efficient algorithm is given to construct bent functions from
a plateaued function. Based on above results, we almost enumerate all
8-variable bent function.
keywords: Reed-Muller code, group action, bent functions

1 Introduction

Since the concept of bent function was proposed by Rothaus in 1976[1],
there are many papers[2, 3, 4] discussing bent function. A function f(x) :
F n

2 → F2 is called a bent function if the value of Walsh transform of
f(x) are always ±2n/2(the definition of Walsh transform will be defined
in section 2). However only in 6 variables case, we know all 3 equivalent
classes[1]. For 8 variables, only bent functions of degree 3 is known in [5].
In paper [6] an algorithm theoretically can construct all bent functions,
like the enumeration of all 8 variables homogenous bent functions of degree
3 and all homogenous rotation symmetric bent functions of 10 variables,
but it is not practical to construct all 8 variables bent functions.

In this paper, we almost classified the Reed-Muller code R(4, 7)/R(2, 7)
under the action of general affine group using invariant theory. For each
of the cosets, using the sieve algorithm in paper[6], we got all cosets which
can be used to construct plateaued functions[7]. For each plateaued func-
tion, an efficient algorithm is given to construct all bent functions from the
plateaued function. Based on the above results, it is possible to enumerate
all 8-variable bent functions if given certain computation.

2 Preliminary

For each subset s ⊆ {1, 2, · · · , n}, there exists a corresponding vector
(s1, s2, · · · , sn) of dimension n by letting si = 1 if element i is in s else let-
ting si = 0. And the vector (s1, s2, · · · , sn), si ∈ {0, 1} for i = 1, 2, · · · , n
can be denoted by an integer s whose 2-adic expansion is just the vector

∗funded by National Natural Science of China(66973034, 90104005, 60373087)

1



(s1, s2, · · · , sn). Obviously, the set, the vector and the integer are isomor-
phic. In this paper, if confusion is not caused, we will use the three
notations for description convenience. Denote by F2 the Galois field with
two elements {0, 1} and denote by F n

2 the vector space over F2. Denote by
pn = F2[x1, x2, · · · , xn]/(x2

1 − x1, · · · , x2
n − xn) the algebra of all functions

F n
2 → F2. For each subset s ⊆ {1, 2, · · · , n}, denote

∏
i∈s

xi ∈ pn by xs.
The algebraic normal form of a Boolean function F n

2 → F2 can be written

as f(x) =
∑2n−1

s=0
asx

s, where as ∈ F2. Define

deg(f) = max
s∈{0,1,···,2n−1},as 6=0

H(s),

where H(s) is the Hamming weight of vector s. Let R(r, n)={f(x)|deg(f) ≤
r} and R(r, n)/R(s, n)={f(x) + R(s, n)|s < deg(f) ≤ r}.

Denote by GL(n, 2) the set of all nonsingular matrix of order n, i.e.
the general linear group. Denote by AGL(n, 2) the general affine group
{(A, b)|A ∈ GL(n, 2), b ∈ F n

2 }.
Two functions f(x), g(x) ∈ R(r, n)/R(s, n) are called equivalent if

there exists (A, b) ∈ AGL(n, 2) such that f(x) = g(xA + b)modR(s, n).
Two equivalent functions are in one class. An invariant of R(r, n)/R(s, n)
is a mapping M from R(r, n)/R(s, n) to a set such that for any two equiva-
lent functions f(x), g(x) ∈ R(r, n)/R(s, n), M(f) = M(g) holds. Suppose
the number of all classes of R(r,n)/R(s,n) is N, an invariant is called a
discriminant if it takes exact N distinct values.

3 Basic transform and invariant

This part is all from paper [8]. It is presented here for readers’ convenience.

3.1 Walsh Transform and Autocorrelation Func-
tion

Definition 1: Define

s(f)(w) =
∑

x∈F n
2

(−1)f(x)(−1)w·x

be the Walsh spectrum of f(x) at vector w, where f(x) ∈ pn, w ∈ F n
2 .

The transform is called the Walsh transform of f(x).

Definition 2: Let cf (s) =
∑2n−1

x=0
(−1)f(x)(−1)f(x+s) be the autocor-

relation function of f(x), where f(x) ∈ pn, s ∈ F n
2 .

The following two propositions are well known.
Proposition 1: Let f(x), g(x) ∈ pn be two functions such that g(x) =

f(xA + b) + lx, then for any w ∈ F n
2 , s(g)(w) = (−1)(l+w)·bA(−1)

s(f)((l +
w)A−1T

Corollary 1: The Walsh spectrum of f(x) at i is equal to the Walsh
spectrum of g(x) at j, where j = l + iAT . Therefore the deficiency of the
rank of vectors with same spectrum between two equivalent functions is
at most 1. The distribution of absolute value of Walsh spectra of f(x) is
same to that of g(x).
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Proposition 2: Let f(x), g(x) ∈ pn be two functions such that g(x) =
f(xA + b) + lx, then for any given s ∈ F n

2 , cg(s) = (−1)l·scf (sA).
Corollary 2: The autocorrelation function of f(x) at j is equal to the

autocorrelation function of g(x) at i, where j = iA. Therefore the ranks
of vectors with same absolute autocorrelation function value are same
between two equivalent functions. The distribution of absolute value of
autocorrelation function of f(x) is same to that of g(x).

3.2 Derivation

For any boolean function f(x) ∈ R(r, n), define its derivation function
as Da(f) = f(x) + f(x + a). Similarly we can define two-order derivation
function as Da,b(f) = f(x)+f(x+a)+f(x+b)+f(x+a+b). By definition,
it is easy to get following properties:

Property 1[9]: Da,b(f) = Da(f) + Db(f) + Da+b(f).
Property 2[9]: Da(f ◦ B) = DaA(f) ◦ B, where B ∈ AGL(n, 2).

similarly, Da,b(f ◦B) = DaA,bA(f) ◦B, where B ∈ AGL(n, 2).
Proposition 3: If f(x) ∈ R(r, n)/R(s, n), then Da(f◦B) = (DaA(f))◦

B mod R(s − 1, n), where B = (A, b) ∈ AGL(n, 2). If M is an invariant
of R(r − 1, n)/R(s − 1, n), then M(Da(f ◦ B)) = M((DaA(f)) ◦ B), so
{M(Da(f)|a ∈ F n

2 } is an invariant of R(r, n)/R(s, n).
Remark: The derivation function is used by Hou [10] in classifica-

tion of R(3, 7)/R(2, 7) and by Brier[9] in classification of R(3, 9)/R(2, 9).
Proposition 3 is an extension of their result.

3.3 Decomposition

Proposition 4: Let f(x), g(x) ∈ R(r, n) be two functions such that
g(x) = f(xA + b) mod R(s, n). If f(x) = (x1 + 1)f0(x

′) + x1f1(x
′), where

x′ = (x2, · · · , xn), then g(x) = (x · r1 + b1 + 1)f0(x
′′) + (x · r1 + b1)f1(x

′′),
where r1, r2, · · · , rn is the row of the matrix A, and x′′ = (x ·r2+b2, · · · , x ·
rn + bn). Obviously, f0(x

′), f1(x
′) are affinely equivalent to f0(x

′′), f1(x
′′)

respectively. Similar result holds for two-vector based decomposition.
By proposition 4, if f(x) is decomposed into two subfunctions at vector

b (like b = (1, 0, · · · , 0)), then g(x) can be decomposed into two subfunc-
tions at vector a = bA(like the a = bA = r1)such that the two subfunctions
of f(x) are equivalent to those of g(x).

Proposition 5: If M is an invariant of R(r, n−1)/R(s, n−1), then the
set {{M(fax=0), M(fax=1)}|a ∈ F n

2 } is an invariant of R(r, n)/R(s, n).
Remarks: The basic idea of the decomposition of a function can

be found early in Maiorana’s paper[11], which made the classification of
R(6,6)/R(1,6) possible early in 90s in 20th century. And recently it is
used by Brier[9] to classify R(3,9)/R(2,9).

3.4 The Modification of Truth Table

Definition 3[12]: For a function f(x), define its 1-local connection func-
tions as

fi(x) = { f(x) x 6= i
f(x) + 1 x = i

, i = 0, 1, · · · , 2n − 1.
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similarly 2-local connection functions can be defined.
Proposition 6[12]: Let f(x), g(x) ∈ R(r, n) be such that g(x) =

f(xA + b) + lx, then gj(x) = fi(xA + b) + lx, where jA = (i + b), i =
0, 1, · · · , 2n − 1. Similar result holds for two-local connection functions.

Proposition 7: If M is an invariant of R(n, n)/R(1, n), then {M(fi(x)|i ∈
F n

2 } is an invariant of R(r, n)/R(1, n).

4 Almost classification of R(4,7)/R(2,7)

In paper[8],some invariants are given. A discriminant is given to classify
R(3,7)/R(1,7) based on proposition 5 and corollary 1 and 2. A discrimi-
nant is given to classify R(4,6)/R(2,6) based on proposition 3 and corollary
1. Here we will use them to almost completely classify the Reed-Muller
code R(4,7)/R(2,7) under the action of AGL(7, 2.

algorithm 1
By Hou’s result[10], R(4, , 7)/R(3, 7) can be classified into 12 cosets,

denote by gi(x) + R(3, 7), deg(gi) = 4, i = 1, 2, · · · , 12, which can got
by complement the 12 cosets of R(3, 7)/R(2, 7). So R(4, 7)/R(2, 7) can be
first classified into 12 sets of forms: gi(x)+R(3, 7)/R(2, 7), i = 1, 2, · · · , 12.
We can classify the 12 sets one by one. For a given set, say gi(x) +
R(3, 7)/R(2, 7), do the following steps.

For any a function f(x) ∈ gi(x) + R(3, 7)/R(2, 7),

1. Decompose the function f(x) based on one vector a into two sub-
functions fax=0(x), fax=1(x) ∈ R(4, 6)/R(2, 6). As the discriminant
for R(4,6)/R(2,6),denote by D6

4,2, is known in [8], an invariant, like
D1a(f) = {D6

4,2(fax=0), D
6
4,2(fax=1)}, is calculated for these two

subfunctions. Now the distribution {D1a|a ∈ F n
2 , a 6= 0} is an in-

variant of gi(x) + R(3, 7)/R(2, 7).

2. Let fa(x) ∈ R(3, 7)/R(1, 7) be a derivative function of f(x) based on
one vector a. As the discriminant for R(3, 7)/R(1, 7), denote by D7

3,1,
is known, the distribution {D7

3,1(fa)|a ∈ F n
2 , a 6= 0} is an invariant

of gi(x) + R(3, 7)/R(2, 7).

Theoretically the direct product of the above two invariants is an invariant
of gi(x) + R(3, 7)/R(2, 7), but it is not practical or too expensive in com-
putation as there are 235 functions in gi(x) + R(3, 7)/R(2, 7). A practical
method is needed.

algorithm 2: practical one
There are 35 monomial of degree 3 in R(3, 7)/R(2, 7), they can be

represented as xs, H(s) = 3, where H(s) is the Hamming weight of vector
s. They can be numbered as 0, 1, · · · , 34 according to the value of s in a
way that the xs is numbered as 0 if s is least, and xs is numbered as 34 if s
is the largest. Now we can construct a one to one corresponding between
a homogeneous function and a 35-bit unsigned integers as follows: if the
ith monomial is in the function, then the ith bit of the integer is 1 else is
0.

With above description, we divide the 35 monomials into four groups,
named as G1, G2, G3, G4, of size 10,10,10,5 respectively, that is the first 10
least monomials in G1, and so on. And denote by FG1, FG2, FG3, FG4
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the set of homogeneous functions generated by G1, G2, G3, G4 respec-
tively.

For a given set gi(x) + R(3, 7)/R(2, 7),

1. Use the algorithm 1 to classify the set gi(x) + FG1/R(2, 7), and
denote by RG1 the set of equivalent classes.

2. Use the algorithm 1 to classify the set {h(x)+l(x)|h(x) ∈ RG1, l(x) ∈
FG2}. Denote by RG2 the set of equivalent classes.

3. Use the algorithm 1 to classify the set {h(x)+l(x)|h(x) ∈ RG2, l(x) ∈
FG3}. Denote by RG3 the set of equivalent classes.

4. Use the algorithm 1 to classify the set {h(x)+l(x)|h(x) ∈ RG3, l(x) ∈
FG3}. Denote by RG4 the set of equivalent classes.

The functions in RG4 are not affinely equivalent. That is , the coset
gi(x) + R(3, 7)/R(2, 7) is classified into at least |RG4| classes. Here we
use ”at least” for the following two reasons:

1. We don’t know if the invariant used in algorithm 1 is a discriminant
for gi(x) + R(3, 7)/R(2, 7).

2. Even the invariant used in algorithm 1 is indeed a discriminant, by
the proof of fact 1 in paper [6], theoretically some classes can be lost
by algorithm 2.

Using algorithm 2, the 12 sets are classified into 12, 63, 285, 474, 686,
185, 108, 6371, 1013, 33598, 1298, 23987 classes respectively. The sum of
all these classes is 68080, only 68447 − 68080 = 367 classes are lost. So
we almost classified the 12 sets gi(x) + R(3, 7)/R(2, 7), i = 1, 2, · · · , 12.

5 Functions in R(4,7)/R(2,7) which can
be expanded into bent functions

In paper[6], a novel algorithm is given to search bent function more effi-
ciently. We give a short description related to our work.

Lemma 1 [13]. Let

f(x1, x2, · · · , xn) =

2k−1∑
i=0

δai(x
′)fi(x

′′),

where x′ = (x1, x2, · · · , xk), x′′ = (xk+1, xk+2, · · · , xn), fi(x
′′) : F n−k

2 →
F2, i = 0, 1, · · · , 2k−1, the integer representation of ai ∈ F k

2 is i, δai(x
′) ={

1, ai = x′

0, ai 6= x′
, then

[s(f0)(w
′′), s(f1)(w

′′), · · · , s(f2k−1)(w
′′)]T

= [s(f)(a0, w
′′), s(f)(a1, w

′′), · · · , s(f)(a2k−1, w
′′)]Hk/2k, (1)

where w = (w′, w′′), w′′ ∈ F n−k
2 , Hk is a Hadamard matrix.
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lemma 2[6]. If

f(x1, x2, · · · , xn) =

2k−1∑
i=0

δai(x
′)fi(x

′′),

is a bent function, then every spectrum s(fi)(w
′′) can take the following

2k + 1 values:

{(2k − j)2n/2 − j2n/2}/2k = (2k − 2j)2n/2−k, j = 0, 1, · · · , 2k.

All these values are called the k-th Granted-value.
For example, let k = 1, a bent function f(x) is divided into two

sub-functions f0(x
′′), f1(x

′′). The Walsh spectra the two sub-functions
can take are 0,±2n/2. The two sub-functions is called complementary
plateaued functions. Let k = 2, we get five values: 0,±2n/2−1,±2n/2.
Similarly we can let k = 3, 4, · · · , n/2− 1.

Now we consider a concrete case: the number of variables n = 8, with
k = 1, the set of the first Granted-value is {0,±16}. With k = 2, the set
of the 2nd Granted-value is {0,±8,±16}. With k = 3, the set of the 3rd
Granted-value is {0,±4,±8,±12,±16}.

With above lemmas 1,2 , we can check whether the functions in {f(x)+
g(x)|f(x) ∈ RG4, g(x) ∈ R(2, 7)/R(1, 7)} could be expanded into bent
functions. This is easy. There are 68080×221 functions, and check if their
Walsh spectra take the first Granted-value. If there exists function g(x) ∈
R(2, 7)/R(1, 7) such that the Walsh spectra of f(x) + g(x) take the first
Granted-Value, then the function f(x) ∈ RG4 is reserved. The exact num-
ber of reserved function is as follows: (12, 6), (63, 24), (285, 128), (474, 156),
(686, 327), (185, 55), (108, 44), (6371, 3306), (1013, 501), (33598, 16851), (1298,658),
(23987,11993). Here the first number in bracket is the number of all classes
and the second number is the number of reserved classes .

An interesting observation is that there are 34049, about half of the
total number 68080, functions in RG4 that can be expanded into bent
functions, which reminds me of 6 variables case. There are 6 classes in
R(3, 6)/R(2, 6) under the action of AGL(6, 2), and half of them could be
used to construct bent functions.

Denote by HB the set of all 34049 reserved functions. For any a func-
tion in HB, it is easy to construct a plateaued functions. By corollary 2 in
paper[14],from a balanced plateaued function we can construct plateaued
function with more variables.

If some readers want the 34049 reserved functions, contact me by email.

6 Algorithm to enumerate 8-variable bent
functions

As in last part, it is easy to get a plateaued function from a function in
HB. In this part an algorithm is given by which it is efficient to construct
all bent functions from a plateaued function.
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lemma 3[1] : Let f(x) be a bent function. f̃(x) be such that s(f)(w) =

2n/2(−1)f̃(x), then f̃(x) is a bent function, and called the dual function
of f(x).

lemma 4

s(f0)(w
′′) = (s(f)(a0, w

′′) + s(f)(a1, w
′′) + · · ·+ s(f)(a2k−1, w

′′))/2k,

= ((−1)
˜f(a0,w′′) + (−1)

˜f(a1,w′′) + · · ·+ (−1)
˜f(a2k−1,w′′

)/2n/2−k (2)

especially let k=1, then

s(f0)(w
′′) = (sf (a0, w

′′)+sf (a1, w
′′))/2 = ((−1)

˜f(a0,w′′)+(−1)
˜f(a1,w′′))/2n/2−1.

Remark: The number of w′′ where s(f0)(w
′′) = 0 depends on the

Hamming weight of the derivative function of f̃(x) at the vector (1, 0, · · · , 0).

As f̃(x) is a bent function by lemma 3, the first order derivative function
at vector (1,0,,0)is a balanced function. So there are 2n−2 w′′ such that
s(f0)(w

′′) = 0. Similarly, we can discuss the case k=2,and k=3. But when
k get bigger, the problem gets more complex.

algorithm 3
If f(x) = (x1 + 1)f0(x

′) + x1f1(x
′), x = (x1, x2, · · · , xn, be a bent

function in 8 variables, then by paper [7], the two subfunctions are called
complementary plateaued functions. The distribution of their Walsh spec-
tra would be of following forms respectively:

n1︷ ︸︸ ︷
a, · · · , a,

n2︷ ︸︸ ︷
b, · · · , b,

n3︷ ︸︸ ︷
a · · · , a, · · · (3)

n1︷ ︸︸ ︷
b, · · · , b,

n2︷ ︸︸ ︷
a′, · · · , a′,

n3︷ ︸︸ ︷
b · · · , b, · · · (4)

,where a is ±16 ,a′ is ±16and b = 0. The spectra of f(x) is of form like

n1︷ ︸︸ ︷
a, · · · , a,

n2︷ ︸︸ ︷
a′, · · · , a′,

n3︷ ︸︸ ︷
a · · · , a, · · · ,

n1︷ ︸︸ ︷
a, · · · , a,

n2︷ ︸︸ ︷
−a′, · · · ,−a′,

n3︷ ︸︸ ︷
a, · · · , a, · · · (5)

If 1 is substituted for 16 and -1 for -16, then the sequence resulted
from the substitution should be a truth table of another bent function by
lemma 3, Denote by sequence S.

Now given a plateaued function(that is, a is known), to expand it into
a bent function means to determine the value of a′. The number of a′ is
64 by Lemma 4 and usually the distribution of a′ is not very uneven by
lemma 4.

1. The sequence S is of 256 length. It can be divided into 8 equal blocks,
each of which is a truth table of a 5-variable subfunction. Suppose
there are m1, m2, m3, m4 a′s in first,second,third and fourth block
respectively, then m1 + m2 + m3 + m4 = 64. The 5-8th blocks
depend on the 1-4th blocks respectively by formula 5. For each of
the 8 blocks, substitute -1 or 1 for a′, and check if the Walsh spectra
of the block take the 3rd Granted-value. If they do take the 3rd
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Granted value, then the substitution is right, else the substitution is
not proper, discard this substitution. The number of substitutions
in this step is 2m1 +2m2 +2m3 +2m4 . After this step, suppose there
are N1, N2, N3, N4 substitutions are reserved.

2. Divide the sequence 3 into 4 blocks, each of which is then a truth
table of a 6 variables subfunction. There are N1 ×N2 substitutions
in first block, and N3 × N4 in second block. The third and the
fourth block depend on the first and second block respectively. For
each of the four blocks, check if the Walsh spectra take the second
Granted-value. Suppose there are M1, M2 substitutions are reserved
in first and second block respectively.

3. Now there are M1 × M2 substitutions, check if the sequence S are
bent function.

The dual function of sequence S is the bent function we searched. By
the following lemma 5, sequence S can also be taken as the bent function
we searched.

lemma 5: Let f(x), g(x) ∈ pn be two bent functions such that g(x) =

f(xA + b), then g̃(x) = x · bA−1 + ˜f(xA−1T ).
Proof: it is from proposition 1 and lemma 3.

7 Conclusion

By almost classification of R(4,7)/R(2,7), and by the algorithm in paper[6]
,we give all functions in R(4, 7)/R(2, 7) under action of AGL(7, 2), which
can be expanded into 8-variable bent functions. Some functions in R(4,7)/R(2,7),
which can be expanded into bent function, may be lost. And only an ef-
ficient algorithm is given to construct all bent functions from a plateaued
function. That is, we don’t give all bent functions directly. Therefor it
is called semi-enumeration, and it is not a perfect result. We only an-
nounce the news of this result in the first Chinese Conference on Trusted
Computing and Information Security[15]. However our result is useful
in constructing 8 variables bent functions. Just recently, Dobbertin [16]
published a toolkit in constructing 8-bit bent functions. We still have not
study their result. It would be great if the combination of the two results
leads to the complete enumeration and complete classification of of all
8-variable bent functions.
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appendix Appendix A:

1. f1=0

2. f2=x4x5x6x7

3. f3=x4x5x6x7+x1x3x6x7

4. f4=x4x5x6x7+x1x2x3x7

5. f5=x4x5x6x7+x1x3x6x7+x1x2x5x7

6. f6=x4x5x6x7+x2x3x6x7+x1x3x5x7+x1x2x4x7+x1x2x3x7

7. f7=x3x4x5x6+x1x2x5x6+x1x2x3x4

8. f8=x4x5x6x7+x1x2x3x7+x2x3x5x6

9. f9=x4x5x6x7+x1x3x6x7+x1x2x5x7+x2x3x5x6

10. f10=x4x5x6x7+x1x2x3x7+x2x3x5x6+x1x3x4x6

11. f11=x4x5x6x7+x2x3x6x7+x1x3x5x7+x1x2x4x7+x1x2x3x7+x2x3x4x5

12. f12=x4x5x6x7+x2x3x6x7+x1x3x5x7+x1x2x4x7+xx1x2x3x7x2x3x4x5+x1x3x5x6
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