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Abstract

Several identity based and authenticated key agreement protocols have been proposed in
recent years and all of them have been shown to be non-secure. It remains an open question
to design secure identity based and authenticated key agreement protocols. In this paper,
we propose an efficient identity-based and authenticated key agreement protocol IDAK using
Weil/Tate pairing. A security model for identity based key agreement protocol is established
and the security properties of IDAK are proved in this model with random oracle. In particular,
it is shown that the IDAK protocol possesses all characteristics that a secure key agreement
should have.

1 Introduction

Key establishment protocols are one of the most important cryptographic primitives that have
been used in our society. The first unauthenticated key agreement protocol based on asymmetric
cryptographic techniques were proposed by Diffie and Hellman [10]. Since this seminal result,
many authenticated key agreement protocols have been proposed and the security properties of
key agreement protocols have been extensively studied. In order to implement these authenticated
key agreement protocols, one needs to get the corresponding party’s authenticated public key. For
example, in order for Alice and Bob to execute the NIST recommended MQV key agreement
protocol [15, 19], Alice needs to get an authenticated public fefor Bob and Bob needs to

get an authenticated public kegy for Alice first, wherea andb are Alice and Bob’s private keys
respectively. One potential approach for implementing these schemes is to deploy a public key
infrastructure (PKI) system, which has proven to be difficult. Thus it is preferred to design easy
to deploy authenticated key agreement systems. Identity based key agreement system is such an
example.

In 1984, Shamir [24] proposed identity based cryptosystems where user’s identities (such as
email address, phone numbers, office locations, etc.) could be used as the public keys. Several
identity based key agreement protocols (see, e.g., [7, 12, 16, 20, 22, 23, 25, 28, 30]) have been
proposed since then. Most of them are not practical or do not have all required security properties.
Joux [13] proposed a one-round tripartite non-identity based key agreement protocol using Weil
pairing. Then a feasible identity based encryption scheme IBE [6] based on Weil or Tate paring
was designed.

Based on Weil and Tate pairing techniques, Smart [28], Chen-Kudla [7], Scott [23], Shim [25],
and McCullagh-Barreto [16] designed identity based and authenticated key agreement protocols.
However, none of these protocols is secure (details could be found in Sét@iaf this paper).



For example, all these protocols are insecure against key revealing attacks and some of them do
not have perfect forward secrecy property for session keys if both parties long term private keys
are corrupted. Indeed, several of these protocols were “PROVED” to be secure in the Bellare-
Rogaway security model for key agreement protocols and the proofs were found to be flawed later.
For example, Chen and Kudla [7] proved that their protocol is secure in the Bellare-Rogaway [3]
secure key agreement model. However, Cheng et al. [8] pointed out that the proof in [7] is flawed
and their protocol is not secure against the key revealing attacks (the fundamental component in
Bellare-Rogaway model).

Thus it remains to be an open problem to design efficient secure identity based and authenti-
cated key agreement protocols. In this paper, we propose an efficient identity based and authenti-
cated key agreement protocol achieving all security properties that an authenticated key agreement
protocol should have. In addition, our protocol is designed for efficient implementation with pre-
computations. Without pre-computation, our protocol is as efficient as (or more efficient than)
existing identity based key agreement protocols.

The advantage of identity based key agreement is that non-PKI system is required. The only
prerequisite for executing identity based key agreement protocols is the deployment of authenti-
cated system-wide parameters. Thus, it is easy to implement these protocols in relatively closed
environments such as government organizations and commercial entities.

There is an extensive literature on the security of key agreement protocols. Bellare and Ro-
gaway [3] provided formalizations for certain symmetric-key cases. They introduced the model
of an adversary in control over all communications, modelled session key revealing attacks, and
suggested that the session key should be strongly secure in the sense of semantic security. Fiat
and Shamir [11] introduced the random oracle model to analyze the security of cryptographic pro-
tocols. The random oracle model has been further enhanced by Bellare and Rogaway [2]. We
will show that in random oracle model, our IDAK is a secure authenticated key agreement pro-
tocol in a security model based on Bellare-Rogaway model [3]. In a summary, our contributions
of this paper include: (1) An efficient identity based and authenticated key agreement protocol.
Without pre-computation, our protocol is at least as efficient as existing (including the non-secure
ones) identity based key agreement protocols. With pre-computation, our protocol is very efficient
and is suitable for resource constraint devices. (2) A security model for identity based key agree-
ment protocols which is used to prove security properties for our IDAK protocol. (3) Practical
considerations and application domain discussions of identity based key agreement protocols.

The remainder of this paper is organized as followsgdmwe briefly describe bilinear maps,
bilinear Diffie-Hellman problem, and its variants. 48, we describe our identity based and au-
thenticated key agreement protocol IDA§ describes a security model for identity based key
agreement. In sectiogb, we prove the security of IDAK key agreement protocol. In sectighs
and§7, we discuss key compromise impersonation resilience and perfect forward secrecy proper-
ties of IDAK key agreement protocol, and in sectii we describe IDAK key agreement protocol
with key confirmation and we prove its security. In secti@®we discuss implementation issues
and applications. We conclude our paper with a discussion on related protocols and their insecurity
in §10.



2 Bilinear maps and the bilinear Diffie-Hellman assumptions

2.1 Bilinear maps

In the following, we briefly describe the bilinear maps and bilinear map groups. The details could
be found in Joux [13] and Boneh and Franklin [6].

1. G and@; are two (multiplicative) cyclic groups of prime order
2. gis a generator ofs.
3. é: G x G — G4 is abilinear map.
A bilinear mapisamap : G x G — G4 with the following properties:
1. bilinear: for allgy, g2 € G, andz,y € Z, we haves(g{, g5) = é(g1, g2)"".
2. non-degeneratéig, g) # 1.

We say that is a bilinear group if the group action i@ can be computed efficiently and there
exists a groug; and an efficiently computable bilinear map G x G — G as above. Concrete
examples of bilinear groups are given in [13, 6]. For example&;lbe a subgroup of the additive
group of the points of an elliptic curvi, ;/ F,, andG, be a subgroup of the multiplicative group

of a finite fieIdFZ;;. Then the Weil pairing (respectively, Tate pairing) could be used to construct
bilinear maps between these two groups. For convenience, throughout the paper, we view both
G and G; as multiplicative groups though the concrete implementatio& @ould be additive

elliptic curve groups.

2.2 Complexity assumptions

Throughout the papeafficientmeans probabilistic polynomial-timeegligiblerefers to a function
e which is smaller thari /k¢ for all ¢ > 0 and sufficiently large:, andoverwhelmingefers to
a function1 — ¢, for some negligibles;,. Consequently, a functiofy, is non-negligibleif there
exists a constant and there are infinitely many such that, > 1/k¢. We first formally define
the notion of a bilinear group family and computational indistinguishable distributions (some of
our terminologies are adapted from Boneh [5]).
Bilinear group families A bilinear group familygG is a setG = {G,} of bilinear groups&, =
(G, G1, €) wherep ranges over an infinite index sé&t,andG, are two groups of prime ordey,,
andé : G x G — (G is a bilinear map. We denote by| the length of the binary representation
of p. We assume that group and bilinear operationS jin= (G, G, ¢) are efficient in|p|. Unless
specified otherwise, we will abuse our notations by usiag the group order instead @f in the
remaining part of this paper.
Instance generatorAn Instance GeneratorZg, for a bilinear group familyg is a randomized
algorithm that given an integér (in unary, that is1*), runs in polynomial-time irk and outputs
some random index for G, = (G, G1, é), and a generatay of G, whereG andG, are groups
of prime orderg. Note that for eaclt, the Instance Generator induces a distribution on the set of
indicesp.

The following Bilinear Diffie-Hellman Assumption (BDH) has been used by Boneh and Franklin
[6] to show security of their identity-based encryption scheme.



Bilinear Diffie-Hellman Problem LetG = {G,} be a bilinear group family anglbe a generator
for G, whereG, = (G,G1,€). The BDH problem inG is as follows: giver g, g*, g¥, g*) for
somez,y,z € Z;, computeé(g, g)*¥* € G1. A CBDH algorithm( for G is a probabilistic
polynomial-time algorithm that can compute the functi®bH,(¢", ¢¥, g*) = é(g,9)"?* in G,
with a non-negligible probability. That is, for some fixewve have

Pr[C(p,9,9%,9%,9%) = é(9,9)"*] = % Y
where the probability is over the random choices:0f, z in Z}, the indexp, the random choice
of g € G, and the random bits oA.

CBDH Assumption. The bilinear group familyg = {G,} satisfiesthe CBDH-Assumption
if there is no CBDH algorithm foiG. A perfect-CBDH algorithmC for G is a probabilistic
polynomial-time algorithm that can compute the functl®bH,(¢", ¢¥, %) = é(g,9)"?* in G,
with overwhelming probabilityG satisfiesthe perfect-CBDH-Assumption if there is no perfect-
CBDH algorithm forg.

Theorem 2.1 A bilinear group familyG satisfies the CBDH-Assumption if and only if it satisfies
the perfect-CBDH-Assumption.

Proof. The fact that the CBDH-Assumption implies the perfect-CBDH-Assumption is trivial.
The converse is proved by the self-random-reduction technique (see [4, 17]) heta CBDH
oracle. That is, there existsca> 0 such that (1) holds witld replaced with®. We construct a
perfect-CBDH algorithn® which makes use of the oradl2 Giveng, g%, ¢¥, g* € G, algorithmC
must computé(g, g)*¥* with overwhelming probability. Consider the following algorithm: select
a,b,c €gr Z, and output

_ xr+a +b _z+c ~ —(abz+abct+ayz+ayc+xbz+xbet+zyc
Iz,y,z,a,b,c - 0(979 7gy g ) : e(gvg) ( Y Y Y )

One can easily verify that D (p, g, g" 2, g¥*?, g°7¢) = é(g, g) @TDWFIEH) thenl, . ape =
é(g,9)*¥*. Consequently, standard amplification techniques can be used to construct the algorithm
C. The details are omitted. O

Consider Joux’s tripartite key agreement protocol [13]: Alice, Bob, and Carol fix a bilinear
group(G, G1,¢€). They selectr,y,z €g Z; and exchangg®, ¢g¥, andg®. Their shared secret
is é(g, g)*¥*. To totally breakthe protocol a passive eavesdropper, Eve, must compute the BDH
function: BDH, (g%, ¢, 9%) = é(g,9)""*.

CBDH-Assumption by itself is not sufficient to prove that Joux’s protocol is useful for practical
cryptographic purposes. Even though Eve may be unable to recover the entire secret, she may still
be able to predict quite a few bits (less thalog & bits for some constant, Otherwise, CBDH
assumption is violated) of information féfg, g)*¥* with some confidence. H(g, g)*¥* is to be
the basis of a shared secret key, one must bound the amount of information Eve is able to deduce
about it, givery®, ¢¥, andg®. This is formally captured by the, much stronger, Decisional Bilinear
Diffie-Hellman assumption (DBDH-Assumption)

Definition 2.2 Let{X,} and{),} be two ensembles of probability distributions, where for each
p both X, and ), are defined over the same domain. We say that the two ensembtaswapata-
tionally indistinguishabléf for any probabilistic polynomial-time algorithr?, and anyc > 0 we
have

Pr[D(X,) =1 -Pr[D(Y,) =1]| < k,i
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for all sufficiently largek, where the probability is taken over all,, ), and internal coin tosses
of D.

In the remainder of the paper, we will say in short that the two distributidnand)’, are com-
putationally indistinguishable.

Let G = {G,} be a bilinear group family. We consider the following two ensembles of
distributions:

e {X,} of random tuplesp, g, g%, ¥, 9%, é(g, g)*), whereg is a random generator 6f (G, =
(G,Gh,€)) andz, y, z, t are randomly chosen frou,.

e {J,} of tuples(p, g, 9", 9V, 9%, €(g, g)*¥*), whereg is a random generator ¢f andz, y, z
are randomly chosen frot,.

An algorithm that solves the Bilinear Diffie-Hellman decision problem is a polynomial time
probabilistic algorithm that can effectively distinguish these two distributions. That is, given a
tuple coming from one of the two distributions, it should output O or 1, and there should be a
non-negligible difference between (a) the probability that it outputs a 1 given an inpuf fkpin
and (b) the probability that it outputs a 1 given an input frfd), }. The bilinear group familyy
satisfies the DBDH-Assumptidfithe two distributions are computationally indistinguishable.
Remark. The DBDH-Assumption is implied by a slightly weaker assumptiparfectDBDH-
Assumption. A perfect-DBDH statistical test fgrdistinguishes the inputs from the abolu&), }
and{), } with overwhelming probability. The bilinear group famiysatisfies the perfect-DBDH-
Assumptionf there is no such probabilistic polynomial-time statistical test.

3 The scheme IDAK

In this section, we describe our identity-based and authenticated key agreement scheme IDAK.
Let k£ be the security parameter given to the setup algorithmZaghbe a bilinear group parame-

ter generator. We present the scheme by describing the three algoriBeng, Extract, and
Exchange

Setup For the inputc € Z T, the algorithm proceeds as follows:

1. RunZg onk to generate a bilinear group, = {G, G1, ¢} and the prime ordey of the two
groupsG andG,. Let h be the co-factor of the group ordgfor G (that is, the order of the
basing elliptic curve group fatr is gh). If G is not an elliptic curve group, thelcould be
defined similarly. Choose a random genergtar G.

2. Pick a random master secret Z;.

3. Choose cryptographic hash functios: {0,1}* — G and7 : G x G — Z;. In the
security analysis, we viewd andz as random oracles.

The system parameter (g, h, g, G, G1, é, H, m) and the master secret keyds

Extract: For a given identification strinfD € {0, 1}*, the algorithm computes a generajgas =
H(ID) € G, and sets the private kelp = gf}, wherea is the master secret key.

Exchange For two participants Alice and Bob whose identification stringsldarg andIDp
respectively, the algorithm proceeds as follows.
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1. Alice selectsr g Z;, computesia = gjp, ,, and sends it to Bob.
2. Bob selecty €r 7, computeshRp = ginB, and sends it to Alice.

3. Alice computes 4 = n(R4, Rp), sg = 7(Rp, Ra), and the shared secrgt, 5 as
5 x+s S fe ~ S x+54)ha
é(gID 4, gip ) e sn)he - (9153 'RngI(D—Z Y ) .

4. Bob computesy = n(Ra, Rp), sp = 7(Rp, R4), and the shared secrgtp 4 as

(z+s4)(y+sB)ha

. h
é(g1p 4, 91D ) (y+s5) a) .

=eé (ngA : RAangB

A simple analysis shows that in the IDAK protocol, each party needs to compute three (or two
if 7 takes values frorfiL, 22 9/21]) exponentiations and one pairing. However, if each party could
do some pre-computation, then only one pairing and two (or one) exponentiation are required
during the key agreement session. In particular, if Alice selects the randomavahskcomputes

the value ofg?, off-line before the key agreement session, then she only needs to carry out the

computation ofy;f - R, g% - g%, andé ( g;7 - RB,gf“A)h“) during the key agreement session.

This improves the performance of the protocol implementation.

In the following sections, we describe a security model for identity based and authenticated
key agreement protocol. Our model is based on Bellare and Rogaway [3] secure key agreement
model. We then show that our IDAK protocol is secure in this model with random oracle plus
DBDH-Assumption. In particular, our protocol achieves perfect forward secrecy property and
security against key revealing attacks. In a summary, our protocol is more efficient compared with
existing protocols and has better security properties.

We conclude this section with a theorem which says that the shared secret established by
the IDAK key agreement protocol is computationally indistinguishable from a random value. In
another word, if we assume that the adversary is passive and forward all messages exactly in the
way it receives, then the agreed keys by entities achieve semantic security.

Theorem 3.1 LetG = {G,} be a bilinear group family, = (G,G1,¢), and gy, g be ran-
dom generators off. Assume that DBDH-Assumption holds ¢brThen the distributionsg; , g2,
9%, 98, é(g1, g2) @Ot 9D winlab.s0he) and (g, ga, g7, g3, €(g1, g2)*") are computationally in-
distinguishable, where, z, y, ~ are selected fron&; uniformly.

Before we give a proof for Theorem 3.1, we first prove two lemmas that will be used in the
proof of the Theorem.

Lemma 3.2 (Naor and Reingold [17]) Le§ = {G,} be a bilinear group familyz, = (G, G1, ¢€),
m be a constantg be a random generator aff, and g = é(g,g). Assume that the DBDH-
Assumption holds fof7,. Then the two distribution§R, (§%%/* : i,7,1 < m)) and (R, (g"! :
i,7,1 < m)) are computationally indistinguishable. Hefe denotes the tupléy, (g%, g%/, g* :
i,j,1 < m))andz;,y;, 2, u;; are randomly chosen froi,.

Proof. Using a random reduction, Naor and Reingold [17, Lemma 4.4] (see also Shoup [27,
§5.3.2] showed that the two distributio®, (¢**¥ : 4,7 < m)) and(R, (¢* : 1,5 < m)) are
computationally indistinguishable. The proof can be directly modified to obtain a proof for this
Lemma. The details are omitted. O



Lemma 3.3 LetG = {G,} be a bilinear group family(~, = (G, G1, ¢), g be arandom generator
of G, g = é(g, g), and f; and f» be two polynomial-time computable functions. If the two distribu-
tionsX; = (R, 1™, 52y andy, = (R, §*', §**) are computationally indistinguishable, then
the two distributionsY, = (R, /142 and Y, = (R,, §*) are computationally indistin-
guishable, wherR = (g, (g% : 1 <i <m)),x = (x1,...,2Tm), andx;, 21, 22, z are randomly
chosen fron¥,.

Proof. For a contradiction, assume that there is a probabilistic polynomial-time algofittimat
distinguishes the two distributio, and), with non-negligible probabilityy. In the following
we construct a probabilistic polynomial-time algoritti?to distinguish the two distribution&’;
and));. D' is defined by lettingd®’ (R, X,Y) = D(R,X -Y) forall R, andX,Y € G;. By
this definition, we hav®r [D].(X1) = 1|R,r] = Pr[D,(X2) = 1|R, r], for any fixed internal coin
tosses of D andD'.

Let DR ={X :D,(R,X) =1} andDE, = {(X,Y): D, (R, X,Y) = 1}. By definition
of D/, we haveDR', = {(X,Y) : X - Y € DE }. It follows that|DX' | = ¢/DR | and
Pr[D, (1) = 1|R,7] = |DR,|/¢* = |DE .|/q = Pr[D,(32) = 1|R,r]. Thus we have

[Pr[D'(X1) = 1] = Pr[D'(Qh) = 1]|

= | S, PR, 7] (Pr[Di(R1) = 1R, 7] = Pr [D(0) = 1R, 7])|
= | S, PR.7] - (Pr[D(s) = LR, 7] = Pr [D,(3) = 1R, 7])|
— [Pr[D(A) = 1] - Pr[D() = 1]

> .

Hence,D’ distinguishes the distributiond’} and ), with non-negligible probabilitys,. This
contradicts the assumption of the Lemma. |

Proof of Theorem 3.1Let g = é(g, g).By Lemma 3.2, the two distributions

X = <g7 ga, ng gy, ghaxy7 ghOéIﬂ'(gy,gz)7ghayﬂ(gz,gy)7ghaw(gfc7gy)ﬂ(gy7gz)> and
Y= <g7 ga7 gm’ gy, ghzi , ghzéﬂ(,gy,gz), ghzéﬂ(gz,gy)’ghziﬂ(gz7gy)ﬂ(gy7gz)>

are computationally indistinguishable assuming that DBDH-Assumption holds, fahereg is
a random generator @, anda, z, y, 2}, 25, 25,2y €r Z,. Sincer is a fixed function from
G to Z} andq is a prime, it is straightforward to verify that for amy z,y € Z,, gh=m9"97),

G (g 9") andgh#m(9”.9*)7(9".9%) gre uniformly (and independently of each other) distributed
over(. It follows that the distribution

Z={g,9% 9", 9%, 5", §"*2, g"%, gh=))

is computationally indistinguishable from the distribut@nwherezi, 2o, 23, 24 €r Z;. ThusX
and Z are computationally indistinguishable. The Theorem now follows from Lemma 3.32

4 The security model

Our security model is based on Bellare and Rogaway [3] security models for key agreement pro-
tocols with several modifications. In our model, we assume that we have atingspoly(k)



protocol participants (principalsYDq, . ..,ID,,, wherek is the security parameter. The proto-

col determines how principles behave in response to input signals from their environment. Each
principle may execute the protocol multiple times with the same or different partners. This is mod-
elled by allowing each principle to have different instances that execute the protocol. An oracle
117 ; models the behavior of the principl®; carrying out a protocol session in the belief that it is
communicating with the principl&€D; for the sth time. One given instance is used only for one
time. EachlI} ; maintains a variablgiew (or transcrip) consisting of the protocol run transcripts

so far.

The adversary is modelled by a probabilistic polynomial time Turing machine that is assumed
to have complete control over all communication links in the network and to interact with the
principles via oracle accessesliig ;. The adversary is allowed to execute any of the following
queries:

e Extract(ID). This allows the adversary to get the long term private key for a new principle
whose identity string i$D.

e Send(Il};, X). This sends messagdeto the oracldl; ;. The output of I} ; is given to the
adversary. The adversary can ask the prindiplgto initiate a session withD; by a query

Send(Il} ;, \) where) is the empty string.

e Reveal(II} ;). This asks the oracle to reveal whatever session key it currently holds.

e Corrupt(i). This askdD; to reveal the long term private kelyp. .

The difference between the queriestract andCorrupt is that the adversary can uggtract to
get the private key for an identity string of her choice witilerrupt can only be used to get the
private key of existing principles.

LetII7; be an initiator oracle (that is, it has received message at the beginning) a‘ﬂgg be
a responder oracle. If every message fiigtsends out is subsequently deliveredit}j, with the
response to this message being returnelditoas the next message on its transcript, then we say
the oracld'[;?; matchedl;. Similarly, if every message thﬁll‘;; receives was previously generated
by II};, and each message trﬁ}; sends out is subsequently deliveredy, with the response
to this message being returnedﬂg as the next message on its transcript, then we say the oracle
113 matchesH;?;. The details for an exact definition of matching oracles could be found in [2].

For the definition of matching oracles, the reader should be aware the following scenarios:
Even though the oraclHj; thinks that its matching oracle Ej; the real matching oracle for
IT¢; could bell’;. For example, ifil;; sends a messagé to IT%; andII?; replies withY". The
adversary decides not to forward the messkgde II;;. Instead, the adversary sends the message
X to initiate another oracIH?i andID; does not know the existence of this new oraﬂgé;. The
oracleH?i replies withY” and the adversary forwards thig§ to IT;; as the responding message
for X. In this case, the transcript éf;; matches the transcript (ﬂz; Thus we considelT};
andH?’i as matching oracles. In another word, the matching oracles are mainly based the message
transcripts.

In order to define the notion of a secure session key exchange, the adversary is given an
additional experiment. That is, in addition to the above regular queries, the adversary can choose,
at any time during its run, &‘est(Hij) query to a completed oraclé; ; with the following
properties:



e The adversary has never issued, at any time during its run, the direyact(ID;) or
Extract(ID;).

e The adversary has never issued, at any time during its run, the qUeryupt(i) or
Corrupt(j).

e The adversary has never issued, at any time during its run, the Rmryal(l‘[f’j).

e The adversary has never issued, at any time during its run, the ﬁlmryal(l‘[j:i) if the
matching oracIeHS for IT7 ; exists (note that such an oracle may not exist if the adversary is
impersonating théD to the oracldl? ;). The value ofs may be different from the value of
s’ since the adversary may run fake sessions to impersonate any principles without victims’
knowledge.

Let sk} ; be the value of the session key held by the or&tie that has been established between
ID; andID The oracldll; ; tosses a coih < {0,1}. If b = 1, the adversary is givesk; ;.
Otherwise, the adversary |s given a valumandomly chosen from the probability distribution of
keys generated by the protocol. In the end, the attacker outputd’a Bihe advantage that the
adversary has for the above guess is defined as

AdvA(k) =

Prfb = b'] - ’

Now we are ready to give the exact definition for a secure key agreement protocol.

Definition 4.1 A key agreement protocdl is secure if the following properties are satisfied for
any adversary:

1. If two uncorrupted oraclesl;; and Hj; have matching conversations (e.g., the adversary
is passive) and both of them are complete according to the proléctten both oracles
will always accept and hold the same session key which is uniformly distributed over the key
space.

2. Adv*(k) is negligible.

In the following, we briefly discuss the attributes that a secure key agreement protocol in the
above model achieves.

e Known session keysThe adversary may us?eevea(l'[f:j) query before or after the query
Test(Hs ). Thus in a secure key agreement model, the adversary learns zero information
about a fresh key for sessiareven if she has learnt keys for other sessigns

e Impersonation attack. If the adversary impersonaté; to ID;, then she still learns zero
information about the session key that the oragjeholds for this impersonatelD; since
there is no matching oracle for?; in this scenario. Thusl can useTest query to test this
session key thdfl;; holds.

e Unknown key share If ID; establishes a session key wifh; though he believes that he
is talking toID;, then there is an oraclé;; that holds this session key:;;. At the same

time, there is an oracIHfZ, that holds thls session key:;;, for somei’ (normallyi’ = 7).
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During an unknown key share attack, the usey may not know this session key. Sindg;
andIT, are not matching oracles, the adversary can make the @uevgal(IT, ) to learn
this session key before the quelst(IL7;). Thus the adversary will succeed for tfisst
guery challenge if the unknown key share attack is possible.

¢ Key compromise impersonation resiliencelf the entity A’s long term private key is com-
promised, then the adversary could impersonat® others, but it should not be able to
impersonate others td. Similar to other security models [3] for key agreement protocols,
our model does not capture this property. However, we will give a separate proof that the
IDAK key agreement protocol indeed has this property.

e Perfect forward secrecy This property requires that previously agreed session keys should
remain secret, even if both parties’ long-term private key materials are compromised. Sim-
ilar to other security models [3] for key agreement protocols, our model does not capture
this property. However, we will give a separate proof that the IDAK key agreement protocol
indeed has this property.

5 The security of IDAK

Before we present the security proof for the IDAK key agreement protocol, we first prove some
preliminary results that will be used in the security proof.

Lemma 5.1 LetG = {G,} be a bilinear group family(z, = (G, G1, €), g be a random generator
of G, and7 : G x G — Z, be arandom oracle. Assume DBDH-Assumption holdg/fand let
X and)’ be two distributions defined as

X = (R, gm0, gm0, e(g, g)@otm(a™0.g770))(wo+m(97*0.970))aby ¢y,
and Y = (R, g%, gm0, é(g, g)wotme” 0 a 0N wotmg 097N (g g)t

Then we have

1. The two distributionst’ and) are computationally indistinguishable® is defined as

x x (0%
R = (g,ga,gﬁ,g'y,gm,gr,gA,é (gﬂchﬁw(g :gA)ng . gm(gmg )) ) 7

a, 8,7, x,t,xo are chosen fronZ; uniformly, g" = g7 or r is either chosen fronZ; uni-
formly, g 4 and g% are chosen frond: according to any probabilistic polynomial time com-
putable ensembles of distributidi{g®, ¢", g%, ¢°, g7, ¢°*°). Note that the distributions for
g4 andg?¥ could be different.

2. For any constantn < poly(k), the two distributionst’ and)’ are computationally indistin-
guishable ifR is defined as:

(9:9% 6%, 97, (6%, "7, ga2)ija<ms (g7 TPmI™ 940 gy grimlgang™ e g 51 < m))

wherea, 3,~,z; are uniformly chosen fron¥;, r; are either chosen fronZ; uniformly
or g'7 = g7, andg,, is chosen according to a polynomial time computable ensemble of
distributionG (g%, g™, ¢, ¢°, g7, g% :i,5,1 < m).
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3. Forany constantn < poly(k), the two distributionst’ and)’ are computationally indistin-
guishable ifR = (R1, R2), whereR; is defined as th& in the item 2, andR; is defined
as:

(946,97 GA2)ija<ms (E(ga - gFTOABIAD g 4. griT@ALIADN 4 g 1 < m))

wherer; are either chosen froma; uniformly org™ = g7, g4, andg.4, are chosen accord-
ing to polynomial time computable ensembles of distribufiyt, g™, g%, ¢°, g7, g7, g7¥0 -
i, 7,1 < m) with the condition that §4; # g% or ga; 7 g7¥°". Note thatg 4, andg4;
could have different distributions.

Proof. 1. For a contradiction, assume that there is a polynomial time probabilistic algorithm
D that distinguishest’ and). We construct a polynomial time probabilistic algorithnthat
distinguishegg, g%, ¢, g%, é(g, 9)*) and(g, g*, g, g%, é(g, g)"*") with %, whereu, v, w, a are
uniformly at random inz,,.

Let the input ofA be (g, g%, g, g%, é(g, 9)%), Wherea is eitheruvw or uniformly at random
in Z,. A chooses uniformly at random, cz, c3, 2,29 € Z,, Setsg® = gervtez, gf = gvtes,
g7 = g*“*¢, chooses uniformly at random € Z, or letsg" = ¢°, chooseg)™, g4 € G
according to the distribution§(¢%, ¢", g%, ¢°, g7, ¢°*°) (the distributions forg4 € G and g%
could be different). Since® and g% are uniformly chosen frond/, we may assume that the
values ofr(g®, g4) andx(g?¥°, g7*0) are unknown yet. Without loss of generality, we may as-
sume thatr + B (g%, g4) andyy + m(g7%°, g%) take values:; andcg respectively, wheres
andcg are uniformly chosen fron¥,. In a summary, the value 6® could be computed from
g“, g%, g%, c1, co, c3, ¢4, c5 efficiently. A then sets

é(g,g)f — é(g’g)cld+C4(01u+cg)(U+03)+w(clucg+clv+cgcg)‘
A can computeé(g, g)@o+m(9770.9770)) (wo+7(97*0,9°70))i ysing the values af(g, )¢, zo, (g%, g70),
c. Let A (g, g% g%, g%, é(g,9)%) = D(X), whereX is obtained from)’ by replacing: with ¢ and
taking the remaining values as defined above.

Note that ifa = uvw, theni = a3y, and X is distributed according to the distributioh.
That is,«, 3,7, x, xo are uniform inZ, and independent of each other and(ofv, w), (r, g4,
¢"%) is chosen according to the specified distributions. Otherwkisis, distributed according to
the distributionX’, and? is uniform in Z, and independent of, 3, v, z, zo, 7, u, v, w, g4, g7*°.
Therefore, by definitions,

Pr[A(g.9", 9", 9%,
and  Pr[A(g.9".9",9",
Thus A distinguishegg, ¢*, ¢, 9%, é(g, 9)*) and (g, g*, ¢*, g%, é(g, g)**") with J;, wherea is
uniform at random irZ,. This is a contradiction.

2. This part of the Lemma could be proved in the same way. The details are omitted.

3. Since ‘Ya; # g°%° or ga; # g7*°”, we may assume that the valuesm(fy, g.4,) and
(94,1, 94,) are unknown yet. By the random oracle propertyrpthis part of the Lemma could
be proved in the same way as in item 1. The details are omitted. O

Theorem 5.2 Suppose that the functiorf$ and = are random oracles and the bilinear group
family G satisfies DBDH-Assumption. Then the IDAK scheme is a secure key agreement protocol.
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Proof. By Theorem 3.1, the condition 1 in the Definition 4.1 is satisfied for the IDAK key agree-
ment protocol. In the following, we show that the condition 2 is also satisfied.

For a contradiction, assume that the advers&has non-negligible advantagg = Adv““(k)
in guessing the value dfafter theTest query. We show how to construct a simulafthat uses
A as an oracle to distinguish the distributiof'sand)’ in the item 3 of Lemma 5.1 with non-
negligible advantaged, (¢ — 2)?/q%, wheregr denotes the number of distingt-queriesthat
the algorithmA has made. The game between the challenger and the simSlatarts with the
challenger first generating bilinear groups = (G, G1, é) by running the algorithmnstance
Generator. The challenger then randomly seleats3, v,t € Z, andb € {0,1}. The challenger
gives the tuplelp, g, g%, ¢°, g7, é(g, 9)?) to the algorithmS wherei = a3y if b = 1 andf = ¢
otherwise. During the simulation, the algorith$hcan ask the challenger to provide randomly
chosery®™. S may then choose (with the help @f perhaps) 4; according to a polynomial time
computable distributiog (g%, g"7, g%, ¢°, g7, g**° : i, j,1 < m) and sendg 4 to the challenger.
The challenger responds witkig®+57(9™ 940 g 4 ;- g"im(94:9") ) At the end of the simulation,
the algorithmsS is supposed to output its gudss= {0, 1} for b.

The algorithmS selects two integers, J < ¢g randomly and works by interacting with as
follows:
Setup: Algorithm S gives.A the IDAK system parametels, h, G, G1, é, H, ) whereq, G, G1, é
are parameters from the challeng@rand= are random oracles controlled Byas follows.
H-queries Atany time algorithmA can query the random oradigusing the querieExtract(ID;)
or GetID(ID;) = H(ID;). To respond to these queries algorithmaintains anf s that con-
tains a list of tuplesID;, gip,). The list is initially empty. Whend queries the oraclél at a point
1D;, S responds as follows:

1. Ifthe querylD; appears on th&l's* in a tuple(ID;, gip, ), thenS responds withH (ID;) =
gip; -

2. Otherwise, if this is thé-th new query of the random oracl¢, S responds wittyp, =
H(ID;) = ¢°, and adds the tupl@D;, ¢°) to the H"s¢, If this is the.J-th new query of the
random oracleS responds withyip, = H(ID;) = g7, and adds the tupl@D,, ") to the
Hlist_

3. In the remaining cas& selects a random; € Z,, responds witlyp, = H(ID;) = ¢",
and adds the tupldD;, ") to the ',

m-queries At any time the challenger, the algorithiy and the algorithn& can query the random
oracler. To respond to these queries algoritdhmaintains ar'’** that contains a list of tuples
(91,92,7(g1,92))- The list is initially empty. WhenA queries the oracle at a point(g1,92), S
responds as follows: If the quety, g») appears on the'’! in a tuple((g1, g2), 7(g1, g2)), then

S responds withr(gy, g2). Otherwise S selects a randomy;, € Z,, responds withr(g, g2) = v;,

and adds the tupl&g1, g2), v;) to ther!st. Technically, the random oractecould be held by an
independent third party to avoid the confusion that the challenger also needs to access this random
oracle also.

Query phase:S responds tod’s queries as follows.
For aGetID(ID;) query,S runs theH-queriesto obtain agip, such thatH (ID;) = gip,,
and responds withp, .
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For anExtract(ID;) query for the long term private key, if= I ori = J, thenS reports
failure and terminates. Otherwis§&,runs theH-queriesto obtaingip, = H(ID;) = ¢", and
respondsiip, = (9%)" = gip,-

For aSend(Il; ;, X) query, we distinguish the following three cases:

1. X = A\ If i =T orJ, S asks the challenger for a randaiy € G (note thatS does not
know the discrete logarithm a®; with basegip,), otherwiseS chooses a random; ¢ Zy
and setsk; = gﬁgi. S letsII7 ; reply with R;. That is, we assume thélb; is carrying out
an IDAK key agreement protocol witth ; andID; sends the first messagg to ID .

2. X # X and the transcript of the oracl&’ ; is empty. In this casdll; ; is the responder to
the protocol and has not sent out any message yet=If or J, S asks the challenger for
arandomR; € G, otherwiseS chooses a randomy; € Zy and setsR; = g}gi. S IetstJ
reply with R; and marks the oracld; ; as completed.

3. X # )\ and the transcript of the orac]é;j is not empty. In this casél; ; is the protocol
initiator and should have sent out the first message already. IThusioes not need to
respond anything. After processing the quBend(II; ., X), S marks the oraclel; ; as
completed.

’L]’

A( (R, R;)
91D,

and responds withk;;, hereR; is the message received bif ;. Note that

the messagﬁij may not necessarily be sent by the ora&jg for somes’ since it could have been

a bogus message from. Otherwise; = I ori = J. Without loss of generality, we assume that

i = 1. In this case, the oraclHS dose not know its private key’®. Thus it needs help from
the challenger to compute the shared session keyRleatnd R; be the messages thﬁg has
sent out and received respectivell; ; gives these two values to the challenger and the challenger

computes the shared session k&y; = (gIéR /F) - Rj, R§hgm (B, Rﬂaﬁh) 117 ; then responds
with k‘]j.

For aCorrupt(i) query, ifi = I ori = J, thenS reports failure and terminates. Otherwise,
S responds withiip, = (9%)" = gfp. -

For theTest(I17 ;) query, ifi # [ or j # J, thenS reports failure and terminates. Other-
wise, assume that— I'andj = J. Let Ry = g} be the message that; ; sends out (note
that the challenger generated this message)}and: g“J be the message thal; ; receives
(note thatR; could be the message that the chaIIenger generated or could be generated by the
algorithm A). S gives the messageR; and R; to the challenger. The challenger computes
X = é(g, g)wtr(BrRn))uws+r(RED)th and givesX to S. S responds withX. Note that if
t = a3y, thenX is the session key. Otherwisg, is a uniformly distributed group element.

Guess: After the Test(II7 ;) query, the algorithmA outputs its guess’ € {0,1}. Algorithm S
outputsd’ as its guess to the challenger.

Claim: If S does not abort during the simulation thdrs view is identical to its view in the real
attack. Furthermore, § does not abort, theh?r [b="b]— } > dr, where the probability is over
all random coins used hy andA.

Proof of Claim: The responses té/-queries and r-queries are the same as in the real attack
since the response is uniformly distributed. All responses to the getlD queries, private key extract
gueries, message delivery queries, reveal queries, and corrupt queries are valid. It remains to show

For aReveal(HS ) query, ifi # I andi # J, S computes the session kef;; =
R. d(“l"‘”(RuR Nh )
_]l
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that the response to the test query is valid also. Whisnuniformly distributed overZ,, then
Theorem 3.1 shows thaf = ¢é(g, g)(w BB (wstm(RyE)ih js yniformly distributed over
G and is computationally indistinguishable from a random value befisesiew. Therefore, by
definition of the algorithmd, we have{Pr[b = V'] — | > 6. m

Supposed makes a total ofyz H-queries. We next calculate the probability tifatdoes
not abort during the simulation. The probability th&itdoes not abort foExtract queries is
(gg — 2)/qE. The probability thatS does not abort foCorrupt queries is(qg — 2)/qe. The
probability thatS does not abort fofest queries i2/q%. Therefore, the probability tha does
not abort during the simulation ¢z — 2)2/¢%. This shows thas’s advantage in distinguishing
the distributionst andy in Lemma 5.1 is at lea®9x. (¢ — 2)? /¢4, which is non-negligible.

To complete the proof of Theorem 5.2, it remains to show that the communications between
S and the challenger are carried out according to the distributivasid )’ of Lemma 5.1. For
aReveal(TI; ;) query, the challenger outpu(fg(ggfjﬂz) - Rj, R?hg”(Rr»Rj)aﬁh) to the algo-
rithm S. Let Ry = g%, R; = g4, andgip, = ¢". Thenz is chosen uniform at random from
Zqy, v is chosen uniform at random froiy; whenj # J orr = v whenj = J, and the value
of g4 is chosen by the algorithid or by the algorithmS or by the challenger in probabilistic
polynomial time according to the current views. For example,ifis chosen by the algorithm
A, thenA may generate 4 as the combination (e.g., multiplication) of some previously observed
messages/values or generate it randomly. Thus, ignoring the co-fadted communication be-
tween the challenger and the algoritifirduring Reveal(Hjj) queries is carried out according
to the distributionst’ andy of Lemma 5.1. The case f@&eveal(Il} ;) queries is the same.

For theTest(IT; ;) query, the challenger outputé = é(g, g)wrtm(RrR) (wstn(By,R))th 1o
the algorithmS, whereR; = ¢°* andR; = ¢?"’. Letzy = u; andyy = ;. Thenzg is chosen
uniform at random fron, and the value of"*° is chosen by the algorithtd or by the challenger
in probabilistic polynomial time according to the current views. Similadypay choose % as
the combination (e.g., multiplication) of some previously observed messages/values. Ignoring the
co-factorh, the communication between the challenger and the algostioring theTest (117 )
guery is carried out according to the distributictisand)’ of Lemma 5.1. ’

It should be noted that after thiest(II; ;) query, the adversary may create bogus oracles for
the participant§D; andID ; and send bo{:]us messages that may depend on all existing commu-
nicated messages (including messages held by the diaclgand then reveal session keys from
these oracles. In particular, the adversary may play a man in the middle attack by modifying the
messages sent frofit; ; to Hjl and modifying the messages sent frﬂﬁl to I17 ;. Then the

oraclesﬂjl andIlj ; are not matching oracles. Thuscan reveal the session key held by the
oraclell% ; before the guess. In th, part in the distributionst and)’ of Lemma 5.1, we have
the condition YA # gP*o or g, # g7¥°” (this condition holds since the algorith has not
revealed the matching oracles ff ;). If both g4, # g%*0 andg4, # g, then the oracle
HSJ'J is a matching oracle fdil; ; and.A is not allowed to reveal the session key held by the oracle
ij. Thus, Ignoring the co-factdr, the communication between the challenger and the algorithm
S during theseTest (117 ;) query is carried out according to the distributiotisand) of Lemma
5.1.

In the summary, all communications between the challengeiSaaie carried out according
to the distributionsY and)’ of Lemma 5.1. This completes the proof of the Theorem. a
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6 Perfect forward secrecy

In this section, we show that the protocol IDAK has the additional perfect forward secrecy prop-
erty when both parties long term private keys are corrupted. That is, even if Alice and Bob lose
their private keysiy = g7, anddp = gi}, ., the session keys established by Alice and Bob

in the previous sessions are still secure. In order to show this, it is sufficient to show that the

x Y Y x
two distributions (R,é(gIDA,gIDB)(“”(gIDA’QIDB))(“”(QI'DB’QIDA))‘”) and (R, é(gip 4, 910y )?)

are computationally indistinguishable f& = (g?DA,g?DB,ngA,g%DB) and uniform at random
choseryip ,, 910, %, ¥, 2, a. Consequently, it is sufficient to prove the following theorem.

Theorem 6.1 LetG = {G,} be a bilinear group family(z, = (G, G4, €). Assume that DBDH-
Assumption holds fai. Then the two distributions

X = (91,92, 9%, 95,97, 95, €(g1, g2)"¥*)
and YV = (91,9297, 9%, 97,95, €(g1, g2)%)

are computationally indistinguishable for random chogerys, z, v, z, a.

Proof. We use a random reduction. For a contradiction, assume that there is a polynomial
time probabilistic algorithmD that distinguishest” and)’ with a non-negligible probabilityy.
We construct a polynomial time probabilistic algorithdthat distinguishe$R, é(g, g)!) and
(R, é(g, g)**™) with 65, whereR = (g, g%, g*, ¢*) andu, v, w, t are uniformly at random itz,.
Let the input of A be (R, é(g, g)!), wheref is eitheruvw or uniformly at random inZ,. We
constructA as follows. A chooses randomy, ca, c3,c4,c5 € Z, and setgy; = g, g2 = g,
gix — guclcg’ ggv — g’lLCQCg, gglv _ gvclc4' 932/ — gw6285’ andé(gl,QQ)g — é(g7g)t6162630405. Let
A (R> é(ga g)t> =D (gla g2, 9(117 g2o¢’ 9%7 937 é(glv 92)2) . Note that Iff = uvw, thench €2, T, Y
are uniform inZ, (and independent of each other andwb,w) andzya = Z. Otherwise,
c1, 2, o, v,y are uniform inZ, and independent of each other anduot, w. Therefore, by the
definitions,
Pr[A(R,é(g,9)"") = 1] = Pr[D(X) = 1]
and Pr[A(R,é(g,9)") =1] =Pr[D(Y) =1]

Thus A distinguishes(g, g%, g, g, é(g, 9)!) and (g, g“, g°, g, é(g, 9)***) with J;. This is a
contradiction. O

Though Theorem 6.1 shows that the protocol IDAK achieves perfect forward secrecy even
if both participating parties’ long term private keys were corrupted, IDAK does not have perfect
forward secrecy when the master secretere leaked. The perfect forward secrecy against the
corruption ofa could be achieved by requiring Bob (the responder in the IDAK protocol) to send
g%DA in addition to the valueRg = g%’DB and by requiring both parties to compute the shared
secret asH(gng ||skap) Wheresk 4 is the shared secret established by the IDAK protocol.

7 Key compromise impersonation resilience
In this section, we show that the protocol IDAK has the key compromise impersonation resilience

property. That is, if Alice loses her private ke = ¢fp, ,, then the adversary still could not
impersonate Bob to Alice. In order to show this, it is sufficient to show that the two distributions
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R iR Rt )\ * R ,

R,é (ﬁDA -gﬁéim*‘ B),RB : gf];; 9D 4 > > and (R, é(gip,, gip;)?) are computationally
indistinguishable forR = (¢, ,, 91p ,» 2B), Wheregp ,, gip,, 7, 2, « are chosen uniform at
random, andR g is chosen according to some probabilistic polynomial time distribution. Since

. ( lofp - RB) m(Rp.9ip )\ " . . ,
the valueé { g;p , BB - g1p,, is known, it is sufficient to prove the following

theorem.

Theorem 7.1 LetG = {G,} be a bilinear group family(z, = (G, G1,€). Assume that DBDH-
Assumption holds fai. Then the two distributions

~ R s T (0%
X = (9179279?7.9%,1%3,6(9%7]{3.g;r( Bgl)) >
and Y = (91,92, 97, 9%, BB, €(g1,92)%)

are computationally indistinguishable for random chogengs, x, z, a, whereRp is chosen ac-
cording to some probabilistic polynomial time distribution.

Proof. Sincegf is chosen uniform at random, andis a random oracle, we may assume that
Rp - g;r(RB’gf) is uniformly distributed ovet; when R g is chosen according to any probabilistic
polynomial time distribution. Thus the proof is similar to the proof of Theorem 6.1 and the details
are omitted. (Note that in this proof, we can choesg» €r Z; and letg; = g, g = g““,

vey

Rp.gf
9gi =9 ,gzzg“’,andRB-gg( 90 — gz ) O

8 IDAK with key confirmation

The security Definition 4.1 in Sectiofd for key agreement protocols does not provide the fol-
lowing assurance to a usHp; during a key agreement protocol: one orddfe has been engaged
in a conversation and has successfully finished the protocol with a session key output. However,
there may be no matching oradl1=§; existing at all (though according to the definition, the ad-
versary learns zero information about the session key heldBy In order to provide assurance
against the above scenario, we study secure key agreement protocols with key confirmation in this
section. First we slightly modify our matching oracle definition from SecgiénThe definition
of matching oracles in Sectidj# does require all messages thgt sends out should reach its
matching oraclé'[j; and vice versa. In this section, when we talk about matching oracles, we do
not require the last message of the protocol to reach its destination. Indeed, in any protocol, the
party who sends the last message flow cannot “know” whether or not its last message was received
by its partner (see [3]).

Let No-Matching” (k) denote the event that, during the protocol execution against the adver-
sary, there exists an oradlE; with the following properties:

1. IIj; has been engaged in a conversation and has successfully finished the protocol with a
session key output.

2. There is no matching orac]éj; for IT;; existing.

3. The adversary has not compromised the long term keyi$X¥oandID;.
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Definition 8.1 A protocolII is a secure key agreement protocol with key confirmatid i a
secure key agreement protocol and the probabilitiofMatching” (k) is negligible.

It is straightforward to observe that IDAK is not a secure in the sense of Definition 8.1. In this
section, we design a secure key agreement scheme with key confirmation. We first briefly describe
message authentication code. Message Authentication Codsee, e.g., [1]) is a deterministic
polynomial time algorithnMAC ) (-). To authenticate a messagewith a key K, one computes

the authenticated message pait,a) = (m, MACk(m)), wherea = MACg(m) is called the

tag onm. A MAC scheme is secure if the probability for an adversary to forge autby a

(not authenticated yet) messageof the adversary’s choice under a randomly chosenkKeg
negligible. The adversary is allowed to make adaptive-message attacks. That is, the adversary can
choose messages’ (different from the target message) and ask the MAC oracle to generate the
authentication tag om’ under the target kelx. In the following, we describe the IDAK protocol

with key confirmation and show that it is secure according to Definition 8.1.

TheSetupalgorithm is the same as that in IDAK protocol, in addition, we also need to choose
two additional random oracleg; andHs (both will be used as key derivation functions), and a
secure message authentication funcioAC,(-) (see, e.g., [1]).

TheExtract algorithm for IDAKC is the same as that in IDAK protocol.

The Exchangealgorithm for IDAKC proceeds as follows:

ExchangeFor two participants Alice and Bob whose identification stringslarg andID g re-
spectively, the algorithm proceeds as follows.

1. Alice selectse € Z;, computesi?4 = gip, ,, and sends it to Bob.

2. (a) Bobselectg er Z*, computesRp = gi"DB.
(b) Bob computes4 = n(R4, Rp), sg = 7(Rp, Ra), and the shared secrétipax as

(y+SB)ha> _

ot _ (s Ra,off

€(giD g, 91D 4
(c) Bob computed(; = H;i(skipak) and Ko = Ha(skpak)-
(d) Bob computedIACk, (IDg,ID4, R, R4) and sends this together wifti; to Alice.

3. (a) Alice computesy = (R4, Rp), sp = m(Rp, R4), and the shared secrétpax as

sB
91Dg ° Rp, 9D 4

é(gIDB,gIDA)(m"'SA)(?H-sB)ha — (

(x+s,4)ha) ‘

(b) Alice computess; = H;(skipak) and Ky = Ha(skipak)-
(c) Alice computeMACk,(ID4,IDg, R4, Rp) and sends this to Bob.

Theorem 8.2 Assume thatd, =, H; and H, are independent random oracles, MAC is a se-
cure message authentication function, and the group faghatisfies DBDH-Assumption. Then
IDAKC is a secure key agreement protocol with key confirmation.

Proof. By Theorem 5.2, IDAKC is a secure key agreement protocol. Thus we only need to show
that the probability oNo-Matching® (k) = ¢, is negligible.

For a contradiction, assume that the adversary has a non-negligible advaptsgeh that
there exists an oraclH?; that has been engaged in a conversation and has successfully fin-
ished the protocol with a session key output, but there is no matching di@'(;lexisting. We
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show how to construct a simulatéf that uses4 as an oracle to forge an authentication tag on
an un-authenticated messageunder an unknown random key with non-negligible advantage
ex(22% — 1)(1 = 0k)(gr — 2)(d2qn — 2)?/q5q3:2%, whereqg is the number ofd-queriesthat

the simulation makes;y is the maximum number of IDAKC key agreement sessions that the
algorithm A initiates for each participandy. is the probability that the adversary can compute the
session key of an un-revealed oracle. The game between the challenger and the sffraitatsr
with the challenger first choose a random Kéyfor the MAC scheme. During the simulation,

S can present messagesto the challenger to get the MAC tag am under this keyC (but the
adversaryA is not allowed to ask the challenger for MAC tags). At the end of the simulation, the
algorithmS is supposed to output a messagend its guess for the MAC tag onm under the

key K. The algorithmS works by interacting with4 as follows:

Setup: Algorithm S selects uniformly at random system parameters, G, G1, é, H, H1, Ha, )
and gives it ta4, whereH, H1, H2, andw are random oracles controlled Byas follows. These
random oracles could be queried8yr .4 during the simulation. Meanwhil&, keeps the master
secret keyx in secret.

H-queries w-queries, H;-queries andHy-queries They are the same as thequeriesin the
proof of Theorem 5.2. That is§y answers all distinct queries independently and randomly. Note
that H-queriesdefined here is different from that in the proof of Theorem 5.2.

Query phase (MAC forgery phase): S chooses three integedlsJ < n andsy < ¢, and
responds tod’s queries as follows.
For anExtract(ID;) query,S runs theH-queriesto obtaing;p, = H(ID;) and responds
with dIDi = g?Di'
For aSend (11

S X)) query, we distinguish the following three cases:
1. X = A. Inthis case]l; ; is the protocol initiator.S chooses a random; € Z, and sets
R, = gﬁgi. S letsIl ; reply with R;. That is, we assume thHD; is carrying out an IDAKC

key agreement protocol wittD; andID; sends the first messagg to ID;.

2. X # X and the transcript of the oraclé; ; is empty. In this casell} ; is the protocol
responder and has not sent out any messageyethooses a random; € Z, and sets
R; = gjp - S then distinguishes the following two cases:

(8) i = I andj = J ands = sq. Instead of running th&{,-queriesto obtaink’’, S asks
the challenger to generate the MAC tag; for the message: = (ID;, ID;, R;, R;)
whereR; is the random component received from the other oragleetsII7 ; reply
with (RZ, af’])

(b) i # Iorj# Jors # so. S computes the session keying matesiaip sk and runs the
Ha-queriesto obtainKy? = Hi(skipak). S computes:; ; = MACK;-,J- (ID;,ID;, R;, R;)
and letslI? ; reply with (Ri,af’j), whereR; is the random component received from
the other oracle.

3. X # X and the transcript of the oraclg; ; is not empty. In this casé]; ; is the protocol
initiator or responder and should have sent out the first message alfthey distinguishes
the following two cases:

(@i =Tandj = J ands = sg. If there is a matching oracIHf,gl for I17°;, thenS
aborts the simulation with failure. Otherwise, l€t; be the received MAC tag for
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the messagen = (ID;,ID;, R, R;). S outputsa;; as the guessed MAC tag for

the message: = (ID;,ID;, R;, R;) (S can terminate the simulation now. However,

for easy analysis of the probability, we continue the simulatio§)then asks the
challenger whether this MAC tag is valid. If the challenger’s answer is§esarks

IT; ; as completed/accepted and terminate the simulation. If the challenger’s answer is
no S markslI; ; completed/rejected. Note that, according to the IDAKC protocol, if
the oracldl; ; |s the protocol initiator, then it should send the message authentication
tag to the responder as the last message. However, by the new definition matching
oracles, this message does not matter.

(b) i # I orj# Jors # so. If I ; is the protocol responder, théhshould have com-
puted the shared secrgt,’ already.S computes the MAC tag;, = MAC K (ID;,
ID;, R;, R;) whereR; is the random component received from the other oracle and
compares this tag wrth the received ta§.marksllI? ; as completed/accepted if the

two tags are the same, and marks it completed/rejected if the two tags are different.
For the case thdfl; ; is the protocol initiator,S computes the session keying mate-

rial skipax and runs theH,-queries to obtarnKQ’J = Hi(skipak). S computes

a; j = MAC ., (ID;,ID;, R;, R;) and letslI} ; reply with o} ;, whereR; is the ran-
i 2 i i

dom component received from the other oracle.

For aReveal(HfJ) query, if % = I'andj = J ands = sq” or “I1 ; is the matching oracle for
I13°,” then S aborts the simulation. Otherwis§,computes the session keying matesigipxk,
runs theH;-queriesto get K1’ = H,(skipak), and responds withi!/. For aCorrupt (i)
query, ifi = I or: = .J, thenS aborts the simulation. Otherwis&,responds withiip, = gf}, .

Claim: If S does not abort the simulation, thets view is identical to its view in the real attack.
Proof of Claim: It is straightforward. O

Suppose that the simulation process makes at mesii-queries and gy be the maximum
number of IDAKC key agreement sessions that the algorithrimitiates for each participant.
We next calculate the probability th&t succeeds in forging an MAC tag on a message that the
challenger has not authenticated.

We first calculate the probability th&t does not abort the simulation. The probability that
S does not abort foBend queries is(¢%gn — 2)/q%qn. The probability thatS does not abort
for Reveal queries is(¢2gn — 2)/q%qn. The probability thatS does not abort foCorrupt
queries is(qgr — 2)/qE Therefore, the probability tha does not abort during the simulation is
(ar — 2)(ahan — 2)* /apax-

If the algorithmA is successful during that simulation (the probability is at legstthen there
is a completed/accepted oradlg ; that has no matching oracle. Since there are at ek
oracles during the simulation, the probability for this oracle to be the ofﬁ?@};eis 1/q%qn. Thus
the probability that the oraclﬂﬁfJ ', is marked as completed/accepted is at least

((ge — 2)(aBan — 2)*/apay) -ex - (1 apan) = exlae — 2)(apan — 2)* /apay-

If the oracleIl}° I is marked as completed/accepted, ti#eautput a guessed valid MAC tag
aj r for the messagen = (ID,,IDy, Ry, Rr). We next calculate the probability that the chal-
Ienger has never been asked for the MAC tag on this message and the probabilitydtied not
guess correctly about the keying materials held by the orﬁt}‘]e (that is, the probability that
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the MAC tag is generated without knowing the secret key or asking the challenger to generate
it). Since there is no matching oracle adds not allowed to ask the challenger for MAC tags,
generates this tagj; ; by one of the following three approaches: ($)asked the challenger to gen-
erate the MAC tag for the message= (ID;,ID;, R, Ry) for another oracIéISJ:I. Sincer]"I is

not the matching oracle fdﬁ?{,, the event in this case happens only with probabilit§**. Here

we assume that the messadesand R ; are allk bits long. (2)..4 guessed correctly about the
session keying materiakipak for the oracIeHSOJ and computed the MAC tagf; ; by herself. By
Theorem 5.2, this probability is bounded by some negligible v&jug3). A generated the MAC
taga? ; by random choice or by using other techniques (e.g., by using flaws in the MAC scheme).
Accofding to the security definition of MAC schemes, the forgery on the MAC tag is successful
when the events in case (3) happens. Thus, by excluding the probabilities for the cases (1) and
(2), the probability that MAC forgery experiment is successful under the condition that the oracle
I1}°; is marked as completed/accepted is at l¢ast (1/22%))(1 — d;,) = (22% — 1)(1 — &) /22"

In a summary, the probability th&t successfully forged the MAC code on the un-authenticated
messagen = (ID;,ID;, Ry, Ry) is at least

ex (2 — 1)(1 = 0) (e — 2)(ghan — 2)*/qpad 2™

which is non-negligible sincey, is non-negligible andy, is negligible. This completes the proof
of the Theorem. a

9 Practical considerations and applications

9.1 The functionw

Though in the security proof of IDAK key agreement protoeois considered as a random oracle.
In practice, we can use following simplifiedfunctions.

e 7is arandom oracle (secure hash function) flénx G to Z7,,,, 1. (€.9.,c = 2).

o If g1 = (24,,9q.), 92 = (24,,Y4,) € G are points on an elliptic curve, then tetg:, g») =
7, mod2/®sl/2 wherez, = z,, ® x4,. Thatis,m(g1,ge) is the exclusive-or of the second
half parts of the first coordinates of the elliptic curve poipt@ndgs.

e 7 is arandom oracle that the output only depends on the the first input variable or any of the
above function restricted in such a way that the output only depends on the the first input
variable. In another word; : G — Zj;.

It should be noted any function, for which Lemma 5.1 holds, can be used in the IDAK protocol.
Though we do not know whether Lemma 5.1 holdssfdunctions that we have listed above, we
have strong evidence that this is true. First, if we assume that the @foiga generic group in

the sense of Nechaev [18] and Shoup [26]. Then we can prove that Lemma 5.1 holds for the above
7 functions. Secondly, if the distributiof(¢®, ¢", ¢, ¢°, g7, ¢°*°) in Lemma 5.1 is restricted to

the distribution:

{gf@meBnBzo.y) . fis alinear functiony is a tuple of uniformly random values frof, }.

Then we can prove that Lemma 5.1 holds for the abo¥enctions. We may conjecture that the
adversary algorithrd can only generate4 andg?¥ according to the above distribution unless
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CDH-Assumption fails forG. Thus, under this conjecture (without the condition thatis a
generic group), the above list affunctions can be used in IDAK protocol securely.

9.2 Escrow

In the IDAK key agreement protocol, one has to trust the trusted authority TA since TA has suf-
ficient capability to impersonate any participants and to compute the agreed secrets for any key
agreement sessions unless the shared secret is compute@ds ||skap) as described in sec-

tion §6. As mentioned in [6], identity-based systems have the natural property to be escrowed. For
example, we assume that there ateTAs in the systems, each of them holding a partial master
secreto;, and the master secretds + ... + «a,,. Each participant could get her partial private

key gy from TA; and compute her private key a8, - - - 913"

9.3 Applications

IDAK key agreement protocol could be used in all these environments that identity-based public
parameters are deployed (e.g., these environments discussed in [6]). One of the most promising
applications could be the VoIP environments. VoIP systems are become more and more popular.
However, Internet environment is generally not as secure as the traditional phone networks. Eaves-
dropping is dramatically easy in Internet environments than in traditional phone networks. Though
VPN could be one of the potential tools that could be used to protect the VoIP systems, recent ex-
periments show that there are many disadvantages for VPN based VoIP (the most important one is
the delays in several routers which could worsen VoIP quality). On the other hand, we really do not
expect each VoIP phone will get a public key certificate and each time when we make a phone call,
we need to import the certificate for the target phone first. Identity based key agreement protocol
provides a promising solution for VoIP systems. The public key for each phone could be based on
its identity (e.g., the phone number). Each time, when we make a phone call, the two phones will
use the IDAK protocol to establish a session key for conversation encryption/authentication. The
public key for each phone could be “permanent” (e.g., based on the phone number) or temporary
(e.g., based on the identity consisting of phone number and time-stamps).

10 Related protocols and their insecurity

10.1 Smart protocol

Smart [28] proposed an identity-based and authenticated key agreement protocol without security
proofs. Briefly, Smart's protocol works as follows: The trusted authority needs to publish the
public keyg“ first (note that our protocol does not require a public key) and distributes the private
keysgih , andgy, . to Alice and Bob respectively. During the key agreement session, Alice selects
r €r Z,; and sendg” to Bob, Bob selecty € Z; and sendg? to Alice. Then both parties
compute the shared seckétvs = é(g{p, " 91p ,» 9%) = €(9ip 5> 9%) - €(91p ,» 9%) = €(gip 55 9%)-
é(9ib ., 9”) = €(9ib,,9%) - é(ginA,go‘). A simple analysis shows that Smart’s protocol requires
the computation of two exponentiations and two pairings for each party. Meanwhile, the only pre-
computation that each party could do is to select the random walespectivelyy) and compute

the value ofg” (respectivelyg?). Thus with pre-computation, Smart’s protocol still requires one
exponentiation and two pairings for each party. It is straightforward to show that Smart’s protocol
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is not secure against key revealing attacks and does not have perfect forward secrecy if both parties’
private keys were leaked.

10.2 Chen and Kudla protocol

Chen and Kudla [7] proposed an efficient identity-based and authenticated key agreement protocol.
Briefly, Chen-Kudla’s protocol works as follows: The trusted authority distributes the private keys
9ib,, @ndgiy, , to Alice and Bob respectively (similar to our protocol, no public key is required).
Alice selectss € Z; and sendgyj, , to Bob, Bob selects €z Z; and sendg%’DB to Alice. Then

both parties compute the shared seefgix = é(gip,, gip,) "™ = é(gfy, - 9ip,+ 95h,) =
é(gﬁDB7gf’DA . g%DA). Analysis shows that this protocol requires the computation of two exponen-
tiations and one pairing for each party. Meanwhile, the only pre-computation that each party could
do is to select the random value(respectivelyy) and compute the value off, , (respectively,

ngB). Thus with pre-computation, this protocol still requires one exponentiation and one pairing
for each party.

In the random oracle model, Chen and Kudla [7] described a randomized reduction from the
exact computation problem of shared seeiglx in the Chen-Kudla protocol to the problem of
computational bilinear Diffie-Hellman problem. Indeed, Chen and Kudla showed that if an addi-
tional hash functiorf?’ (a second independent random oracle) is applied to the sharedgegtet
to get the keying materialk;.,, = H'(skck), thensk, is computationally indistinguishable
from a random string. In another word, the security is showed in the random oracle plus CBDH-
Assumption model. In the literature [5, 17, 27], it is also preferred to show that a key agreement
protocol is secure in the decisional DH-Assumption model without the additional random oracle.
One disadvantage of Chen-Kudla protocol is that this protocol does not have the perfect forward
secrecy property. That is, if the private keys of Alice and Bob are corrupted at some time, then
the adversary can compute all past session keys used between Alice and Bob. Another serious
disadvantage of Chen-Kudla protocol is that its security is indeed unproved. Chen and Kudla
[7] proved that their protocol is secure in the Bellare-Rogaway [3] secure key agreement model.
However, Cheng et al. [8] pointed out that the proof in [7] is flawed and their protocol is not
secure against key revealing attacks. Since the key revealing attack is the fundamental property in
Bellare-Rogaway model [3], a security model for key agreement protocol without modelling key
revealing attacks has limited value. For example, in such a limited model, it is impossible to infer
whether the key agreement protocol is secure against important attacks such as known session key
attacks and unknown key share attacks.

10.3 Scott protocol

Scott [23] proposed a key exchange protocol with password authentications for the private key.
Briefly, Scott’s protocol works as follows: The trusted authority needs to choose a master secret
« and distributes the private keyg, | andgjy, , to Alice and Bob respectively. Alice may choose

a password: to store her private key agj, *. In the following discussion, we will omit the
password protection part. During the key agreement session, Alice selegtsZ; and sends
é(91p 4, 91D )™ to Bob. Bob selecty €r Zy and send€(gip ,, g1, )Y to Alice. The shared
secret i€(gip ,, 9ip 5 ) **Y. This protocol is not secure according to Definition 4.1. The adversary
may choose a random numheand change the message from Alice to Bol tap ,, gip )¢

and change the message from Bob to Alicetom , , gip,)*Y¢. Both Alice and Bob will then
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compute the shared sec@&yp ,, gip, ). Since the oracle at Alice side is not a matching
oracle for at Bob’s oracle, the adversary could reveal Bob’s session key before testing Alice’s
session key. Thus the adversary will succeed in the testing query.

10.4 Other protocols

Shim [25] proposed an ID-based key agreement protocol as follows. During the key agreement
session, Alice selects €z Z; and sendg” to Bob. Bob selecty € Z; and sendgy? to
Alice. The shared secret is computed &81°, gf;, , - 91p, - 9™Y)é(91D 4, 91D 5)*, Whereg® is the
system-wide public key. Sun and Hsieh [29] showed that Shim’s protocol is insecure against key
compromise impersonation attacks and man in the middle attacks.

McCullagh and Barreto [16] proposed an ID-based key agreement protocol as follows. As-
sume that the system wide master secret,idlice’s identity is mapped to an integen € Z,
and Bob's identity is mapped to an integes € Z;. Then Alice and Bob’s public keys apgtaa
andgetas respectively. Their secret keys ayg+24) ™" andg(@+es)™" respectively. During the
key agreement session, Alice selects g Z; and sendg*(®*te5) to Bob. Bob selecty € Zy
and sendg¥(*t24) to Alice. The shared secret is computed:ég ¢)*Y. Although this protocol
is “proved” to be secure [16] in Bellare-Rogaway model. Kwang and Choo [14] pointed out that
this protocol is not secure against key revealing attacks.
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