
On Computable Isomorphisms in Efficient
Pairing Based Systems ?

N.P. Smart1 and F. Vercauteren2

1 Department of Computer Science,
University of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB,
United Kingdom

nigel@cs.bris.ac.uk
2 Department of Electrical Engineering

University of Leuven
Kasteelpark Arenberg 10,
B-3001 Leuven-Heverlee,

Belgium
frederik.vercauteren@esat.kuleuven.be

Abstract. In this paper we examine the underlying hard problems in
asymmetric pairings, their precise relationships and how they affect a
number of existing protocols. Furthermore, we present a new model for
the elliptic curve groups used in asymmetric pairings, which allows both
an efficient pairing and an efficient computable isomorphism.

Keywords: Pairing-based cryptography, Tate pairing, elliptic curve

1 Introduction

In recent years we have seen the advent of various protocols based on pairings.
However, much of the literature uses a confusing array of underlying hard prob-
lems and differing notation. This is because the original protocols were defined in
the context of pairings on supersingular curves, in which the pairing is between
a group and itself, i.e.

G×G −→ GT .

In later papers the emphasis has been on so-called asymmetric pairings, where
the pairing is from two (possibly) different groups into a third, i.e.

G1 ×G2 −→ GT .

? The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the authors’ views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

2 N.P. Smart and F. Vercauteren

This has resulted in a variety of different notations and underlying hard problems
and it is hard to reconcile one paper against another. In addition the area is
further confused by various authors insisting on a computable isomorphism from
G2 to G1.

In this paper we elaborate on these differences in greater detail. We carefully
point out what are the underlying hard problems and how they are related. In
addition we point out the reliance on the computability of the isomorphism from
G2 to G1. In many protocols the isomorphism is only needed to exist so as to
define the protocol, and an isomorphism between two finite cyclic groups of the
same order clearly exists a priori. The issue with whether the isomorphism is
computable often only becomes important in the security proof. However, in
such cases one could model the security proof with respect to a relativised result
whereby the adversary has access to an oracle which computes this isomorphism.

The reason these considerations matter is that given standard representations
in the literature for G2 and G1 it is impossible to have both a simultaneously
efficient pairing and a computable isomorphism from G2 to G1. In this paper we
also present a new model for G2 which enables an efficiently computable pairing
and a computable isomorphism. The only draw back with our model for G2 is
that it appears difficult to construct efficient hash functions with codomain equal
to G2.

Our paper is constructed as follows. In Section 2 we examine the underlying
hard problems in asymmetric pairings and examine their relationships and how
they affect a number of existing protocols. This section is presented completely in
the abstract with no mention of elliptic curves. In Section 3 we present the main
ideas we require from the theory of pairings on elliptic curves. We summarise a
number of known implementation issues and discuss some problems. In Section 4
we present our model of the group G2 which allows both an efficient pairing to
be defined and an efficient isomorphism from G2 to G1. The big advantage of
our solution is that it is more memory efficient and that the trace and pairing
operations are simpler since they are essentially “already done”. In Section 5
we compare our model with other models of G2 and we end with some other
possible representations of G2.

We would like to thank Steven Galbraith for comments on an earlier version
of this paper.

2 Abstract Pairing Based Protocols

In this section we examine a number of pairing based protocols and point out
some interesting observations which motivate the work in this paper. To em-
phasise the points we wish to make more clearly we present the arguments and
observations completely in the abstract without reference to any underlying con-
crete groups. Then in later sections when we specialise to elliptic curve groups
one can more easily see how the problems discussed in this section apply to
elliptic curve groups.

On Computable Isomorphisms in Efficient Pairing Based Systems 3

We first need to define an overall problem instance on which to base our
pairing based protocols. We define a pairing problem instance to be a tuple
Γ = (q, G1, G2, GT , P1, P2, p̂) where G1, G2 and GT denote groups of prime order
q. For convenience we shall write G1 and G2 additively and GT multiplicatively.
We let P1 and P2 denote two fixed generators of G1 and G2 respectively. Our
pairing problem instance also contains a computable bilinear pairing

p̂ : G1 ×G2 −→ GT .

We denote the pairing by p̂, to stress that in this section we are dealing with an
abstract pairing. In future sections we shall use the notation t̂ when dealing with
the concrete Tate pairing, in this case the groups G1 and G2 become subgroups
of elliptic curves and GT is the subgroup of a finite field.

Clearly since G1 and G2 have the same prime group order there is a group
isomorphism φ between G2 and G1 such that φ(P2) = P1. In this section we
make no assumption as to whether φ, or φ−1, is efficiently computable.

We shall call one of our groups Gi, for either i = 1 or i = 2, randomly
samplable if it is possible to simply write down a random element of the group,
without necessarily computing rPi for some random value of r. This notion
will become important in later sections and so we shall point out when it is
required when analysing our pairing based protocols. In particular if a group is
not randomly samplable then the only way one can produce new elements within
a protocol is by computing rPi for some value of r.

Given a pairing problem instance one can define a number of variations of
the Bilinear Diffie–Hellman problem, as follows

Definition 1 (The BDHi,j,k Problem).
Given a pairing problem instance Γ = (q, G1, G2, GT , P1, P2, p̂) and values

i, j, k ∈ {1, 2} we define the BDHi,j,k Problem to be the following: Given aPi, bPj

and cPk, with a, b, c ∈ Fq, we are asked to compute p̂(P1, P2)abc.
The advantage of any adversary A against this problem is defined to be

Pr[α = p̂(P1, P2)abc : α←A(aPi, bPj , cPk, Γ)].

Definition 2 (The coBDHj,k Problem).
Given a pairing problem instance Γ = (q, G1, G2, GT , P1, P2, p̂) and values

j, k ∈ {1, 2} we define the coBDHj,k Problem to be the following: Given aP1, aP2,
bPj and cPk, with a, b, c ∈ Fq, we are asked to compute p̂(P1, P2)abc.

The advantage of any adversary A against this problem is defined to be

Pr[α = p̂(P1, P2)abc : α←A(aP1, aP2, bPj , cPk, Γ)].

Definition 3 (The BDHφ
i,j,k Problem).

Given a pairing problem instance Γ = (q, G1, G2, GT , P1, P2, p̂) and values
i, j, k ∈ {1, 2} we define the BDHφ

i,j,k Problem to be the following: Given aPi, bPj

and cPk, with a, b, c ∈ Fq, we are asked to compute p̂(P1, P2)abc.

4 N.P. Smart and F. Vercauteren

However, in this problem the adversary, has access to an oracle which com-
putes values under the isomorphism φ mentioned above, but does not necessarily
have access to an oracle which computes the inverse isomorphism φ−1. Again
the advantage is defined to be

Pr[α = p̂(P1, P2)abc : α←Aφ(aPi, bPj , cPk, Γ)].

There are clearly relationships between these problems:

– The problems BDHi,j,k and BDHi′,j′,k′ are polynomial time equivalent if i +
j + k = i′ + j′ + k′, the same holds for the problems BDHφ

i,j,k and BDHφ
i′,j′,k′ .

– In the case when i + j + k ≤ i′ + j′ + k′ then an efficient algorithm to solve
BDHφ

i,j,k implies an efficient algorithm to solve BDHφ
i′,j′,k′ Hence, the BDHφ

1,1,1

problem is possibly harder than the BDHφ
2,2,2 problem.

– On the other hand the problems BDHi,j,k and BDHi′,j′,k′ do not appear to be
related when i + j + k 6= i′ + j′ + k′.

– An efficient algorithm to solve BDHi,j,k implies an efficient algorithm to solve
BDHφ

i,j,k, but the converse is only true when the map φ exists and is not just
provided as an oracle.

– An efficient algorithm to solve BDHi,j,k implies an efficient algorithm to solve
coBDHj,k and an efficient algorithm to solve coBDHj,k implies an efficient
algorithm to solve BDHφ

2,j,k.

We can also define various notions of the Computational Diffie–Hellman problem
as well.

Definition 4 (The CDHi,j,k Problem).
Given a pairing problem instance Γ = (q, G1, G2, GT , P1, P2, p̂) and values

i, j, k ∈ {1, 2} we define the CDHi,j,k Problem to be the following: Given aPi and
bPj, with a, b ∈ Fq, we are asked to compute abPk.

The advantage of any adversary A against this problem is defined to be

Pr[α = abPk : α←A(aPi, bPj , Γ)].

A variant CDHφ
i,j,k of this problem can be defined similarly to above, as can similar

relations between the problems. In addition we see that an efficient algorithm to
solve CDHi,j,k can be used to solve the BDHi,j,k′ , problem when k 6= k′.

Decisional variants of the above problems can also be defined, as can then
the resulting gap problems (i.e. the above computational problems relative to
an oracle which solves the equivalent decisional problem). Note, however that
certain decisional problems are easy, for example the decision variant of CDHi,j,k

with i 6= j is simple since one can use the pairing to test for a valid Diffie–Hellman
tuple.

We shall now turn to discussing what these concepts imply for a number of
pairing based cryptosystems.

On Computable Isomorphisms in Efficient Pairing Based Systems 5

2.1 The Boneh–Franklin Encryption Scheme

Here we discuss the Boneh–Franklin ID-based encryption scheme [3] in the con-
text of our abstract pairings above. We assume the reader is familiar with the
scheme and so only recap on the salient points for which we need do define
notation.

Given a pairing problem instance Γ = (q, G1, G2, GT , P1, P2, p̂) the Boneh–
Franklin scheme requires the following four elements of the groups G1 and G2

so as to be defined.

1. The public key of the trust authority is defined to be R = xPi, for i ∈ {1, 2},
and some secret value x ∈ Fq.

2. The public key of the user is defined to be QID = H(ID) ∈ Gj , where
j ∈ {1, 2} and H is a cryptographic hash function from {0, 1}∗ to Gj .

3. The ephemeral key in the ciphertext is given by U = rPk, for k ∈ {1, 2}, and
some ephemeral secret value r ∈ Fq.

4. The secret key of the user SID ∈ Gl, for l ∈ {1, 2}, must satisfy either
SID = xQID, or SID = φ(xQID).

From this set up we can instantly notice a number of points:

– Due to point 2 the group Gj must be randomly samplable, otherwise one
would never be able to implement such a hash function.

– Due to point 4 we must have either l = j, or if there is an oracle to compute
φ we may also have (j, l) = (2, 1).

– The encryptor needs to compute the pairing of either QID and R, or QID and
φ(R), or φ(QID) and R. This implies that either i 6= j, or if there is an oracle
to compute φ we may also have i = j = 2.

– The decryptor needs to compute the pairing of either SID and U , or SID and
φ(U), or φ(SID) and U . This implies that either k 6= l, or if there is an oracle
to compute φ we may also have k = l = 2.

Since to implement any scheme requiring an oracle for φ, we need not just an
oracle, but an actual efficient and explicit algorithm, this implies the following:
If φ is not efficiently computable then to implement the Boneh–Franklin scheme
one requires either (i, j, k, l) = (1, 2, 1, 2) or (2, 1, 2, 1). However, if φ is efficiently
computable then one can have any one of the following tuples for (i, j, k, l)

(2, 2, 2, 2), (1, 2, 2, 2), (2, 2, 1, 2), (1, 2, 1, 2)(2, 2, 2, 1), (1, 2, 2, 1), (2, 1, 2, 1).

Subject to the constraint that the group Gj is randomly samplable.
If we now turn to the proof of the Boneh–Franklin encryption scheme, in

particular the proofs of Lemma 4.2 and 4.6 of [3], and extending them to the
more general situation of G1 6= G2 as considered in our work, we see that the
hash function H is modelled as a random oracle via the following simulation:
For any identity IDt the random oracle H is computed via QIDt

= btPj , for some
random bt, with the corresponding values of SIDt computed via btR, or φ(btR).

6 N.P. Smart and F. Vercauteren

This implies that either i = j, or φ is available via oracle access to the adversary
and i = 2 and j = 1.

Hence, the existing security proof of the Boneh–Franklin encryption scheme
implies that:

– If φ is not efficiently computable then one needs to select (i, j, k, l) = (2, 1, 2, 1)
and the security proof of the scheme is relative to the hardness of the BDHφ

2,1,2

problem. In other words, although the scheme in this instance may not re-
quire an efficiently computable φ the security proof is relative to an adversary
which has oracle access to φ. Hence, if one is unwilling to accept such a rel-
ativised security result then one has to revert to basing ones security on the
coBDH1,2 problem, as pointed out by [3]. However, the coBDH1,2 problem is
also somewhat unnatural.

– If φ is effectively computable then one needs to select (i, j, k, l) from one of
the following

(2, 2, 2, 2), (2, 2, 1, 2), (2, 2, 2, 1), (2, 1, 2, 1).

The security proof is then relative to the hardness of BDHφ
i,j,k, except that

now φ is not only given as oracle access to the adversary, but is actually
computable. Hence, the hardness is relative to the standard BDHi,j,k problem.
Given our comments on the relative hardness of these problems earlier, one
should probably choose (i, j, k, l) = (2, 2, 1, 2) or (2, 1, 2, 1).

Hence, if one wishes to have a scheme which is both provably secure and for
which the security is related to a well studied problem, i.e. the BDHi,j,k problem,
then one needs to use a pairing for which there is an efficiently computable
isomorphism.

2.2 The Boneh–Lynn–Shacham Signature Scheme

Here we discuss the BLS short signature scheme [4] in the context of our abstract
pairings above. We assume the reader is familiar with the scheme and so only
recap on the salient points for which we need do define notation.

Given a pairing problem instance Γ = (q, G1, G2, GT , P1, P2, p̂) the BLS re-
quires the following three elements of the groups G1 and G2 to be defined.

1. The public key of the user is defined to be R = xPi, for i ∈ {1, 2}, and some
secret value x ∈ Fq.

2. The hash of a message is defined to be QM = H(M) ∈ Gj , where j ∈ {1, 2}
and H is a cryptographic hash function from {0, 1}∗ to Gj .

3. The signature is given S ∈ Gk, where either S = xQM or S = φ(xQM).

From this set up we can instantly notice a number of points:

– Due to point 2 the group Gj must be randomly samplable, otherwise one
would never be able to implement such a hash function.

On Computable Isomorphisms in Efficient Pairing Based Systems 7

– Due to point 3 we must have either j = k, or if there is an oracle to compute
φ we may also have (j, k) = (2, 1).

– To verify a signature we need to compute two pairings:
• We need to compute the pairing of either either QM and R, or QM and

φ(R), or φ(QM) and R. This implies that either i 6= j, or if there is an
oracle to compute φ we may also have i = j = 2.

• We also need to compute the pairing of either S and Pi, or S and φ(Pi),
or φ(S) and Pi. This implies that either k 6= i, or if there is an oracle to
compute φ we may also have i = k = 2.

This implies the following: If φ is not efficiently computable then to implement
the BLS scheme one requires either (i, j, k) = (1, 2, 2) or (2, 1, 1). However, if φ
is efficiently computable then one can have any one of the following tuples for
(i, j, k)

(1, 2, 2), (2, 1, 1), (2, 2, 1), (2, 2, 2).

Subject to the constraint that the group Gj is randomly samplable.
We now turn to the proof of the BLS signature scheme, in particular the

simulation in Game1 of the security proof. The simulation of the hash function
H works in roughly the same way as the simulation in the proof of the Boneh–
Franklin encryption scheme mentioned earlier. The hash function H(Mt) is sim-
ulated via btPj , which means the signature queries can be answered via btR, if
i = k, or φ(btR) if i 6= k and i = 2.

Hence, the existing security proof of the Boneh–Franklin encryption scheme
implies that:

– If φ is not efficiently computable then one needs to select (i, j, k) = (2, 1, 1)
and the security proof of the scheme is relative to the hardness of the CDHφ

2,1,1

Problem. In other words, although the scheme in this instance may not re-
quire an efficiently computable φ the security proof is relative to an adversary
which has oracle access to φ.

– If φ is effectively computable then one needs to select (i, j, k) from one of
the following

(2, 1, 1), (2, 2, 1), (2, 2, 2).

The security proof is then relative to the hardness of CDHφ
i,j,k, except that now

φ is not only given as oracle access to the adversary it is actually computable.

2.3 Other Protocols

We now discuss a number of other protocols. Our list is not exhaustive and we
point out just a number of problems.

In Boneh, Boyen and Shacham’s paper [2] on short group signatures the
authors present a group signature scheme in a pairing problem instance Γ . The
main protocol is based on very different assumptions to those presented here,
but the security proof relies on an adversary with access to the isomorphism
φ. However, as an aside the authors of [2] present a simplified scheme which is

8 N.P. Smart and F. Vercauteren

based on a decisional variant of the CDH1,1,1 problem. However, for this problem
to be hard the map φ−1 must be hard to compute. In general it does appear
that φ−1 is hard to compute for all examples where one knows how to compute
φ efficiently.

In Boneh and Shacham’s paper [5] on group signatures with verifier-local re-
vocation one needs an isomorphism from G2 to G1 so as to be able to implement
the scheme. Of all the papers which present their protocols in the asymmetric
pairing setting, this is the only one we could find which actually required a com-
putable isomorphism to be able to implement the protocol. This is not to say
that one of the protocols described in the symmetric pairing setting in the liter-
ature when generalised to the asymmetric setting will not require a computable
isomorphism. There however is a problem with implementing the scheme of [5]
in our context below. The scheme also requires a hash function with domain
equal to G2, which appears hard to construct for our representation of G2 given
in Section 4.

3 Pairings on Elliptic Curves

We now turn to actual concrete pairings based on (ordinary) elliptic curves.
We assume that our elliptic curves are defined over a field Fp of characteristic
greater than three. To aid computational efficiency we choose curves which have
equations of the form

E : y2 = x3 − 3x + b

where b ∈ Fp. We assume that #E(Fp) is divisible by a large prime q and that
there is a small integer k such that q divides pk − 1, but q does not divide pl− 1
for any integer l < k. Such curves are often called MNT curves as an algorithm
for their construction was first given in [6].

Given such a curve the points of order q, i.e. the group E[q], are defined over
Fpk and they form a two dimensional vector space over Fq. As a basis of this
vector space we can take P1 and P2 where P1 is a point of order q in E(Fp) and
P2 is a point of order q which is defined over Fpk but not Fp.

We define the modified Tate pairing t̂ to be a bilinear pairing

t̂ : E[q]×
(
E(Fpk)/q · E(Fpk)

)
−→ F∗pk .

The pairing is such that t̂(P, P) = 1 for all P of order q in E(Fp), indeed the
pairing is trivial for all pairs which are linearly dependent when projected to the
the vector space E[q]. It is therefore common to restrict the first component to
the points of order q in E(Fp) and the second component to a subgroup of E(Fpk)
which is linearly independent of the points of order q in E(Fp). The question
arises as to which subgroup should be chosen for the second component.

As mentioned earlier a number of our protocols require a pairing for which
there is a computable isomorphism from G2 to G1. In this situation the natural
choice for G1 is to be equal to E(Fp) and the natural isomorphism from a

On Computable Isomorphisms in Efficient Pairing Based Systems 9

subgroup of E(Fpk) to E(Fp) is given by the trace map

φ(P) = Tr(P) =
∑

σ∈Gal(F
pk /Fp)

Pσ.

However, if G2 is a subgroup of E(Fpk) of order divisible by q which is distinct
from G1, then it appears difficult to construct a hash function with codomain
G2. Clearly by generating a random point of E(Fpk) and then multiplying by the
cofactor #E(Fpk)/q we will obtain a random element of E[q]. But the probability
of this random element in E[q] lying in the chosen subgroup G2 is 1/q.

We first present an optimisation trick for computing the pairing already
described in [1]. If k is even, i.e. k = 2d, then we let χ denote an element of Fpd

which is a quadratic non-residue, i.e. we have

Fpk = Fpd [
√

χ].

If we let d be odd then one can select χ ∈ Fp, which means that multiplication
and division by χ can be performed in linear time.

We can now consider the quadratic twist of E over the field Fpd given by

E′ : χy2 = x3 − 3x + b.

Notice, we use this form of the quadratic twist of the curve rather than the form
used in [1] so as to enable standard tricks to efficiently compute the group law
on E′(Fpd). The formulae for the group law on E′ are given in Appendix A.

There is an injective group homomorphism

Φ :
{

E′(Fpd) −→ E(Fpk)
(x, y) 7−→ (x,

√
χy).

Using a standard implementation trick, see [1], the Tate pairing of an element
P ∈ E(Fp) with an element Q ∈ Im(Φ) can be computed more efficiently than
the pairing on an arbitrary element of E(Fpk).

The group order of E′(Fpd) is given by N ′
d = pd + 1 + td, whilst the group

order of E(Fpd) is given by Nd = pd +1− td. We note that since k is the smallest
integer such that pk − 1 is divisible by q we see that pd + 1 must be divisible by
q. However, on noticing that

Nd + N ′
d = 2(pd + 1),

and that Nd is also divisible by q, we see that N ′
d is also divisible by q. In par-

ticular we see that E′(Fpd) contains a subgroup of order q. We let this subgroup
be generated by P ′

2.
Hence, 〈Φ(P ′

2)〉 is a subgroup of order q of E(Fpd) which is linear independent
of the subgroup generated by P1. Since in this paper G1 will always be given by
〈P1〉, we shall denote 〈Φ(P ′

2)〉 by G⊥
1 .

If we pair an element of G1 with an element of E(Fpk) with x-coordinate in
Fpd then our pairing computation can be performed efficiently [1]. The following
lemma shows that there is essentially only one such subgroup G2.

10 N.P. Smart and F. Vercauteren

Lemma 1. The only subgroups of E(Fpk) of order q which consist of elements
with x-coordinates contained in Fpd are given by G1 and G⊥

1 .

Proof. Let G be the subgroup under consideration and let P = (x, y) be a
generator, then clearly all elements in G will have x-coordinate in Fpd if and
only if P does. If we set P0 = (1/k)Tr(P) = (x0, y0) and P1 = P −P0 = (x1, y1),
then Tr(P1) = O and P = P0 + P1.

The element P0 is contained in G1 and P1 is contained in G⊥
1 , see for in-

stance [1, Corollary 1]. Looking at the addition formulae one sees that x ∈ Fpd

implies that y0 ·y1 ∈ Fpd and so y0 is the conjugate of y1, up to some multiple in
Fpd . However, since y0 ∈ Fp and y1 ∈ Fpk \ Fpd , this would imply either P0 = O
or P1 = O and so the lemma follows.

Hence, if G2 = G⊥
1 then t̂ is an efficiently computable pairing from G1 ×G2 to

the subgroup of order q of F∗qk . If however we select G2 6= G⊥
1 then our pairing

computation will be more expensive.
On the other hand, it is easy to see that Tr(P) = O for all elements P ∈ G⊥

1 .
Hence, if we select G2 = G⊥

1 then there does not exist a natural computable
isomorphism from G2 to G1, no matter what choice of P1 is made. However, as
our earlier analysis points out, if no such computable isomorphism exists then
either various pairing based schemes are not provably secure, or are provably
secure relative to a new assumption (namely the adversary has access to an
oracle to evaluate the isomorphism), in other cases the protocol simply cannot
be computed without access to a computable isomorphism from G2 to G1.

4 Efficient Pairings and Computable Isomorphisms

In this section we present a new model for G2 which allows us to achieve both
an efficient pairing computation, plus an efficiently computable isomorphism
from G2 to G1. However, this comes at the expense of G2 not being randomly
samplable. Thus, due to our discussion in an earlier section this restricts slightly
the role of G1 and G2 in various protocols, in particular it will be impossible to
construct hash functions with codomain equal to G2. In this section we keep the
elliptic curve notation of the previous section.

In setting up our system we define G1 = 〈P1〉 as before. We then set

P ′
1 = [1/k (mod q)]P1.

This implies that
Tr(P ′

1) = kP ′
1 = P1.

Our group G2 we represent as the cyclic subgroup of E(Fp)×E′(Fpd) generated
by (P ′

1, P
′
2) where P ′

2 is an element of E′(Fpd) of order q. We shall denote this
choice of G2 by Ĝ2.

First we note that it appears impossible to construct a cryptographic hash
function with codomain equal to Ĝ2, or to generate elements at random from Ĝ2

On Computable Isomorphisms in Efficient Pairing Based Systems 11

without creating a multiple of the generator, since it appears hard to generate
completely at random two elements from different groups which have the same
discrete logarithm with respect to the group generators without also computing
the discrete logarithm.

However, it is easy to detect whether a pair (Q1, Q2) is actually an element
of Ĝ2, given that Q1 ∈ E(Fp) and Q2 ∈ E′(Fpd). If (Q1, Q2) ∈ Ĝ2 then there is
an x ∈ Fq such that Q1 = xP ′

1 and Q2 = xP ′
2. Hence, checking for inclusion in

Ĝ2 comes down to testing whether

t̂(Q1, Φ(P ′
2)) = t̂(xP ′

1, Φ(P ′
2)) = t̂(P ′

1, Φ(xP ′
2)) = t̂(P ′

1, Φ(Q2)).

Note that these two Tate pairings are easy to compute since the second coordi-
nate lies in the image of Φ and so the tricks of [1] can be applied.

We let the pairing of elements of G1 and Ĝ2 be denoted by p̂, and the isomor-
phism from Ĝ2 to G1 be denoted by φ. We also define an injective homomorphism
from Ĝ2 to E(Fpk) defined by

ξ :
{

Ĝ2 −→ E(Fpk)
(Q1, Q2) 7−→ Q1 + Φ(Q2).

We define for P ∈ G1 and Q = (Q1, Q2) ∈ Ĝ2 that

p̂(P,Q) = t̂(P, ξ(Q))
= t̂(P,Q1 + Φ(Q2))
= t̂(P,Q1) · t̂(P,Φ(Q2))
= t̂(P,Φ(Q2)).

The last equality follows since Q1 is linearly dependent on P . We note that
since the second coordinate of the Tate pairing is in the image of Φ that the
pairing p̂(·, ·) can be computed efficiently. We also note that all the properties
of a pairing in cryptography are satisfied by our pairing p̂(·, ·).

To define the isomorphism from Ĝ2 to G1 we use

φ(Q) = Tr(ξ(Q)) = Tr(Q1 + Φ(Q2))
= Tr(Q1) + Tr(Φ(Q2)) = Tr(Q1)
= kQ1.

This follows since the image of Φ always has trace zero and since Q1 is in E(Fp) its
trace is easily calculated by taking the kth multiple of Q1. As another alternative
one could take φ(Q) = Q1.

Hence, with this representation G2 = Ĝ2, we achieve both an efficiently
computable pairing and an efficiently computable isomorphism from G2 to G1.

5 Comparison

In this section we return to the Boneh–Franklin encryption scheme; we could
consider the other schemes mentioned earlier but we focus on the Boneh–Franklin

12 N.P. Smart and F. Vercauteren

scheme due to lack of space. We wish to explain the effect of the different choices
for G2, namely G⊥

1 and Ĝ2 and a general G2. A general G2, by which we mean
an arbitrary subgroup of order q of E(Fq2d) which is not equal to G⊥

1 we shall
denote by G′

2.
We summarise the main computational and bandwidth considerations in the

following table. Bandwidth, i.e. the size of elements of G2, is measured in mul-
tiples of log2 p. We recall that when we have a computable isomorphism the
BDHi,j,k Problem is equivalent to the BDHφ

i,j,k problem.

|g| Computable Efficient Hash to Underlying
G2 for g ∈ G2 Isomorphism Pairing G2 Hard Problem
G⊥

1 d N Y Y BDHφ
2,1,2 or coBDH1,2

Ĝ2 d + 1 Y Y N BDH2,2,1 or BDH2,1,2

G′
2 2d Y N N BDH2,2,1 or BDH2,1,2

Note, by reducing the hardness in the last two cases to BDH2,2,1 rather than
BDH2,1,2 we can select ciphertext sizes which are smaller, i.e. k = 1 in our previous
discussion of Section 2.1. However, this would require a mechanism to hash into
the group G2, which appears impossible. Hence, it is only practical to reduce
the security to BDH2,1,2 which implies that ciphertexts are larger.

6 Another choice of G2

One can obtain a group for G2 which has both a computable homomorphism to
G1, efficient pairings and for which one can derive a hash function with codomain
equal to G2. However, one now has to select a group which is not cyclic of order
q, but has exponent q.

It is easy to construct hash functions from an arbitrary bit string to both
G1 and G⊥

1 . As G2 we now select the subgroup of G1 × E′(Fpd) of order q2

and exponent q. There are two ways to represent elements of G2 which give
performance improvements.

1. In the first method we hold elements in G2 as the pair of elements (Q1, Q2)
where Q1 ∈ G1 and Q2 ∈ E′(Fpd) where Q2 is of order q. Hashing into G2

is now (theoretically) trivial, and computing the homomorphism to G1 is
obtained via

φ((Q1, Q2)) = Tr(Q1 + Φ(Q2)) = kQ1 or φ((Q1, Q2)) = Q1.

The pairing is also computed in a similar way via

p̂(P, (Q1, Q2)) = t̂(P,Q1 + Φ(Q2)) = t̂(P,Φ(Q2)).

2. In the second method we hold elements in G2 as a point Q ∈ E(Fqk), where
Q has order q. Hashing into G2 is now (theoretically) trivial, and computing

On Computable Isomorphisms in Efficient Pairing Based Systems 13

the homomorphism to G1 is obtained via φ(Q) = Tr(Q). The pairing can be
computed in an efficient manner by using the following trick from [7]

p̂(P,Q) = t̂(P,Q− σ(Q))

where σ is the qd-power Frobenius automorphism. Note, that the point Q−
σ(Q) has x-coordinate in Fqd and so the pairing can be computed efficiently.

In both cases hashing is performed by generating an element at random on
the appropriate curve (using a standard construction from a cryptographic hash
function) followed by multiplication by the appropriate cofactor. This is rather an
expensive operation in both cases. The cofactor in the first case has size roughly
pd/q, whilst in the second case the cofactor has size roughly pk/q = p2d/q. Hence,
hashing into G2 may become a computational bottleneck of any scheme.

In addition, the security proofs and protocols may now need to be slightly
altered as almost all security proofs are written on the assumption that G2 is
cyclic of order q. Another problem is that there is a small probability, namely
1−1/q, that the pairing of a non-trivial element of G1 with a non-trivial element
of G2 may result in a trivial value for the pairing. This eventuality will also need
to be considered in the various protocols which require pairings. We do not
discuss these two issues further except to point out that for all protocols we
have looked at such problems can be easily fixed with this choice of G2.

References

1. P.S.L.M. Barreto, B. Lynn and M. Scott. On the selection of pairing-friendly
groups. Selected Areas in Cryptography – SAC 2003, Springer-Verlag LNCS 3006,
17–25, 2004.

2. D. Boneh, X. Boyen and H. Shacham. Short group signatures. Advances in Cryp-
tology – CRYPTO 2004, Springer-Verlag LNCS 3152, 41–55, 2004.

3. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. SIAM
Journal on Computing, 32, 586–615, 2003.

4. D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing.
Advances in Cryptology – ASIACRYPT 2001, Springer-Verlag LNCS 2248, 514–
532, 2001.

5. D. Boneh and H. Shacham. Group signatures with verifier-local revocation. 11’th
ACM conference on Computer and Communications Security – CCS, 168–177,
2004.

6. A. Miyaji, M. Nakabayashi and S. Takano. New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E84-A, 1234–1243, 2001.

7. Scott M. Faster Identity Based Encryption Electronic Letters, 40, 861, 2004.

A Addition Formulae for E′

In this appendix we present the addition formulae for the twisted curve

E′ : χy2 = x3 − 3x + b.

14 N.P. Smart and F. Vercauteren

Let P1 = (x1, y1) and P2 = (x2, y2) be points in E′(Fpd) given in affine coor-
dinates, and where some convention is used to represent the point at infinity.
Assume P1, P2 6= O, and P1 6= −P2, conditions that are all easily checked. The
sum P3 = (x3, y3) = P1 + P2 can be computed as follows.

If P1 6= P2,

λ =
y2 − y1

x2 − x1
,

x3 = χλ2 − x1 − x2,

y3 = (x1 − x3)λ− y1.

If P1 = P2,

λ =
3(x1 + 1)(x1 − 1)

2y1
,

x3 = λ

(
λ

χ

)
− 2x1,

y3 = (x1 − x3)
(

λ

χ

)
− y1.

We note that multiplication and division by χ can be accomplished in linear
time. So affine addition and doubling on the twist has essentially the same cost
as that on the untwisted curve.

Fig. 1. Point addition in projective coordinates

λ1 = X1Z
2
2 2M

λ2 = X2Z
2
1 2M

λ3 = λ1 − λ2

λ4 = Y1Z
3
2 2M

λ5 = Y2Z
3
1 2M

λ6 = λ4 − λ5

λ7 = λ1 + λ2

λ8 = λ4 + λ5

Z3 = Z1Z2λ3 2M
X3 = χλ2

6 − λ7λ
2
3 3M

λ9 = λ7λ
2
3 − 2X3

Y3 = (λ9λ6 − λ8λ
3
3)/2 3M

16M

In Jacobian Projective Coordinates where a triplet (X, Y, Z) corresponds to
the affine coordinates (X/Z2, Y/Z3) whenever Z 6= 0, we have the formulae given
in Figure 1 and Figure 2. We see that projective addition and doubling on the
twisted curve has essentially the same cost as that on the untwisted curve.

On Computable Isomorphisms in Efficient Pairing Based Systems 15

Fig. 2. Point doubling in projective coordinates

λ1 = 3(X1 − Z2
1)(X1 + Z2

1) 2M
Z3 = 2χY1Z1 1M
λ2 = 4χ2X1Y

2
1 2M

X3 = χλ2
1 − 2λ2 1M

λ3 = 8χ3Y 4
1 1M

Y3 = λ1(λ2 −X3)− λ3 1M
8M

