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Abstract. We present two left-to-right integer recodings which can be used to
perform scalar multiplication with a fixed sequence of operations. These recod-
ings make it possible to have a simple power analysis resistant implementation
of a group-based cryptosystem without using unified formulas or introducing
dummy operations. This approach is very useful for groups in which the dou-
bling step are less expensive than the addition step, for example with hyperelliptic
curves over binary fields or elliptic curves with mixed coordinates.

1 Introduction

Side channel attacks are a constant threat to the implementations of a cryptosys-
tem. This is particularly true for most discrete log based cryptosystems where
the basic group operations are often easily distinguishable depending on the na-
ture of their inputs. As a general practice, countermeasures must always be used
against simple side channel analysis, even if using one-time keys.

In this paper, we look at the impact of integer recoding for cryptosystems
based on the discrete logarithm problem in additive groups. We are particularly
interested in groups where the doubling operation is significantly cheaper than
the addition (for example hyperelliptic curves over binary fields [20, 21, 10, 14]
or elliptic curves with mixed coordinates [8]). For these groups, the standard
countermeasures against SPA attacks are particularly disappointing as they re-
move most of the saving due to efficient implementations of the group oper-
ations. Another particularity of many of these additive groups (and which we
take advantage of) is that the addition and the subtraction operations are almost
identical.

We introduce the general situation of scalar multiplication for additive
groups in Section 2. In Section 3 we describe some of the basic countermeasures
to SPA attacks. We then present the most common forms of integer recoding in
Section 4 and introduce our recodings in Section 5. Finally, we compare the
efficiency of the different recodings in Section 6.

2 Scalar multiplication

Many discrete log based public key cryptosystems are done on additive groups
and required the multiplication of a group element D by a scalar e (the secret



key). It is therefore very important to compute [e]D as efficiently and as securely
as possible. This is usually done through a variation of the double-and-add al-
gorithm which relies on two basic group operations: Adding two distinct group
elements (addition) and adding a group element to itself (doubling).

2.1 Double-and-add algorithms

For this paper, we consider only the left-to-right version of the double-and-add
algorithm (i.e. most significant bit first). Although the right-to-left double-and-
add can also be used, the left-to-right version is often more interesting, in par-
ticular when combined with integer recodings and applied to a fixed group ele-
ment.

Given a n bits integer e = ∑n−1
j=0 e j2 j (with the e j in {0,1}), let fn−i =

∑n−1
j=i e j2 j−(n−i), i.e. the number formed by the n− i most significant bits of

the binary expansion of e. Then fn−i can be obtained from fn−i−1 and ei via
the relation fn−i = 2 fn−i−1 + ei. In terms of scalar multiplication, this becomes:
[ fn−i]D = [2]([ fn−i−1]D)+[ei]D. The left-to-right double-and-add algorithm fol-
lows easily from this relation and its general form proceeds as in Algorithm 1.
This algorithm is written in its most general form to cover most of the cases
encountered in this paper. If we consider only the “classical” double-and-add
algorithm on the binary representation, there is no recoding step, no precom-
putation ([1]D is already known) and the addition step when r j 6= 0 is simply
D0 +D1.

Algorithm 1: Generic double-and-add algorithm
Input: D, e
Output: [e]D
recode e as ∑m

j=0 r j2 j recoding
precompute [r]D for every digit r 6= 0 precomputations
D0← [rm]D
for j = m−1 down to 0 do

D0← [2]D0 doubling
if r j 6= 0 then

D0← D0 +[r j]D addition
return D0

3 Simple side channel analysis attacks

Power traces [13] and electromagnetic emissions of processors [1] can be used
as sources of information for simple side channel analysis (we will refer to both

2



as SPA attacks for simplicity) SPA attacks may exploit even small differences
between the addition and the doubling operations on group elements to discover
the sequence in which they are used in the double-and-add algorithm. If suc-
cessful, this gives the binary expansion of e, hence the secret key. It is therefore
essential to secure implementations of public key cryptosystems against this
type of attack.

As a general rule, countermeasures against simple side channel attacks do
not secure the encryption against differential power analysis (DPA). If differen-
tial side channel attacks are potential a threat, i.e. if the scalar is used more than
once, this problem can be resolved by combining SPA and DPA countermeasure
when possible (see [3] for details). On the other hand, DPA countermeasures are
useless if the encryption is insecure against simple side channel attacks, so SPA
countermeasures should always be used.

3.1 Standard countermeasures

There are two standard countermeasures against SPA attacks: Dummy opera-
tions and unified formulas. Both approach attempt to make the power traces of
the two group operations (addition and doubling) indistinguishable.

The first approach consists in adding extra or “dummy” operations in the
addition and doubling algorithms where the sequences of operations differ [9].
The result is an addition and a doubling formula which use the same sequence
of operations, so they will appear identical to SPA attacks. Obviously this will
increase the cost of the group operations (or at least the cheapest of the two),
having a negative impact on the efficiency of the encryption algorithm.

Although this is a very simple countermeasure to implement, it is not always
safe: If the secret key is used multiple times, dummy operations can be revealed
by adaptive fault analysis [26, 27], and further countermeasures are required to
prevent this attack.

The second approach consist in rewriting the two group operations into a
unified formula. Since both operations will then use the same set of operations,
the two operations will have the same power trace.

Unified formulas tend to be more costly to use than dummy operations, but
they prevent adaptive fault analysis (but not DPA). The main disadvantage of
unified formulas is that they are group specific and so far they have only been
developed for elliptic curves [11, 15, 5, 4, 6].

Moreover, some of these formulas have been shown to be weak because
some field multiplications are performed twice with the same inputs in the dou-
bling formula but not in the addition formula, making the system potentially
vulnerable [25] (the same can sometimes be said of dummy operations [17]).
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3.2 Montgomery ladders

Another countermeasure against SPA is the use of a Montgomery ladder [12].
The algorithm proceeds from left-to-right, computing two elements at each step:
[ f j]D and [ f j +1]D, where f j is the partial sum of the n− j most significant bits
of e, i.e. f j = ∑n

i= j ei2i− j.
Since f j = 2 f j+1 + e j, the pair ( f j, f j + 1) can be obtained from the pair

( f j+1, f j+1 +1) (computed at the previous step) using the rules:
e j f j f j +1
0 2 f j+1 f j+1 +( f j+1 +1)
1 f j+1 +( f j+1 +1) 2( f j+1 +1)

which gives Algorithm 2 for scalar multiplication (where D0 = [ f j]D and D1 =
[ f j +1]D). Since all the steps use the same set of operations the two group oper-
ations do not have to be secured against SPA attacks. As no dummy operations
are introduced, the risk posed by adaptive fault analysis is minimal.

Algorithm 2: Montgomery ladder
Input: D, e = ∑n

i=0 ei2i

Output: [e]D
D0← 0; D1← D
for j = n down to 0 do

if e j = 0 then
D1← D0 +D1; D0← 2D0 e j = 0

else
D0← D0 +D1; D1← 2D1 e j = 1

return D0

One drawback of the Montgomery ladder is the high count of group opera-
tions since every step requires one doubling and one addition. Since at any given
step the two group operations are independent from each other, it is sometimes
possible to offset part of the high operation count by combining the them. For
example, with elliptic curves in affine coordinates it is possible to combine the
field inversions of the group addition and doubling into one field inversion and
three field multiplication. Unfortunately, for most groups used in cryptographic
applications this approach is unlikely to give enough savings to justify using a
Montgomery ladder instead of other SPA countermeasures.

4 Integer recoding

A common approach to improve the efficiency of the scalar multiplication is to
use integer recoding to reduce the number of operations required in the double-

4



and-add algorithm. By allowing integers other than 0 or 1 to be used in the
expansion of e, it becomes possible to recode e = ∑n

i=0 ei2i as e = ∑n′
i=0 ri2i.

The double-and-add algorithm will still work as in Algorithm 1, but the
term added may now be different from D. If the weight (number of non-zero
digits) of the recoding of e is smaller than the weight of its binary expansion,
then Algorithm 1 will require fewer additions to compute [e]D (and possibly
fewer doublings if n′< n). The main difference is that unlike the double-and-add
algorithm on the binary representation, the elements [s]D must be precomputed
for all the possible digits s.

Most recodings can be divided into two categories depending on the order in
which the bits are processed. Right-to-left recodings, i.e. from the least signifi-
cant bit to the most significant one, are more natural but they must be computed
before the double-and-add algorithm and the storage required for the recoding
is usually greater than that of the integer itself. Left-to-right recodings are com-
puted from the most significant bits down to the least significant bit, hence the
recoding can be done at the same time as the left-to-right double-and-add mul-
tiplication, avoiding the need to record the new representation. This makes left-
to-right recodings somewhat more interesting for implementations in restricted
environments, especially if the group element is fixed (so the precomputed val-
ues [s]D for the digits s can be reused for a number of scalar multiplications).

For a number of groups used in cryptography, and in particular for Elliptic
and Jacobians of hyperelliptic curves, recodings can take advantage of symme-
tries. For these groups, the group subtraction is almost identical to the group
addition, up to a few sign changes in the field operations. Since field additions
and subtractions are indistinguishable under SPA attacks, the performance and
security of the cryptosystem are unaffected if we subtract [s]D instead of adding
[−s]D, but the storage requirement for the double and add algorithm can be
reduced. This makes it very interesting to use digit sets which are symmetric
around 0 since only half of the points must be precomputed (for example those
corresponding to the positive digits).

4.1 Recodings and SPA attacks

In general, SPA attacks are much less effective on double-and-add algorithms
using integer recodings than those using the binary representation directly. From
the power trace of the double-and-add algorithm, it is possible to know which
digits in the recoding are non-zero, but not their values.

If the recoding has a density (weight of the recoding divided by its length)
which is too low or if it contains long sequences of zero digits, the attacker
may be able to restrict the portion of the keyspace the secret key could be in.
The size of the keyspace to consider may then become small enough for the
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attacker to find the key using other methods (for example Shanks’ Baby-step
Giant-step algorithm, Pollard’s Rho algorithm, etc). When this is the case, the
implementation of the double-and-add algorithm must also include a counter-
measure against SPA attacks (see Section 3).

On the other hand, if the weight of the representation is high enough and
the non-zero digits are distributed uniformly enough, the recoding is inherently
secure and act as a SPA countermeasures. This is the idea behind the fixed re-
codings in Subsection 4.4 and Section 5.

4.2 w-NAF

The most commonly used recodings are the Non Adjacent Form (NAF) [23]
and its extension the w-NAF [7, 24]. For this paper, we will denote the w-NAF
as using the digit set {±1,±3, . . . ,±(2w−1)}∪{0} and such that any pairs of
non-zero digits are separated by at least w zeros. This is also called the (w−1)-
NAF and sometimes denoted NAFw−1. The w-NAF recoding is computed from
right to left and has average density 1/(w+2).

To use the negative digits, we use consider sequences of up to w bits and a
carry c j (just as in a base 2 addition). To a sequence of w bits starting from the
j-th bit of e, we associate the integer s j = ∑w

i=0 ei+ j2i. Starting with j = 0 and
c0 = 0, each step of the recoding follows the rules

e j + c j s j + c j k c j+k r j r j+1, . . . ,r j+k−1

0 – 1 0 0 –
2 – 1 1 0 –
1 < 2w w+1 0 s j + c j 0
1 > 2w w+1 1 s j + c j−2w+1 0

where the next bit to be encoded is the ( j+k)-th bit of the binary representation.
Although the w-NAF gives a recoding of the smallest possible weight for

the given digit set (see [2]), which is advantageous for the performance of the
encryption, the key is weakened by the low density and by the knowledge of the
variable positions of the non-zero digits. Since there are 2w possible values for
the non-zero digits and the recodings have an average density of 1/(w+2), there
are (on average) 2wn/(w+2) keys of n bits with a given sequence of doublings and
additions. Compared to the 2n possible keys of length n, we get a reduction by
a factor of 22n/(w+2) in the number of possible keys. We can see that unless SPA
countermeasures are used, the w-NAF is not intended for applications such as
restricted environments which are susceptible of side channel attacks.

4.3 Minimal weight left-to-right recoding

Avanzi [2] and Muir and Stinson [18] developed left-to-right equivalents of the
w-NAF. Although the recodings in [2] and [18] are not always identical, they
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differ only in some special cases and their outputs always have the same weight.
These recodings give the same advantage as the w-NAF, i.e. they give a recoding
of minimal weight for the digit set, but with the added bonus that they proceed
from the most significant bit downward so they can be interleaved with the left-
to-right scalar multiplication.

Let v j,k = s j−k + e j−k− e j2k and let t j,k be the highest power of 2 dividing
v j,k, then the recoding step in [2] follows the rule:

e j− e j−1 k r j, . . . ,r j−k+1 r j−k+t

0 1 0 –
±1 min{w, j +1} 0 v j,k/2t

j,k

where the next recoding step is for the bit j− k (and lower). We refer to [2] and
[18] for the proof of correctness of the recoding process.

As was the case with the w-NAF, the group operations will also have to be
secured against SPA attacks.

4.4 Fixed right-to-left recoding

In [17], Möller introduced a new fixed right-to-left recoding. The idea consists in
computing a 2w-ary expansion of e, but in such a way that none of the digits are
0 (hence producing a “regular” or “fixed” expansion). The recoding we present
here is from the extended version of [17].

Since a 2w-ary recoding requires a set of at least 2w digits to be able to rep-
resent every possible integer, the digit 0 is replaced by −2w (to ensure a regular
addition structure), while the digits {2w−1 +1,2w−1 +2, . . . ,2w−1} are replaced
by {−(2w−1−1),−(2w−1−2), . . . ,−1} (to take advantage of symmetries), giv-
ing the digit set {±1,±2,±3, . . . ,2w−1−1}∪{2w−1,−2w}.

As with the w-NAF, we need to introduce a carry to do the recoding but, to
cover all the possible situations, it can take the values 0, 1 and 2. The recoding
goes from right to left by blocks of w bits, starting with a carry of 0. Given
s j = ∑w−1

i=0 ei+w j2i, the recoding steps follows the rule:

s j + c j r j c j+1

0 −2w 1
2w −2w 2

2w +1 1 1
1,2,3, . . . ,2w−1 s j + c j 0

(2w−1 +1), . . . ,(2w−1) s j + c j−2w 1

Once the scalar is recoded (and stored), the scalar multiplication works very
much like a left-to-right “2w and add” algorithm on the recoding. Rather than
computing [2]D0 (where D0 is the partial sum at the previous step of the scalar
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multiplication) and then adding [e j]D, the algorithm computes [2w]D0 (by dou-
bling w times) and then adds [r j]D.

Since the sequence of doublings and additions is fixed and is the same for
all integers of the same size, this recoding is resistant against SPA attacks and
the fastest implementations of the group operations can be used even if they are
very unbalanced.

A side effect of this approach is that even leading zero digits can (and will)
be recoded as non-zero. The length of the recoding must then be decided be-
forehand – usually to fit the longest possible key – with the added bonus that
short scalars are indistinguishable from longer ones.

5 Fixed left-to-right recodings

The main disadvantage of Möller’s recoding algorithm is that it is right-to-left,
so it must be computed and stored before the scalar multiplication. To obtain a
left-to-right recodings (which can be interleaved with the scalar multiplication)
and to use symmetries (to save space and precomputations), we use digit sets
which are symmetric around 0.

Since the recoding goes from the highest powers of 2w down to the lowest,
the carry will not behave as usual: Instead of delaying the addition of 2w and
replacing it by the addition of 1 at the next (higher) power of 2w, the carry (if
different from 0) will delay the subtraction of 1 and replace it by the subtraction
of 2w at the next (lower) power of 2w. For simplicity, the values of the carry will
still be denoted 0 and 1 as in the w-NAF, but with the understanding that it has
the new meaning.

To simplify the notation, we define s j as ∑w−1
i=0 ei+w j2i: The coefficient of

2w j in the 2w-ary expansion (using the digit set {0,1, . . . ,2w− 1}). As was the
case with the fixed right-to-left recoding, the length of the representation must
be decided beforehand.

5.1 General case

We first consider which digit set could be used for the recoding. The argument
used here is by no means the only one possible and there are indeed other digit
sets that will give a valid recoding.

As the carry is done downward, we must be able to recode all the possi-
ble values of s j and s j− 2w, i.e. all the integers in [−2w,2w− 1]. Since the in-
troduction of a carry of one to the next (lower) power of 2w will increase the
current coefficient by 1, the possible values (after the carry) are −2w,−(2w−
1), . . . ,2w−1,2w, so the set of even integers 0,±2,±4,±6, . . . ,±2w seems like
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a reasonable choice. However, we want to remove the possibility of a zero digit
in the 2w-ary expansion, and since the carry is either 0 or 1, the only possible
choice for the recoding of 0 is 1 (with a new carry of 1), so ±1 must also be
allowed as digits instead of 0 (−1 is also necessary since it cannot be recoded
as 0 with a new carry of 1). Bringing all this together, we obtain the digit set
{±1}∪{±2,±4,±6, . . . ,±2w}.

If with start with a carry of 0 for the leftmost bit recoded, the general recod-
ing rule can be written as follows:

s j− c j2w r j c j−1

even, 6= 0 s j− c j2w 0
0 1 1

odd, 6=−1 (s j− c j2w)+1 1
−1 −1 0

It is easy to verify that at every step of the recoding r j = s j− c j2w + c j−1, so
that ∑m

j=0 r j2w j = ∑m
j=0 s j2w j−2(m+1)wcm + c−1 = e+ c−1.

Remark: With the residue system {±1} ∪ {±2,±4,±6, . . . ,±2w}, there
are multiple choices for the recodings of −2 and 1:
• −2 can be recoded as −2 without a carry, or as −1 with a carry;
• 1 can be recoded as 1 without a carry, or as 2 with a carry.

The recodings rules given above were chosen for simplicity.
Since the recoding goes from left to right, the final recoding step takes place

at the w least significant bits. We could use the same recoding system for the
final step, but one must then decide what to do if there is a carry after that step (a
“rightward” carry at the unit level would require a fractionnal expansion, which
is incompatible with the scalar multiplication). One solution consists in taking
the result obtained at the final step and apply a ”−c−1” directly to it (without
any extra doubling), essentially applying the carry directly on the integer instead
of delaying it. But in the case of a SPA attack, this would essentially reveal the
final bit (with the possible exception of a recoding of 0 or −1).

A better alternative consists in replacing the final recoding step so that the
final step of the encryption always consists of two additions (with r0 + r′0 =
s0− c02w):

s0− c02w r0 r′0
even, 6=−2 (s0− c02w)+2 −2
−2 −1 −1

odd, 6=−1 (s0− c02w)+1 −1
−1 1 −2

Remark: With the exceptions of±1 (and−4 if w = 2), there exists multiple
choices for the recodings of all the possible values of s0− c02w. The recodings
rules given above were chosen for simplicity.
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The computation of the scalar multiplication proceeds as in Algorithm 1
(with w doublings between every two additions since we have a fixed 2w-ary
expansion, as in Subsection 4.4) except for the final step which becomes: D0←
D0 +[r0]D+[r′0]D.

5.2 Groups of odd order

The recoding presented in this section is equivalent to a recoding suggested by
Martin Seysen (unpublished work), which is also described in [19] and [16].

The digit set {±1,±3, . . . ,±(2w−1)}might be a more natural choice: Since
the carry produces a shift of +1 on s j, this is the smallest symmetric set of
integer not containing 0 for which all possible values of s j and s j−2w (to take
into account the previous carry) can be recoded using a carry of either 0 or 1.
With this digit set, the general recoding step is described by the following rule:

s j r j c j−1

even s j +1− c j2w 1
odd s j− c j2w 0

Once again, it is easy to verify that at every step r j = s j− c j2w + c j−1, so
that ∑m

j=0 r j2w j = e + c−1. A nice aspect of this rule is that for j < m it can be
rewritten as: r j = 1− 2w + ∑w

i=1 ei+w j2i (with c j−1 = 1− ew j), making it very
straightforward to implement and requires no conditional statement.

If e0 = 1 (e is odd), we get c−1 = 0 so there are no carries into negative
powers of 2 (or 2w) and the the recoding terminates correctly, but if e0 = 0 (e
is even), we get c−1 = 1 and the recoding is no longer an integer. Unlike the
previous recoding, it is not possible to replace the final step and carry by a fixed
number of operations: The parity of a sum of digits depends only on the number
of additions, not which digits are added. Although this problem cannot be fixed
in general, it can be avoided in most cryptographic applications.

From a cryptographic point of view, there is no disadvantage to consider
that the order of the group used is a large prime. This is because the discrete
logarithm problem in a group can be reduced to the discrete log problem in its
subgroups using the Chinese Remainder Theorem [22]. We can therefore make
the assumption that the group in which the scalar multiplication is done has odd
order.

Under this condition, it is always possible to force the secret key to be
an odd integer: If e is even, it can be replaced by e′ = e + #G (since [e′]D =
[e]D). Since can ensure the scalar is odd, the left-to-right recoding using digits
±1,±3, . . . ,±(2w− 1) will have a final carry (c−1) equal to zero and the re-
coding will always terminate correctly. Interleaving the recoding and the scalar
multiplication gives us Algorithm 3.
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Algorithm 3: fixed left-to-right (odd) scalar multiplication
Input: D, w, e = 1+ ∑wm

i=1 ei2i (odd)
Output: [e]D
precompute [1]D, [3]D, . . . , [2w−1]D
r j← 1+∑w−1

i=1 ei+wm2i recoding
D0← [rm]D
for j = m−1 down to 0 do

for k = 0 to w−1 do
D0← [2]D0 w doublings

r j← 1−2w +∑w
i=1 ei+w j2i recoding

D0← D0 +[r j]D addition
return D0

6 Performance comparison

We can now summarize and compare the efficiency of the different scalar mul-
tiplication and recoding algorithms to get a better idea of which ones are more
interesting depending on the situation. To compare equivalent security levels,
we assume that SPA countermeasures (for example unified formulas) are used
on the group operations in the cases where SPA attacks could reveal even partial
information on the secret key.

6.1 Unrestricted environment

We first consider the case of applications where there is no restriction on the
memory used by the algorithm and where the group element is assumed fixed
for every scalar multiplication while the scalar varies. Under these conditions,
we can assume that the precomputations are already done when the double-
and-add algorithm is used, so their cost does not have to be taken into account.
To have a common basis for the comparison, we assume that the recodings all
have the same (average) density of 1/t, with the exception of the double-and-
add algorithm on the binary representation (average density of 1/2) and the
Montgomery ladders (density of 1).

We express the costs as “group operations (on average) per bit of the scalar”.
We denote by r the cost (in normal group addition) of an optimized group dou-
bling, and by c (≥ 1) the cost of indistinguishable group operations (either using
uniform formulas or dummy operations).

By memory, we mean the number of precomputed elements which must
be in memory for the double-and-add algorithms, including [1]D. Since mont-
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gomery ladders do not require any precomputations but compute two group el-
ements instead of one, we write its memory requirement as 1.

We get the following table:

method section w cost memory direction

double-and-add 2.1 1 3
2 c 1 left-to-right

Montgomery Ladder 3.2 1 r +1 1 left-to-right
w-NAF 4.2 t−2 c(1+ 1

t ) 2t−3 right-to-left
minimal LtoR 4.3 t−2 c(1+ 1

t ) 2t−3 left-to-right
Möller 4.4 t r + 1

t 2t−1 +1 right-to-left
fixed LtoR (general) 5.1 t r + 1

t 2t−1 +1 left-to-right
fixed LtoR (odd order) 5.2 t r + 1

t 2t−1 left-to-right

We can see that for the same density, the three fixed recodings require twice
as much memory and precomputations than the w-NAF (a little more in the
case of general group orders and the right-to-left recoding), while Möller’s fixed
right-to-left recoding requires eight times as much as the w-NAF. If r < (ct +
c−1)/t, the three fixed recodings are more efficient, but if r > (ct +c−1)/t, the
w-NAF and the minimal weight left-to-right recoding become more efficient.

6.2 Restricted memory

In some applications (such as restricted environments and implementations
where the secret key is used more than once but on different group elements), it
is really unfair to compare recodings which require different number of precom-
putations. The easiest way to compare the different recodings in these situations
is to assume that a fixed number of precomputations are done (here we assume
either 2t or 2t + 1) and compare the cost of the multiplications without taking
into account the precomputation cost (which is the same for all the recodings,
even thought they use different digit sets).

To make the comparisons uniform, we do not consider the double-and-add
on the binary expansion and Montgomery ladders. Using the same notation as
in the previous subsection, we find:

method section memory average density cost direction

w-NAF 4.2 2t 1
t+3 c(1+ 1

t+3) right-to-left
minimal LtoR 4.3 2t 1

t+3 c(1+ 1
t+3) left-to-right

Möller 4.4 2t +1 1
t+1 r + 1

t+1 right-to-left
fixed LtoR 5.1 2t +1 1

t+1 r + 1
t+1 left-to-right

fixed LtoR 5.2 2t 1
t+1 r + 1

t+1 left-to-right

This time the comparisons are much more clearly delimited. If we let γ =
c
(

1+ 1
t+3

)

− 1
t+1 , we get the following rules:
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• The fixed left-to-right recodings are at least as efficient as Möller’s fixed
right-to-left recoding.

• If r < γ, the fixed recodings are faster than the w-NAF or the minimal weight
left-to-right recoding.

• If r > γ, the w-NAF and the minimal weight left-to-right recoding are faster
than the fixed recodings, even though SPA countermeasures must be added
in the implementation of these algorithms.

• Although the recodings from Sections 4.4 and 5.1 require one more step
of precomputation, the total cost of the precomputations is lower when
r < 1/(1 + 21−t) (since 2t−1 + 1 of the precomputations can be done by
group doublings rather than group additions). These recodings may be more
interesting than the recoding of Section 5.2 if having to store one more group
element is an acceptable compromise.

7 Conclusion

We presented two integers recodings which are resistant to SPA attacks. These
recodings are left-to-right so they can be interleaved with a left-to-right scalar
multiplication, removing the need to store both the scalar and its recoding. In
groups where the doubling operations can be implemented with significant sav-
ings compared to a group addition, the new algorithms become faster than a
w-NAF (or its left-to-right equivalent) which has been secured against SPA at-
tacks. It should be kept in mind that these implementation do not ensure in any
way the security against differential side channel analysis, so countermeasures
against these attacks should also be used if the secret key is used more than
once.
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