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1. Introduction

In this paper we generalize the Diffie-Hellman key exchange protocol from a

cyclic group to a finitely presented non-abelian nilpotent group of class 2. Similar

efforts were made in [2, 3, 24] to use braid groups, a family of finitely presented

non-commutative groups [4, 9], in key exchange. Our efforts are not solely directed

to construct an efficient and fast key exchange protocol. We also try to understand

the conjecture, “the discrete logarithm problem is equivalent to the Diffie-Hellman

problem in a cyclic group”. We develop and study protocols where, at least the-

oretically, non-abelian groups can be used to share a secret or exchange private

keys between two people over an insecure channel. This development is significant

because nilpotent or, more specifically p-groups, have nice presentations and com-

putation in those groups are fast and easy [37, Chapter 9]. So our work can be

seen as a nice application of the advanced and developed subject of p-groups and

computations with p-groups.

The frequently used public key cryptosystems are slow and uses mainly number

theoretic complexity. The specific cryptographic primitive, a one way function,

that we have in mind is “The Discrete Logarithm Problem”, DLP for short.

DLP is general enough to be defined in an arbitrary cyclic group as follows. Let

G = 〈g〉 be a cyclic group generated by g and let gn = h. We are given g and h,

DLP is to find the n [38, Chapter 6]. The security of discrete logarithm problem

depends on the representation of the group. It is trivial in Zn, but is much harder

(no polynomial time algorithm known) in the multiplicative group of a finite field

and even harder (no sub exponential time algorithm known) in the group of elliptic

curves which are not supersingular [5]. But with the invention of sub-exponential

algorithms for breaking the Discrete Logarithm Problem, like the index calculus
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and Coppersmith’s algorithm, multiplicative groups of finite fields are no longer

that attractive especially the ones of characteristic 2.

Discrete logarithm is also used in many other groups like in elliptic curves, in

which case a cyclic group or a big enough cyclic component of an abelian group is

used. We in this article propose a generalization of DLP or more specifically Diffie-

Hellman key exchange protocol in situations where the group has more than one

generator, i.e., in a finitely presented nonabelian group. Let f be an automorphism

of a finitely presented group G generated by {a1, a2, · · · , an}. If one knows the

action of f on a ∈ G, i.e., f(a), then it is difficult for him to tell the action of f on

any other b ∈ G i.e., f(b). We describe this in detail later under the name “general

discrete logarithm problem”. In this paper we work with finitely presented groups

in terms of generators and relations and do not consider any representation of that

group. Though that seems to be a good idea for future research.

Now suppose for a moment that G = 〈g〉 is a cyclic group and that we are given

g and gn where gcd(n, |G|) = 1. DLP is to find n. Notice that in this case the

map x 7→ xn is an automorphism. If we conjecture that finding the automorphism

is finding 1n then one way to see DLP, in terms of group theory, is to find the

automorphism from its image of one element. This is the central idea that we want

to generalize to nonabelian finitely presented groups, especially nilpotent group of

class 2. This explains our choice of the name “general discrete logarithm problem”.

To work with a finitely presented group and its automorphisms the following

properties of the group are needed.

• A consistent and natural representation of the elements in the group.

• Computation in the group should be fast and easy.

• The automorphism group should be known and the automorphisms should

have a nice enough presentation so that images can be computed quickly.

We note at this point that for a p-group the first two requirements are satisfied [37,

Chapter 9].

2. Some notations and Definitions

We now describe some of the definitions and notation that will be used in this

paper. The notation used is standard:

• G will denote a finite group. Z = Z(G) denotes the center of the group G

and will be denoted by Z if no confusion can arise.

• G′ = [G,G] is the commutator subgroup of G.

• Aut(G) and Autc(G) are the group of automorphisms and the group of

central automorphisms of G respectively.

• Φ(G) is the Frattini subgroup of G, which is the intersection of all maximal

subgroups of G.

• We denote the commutator of a, b by [a, b] where [a, b] = a−1b−1ab.

• The exponent of a p-group G, denoted by exp(G), is the largest power of p

that is order of an element in G.

1Notice that this conjecture is equivalent to Diffie-Hellman assumption in cyclic group.
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The following commutator formulas hold for any element a,b and c in any group G.

(a): ab = a[a, b]

(b): [ab, c] = [a, c]b[b, c] = [a, c][a, c, b][b, c] it follows that in a nilpotent group

of class 2, [ab, c] = [a, c][b, c]

(c): [a, bc] = [a, c][a, b]c = [a, c][a, b][a, b, c] it follows that in a nilpotent group

of class 2, [a, bc] = [a, b][a, c]

(d): [a, b]−1 = [b, a]

The proofs of these formulas follows from direct computation or can be found in

[22].

Definition. Miller Group.

A group G is called Miller group if it has an abelian automorphism group, in other

words if Aut(G) is commutative.

Definition. Central Automorphisms.

Let G be a group, then φ ∈ Aut(G) is called a central automorphism if g−1φ(g) ∈

Z(G) for all g ∈ G. Alternately, one might say that φ is a central automorphism if

φ(g) = gzφ,g where zφ,g ∈ Z(G) depends on g and φ. If φ is clear from the context

then we can simplify the notation as φ(g) = gzg.

Apart from inner automorphisms, central automorphisms are second best in

terms of nice description. So they are very attractive for cryptographic purposes,

since it is easy to describe the automorphisms and compute the image of an arbitrary

element.

Theorem 2.1. The centralizer of the group of inner automorphisms is the group

of central automorphisms. Moreover a central automorphism fixes the commutator

elementwise.

This theorem first appears in [12] who refers to [16] and [42].

Definition. Polycyclic Group

Let G be a group, a finite series of subgroup in G

G = G0 D G1 D G2 D G3 D · · · D Gn = 1

is a polycyclic series if Gi/Gi+1 is cyclic and Gi+1 is a normal subgroup of Gi.

Any group with polycyclic series is a polycyclic group.

It is easy to prove that finitely generated nilpotent groups are polycyclic and

so any finitely generated p-group is polycyclic. Let ai be an element in Gi whose

image generates Gi/Gi+1. Then the sequence {a1, a2, · · · , an} is called a polycyclic

generating set. It is easy to see that g ∈ G can be written as g = aα1
1 aα2

2 · · ·aαn

n ,

where αi are integers. If g = aα1
1 aα2

2 · · · aαn

n where 0 ≤ αi < mi, mi = |Gi : Gi+1|

then the expression is a collected word. Each element g ∈ G can be expressed

by a unique collected word. Computation with these collected words is easy and

implementable in computer, for more information on this topic see [37, Section 9.4]

and also [14, polycyclic package].
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3. Key Exchange

We want to follow the Diffie-Hellman Key exchange protocol using a commutative

subgroup of the automorphism group of a finitely presented group G. The security

of Diffie-Hellman in the cyclic group rests on the following three factors:

: The discrete logarithm problem.

: The Diffie-Hellman problem.

: The Decision Diffie-Hellman Problem [6, 7, 13, 36, 40].

We have already described the discrete logarithm problem. The Diffie-Hellman

problem is the following: Let G = 〈g〉 be a cyclic group of order n. One knows g,

ga and gb, and the problem is to find gab. It is not known if DL is equivalent to DH.

DDH or Decision Diffie-Hellman problem is more subtle. Suppose that DH is a hard

problem, so it is impossible to compute gab from ga, gb and g. But what happens

if someone can compute 80% of the shared secret from ga, gb and g, then the

adversary will have 80% of the shared secret, that is most of the private key. This

is clearly unacceptable. It is often hard to formalize DDH in exact mathematical

terms, see [7, Section 3], the best formalism offered is a randomness criterion for

the bits of the key. In DDH we ask the question, given the triple ga, gb and gc is

c = ab mod n? But there is no known link between DDH and any mathematically

hard problem for Diffie-Hellman key exchange protocol in cyclic groups.

As is usual, we denote by Alice and Bob, two people trying to set up a private

key over an insecure channel to communicate securely and Oscar an adversary is

eavesdropping. In this paper the shared secret or the key is an element of a finitely

presented group G.

3.1. General Discrete Logarithm Problem. Let G = 〈a1, a2, · · · , an〉 and f :

G → G be a non identity automorphism. Suppose one knows f(a) for a ∈ G

then GDLP is to find f(b) for any b in G. Assuming the word problem is easy or

presentation of the group is by means of generators, GDLP is equivalent to finding

f(ai) for all i which in terms gives us a complete knowledge of the automorphism.

So in other words the cryptographic primitive GDLP is equivalent to, “finding the

automorphism f from the action of f on only one element”.

3.2. General Diffie-Hellman Problem. Let φ, ψ : G→ G be arbitrary automor-

phisms, and assume one knows a, φ(a) and ψ(a). Then GDHP is to find φ(ψ(a)).

Notice that GDHP is a restricted form of GDLP, because in case of GDHP one has

to compute φ(ψ(a)) for some fixed a, not φ(b) for an arbitrary b in G.

3.3. General Decision Diffie-Hellman Problem. Let φ, ψ : G → G be two

arbitrary automorphisms. Assume one knows a, φ(a) and ψ(a). Then GDDH is to

extract partial information about φ(ψ(a)). In this paper we don’t try to find exact

conditions for GDDH, but notice that GDDH depends largely on the group G.

We now describe two key exchange protocols and do some cryptanalysis. We denote

by G a finitely presented group and S an abelian subgroup of Aut(G).
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4. Key Exchange Protocol I

Alice and Bob want to set up a private key. They select a groupG and an element

a ∈ G \ Z(G) over an insecure channel. Then Alice picks a random automorphism

φA ∈ S and sends Bob φA(a). Bob similarly picks a random automorphism φB ∈ S

and sends Alice φB(a). Both of them can now compute φA(φB(a)) = φB(φA(a))

which is their private key for symmetric transmission.

4.1. Comments on Key Exchange Protocol I. Though initially it might seem

that we don’t have enough information to know the automorphisms φA and φB ,

it turns out that if we are using automorphisms which fix conjugacy classes, like

inner automorphisms, then the security of the above scheme actually rests on the

conjugacy problem.

Let φA(a) = x−1ax for some x and let φB(a) = y−1ay. Then φA(φB(a)) =

(xy)−1a(xy). Since, a, φA(a) and φB(a) are known, if the conjugacy problem is

easy in the group then anyone can find x and y and break the system.

In the above scheme Oscar knows G and a. If the automorphisms are central

automorphisms, then he also sees φA(a) = azφA,a and φB(a) = azφB,a. Oscar can

find zφA,a and zφB,a. Now if G is a special p-group (G′ = Z(G) = Φ(G)) then Z(G)

is fixed elementwise by both φA and φB . Then

φA(φB(a)) = φA(azφB ,a) = azφA,azφB ,a (1)

Oscar knows a and can compute zφA,a and zφB ,a and can find the private key

φA(φB(a)). In the literature all examples of Miller p-group with odd prime p are

special and the above key exchange is fatally flawed for those groups.

5. Key Exchange Protocol II

In this case Alice and Bob want to set up a private key and they set up a group G

over a insecure channel. Alice chooses a random non-central element g and a random

automorphism φA ∈ S and sends Bob φA(g). Bob picks another automorphism

φB ∈ S and computes φB(φA(g)) and sends it back to Alice. Alice knowing φA
computes φ−1

A which gives her φB(g) and picks another random automorphism

φH ∈ S and computes φH (φB(g)) and sends it back to Bob. Bob knowing φB
computes φ−1

B which gives him φH(g) which is their private key. Notice that Alice

never reveals g in public.

5.1. Comments on Key Exchange Protocol II. Notice that for central auto-

morphisms, φA and φB , φA(g) = gzφA,g, since g is not known we don’t know zφA,g

but if G is special (Z(G) = G′ = Φ(G)) then φB(gzφA,g) = gzφB,gzφA,g from which

zφB,g can be found. Then φH(φB(g)) = gzφB,gzφH ,g, hence one can find gzφH ,g

which is φH(g) and the scheme is broken. As one clearly sees, this attack is not

possible if the group is not special.

The reader might have noticed at this point that all the attacks are GDHP. So

certainly in some groups GDHP is easy.

As we know, any automorphism in G can be seen as restriction of an inner

automorphism in Hol(G), see [27, 41] for further details on the holomorph of a
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group, hence solving conjugacy problem in Hol(G) will break the system for any

automorphism. On the other hand operation in Hol(G) is twisted so it is possible

that the conjugacy problem in Hol(G) is difficult even though it is easy in G. Any

cyclic group is a Miller group so success of the holomorph attack would prove

insecurity in DLP, so we believe that the holomorph attack won’t be successful in

many cases. Though a lot of work needs to be done on this.

6. Key Exchange using Braid Groups2

In [24] a similar key exchange protocol has been defined, we in this section

mention some similarities of their approach with ours. We also mention how our

system generalizes their system using braid groups. See also [8].

We define braid group as a finitely presented group, though there are fancy

pictorial ways to look at braids and multiplication of braids. An interested reader

can look in [4, 9]. Bn the braid group with n-strands is defined as:

Bn = 〈σ1, σ2, · · · , σn−1 : σiσjσi = σjσiσj if |i− j| = 1, σiσj = σjσi if |i− j| ≥ 2〉

In [24] authors found two disjoint subgroups A and B of the group of inner automor-

phisms Inn(Bn), such that for φ ∈ A and ψ ∈ B, φ(ψ(g)) = ψ(φ(g)). Then the key

exchange proceeds similar to Key Exchange Protocol I above with the restriction

that Alice chooses automorphisms from A and Bob chooses automorphisms from

B. There is also a different approach to key exchange in braid group as in [2, 3].

In the same spirit as [24] we can develop a key exchange protocol similar to key

exchange protocol I, where we take two disjoint subgroups A and B in Aut(G) such

that for φ ∈ A and ψ ∈ B, φ(ψ(g)) = ψ(φ(g)). The use of inner automorphisms is

only possible when the conjugacy or the generalized conjugacy problem (conjugator

search problem) is known to be hard.

There are significant differences in our approach to that of the approach in [24].

In [24] authors choose a group and then tried to use that group in cryptography.

We, on the other hand, take the fundamental concept as discrete logarithm problem,

generalized it using automorphisms of a non-abelian group and then look for groups

favorable to us. The fact that the central idea in braid group key exchange turns

out to be similar to ours is encouraging.

It is intuitively clear at this point that we should start looking for groups with

abelian automorphism group, i.e., Miller groups.

7. Miller Group

The term Miller Group is not that common in literature. It was introduced by

Earnley in [10]. Miller was the first to study groups with abelian automorphism

group in [30]. Cyclic groups are good examples of miller group. G.A. Miller also

proved that no non-cyclic abelian group is Miller.

Charles Hopkins began a list of necessary conditions for a Miller group in 1927

[18]. He complained that very little is known about those groups. The same is true

2Author is indebted to two anonymous referees for bringing braid group key exchange protocol

to his notice.
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today. Except for some sporadic examples of groups with abelian automorphism

groups, there is no sufficient condition known for a group to be Miller.

We now state some known facts about Miller groups which are available in the

literature and which we shall need later. For proof of these theorems which we

present in a rapid fire fashion, the reader can look in any standard text books like

[22, 33] or the references.

Proposition 7.1. Let G be a non-abelian Miller group, then G is nilpotent and of

class 2.

Proof. It follows from the fact that the group of inner automorphisms commute

and G/Z(G) ∼= Inn(G). •

Since a nilpotent group is a direct product of its Sylow p-subgroups Sp, and

Aut(A × B) = Aut(A) × Aut(B) whenever A and B are of relatively prime order,

it is enough to study Miller p-groups for prime p.

Proposition 7.2. Let G be a p-group of class 2, then exp(G′) = exp(G/Z(G)).

Proposition 7.3. In a p-group of class 2, (xy)n = xnyn[y, x]
n(n−1)

2 . Furthermore

if exp(G′) = n is odd, then (xy)n = xnyn.

By definition in a Miller group all automorphisms commute. Since central auto-

morphisms are the centralizer of inner automorphisms, we have proved the following

theorem.

Theorem 7.4. In a Miller group G, all automorphisms are central.

It follows that to show a group is not Miller, all we have to do is to produce a

non-central automorphism.

Proposition 7.5. If the commutator and the center coincide then every pair of

central automorphisms commute.

Proof. Let G be a group such that G′ = Z(G). Then let φ and ψ be central

automorphisms given by φ(x) = xzφ,x and ψ(x) = xzψ,x where zφ,x, zψ,x ∈ G′.

Then

ψ(φ(x)) = ψ(xzφ,x) = ψ(x)zφ,x = xzψ,xzφ,x = xzφ,xzψ,x = φ(ψ(x)).

•

Definition. Purely Non-abelian group

A group G is said to be a purely nonabelian group (PN group for short) if whenever

G = A × B where A and B are subgroups of G with A abelian, then A = 1.

Equivalently G has no abelian direct factor.

Let σ : G→ G be a central automorphism. Then we define a map fσ : G→ Z(G)

as follows: fσ(g) = g−1σ(g). Clearly this map defines a homomorphism. The map

σ 7→ fσ is clearly a one-one map. Conversely, if f ∈ Hom(G,Z(G)) then we define

a map σf (g) = gf(g), x ∈ G. Clearly σf is an endomorphism. It is easy to see that

Ker(σf ) = {x ∈ G : f(x) = x−1}
7



Hence it follows that σf is an automorphism if and only if f(x) 6= x−1 for all x ∈ G

with x 6= 1.

Theorem 7.6. In a purely non-abelian group G, the correspondence σ → fσ is a

one-one map of Autc(G) onto Hom(G,Z(G))

Proof. See [1]. •

Notice that for any f ∈ Hom(G,Z(G)) there is a map f ′ ∈ Hom(G/G′, Z(G))

since f(G′) = 1. Furthermore notice that corresponding to f ′ ∈ Hom(G/G′, Z(G))

there is a map f : G→ Z(G) explained in the following diagram

G
η

−−−−→ G/G′
f ′

−−−−→ Z(G)

where η is the natural epimorphism.

Let G be a p-group of class 2, such that exp(Z(G)) = a, exp(G′) = b and

exp(G/G′) = c and let d = min(a, c). Notice that from the fundamental theorem

of abelian groups

G/G′ = A1 ⊕A2 ⊕ · · ·Ar where Ai = 〈ai〉

Z(G) = B1 ⊕B2 ⊕ · · ·Bs where Bi = 〈bi〉

r, s ∈ N be the direct decomposition of G/G′ and Z(G). If the cyclic component

Ak = 〈ak〉 has exponent greater or equal to the exponent of Bj = 〈bj〉, then one

can define a homomorphisms f : G/G′ → Z(G) as follows

f(ai) =

{

bj where i = k

1 where i 6= k

From this discussion it is clear that for f ∈ Hom(G,Z(G)), f(G) generates the

subgroup

R = {z ∈ Z(G) : |z| ≤ pd, d = min(a, c)}

Definition. In any abelian p-group A written additively, there is a descending

sequence of subgroups

A ⊃ pA ⊃ p2A ⊃ · · · ⊃ pnA ⊃ pn+1A ⊃ · · ·

Then x ∈ A is of height n if x ∈ pnA but not in pn+1A. In other words the elements

of height n are those that drop out of the chain in the (n+ 1)th inclusion.

For further information on height see [21].

Since for a class 2 group we have

exp(G/G′) ≥ exp(G/Z(G)) = exp(G′)

it follows that c ≥ b. Hence if d = min(a, c) then either d = b or d > b.

Let height(xG′) ≥ b, then xG′ = yp
b

G′ for some y ∈ G. Then for any F ∈

Hom(G,G′), F (yG′)p
b

= 1 implying xG′ ∈ F−1(1). Conversely, let height(xG′) <

b. Then from the previous discussion it is clear that there is a F ′ ∈ Hom(G/G′, G′)
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such that xG′ is not in the kernel, consequently there is a F ∈ Hom(G,G′) such

that x /∈ ker(F ). Combining these two facts we see that:

K =
⋂

F∈Hom(G,G′)

F−1(1) = {x ∈ G : height(xG′) ≥ b}

Proposition 7.7. K ⊆ R

Proof. In a class 2 group, if x ∈ K then xG′ = yp
b

G′ for some y ∈ G and

exp(G/Z) = b and G′ ⊆ Z(G), hence x ∈ Z(G).

Let x ∈ K, then height(xG′) ≥ b, hence there is a y ∈ G such that yp
b

G′ = xG′

i.e. x = yp
b

z where z ∈ G′ and yp
c

∈ G′ and c ≥ b. We have

xp
c

= (yp
b

)p
c

zp
c

= (yp
c

)p
b

= 1

Hence |x| ≤ min(pa, pc) which implies that x ∈ R. •

Proposition 7.8. For a PN group G of class 2, if Autc(G) is abelian then R ⊆ K.

Proof. In a PN group, using theorem 7.6 and the notation there, two central auto-

morphisms σ and τ commute if and only if fσ , fτ ∈ Hom(G,Z(G)) commute. Then

for any f ∈ Hom(G,Z(G)) and F ∈ Hom(G,G′) we have that f ◦ F = F ◦ f = 1.

Since f(G′) = 1, clearly F ◦ f(G) = 1 proving that R ⊆ K. •

Combining the above two propositions, we just proved that in a PN group G of

class 2, if Autc(G) is abelian then R = K. As discussed earlier there are two cases

d = b and d > b. We further prove that:

Proposition 7.9. If G is a non-abelian p group of class 2, and Autc(G) is abelian

with d > b, then R/G′ is cyclic.

Proof. See [1] theorem 3. •

Theorem 7.10. Adney and Yen [1].

Let G be a purely non-abelian group of class 2, p odd, let G/G′ =
n
∏

i=1

{xiG
′}. Then

the group Autc(G) is abelian if and only if

(i) R = K

(ii) either d = b or d > b and R/G′ = {xp
b

1 G
′}

Proof. See [1, Theorem 4]. •

From the proof of Proposition 7.5 it follows that in a group G with Z(G) ≤ G′,

the central automorphisms commute.

Theorem 7.11. The group of central automorphisms of a p-group G, where p is

odd, is a p-group if and only if G has no abelian direct factor.

Proof. See [34, Theorem B] and its corollary. •

At this point we concentrate on building a cryptosystem. We note that Miller

groups in particular have no advantage over groups with abelian central automor-

phism group. It is hard to construct Miller groups and there is no known Miller
9



group for odd prime which is not special, so we now turn towards a group G such

that Aut(G) is not abelian but Autc(G) is abelian. We propose to use Autc(G)

rather than Aut(G) in the key exchange protocols described earlier.

8. Signature Scheme based on conjugacy problem

Assume that we are working with a group G with commuting inner automor-

phisms, for example, a group of class 2 with abelian central automorphism group.

Alice publishes α and β where β = a−1αa and keeps a a secret. To sign a text

x ∈ G she picks an arbitrary element k ∈ G and computes γ = kαk−1 and then

computes δ such that x = (δk)(aγ)−1. Now notice that

xαx−1 = (δk)(aγ)−1α((δk)(aγ)−1)−1

= (δk)γ−1a−1αaγk−1δ−1

= δγ−1a−1kαk−1aγδ−1 Inner automorphisms commute

= δγ−1a−1γaγδ−1

= δa−1γaδ−1

= δ(kβk−1)δ−1 γ = kαk−1 ⇒ a−1γa = kβk−1

So to sign a message x ∈ G Alice computes δ as mentioned and sends x, (kδ). To

verify the message one computes L = xαx−1 and R = δkβ(δk)−1. If L = R then

the message is authentic otherwise not.

There is a similar signature scheme in [23], where they exploit the gap between

the computational version (conjugacy problem) and the decision version of the

conjugacy problem (conjugator search problem) in Braid Groups. We followed

ElGamal signature scheme closely [38, Chapter 7].

8.1. Comments on the above Signature Scheme. If one can solve conjugacy

problem in the group then from the public information α and β he can find out

a and our scheme is broken. Conjugacy problem is known to be hard in some

groups and hence it seems to be a reasonable assumption at this moment. There

is another worry: if Alice sends k and δ separately then one can find a from the

equation x = (δk)(aγ)−1, since γ is computable. However, this is circumvented

easily by sending the product δk not δ and k individually and keeping k random.

9. An interesting family of p-groups

It is well known that cyclic groups have abelian automorphism groups. The first

person to give an example of an non-abelian group with an abelian automorphism

groups is G.A. Miller in [30] which was generalized by Struik in [39]. There are three

non-abelian groups with abelian automorphism group in Hall-Senior table [15], they

are nos. 91, 92 and 99. Millers example is no. 99. In [19], Jamali generalized no. 91

and 92. His generalization of no. 91 is in one direction, it increases the exponent of

the group.
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Jamali in the same paper generalizes group no. 92 in two directions, the size of the

exponent and the number of generators. His generalization was restrictive in that

it works only for prime 2. There are other examples of families of Miller p-groups

in literature, the most notable one is the family of p-groups for any arbitrary prime

p given by Jonah and Konisver in [20] which was generalized to arbitrary number

of generators by Earnley in [10]. There are examples by Martha Morigi in [32] and

Heineken and Liebeck in [17] also. All these examples of Miller groups given in

[10, 17, 20, 32] are special groups i.e., the commutator and the center are same.

For special groups the key exchange protocols don’t work as noted earlier. So there

is no Miller p-group, readily available in literature, for arbitrary prime p which

can be used right away in construction of the protocol. The only other source are

groups nos. 91, 92 and 99 in Hall Senior table [15] and their generalizations, notice

that these groups are not special but are 2-group. Of the three generalizations, the

generalization of no. 92 best fits our criterion since it has been generalized in two

directions, viz. number of generators and exponent of the center and moreover it is

is not special and Z(G) = A×G′ where A is a cyclic group. So once we generalize

it for arbitrary primes, it has “three degrees of freedom”, the number of generators,

exponent of center and the prime; which makes it attractive for cryptographic

purposes.

In the rest of the section we use Jamali’s definition in [19] to define a family of

p-groups for arbitrary prime. So this family is a generalization of Jamali’s example

and assuming transitivity of generalizations, ultimately a generalization of group

no. 92 in the Hall-Senior table [15]. We study automorphisms of this group and show

that the group is Miller if and only if p = 2, but this family of groups always have

an abelian central automorphism group which is fairly large. We then attempt to

build a key exchange protocol as described earlier using the central automorphisms.

We start with definition of the group.

Definition. Let Gn(m, p) be a group generated by n+ 1 elements

{a0, a1, a2, · · · , an} and let p be any prime and m ≥ 2 and n ≥ 3 are integers. The

group is defined by the following relations:

ap1 = 1, ap
m

2 = 1, ap
2

i = 1 for 3 ≤ i ≤ n, apn−1 = ap0.

[a1, a0] = 1, [an, a0] = a1, [ai−1, a0] = api for 3 ≤ i ≤ n.

[ai, aj ] = 1 for 1 ≤ i < j ≤ n.

We state couple of facts about the group Gn(m, p) whose proof is by direct

computation.

a: Gn(m, p)′ the derived subgroup of Gn(m, p) is an elementary abelian group

〈a1, a
p
3, · · · a

p
n〉 ' Z

n−1
p .

b: Z(Gn(m, p)) = 〈ap2〉 ×G′.

c: Gn(m, p) is a p-group of class 2.

d: Gn(m, p) is a PN group.

11



Proposition 9.1. Gn(m, p) is a polycyclic group and every element of g ∈ Gn(m)

can be uniquely expressed in the form g = aα0
0 aα1

1 aα2
2 aα3

3 · · · aαn

n , where

0 ≤ αi < p for i = 0, 1; 0 ≤ α2 < pm, 0 ≤ αi < p2 for i = 3, 4, · · · , n.

Proof. Let us define G0 = Gn(m, p) = 〈a0, a1, a2, · · · , an〉, G1 = 〈a1, a2, · · · an〉 and

similarly Gk = 〈ak, ak+1, · · · , an〉 for k ≤ n. Since G1 is a finitely generated abelian

group, it is a polycyclic group [37, Proposition 3.2]. It is fairly straightforward to

see that

G1 . G2 . · · · . Gn . 〈1〉

is a polycyclic series and {a1, · · · , an} a polycyclic generating sequence of G1.

It is easy to see from the relations of the group thatG1 is normal inG0 andG0/G1

is cyclic. It is fairly easy to show that 〈aiGi+1〉 = Gi/Gi+1 and |aiGi+1| = |ai| and

hence any element of the group has a unique representation of the above form. We

would call an element represented in the above form a collected word. See also

proposition 4.1, chapter 9 in [37]. •

Computation with Gn(m, p): Our group Gn(m, p), which is of class 2, i.e. com-

mutators of weight 3 are identity, computations become real nice and easy. Let

us demonstrate the product of two collected words g = aα0
0 aα1

1 aα2
2 aα3

3 aα4
4 and

h = aβ0

0 aβ1

1 aβ2

2 aβ3

3 aβ4

4 . To compute gh we use concatenation and form the word

aα0
0 aα1

1 aα2
2 aα3

3 aα4
4 aβ0

0 aβ1

1 aβ2

2 aβ3

3 aβ4

4 and note that ai’s commute except for a0 hence

one tries to move a0 towards left using the identity

aia0 = a0ai[ai, a0] =

{

a0aia
p
i+1 for 1 ≤ i < n

a0aia1 for i = n

Further note, since commutators are in the center of the group, that api+1 or a1 can

be moved anywhere. Once a0 is moved to the extreme left the word formed is the

collected word of gh. This process is often referred in the literature as “collection”.

Computing the inverse of an element can be similarly achieved.

We now prove that the central automorphism group of the group Gn(m, p) for

an arbitrary prime p is abelian. For sake of simplicity we denote Gn(m, p) by G

and use notation from Theorem 7.10.

Lemma 9.2. In G, R = Z(G) = K.

Proof. Using the notation from theorem 7.10, we see that in G, a = m − 1, b = 1

and c = m hence d = m− 1. Clearly, R = Z(G) hence K ⊆ Z(G).

Let x ∈ Z(G), if x ∈ G′ then height(x) = ∞ and we are done. If not then x = z1z2
where z1 ∈ 〈ap2〉 and z2 ∈ G′. Then xG′ = z1G

′ and hence height(xG′) ≥ 1. •

It is easy to see that R/G′ = Z(G)/G′ = 〈ap2G
′〉 and hence from theorem 7.10 we

proved the following theorem:

Theorem 9.3. Autc(G) is abelian.

12



9.1. Automorphisms of Gn(m, p). For sake of brevity we write G = Gn(m, p). In

this section we describe the automorphisms of groups of this kind. The discussion

is in, more than one way, an adaptation of work of Jamali in [19] and generalizes

his main theorem.

Lemma 9.4. Let x = aβ0

0 aβ1

1 aβ2

2 · · · aβn

n , where βi, i = 0, 1, 2 · · · , n are integers be

an element of G. If p = 2 then β0 is 1 and

• x2 = aβn

1 a2β2

2 aγ33 · · · a
γn−2

n−2 a
γn−1+2
n−1 aγn

n for p = 2. Where γi = 2(βi−1 + βi).

• xp = apβ2

2 apβ3

3 · · · a
pβn−2

n−2 a
pβn−1+pβ0

n−1 apβn

n for p 6= 2.

Proof. For the case p = 2 we just collect terms and use the relation a2
n−1 = a2

0.

For p 6= 2 using Proposition 7.3 we have

(aβ0

0 aβ1

1 aβ2

2 · · ·a
βn−1

n−1 a
βn

n )p

= (aβ0

0 )p(aβ1

1 aβ2

2 · · · a
βn−1

n−1 a
βn

n )p

= apβ0

0 apβ2

2 apβ3

3 · · ·apβn

n

Using the relation apn−1 = ap0 we have

apβ0

0 apβ2

2 apβ3

3 · · · apβn

n = apβ2

2 apβ3

3 · · · a
pβn−2

n−2 a
pβn−1+pβ0

n−1 apβn

n

•

For the group G we note that H = 〈a1, a2, a3, · · · an〉 is the maximal abelian normal

subgroup of G and is hence characteristic. It follows that the Hp is also charac-

teristic. Corresponding to H we define two decreasing sequences of characteristic

subgroups {Ki}
n−1
i=0 such that

K0 = H and Ki/Ki−1 = Z(G/Kp
i−1) (1 ≤ i ≤ n− 1)

and {Li} such that

L0 = H and Li = {h : h ∈ H, hp ∈ [G,Li−1]} (1 ≤ i ≤ n− 1)

It follows easily that

Ki = 〈a1, a2, · · · , an−i, a
p
n−i+1, · · · , a

p
n〉 1 ≤ i ≤ n− 1

L1 = 〈a1, v, a3, · · · , an〉

Li = 〈a1, v, a
p
3, · · · , a

p
i+1, ai+2, · · · , an〉 2 ≤ i ≤ n− 1

where v = ap
m−1

2 . For 3 ≤ i ≤ n we have

Kn−i ∩ Li−2 = 〈a1, v, a
p
3, · · · a

p
i−1, ai, a

p
i+1, · · · a

p
n〉 = 〈v, ai, G

′〉.

Also Kn−2 ∩L0 = 〈a2, G
′〉. It follows that if θ ∈ Aut(G), then a−1

i θ(ai) ∈ Z(G) for

1 ≤ i ≤ n. On the other hand we may suppose that θ(a0) = aβ0

0 aβ1

1 aβ2

2 · · ·aβn

n . For

p = 2, since θ is an automorphism it automatically follows that β0 = 1.

Now from the relations in the group G it follows that θ(ap0) = θ(apn−1) = apn−1 it

follows that

apn−1 = apβ2

2 apβ3

3 · · · a
pβn−2

n−2 a
pβn−1+pβ0

n−1 + apβn

n for p 6= 2
13



which implies that p|βi where i ∈ {2, 3, 4, · · · , n− 2, n} and βn−1 + β0 ≡ 1 mod p.

Hence if β0 = 1 then p|βn−1. This gives a complete description of any automorphism

of G and in particular the central automorphisms of G. It also follows that when

p 6= 2 there are non-central automorphisms just take β0 6= 1 and βn−1 such that

β0 + βn−1 ≡ 1 mod p. We proved the following theorem

Theorem 9.5. The group Gn(m, p) is Miller if and only if p = 2.

Proof. That Gn(m, 2) is Miller follows from [19]. In the above discussion we saw

that for a odd prime p one can construct non-central automorphism and from

Theorem 6.4 it follows that Gn(m, p) is not miller. •

9.2. Description of Central Automorphisms. Notice that G is a PN group,

hence there is a one-one correspondence between Autc(G) and Hom(G,Z(G)).

Since, Z(G) = 〈ap2〉 × G′. Hence Hom(G,Z(G)) = Hom(G, 〈ap2〉) × Hom(G,G′).

It follows: Autc(G) = A×B where

A = {σ ∈ Autc(G) : x−1σ(x) ∈ 〈ap2〉}

B = {σ ∈ Autc(G) : x−1σ(x) ∈ G′}

Elements of A can be explained in a very nice way. Pick a random integer k such

that gcd(p, k) = 1 from 1 ≤ k < pm and a random subset R (could be empty) of

{0, 3, 4, · · ·n}, and then an arbitrary automorphism in A is

σ(a1) = a1

σ(a2) = ak2

σ(ai) =

{

ai if i 6∈ R

ai

(

ap
m−1

2

)ri

if i ∈ R

(2)

We use indexing in {0, 3, 4, · · · , n} to order R and 0 < ri < p is an integer corre-

sponding to i ∈ R. Conversely, any element in A can be described this way.

The automorphism φ ∈ B is of the form

φ(x) =

{

a1 if x = a1

aiz if x = ai i ∈ {0, 2, 3, · · · , n}
(3)

where z ∈ G′.

9.3. Using these automorphisms in key-exchange. Let us briefly recall the

key-exchange protocol described before. Alice and Bob decide on a group G and

a non-central element g ∈ G \ Z(G) in public. Alice then chooses an arbitrary

automorphism φA and sends Bob φA(g). Similarly Bob picks an arbitrary auto-

morphism φB and sends Alice φB(g). Since the automorphisms commute, both of

them can compute φA(φB(g)), which is their private key. The most devastating

attack on the system is the one in which Oscar looking at g and φA(g) can predict

with some amount of certainty what φA(φB(g)) will look like.
14



Definition. Let g = aβ0

0 aβ1

1 aβ2

2 aβ3

3 · · · aβn

n be an arbitrary element of G, i.e. 0 ≤

β0 < p, 0 ≤ β1 < p, 0 ≤ β2 < pm and 0 ≤ βi < p2 for 3 ≤ i ≤ n. Then the vector

v := (β0, β3, β4, · · · , βn) is called the parity of g. Two elements g and g′ are said

to be of same parity condition if v = v′ mod p, where v′ is the parity of g′.

Lemma 9.6. Let g ∈ G and φ : G → G be any central automorphism then g and

φ(g) have the same parity condition.

Proof. Notice that an automorphism φ either belongs to A or B or is a composition

of elements in A with elements in B. So we might safely ignore elements from A,

since they only affect the exponent of a2. Also note that a1 being in the commutator

remains fixed under any central automorphism.

So we need to be concerned with elements of B, from the description of B, and each

commutator is a word in p-powers of the generators and the fact that G′ ⊂ Z(G),

the lemma follows. •

Now let us understand what an element in A does to an element g ∈ G. We use

notations from equation 2.

Lemma 9.7. Let g = aβ0

0 aβ1

1 aβ2

2 aβ3

3 · · · aβn

n , φ ∈ A and if

φ(g) = a
β′

0
0 a

β′

1
1 a

β′

2
2 a

β′

3
3 · · ·a

β′

n

n then βi = β′

i for i 6= 2 and

β′

2 = kβ2 + pm−1
∑

i∈R

riβi mod pm.

Proof. Notice that from Equation 2, it is clear that elements of A only affect the

exponent of a2, so β′

i = βi for i 6= 2 follows trivially. From the definition of A and

simple computation it follows that β′

2 = kβ2 + pm−1
∑

i∈R

riβi mod pm. •

As noted earlier there are three kinds of attack, GDLP (the discrete logarithm

problem in automorphisms) and GDHP (Diffie-Hellman problem in automorphisms)

and GDDH. We have earlier stated that GDLP is equivalent to finding the auto-

morphism from the action of the automorphism on one element. It seems that for

one to find the automorphism discussed in the previous lemma, one has to find

k, R and ri. Notice that β′

2 = kβ2 + pm−1
∑

i∈R

riβi mod pm, is a knapsack in β2

and pm−1, but solving that knapsack is not enough to compute the image of any

element, because R is not known so βi’s are not known. We shall show in a mo-

ment that the security of the key exchange protocol depends on the difficulty of

this knapsack, whose security is still an open question, but this doesn’t help Oscar

to find the automorphism, just partial information about the automorphism comes

out.

Next we show that though it seems to be secure under GDLP, but if the knapsack

is solved then the system is broken by GDHP. This proves that GDHP is a weaker

problem than GDLP in Gn(m, p). Let g = aβ0

0 aβ1

1 aβ2

2 aβ3

3 · · · aβn

n , then as discussed

before for φ, ψ ∈ Autc(G), with notation from equation 2:

φ(g) = aβ0

0 aβ1

1 a
k2β2+pm−1 P

i∈R

riβi

2 aβ3+k3p
3 · · · aβ4+k4p

n

15



ψ(g) = aβ0

0 aβ1

1 a
k′2β2+p

m−1 P

i∈R′

r′
i
βi

2 a
β3+k

′

3p

3 · · · a
β4+k

′

4p
n

Notice that
(

ap
m−1

2

)β+lp

for β, l ∈ N reduces to aβp
m−1

2 and it follows that the

exponent of a2 in φ(ψ(g)) is

k2

(

k′2β2 + pm−1
∑

i∈R′

r′iβi

)

+ pm−1
∑

i∈R

riβi (4)

The exponent of a0, a1 stays the same and the exponent of ai will be βi+(ki+k′i)p

mod p2 for 3 ≤ i ≤ n.

Note that elements having the same parity condition play a major role here. If

the automorphisms didn’t preserve the parity condition then this attack wouldn’t

have been possible.

10. Some useful facts about the cryptosystem

We shall be using notations from last section in this section.

GDLP: For the group Gn(m, p), GDLP is to find k2, k3, · · · , kn, R and ri.

GDHP: For the group Gn(m, p) GDHP is to find k2, k3, · · · , kn.

GDDH: Extract partial information about the bits in Equation 4 without

solving the knapsack in Equation 5. We won’t explore GDDH any further

in this article.

It is easy to see that ki and k′i are easy to find for i = 3, 4, · · · , n, hence the exponents

of a3, a4, · · · , an in φ(ψ(g)) are easy to compute. So one can’t use these exponents

as part of the shared secret or the secret key. On the other hand computing the

exponent of a2 depends on solving

k2β2 + pm−1
∑

i∈R

riβi mod pm (5)

as a knapsack on β2 and pm−1. It is clear that if the knapsack is broken then we can

find k2 and our system is broken by GDHP. On the other hand it is an open question,

if the GDHP is equivalent to solving the knapsack. In other words, is it possible to

find k2 without breaking the knapsack? So one of the security assumption is the

knapsack in Equation 5 and the relation of GDHP with the knapsack.

Order of Gn(m, p): From Proposition 9.1, the order of the group is p2n+m−4.

Order of the group of cental automorphisms of Gn(m, p): The group

of central automorphism ofG = Gn(m, p) is isomorphic to Hom(G/G′, Z(G))

which is isomorphic to Z
n2

p ×Zpm−1 and its order is pn
2+m−1 [34, Theorem

1] or [35, Section 5.8].

Complexity of multiplication in Gn(m, p): Clearly from Page 11, the com-

plexity of multiplication is O(n − 1) which is the same as complexity of

reducing the inverse of an element to normal form.

Computation of image of a central automorphism in Gn(m, p): Once

an central automorphism φ and a group element g is selected, computation

of φ(g) involves only addition of integers, which is fast and easy.
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11. Conclusion

In this paper we studied a key exchange protocol using commuting automor-

phisms in a non-abelian p-group, since any nilpotent group is a direct product of

its Sylow subgroups, so for our work nilpotent groups can be reduced to p-groups.

We argued that this is a generalization of the Diffie-Hellman key exchange and

hence is a generalization of the discrete log problem. Other public key systems

like the El-Gamal cryptosystem using discrete logarithm might be adaptable to our

methods. This is the first attempt to generalize discrete logarithm in the way we

did. So there are more questions than there are answers.

We should try to find other groups and try our system in terms of GDLP and

GDHP. As we noted earlier, GDHP is a subproblem of the GDLP, and we saw in

Gn(m, p), GDHP is a much easier problem than GDLP. Our example was of the

form d > b in Theorem 7.10. The next step is to look at groups where d = b. We

note from theorem 7.11, if a p-group G is a PN group then Autc(G) is a p-group

and since p-groups have nontrivial centers, one can work in that center with our

scheme. In this case we would be generalizing to arbitrary nilpotentcy class but

keep working with central automorphisms.

Lastly we note that, if we were using some representation for this finitely pre-

sented group G, say for example, matrix representation of the group over a finite

field Fq, then security of the system in Gn(m, p) becomes the discrete logarithm

problem [28, 29]. Since the discrete logarithm problem in matrices is only as secure

as the discrete logarithm problem in finite fields there is no known advantage to go

for matrix representation, but there might be other representations of interest.

There is one conjecture that comes out of this work and we end with that.

Conjecture 11.1. Let G be a Miller p-group for odd prime p, then G is special.
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[41] Maria S. Voloshina. On the holomorph of a discrete group. PhD thesis, University of

Rochester, 2003.

[42] H. Zassenhaus. The theory of groups. Chelsea, New York, 1958.

Department of Mathematical Sciences, Florida Atlantic University, Boca Raton,

FL, 33431

E-mail address: amahalan@fau.edu

19


