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Abstract. Since Bellare and Rogway’s work [14], the indistinguishability-based security models
of authenticated key agreement protocols in simple cases have been evolving for ten years. In this
report, we review and organize the models under a unified framework with some new extensions.
By providing a new ability (the Coin query) to adversaries and redefining two key security notions,
the framework fully exploits an adversary’s capability and can be used to prove all the commonly
required security attributes of key agreement protocols with key confirmation. At the same time, the
Coin query is also used to define a model which can be used to heuristically evaluate the security
of a large category of authenticated protocols without key confirmation. We use the models to
analyze a few pairing-based authenticated key agreement protocols.

1 Introduction

1.1 The Key Agreement Protocol and Its Security Properties

Key Agreement Protocols (KAP) are the mechanisms by which two or more parties can estab-
lish an agreed secret key over a network controlled by adversaries. Normally the established
key varies on each execution (session) of the protocol. If in a protocol one party is assured
that no other party aside from the specifically identified party (or parties) may gain access to
the particular established secret key, then the key agreement protocol is said to provide key
authentication. A key agreement protocol which provides mutual key authentication between
(or among) parties is called an Authenticated Key agreement (AK). Although an AK provides
key authentication, one party is not sure whether the other party (or parties) actually has pos-
session of the established secret; otherwise, the protocol is said to provide key confirmation. If
a key agreement protocol holds both key authentication and key confirmation, it is called an
Authenticated Key agreement with key Confirmation (AKC) [39].

A number of security properties are generally believed to be necessary (or good) for an AK
or AKC [16][17].

1. Known session key security. Each execution of the protocol should result in a unique secret
session key. The compromise of one session key should not compromise the keys established
in other sessions (e.g., parallel sessions, previous sessions and future sessions).

2. Forward secrecy. If the long-term private keys of one or more parties are compromised, the
secrecy of previously established session keys should not be affected. We say that a protocol

1 The work first appeared on ACNS 2004. This is the significantly revised full version combined with an un-
published manuscript “Revisit The Indistinguishability-Based Model of Key Agreement Protocol” written in
February 2004 [20].



has partial forward secrecy if one or more but not all of the parties’ long-term keys can
be corrupted without compromising previously established session keys, and we say that a
protocol has perfect forward secrecy (PFS) if the long-term keys of all the parties involved
may be corrupted without compromising any session key previously established by these
parties. In the identity-based cryptosystems, PFS becomes more complex. In the normal
identity-based cryptosystems, the Key Generation Center’s (KGC) long-term private key
can be used to compute any party’s long-term private key in the system. There is a further
(perhaps stronger) notion of forward secrecy in these identity-based systems, called KGC
forward secrecy, which certainly implies perfect forward secrecy. This is the idea that the
KGC’s long-term private key may be corrupted (and hence all entities’ long-term private
keys will be exposed too) without compromising the security of session keys previously
established by any parties.

3. Known session-specific temporary information security. Many protocols use some random
private information which is varying on each execution of the protocol as an input of the
session key generation function. The exposure of this private temporary information should
not compromise the secrecy of the generated session key.

4. Key-compromise impersonation resilience. The compromise of party A’s long-term private
key (keys) will allow an adversary to impersonate A, but it should not enable the adversary
to impersonate other parties to A.

5. Unknown key-share resilience. Party A should not be able to be coerced into sharing a key
with party C when in fact A thinks that he is sharing the key with some party B.

Designing key agreement protocols has a long history, however, many protocols were designed
in ad hoc modes. Proposed protocols were often broken, sometimes years after they were first
presented. To address this problem, some methodologies have been developed to check or prove
the security of protocols.

1.2 The Modelling History of Key Agreement Protocol

In 1993, using the indistinguishability notion (see Definition 2) which requires that an adversary
cannot differentiate the agreed key from a random sample generated following the agreed key’s
distribution in polynomial time, Bellare and Rogway [14] for the first time formalized the model
(from now on, we will refer to it as the B-R model) of symmetric key based two-party authen-
ticated key agreement problem by borrowing the notion “matching protocol runs” from [27].
Notion “matching protocol runs” extends the idea of “matching histories” brought forth in [10].
Based on the B-R model, some extensions were made to formalize the other authenticated key
agreement protocols, including the two-party asymmetric key based KAP [17], two-party KAP
with a trusted server [15], KAP with extra security properties, e.g., forward secrecy [11], anti-
dictionary attack [11], smart card model [49] and AK with confirmation [16]. Moreover, a fix [12]
to the model was proposed in 1995, after Rackoff had found a security defect of the model [22].

It is also Bellare et al. who first proposed another KAP model [6] using the simulation
paradigm in 1998. Later, Shoup [43] presented a different model based on simulation. Canetti
and Krawczyk readdressed Bellare et al.’s simulation model and provided the security channel
in [22]. A more general paradigm (the so called universally composable security) can be found
in [23][30]. The basic rationale of the simulation-based model is first to design a simple protocol



which is secure in an environment where the adversary’s capability is restricted, then use an
authenticator to compile the simple protocol to a complex one. It is required that a sound
authenticator should guarantee that the view of any normal adversary attacking the compiled
protocol is computationally indistinguishable from the view of the corresponding capability-
restricted adversary (a simulator, which must exist) attacking the secure simple protocol (before
compilation). This is a modular approach to design protocols as the simple protocol (which is
much easy to design and prove its security) and an authenticator can be designed separately.
The advantage of this methodology is its ease of designing and proving a protocol. However,
not all the protocols are (can) be designed in this way, such as many AK’s.

All these models treat the simple cases of KAP in which there are a few parties involved,
usually two or three parties (some simulation-based models can deal with general protocols).
Some group KAP modelling practices can be found in [7][8][42]. A different line of work, using
a “logic-based” approach to “reason” that an authentication protocol is correct, was pioneered
by Burrows, Abadi and Needham [3]. Although this idea is useful and easy to apply, it has a
serious defect: a correctness proof does not guarantee that the protocol is secure. Abadi and
Rogway tried to combine the advantages of “logic reasoning” and “provable indistinguishability
model” [2]. In this report, we only discuss the indistinguishability-based models of simple key
agreement protocols.

Definition 1 Function ε(k) is negligible if for every constant c ≥ 0, there exists k0, such that
for all k > k0, it holds that ε(k) < k−c.

Definition 2 Let Xn, Yn be two distributions on {0, 1}n. We say that Xn and Yn are computa-
tionally indistinguishable if for all polynomial-time machine(PTM) A and polynomial Q, there
exists n0, such that, for all n > n0, it holds that

|Prt∈Xn(A(t) = 1)− Prt∈Yn(A(t) = 1)| = ε(n) <
1

Q(n)
.

Indistinguishability captures the notion “effective similarity”, that is it is infeasible to dif-
ferentiate two objects with tiny difference, in polynomial time.

2 The Indistinguishability-Based Models of Simple Key Agreement
Protocol

2.1 The Adversary Model of Key Agreement Protocol

The General Key Agreement Protocol Model. Every party in a key agreement protocol
can be described by an algorithm which given the required inputs produces outputs. The inputs
could include the system parameters, incoming messages, long-term secrets, short-term random
flips, etc. The outputs can be the outgoing messages, protocol conclusions, established secrets,
etc. A basic requirement of a key agreement is to guarantee that if an adversary without
knowing some (long-term or ephemeral) private information of inputs, based on some primitive
assumptions, e.g., the hardness of Diffie-Hellman problem, the existence of collision-free hash
function, etc., it is infeasible for the adversary to compute the established secret of a session.



To simulate the ability of an adversary which fully controls the network, an oracle model [14]
was built by Bellare and Rogway to allow an adversary to control the inputs of the protocol
algorithm. The B-R model originally was designed to formalize the authenticated two-party key
agreement with entity authentication based on symmetric keys. Note that an authenticated key
agreement with entity authentication is slightly different from an AKC in which each party is
assured that the peer party has computed instead of being able to compute the agreed key. Even
more, in the B-R model, an adversary can only control two inputs of the protocol algorithm,
i.e., the long-term secrets and the incoming messages. We use Blake-Wilson et al.’s definitions of
AK and AKC [16] as a framework and extend the B-R model to give an adversary the capability
to fully control the inputs of a protocol algorithm except for the system parameters which are
fixed in advance. By redefining two key notions: fresh oracle and no-matching, the framework
not only can address the basic requirements of AKC and AK, but also covers all the desired
security attributes.

Symmetric Key Based Two-Party KAP
• The B-R Protocol Model

In the model [14], each party involved in a session (run) of a protocol is treated as an oracle.
An adversary can access the oracle by issuing the allowed queries. An oracle Πs

i,j denotes an
instance s of party i involved with a partner party j in a session where the instance of party j is
Πt

j,i . The oracle Πs
i,j given an input message executes the prescribed protocol Π and produces

the output by Π(1k, i, j,Ki, convs
i,j , r

s
i,j , x)=(m, δs

i,j , σ
s
i,j).

1k − the security parameter, k ∈ N .
i − the identity of the sender, i ∈ I ⊆ {0, 1}k.
j − the identity of the intended partner, j ∈ I ⊆ {0, 1}k.
Ki − the secret information of the sender i, Ki ∈ {0, 1}k.
convs

i,j − the conversation transcript of the session s so far. convs
i,j ∈ {0, 1}+ ∪

{∗}. {∗} denotes an empty string and {0, 1}+ denotes a string of poly-
nomial length of k.

rs
i,j − the random coin flips of the sender i in the session s with partner j.

r ∈ {0, 1}+.
x − the current input message in the session. x ∈ {0, 1}+ ∪ {λ}. λ denotes

an empty message.
m − the next message to send out in the session. m ∈ {0, 1}+ ∪ {∗}.
δs
i,j − the decision in the session s. δ ∈ {A,R, ∗}, A for accept, R for reject,

∗ for no decision.
σs

i,j − the private output of the session s (the session key), σ ∈ {0, 1}+∪{∗}.
And the conversation transcript convs

i,j is updated as convs
i,j .x.m (“x.y” denotes the result of

the concatenation of x and y).
•Adversary Model

In the model, to simulate an adversary’s manipulation of inputs to the protocol algorithm
and possible knowledge of the established secrets in history, an adversary is allowed to issue the
following queries:



1. Send a message query: SendP (Πs
i,j , x). Πs

i,j executes Π(1k, i, j,Ki, convs
i,j , r

s
i,j , x) and re-

sponds with m and δs
i,j . If the oracle Πs

i,j does not exist, it will be initiated (as a responder
oracle). Note that x can be λ in the query which causes an oracle to be generated as an
initiator (who sends the first message in a session). This query simulates the adversary’s
impersonation ability (we consider that the message modification, replay and injection are
all impersonation attacks).

2. Reveal a session’s agreed session key: Reveal(Πs
i,j). Πs

i,j reveals the session’s private output
σs

i,j if it exists. This query simulates the exposure of some session key.
3. Corrupt a party: Corrupt(i,K). The party i responds with Ki and updates Ki = K if

K 6= λ. This query allows the adversary to be internal attackers.
4. Reveal a session’s random coins: Coin(Πs

i,j , r). Oracle Πs
i,j replies rs

i,j . If r 6= λ, the oracle
will use r as the random flips rs

i,j and in this case the query should be issued before the
oracle generates the messages for the session.

To define the security, an adversary can take another action as one of the following:

1. Test a session’s agreed session key: TestD(Πs
i,j). Oracle Πs

i,j , as a challenger, flips a fair coin

b
R←− {0, 1} and answers with σs

i,j if b = 0; otherwise it returns a random sample generated
according to the distribution of the session secret σs

i,j .
2. Guess a session’s agreed session key: TestC(Πs

i,j). The adversary chooses oracle Πs
i,j as the

challenger and guesses the oracle’s private output σs
i,j .

Query Coin(Πs
i,j , r) in the above adversary model is an extra ability introduced to an

adversary by us. With this extra query, an adversary can now fully control the inputs of a
protocol algorithm except for the system parameters which are fixed values. We use this query
to address the known session-specific temporary information security notion. Many protocols use
some random private information which is varying on each session as an input to the session key
generation function. The known session-specific temporary information security requires that
the exposure of this private temporary information should not compromise the secrecy of the
generated session key. The Coin query helps us differentiate the protocols that are breakable by
asking a Coin query to a party from those that are still secure even when the party’s random
flips of a session are leaked. Note that for some protocols even if the real private key is not
exposed, the protocol is still broken, e.g., [32]. In the model, we do not restrict how many
party’s coin tosses can be queried in a session which could vary on different protocols.

Another advantage of this query is to enable us to address the security issue in the following
scenario. Suppose that Alice’s long-term private key has been compromised. However, Alice
has not noticed that this has happened, so she continues to use this key to establish new
sessions. If the adversary passively eavesdrops the conversations (sometimes, it is possible that
the adversary cannot launch an active attack), obviously we prefer to a protocol that is still
secure in this setting. We call this backward secrecy which is the counter-notion of forward
secrecy. As a party has two pieces of private information at most, i.e., the long-term private key
and the ephemeral random coins, if the session key is to be secure, the random coins of the party
have to be kept secret when the long-term private key is exposed. In the formulations in the
literature so far, there is no formulation to differentiate if the random coins are compromised
or not. The Coin query addresses this issue. Furthermore, as the backward secrecy and the



forward secrecy appear to imply each other, the query can be used to define the forward secrecy
of a protocol.

In the simulation-based model [22], the authors introduced the “session-state reveal” query
to treat the internal status exposure attack. The Coin query and the “session-state reveal”
query share some similarity, but also have significant difference between them. Essentially the
“session-state reveal” query is not an atomic query. The authors in [22] did not address how
the query should be responded (what information should be disclosed). Instead they declared
that the response should vary on each protocol. Obviously if the random flips are not erased or
not protected, the “session-state reveal” query covers the query Coin(Πs

i,j , λ). However, there
could be some other sensitive information computed during a session as well, such as K ′ in
Protocol 1 in Section 3, a message to be signed, etc. If these types of information are leaked,
some protocols could be totally broken. This differs the “session-state reveal” query from the
Coin query. Another difference between these two queries is that the “session-state reveal” query
can only be issued on an incomplete session, but we can restrict the time when an adversary
can query Coin(Πs

i,j , λ), e.g., anytime in the middle of a session, or even after the completion
of a session to define different security notions. While similarly as in [22], how to respond to the
Coin(Πs

i,j , λ) varies on different protocols and even on different implementations. For example,
if a protocol uses the Diffie-Hellman scheme with a signature scheme. Both the Diffie-Hellman
exchange and the signature scheme need random flips. If the random flips used in the signature
and the message being signed are disclosed, the used long-term private key could be recovered in
many signature schemes. Hence, if the Coin query is considered and the signed message is sent
as plain-text over the network, the signature scheme should be implemented by some intrusion
resilient device, such as a smart card.

Moreover, Coin(Πs
i,j , r) enables an adversary to control the generation of the random flips

which cannot be done by the “session-state reveal” query. This feature also differentiates the
Coin query from the Access query in the smart card model [49] in which the random flips
are generated by the smart card. If a protocol is proved to be secure in the smart card model
including query Coin(Πs

i,j , r), the random flips generation function can be taken outside the
smart card. Then the smart card becomes a truly stateless instrument. This query is also used
in the AK model to simulate some general attacks and so to evaluate the security of a large
category of AK’s in Section 4. However, we want to stress that an adversary with the ability
to issue this query is so powerful that we should be very cautious to use this formulation and
should fully investigate the impact on the protocol. In fact, as analyzed above many protocols
based on signature can be totally broken when this query is allowed, even if the signature scheme
is not directly used in the message. For example, the MQV protocol [35] is broken when the
Coin query is allowed [36].

We formally introduce the TestC 2 query to differentiate the possible variants of computing
hardness assumptions on which a protocol can be based. Many protocols use a Diffie-Hellman
agreement scheme, but some of them are based on the computing Diffie-Hellman problems
(CDH) exactly, while others are based on the decisional Diffie-Hellman problems (DDH). Query
TestC can be used in the CDH-based protocols, and query TestD can be used in the DDH-
based protocols. It is necessary to model these two situations because in some scenarios a DDH

2 The model using TestC query is no longer indistinguishability-based.



problem can be solved with an (expected) polynomial-time algorithm, while the corresponding
CDH problem is still hard. The problems of this type are the so called gap Diffie-Hellman
problems (GDH). It seems that using query TestD can define a stronger security notion than
TestC, although a DDH is a weaker computation complexity basis than the corresponding
CDH or at most equal to the CDH. The model using query TestD can guarantee that no
bit information of a session key generated by running a proved protocol will be leaked in the
protocol execution. But a model using TestC cannot promise such strong security because it
is possible that some bits of the session key can be computed easily while it is still difficult to
compute the key as a whole. It is an interesting topic to strengthen a protocol’s security which
is proved using the TestC model. It seems that applying a cryptographic hash function (or a
pseudo-random function (PRF)) on the established secret to derive a session key is a promising
way. Furthermore, if using the random oracle model (see Remark 1) in a proof, it seems possible
to prove a protocol’s security using the TestD query based on a CDH assumption in some cases.
In the literature, the TestC query has been used to prove the security of protocols, e.g., [26].
For more information of the CDH and the DDH problems, please refer to [41].

Remark 1 Random Oracle Methodology [13]. To design a scheme we assume that all
parties (including the adversary) share a truly random function. The truly random function is
interpreted as a program g with an initially empty vector v:

Input: x
Ouput: g(x)

If x is in the vector v (v[x] is not empty),
then

return v[x];
else

begin
v[x]=coin tosses;
return v[x];

end

To construct a real scheme we have to replace the random oracle by a “good cryptographic
hashing function”, i.e., providing all parties (including the adversary) the description of this
function. This is different from the standard methodology. Using the random oracle model, we
can design very succinct cryptographic schemes. However, the random oracle model can only
provide heuristical evaluation of the security of the designed scheme. “Not only do there exist
idealized protocols that have no secure implementations, practically any idealized protocol can
be slightly ‘tweaked’ so that the tweaked protocol remains just as secure in the idealized model,
but has no secure implementations.” [21]; the latest result on the random oracle methodology
can be found in [4]. However, this methodology has been widely used in the literature despite its
shortcoming and in this report, we prove the security of some protocols using the random oracle
as well.

In some cases, an adversary does not tamper with the messages between oracles. This
situation can be described by the following definition.



Definition 3 An adversary E is benign [14] to a session if it faithfully conveys each message
from one engaged oracle to the other.

Remark 2 In [11], the authors introduced another query Execute(Πs
i,j ,Π

t
j,i) to simulate the

benign adversary passively eavesdropping the conversations between Πs
i,j and Πt

j,i. Although this
new query makes the analysis of the protocol’s ability of anti-dictionary attack easier, it is not
an essential query and can be simulated by a series of SendP queries. Hence, we do not use it
as a basic query type.

Asymmetric Key Based Two-Party KAP
• Protocol Model

The only difference between the symmetric and asymmetric key based two-party key agree-
ments is in the latter, a party uses some asymmetric cryptography which needs a pair of public
and private keys (S, P ). So, a party should obtain the intended party’s public key. Oracle
Πs

i,j executes the prescribed protocol by

Π(1k, i, j, SPi, Pj , convs
i,j , r

s
i,j , x) =(m, δs

i,j , σ
s
i,j) .

SPi − the private and public key pair of party i.
Pj − the public key of the intended party j. This value could vary on each

session changed by the queries defined in the adversary model.
other inputs − identical to the corresponding ones in the model of symmetric key

based two party KAP.

•Adversary Model
Apart from being able to ask the same queries (for Corrupt(i,K), the party i replies with

Si and updates SPi (if K 6= λ)) as defined in the model of symmetric key based two party KAP,
an adversary E can issue another query:

Replace(Πs
i,j , P ). The oracle Πs

i,j updates Pj = P when i 6= j.

The newly introduced query provides a simulation that a certificate could be generated on-
line and distributed in a message of a session and then accepted by the receiver. The condition
i 6= j disallows the adversary to send party i a new certificate issued to i (this attack should
never succeed because party i should never accept a faked certificate of itself). By allowing
this query, some interesting attacks in the literature can be addressed, especially the source
substitution attack (Note 12.54 [39]). Many protocols suffer from this attack, for example the
attacks on MTI A(0) in Note 12.54 [39]. Note that the unknown key-share attack on the MQV
protocol [31] essentially can be simulated by the Corrupt query because the adversary knows the
corresponding private key. As there is no way the oracle could know whether the adversary knows
the private key corresponding to the replaced public key, we assume that if Replace(Πs

i,j , P )
is issued, then j is corrupted for simplicity, even if the adversary does not know the private
key in some attacks (this does not affect the query to simulate the attack. One may check
that the source substitution attacks on MT1 A(0) are detectable in the model defined in this
report). Hence there are two situations under which party i will be regarded as “corrupted”. (1)
when Corrupt(i, ·) is issued; (2) when Replace(Πt

j,i, P ) is issued for some j, t. (In fact, we can



differentiate these two types of corruption to define an even more stringent security notion. It
is more natural to treat Replace(Πt

j,i, P ) as the corruption of i only in the session of Πt
j,i, while

Corrupt(i, ·) as the corruption of i in all the following sessions). However in the identity-based
protocols analyzed in this report, this query will not do any harm to the security of the protocols
because the public key of a party is the party’s identity.

Symmetric Key Based Two-Party KAP with an Online Trusted Server
•Protocol Model [15]

In every session of this type of protocol, apart from the two parties as in a two-party
protocol, an online Trusted Server (TS) also engages in the session. The protocol consists of
two algorithms (Π, Ψ). An oracle, denoted by Ψu

i,j , is an instance of the TS which is engaging in
a session u to help party i and j establish a session secret. Ψu

i,j executes the prescribed protocol
by Ψ(1k, i, j, Ki,Kj , convu

i,j , r
u
i,j , x) = m = (mi,mj).

mi − the message to party i. mi ∈ {0, 1}+ ∪ {∗}.
mj − the message to party j. mj ∈ {0, 1}+ ∪ {∗}.
others − same as in the model of symmetric key based two party KAP.

And the conversation convu
i,j is updated as convu

i,j .x.m. Other oracles, such as Πs
i,j , work in

the same way as in the model of symmetric key based two party KAP.
•Adversary Model

Apart from being able to issue the same queries as defined in the model of symmetric key
based two party KAP, an adversary E can ask another type of send query to the TS:

SendS(Ψu
i,j , x). Ψu

i,j executes Ψ(1k, i, j, Ki,Kj , convu
i,j , r

u
i,j , x) and answers with

m = (mi,mj).

2.2 The Matching Conversations

Every party involved in a session of a protocol has its own conversation transcript. A key
agreement protocol requires that parties in the same session would establish the same session
secret. To define the notion “same session”, “matching conversations” is introduced in the
model. Based on the relation between two oracles’ transcripts, the matching conversations define
the condition under which parties have engaged in the same session. Two ways3 to define the
matching conversations are widely used in the literature, i.e., the Turing machine time [14] and
the session identity (ID) [11].

Turing Machine Time

Definition 4 A conversation of oracle Πs
i,j is a message sequence K = (τ1, α1, β1), (τ2, α2, β2),

. . . , (τm, αm, βm). This sequence encodes that at time τi oracle Πs
i,j was asked αi and responded

with βi. Time τi+1 is later than time τi (τi < τi+1). α1 can be λ, which means that Πs
i,j sends

the first message of the session.

3 Partner function as the third method was defined in [15].



Remark 3 The time (τi) in the definition can be the real time information, or increasing or
decreasing ordered sequence numbers included in the protocol messages. If there is no time-
related information in the messages, the abstract Turing machine time is used, which reflects
the message generating sequence machines.

Definition 5 (matching conversations) For an R-move (R = 2ρ − 1, ρ ≥ 1) protocol Π,
two oracles, Πs

i,j and Πt
j,i , engage in conversations K and K ′, respectively. We say

1. K ′ is a matching conversation to K = (τ0, λ, β1), (τ2, α1, β2), . . . , (τ2ρ−4, αρ−2, βρ−1), (τ2ρ−2,
αρ−1, βρ), if K ′ = (τ1, β1, α1), (τ3, β2, α2), (τ5, β3, α3), . . . , (τ2ρ−3, βρ−1, αρ−1) and τi < τi+1,
for 0 ≤ i < 2ρ− 2.

2. K is a matching conversation to K ′ = (τ1, β1, α1), (τ3, β2, α2), (τ5, β3, α3), . . . , (τ2ρ−3, βρ−1,
αρ−1), (τ2ρ−1, βρ, ∗), if K = (τ0, λ, β1), (τ2, α1, β2), . . . , (τ2ρ−4, αρ−2, βρ−1), (τ2ρ−2, αρ−1, βρ),
and τi < τi+1, for 0 ≤ i < 2ρ− 1.

Two oracles have matching conversations if K ′ is a matching conversation to K and vice versa.

Session ID

Definition 6 A session ID is the information that can be used to uniquely identify a session by
the involved parties. Two oracles Πs

i,j and Πt
j,i have the matching conversations if both of them

derive the same session ID from (each own) conversation transcript using the same method.

Remark 4 This definition is highly informal. The key issue of the definition is how to “uniquely”
identify a session. As normally each session of a protocol uses some session-variant informa-
tion, such as random flips implicitly or even a session identity explicitly (by some secure means).
These types of information can be used to define a session ID. One suggestion is to use the con-
catenation of the messages exchanged [11]. However, we should be careful to use this method in
case that it is so stringent that some secure protocols cannot meet this definition. For example,
for all three-round protocols, the adversary simply intercepts the last message, then the initiator
will accept the session but two parties do not have the same session ID. This consideration has
been reflected in Definition 5 where that one oracle has a matching conversation to the another
does not imply that two oracles have matching conversations.

In an AKC, to provide key confirmation, a party must show the witness of the agreed
key4 to convince the peer party to accept the session. Hence, the basic requirement of key
confirmation is that when an uncorrupted party accepts that a session is running with an
uncorrupted intended party, the intended party must have engaged in the session. Otherwise, it
indicates that an adversary can fake the witness of the (ephemeral or long-term) agreed secret
that the adversary should not know. We use another notion “no-matching” to help us evaluate
the soundness of this property of an AKC. A sound key confirmation scheme requires that the
probability of the following no-matching event is negligible.

Definition 7 No-matchingE(k) is the event that there exist i, j, s such that an oracle Πs
i,j

accepted and there is no oracle Πt
j,i which has engaged in a matching conversation to Πs

i,j .

4 For AK’s with entity authentication, the witness of the party’s long-term private key could be shown instead.



Party j is uncorrupted and if party i is corrupted (this is allowed only when party i and j do
not share the long-term secret) then it should not have been asked the Coin query.

In [14][16], the definition of no-matching does not require that Πs
i,j has not been asked Reveal

query. There are three possible reasons for this formulation. (1) An oracle can be defined to
respond to the Reveal query only after it has accepted, instead of any time after the session
key is available. (2) No-matching was first defined to address the entity authentication problem
in [14]. By integrating an entity authentication scheme into a key exchange scheme, the combined
protocol can achieve the commonly desired security properties. It is possible to design a protocol
in which the agreed session key has no application in the used entity authentication scheme.
Hence, the Reveal query would not affect a sound protocol to defeat an adversary with such
ability. (Strictly speaking, this type of protocol should not be call an AKC.) (3) It is a prudent
practice to derive different keys from the agreed secret for different uses. That is, the used
key in the confirmation steps is different from the generated session key (used in the later
communication) and normally one (or more) cryptographic hash function (or PRF) is used to
generate these keys. It is commonly assumed that the compromise of one derived key would
not affect the security of another because of the security property of the used hash function (or
PRF). Hence, revealing the session key would not help the adversary to deceit an oracle into
accepting. Here, we keep this strict requirement.

Furthermore, the definition in [14][16] requires that both party i and j are uncorrupted (and
the Coin query is not allowed), while Definition 7 allows i to be corrupted but not be asked
Coin query when i and j do not share the same long-term private key, e.g., the asymmetric
key based protocols. Hence, even when the adversary E knows party i’s long-term private key,
the only way for E to convince party i to accept a session with an uncorrupted party j is to
faithfully convey messages in the session (being a benign adversary). The new definition enables
the model to address the key-compromise impersonation resilience attribute which requires that
the compromise of party i’s long-term private key (keys) should not enable the adversary to
impersonate other entities to i. Disallowing Coin query is essential for the soundness of the
formulation because an oracle has only two secrets (the long-term private key and the ephemeral
random flips). If an adversary obtains both secrets of an oracle in a session, the adversary can
simulate any circumstance under which the oracle would accept the session. Note that when
j and i share the same (long-term) private key and query Coin is disabled, the definition is
identical to the one in [14][16].

2.3 The Security Definition of Key Agreement Protocol

The oracle model simulates the environment in which parties execute a protocol facing a power-
ful adversary who fully controls the network. The adversary can also be an internal attacker(s)
which is a legitimate party with a long-term private key. Furthermore, the adversary can even
control a party’s random flips generation without completely corrupting the party. The ques-
tion now is how to define the security notion of a protocol under attacks of an adversary in the
model. Obviously, in the model, some oracles’ private outputs (the session key) can be known by
the adversary via some “trivial” means, e.g., through issuing Reveal query directly or through
getting the long-term and ephemeral private information by the Corrupt and Coin queries.
Hence, we should differentiate the oracles that hold a session key about which the adversary



should not be able to know from those whose session key is easy to acquire. This can be done by
defining a new notion fresh oracle. The private output of a fresh oracle is called a fresh session
key which should not be known by an adversary if a key agreement protocol is secure. The fresh
oracle is defined as follows.

Definition 8 (fresh oracle 1) An oracle Πs
i,j is fresh if (1) Πs

i,j has accepted; (2) Πs
i,j is

unattacked; (3) j is not corrupted; (4) there is no opened oracle Πt
j,i , which has had a matching

conversation to Πs
i,j .

The definition of an “unattacked” oracle varies from one protocol to the other. It can be the
combinations of item 1, 2 and 3 of the following conditions (item 1, 2 are always the mandatary
ones):

1. The oracle was not asked Reveal(Πs
i,j);

2. The oracle was not asked Coin(Πs
i,j , r);

3. The oracle was not asked Corrupt(i,K);

Condition 3 in Definition 8 guarantees that query Replace(Πs
i,j , P ) (if allowed) was not

issued in the certificate-based protocols. And an oracle is “opened” if the oracle was asked the
Reveal query. Definition 8 does not require the existence of a partner oracle, but requires that
the fresh oracle has not been asked query Coin and there is no such requirement on the partner
oracle if it exists. Note that the fresh oracle definition in [14][16] requires that i is not corrupted
and Πs

i,j has not been revealed (and the Coin query is forbidden). However, we will show a few
asymmetric key based protocols in Section 3 and 4 that i can be corrupted, so to achieve the
key-compromise impersonation resilience property.

Now we come to the last step, to evaluate how well a fresh session key is hidden in a pro-
tocol. One possible method is to require that the adversary is not able to compute the whole
session key. Another method is to apply the indistinguishability notion which was first used to
define the security notion of encryption scheme [28]. The basic idea of indistinguishability is
to require that given the fresh session key and a random sample generated according to the
same distribution of session keys, the adversary cannot pick out the session key with proba-
bility non-negligibly greater than 1/2. The indistinguishability methodology defines a stronger
security notion than the former one. As widely accepted, the first method is too weak to define
the security of encryption, but here we still use it as an alternative definition to the indistin-
guishability method for some protocols, because the role of an agreed secret in a key agreement
protocol is significantly different from the one of plaintexts in an encryption scheme. Normally
we can apply a cryptographic hash function (or a PRF) on the agreed secret to derive a new
key which is used as the real session key in the later communication. We define three types of
adversary. Type-I and Type-II are based on the indistinguishability methodology and Type-III
is based on the hardness to compute the whole session key. There are two types of definition
using the indistinguishability method because of Rackoff’s attack. And in some cases, when
using the random oracle in a proof, it is possible to transform the Type-III security to the one
of Type-I.

Type-I Adversary (adversary for TestD query): After having asked enough (polyno-
mial times of k) queries, an adversary E chooses a fresh oracle Πs

i,j on which it wants to be



challenged. It asks a single query TestD(Πs
i,j). The adversary tries to guess the coin b flipped

by the challenger. If the adversary guesses the correct b, we say that it succeeds.
Type-II Adversary (adaptive adversary for TestD query): As a Type-I adversary,

an adaptive adversary E can ask the prescribed queries polynomial times, then it chooses one
fresh oracle Πs

i,j as the challenger to issue TestD(Πs
i,j) query. Πs

i,j responds in the same way as
the challenger to the Type-I adversary. Moreover, the adaptive adversary can continue to ask
queries (except TestD) polynomial times but keeps Πs

i,j fresh. If the adversary does not want
to ask any more queries, it guesses the bit b. If the adversary guesses the correct b, we say that
it succeeds.

Define

AdvantageE(k) = max{0, Pr[E succeeds]− 1
2}.

Type-III Adversary (adversary for TestC query): After having asked enough (poly-
nomial times) queries, an adversary E chooses a fresh oracle Πs

i,j on which it wants to be
challenged. It asks a single query TestC(Πs

i,j). The adversary tries to guess the established
session key σs

i,j . If the adversary guesses the correct σs
i,j , we say that it succeeds.

Define

AdvantageE(k) = Pr[E succeeds].

Now we can define the security of AK’s and AKC’s. We use the definitions in [16] as a
framework but define different fresh oracle and no-matching, so an adversary can fully exploit
its capability.

Definition 9 Protocol Π is a secure AKC if:

1. In the presence of the benign adversary on Πs
i,j and Πt

j,i , both oracles always accept holding
the same session key σ, and this key is distributed uniformly at random on {0,1}k;

and if for every adversary E:

2. If two oracles Πs
i,j and Πt

j,i have matching conversations and both i and j are uncorrupted,
then both accept and hold the same session key σ;

3. The probability of the no-matching event is negligible;
4. AdvantageE(k) is negligible.

We can find that the model is a sound security definition of AKC’s covering the desirable
attributes. The known session key security is addressed by the Reveal query. The known session-
specific temporary information security is covered by the new Coin query. As the model uses
the no-matching of Definition 7, the key-compromise impersonation resilience property is au-
tomatically guaranteed. As explained in [16], the unknown key-share resilience is integrated in
the model. The (perfect) forward (backward) secrecy (PF(B)S) notion can be defined as follows.
First we define an uncontrolled oracle as an oracle which has not been asked the Coin query.

Definition 10 A protocol is said to be forward (backward) secure if the adversary wins the
game with negligible advantage if it chooses as the challenger an unopened and uncontrolled
oracle Πs

i,j which has a matching conversation to an unopened and uncontrolled oracle Πt
j,i and

both oracles accepted. If both i and j can be corrupted (only by Corrupt(·, λ)) then the protocol
achieves perfect forward (backward) secrecy.



A point needs to be stressed that a protocol, proved to be an AKC of Definition 9, does not
necessarily achieve the forward secrecy, because the partner oracle Πt

j,i of a fresh oracle in
Definition 8, if existing, could have been issued the Coin query.

Note that the special security attributes including the dictionary attack resilience [11] and
the smart card implementation [49] can also be easily included in the model. By allowing or
forbidding different queries defined in the oracle model and redefining the two key notions, i.e.,
fresh oracle and no-matching, the framework is flexible enough to prove the security of AKC
protocols with different security properties.

Similarly to the definition of AKC, the security of AK protocols is defined as follows.

Definition 11 Protocol Π is a secure AK if:

1. In the presence of the benign adversary on Πs
i,j and Πt

j,i , both oracles always accept holding
the same session key σ, and this key is distributed uniformly at random on {0,1}k;

and if for every adversary E:

2. If two oracles Πs
i,j and Πt

j,i have matching conversations and both i and j are uncorrupted,
then both accept and hold the same session key σ;

3. AdvantageE(k) is negligible.

3 On The Security of Some Paring-Based Key Agreement Protocols

In this section we show a few examples to demonstrate the flexibility of the framework defined in
the last section. Before presenting some specific protocols, two primitives (pairing and message
authentication code) employed in the protocols should be described first.

Definition 12 A pairing is a bilinear map ê : G1 × G1 → G2 with two cyclic groups G1 and
G2 of prime order q, which has the following properties [9]:

1. Bilinear: For all P, Q, R, S ∈ G1, ê(P + Q, R + S) = ê(P, R) · ê(P, S) · ê(Q,R) · ê(Q,S)5.
2. Non-degenerate: For a given point Q ∈ G1, ê(Q,R) = 1G2 for all R ∈ G1 if and only if

Q = 1G1.
3. Computable: There is an efficient algorithm to compute ê(P, Q) for any P, Q ∈ G1.

The security of protocols using the pairing tool is based on the following assumption:

Assumption 1 Bilinear Diffie-Hellman Assumption (BDH) [9] Let G be a parameter
generator which with system parameters 1k as input generates two cyclic groups G1,G2 of prime
order q, a generator P of G1 and a bilinear map ê. We define the advantage of an algorithm A
in solving the problem (given 〈P, aP, bP, cP 〉, to compute ê(P, P )abc) by:

AdvG,A(k) = Pr[ A(q,G1,G2, ê, P, aP, bP, cP ) = ê(P, P )abc|
〈q,G1,G2, P, ê〉 ← G(1k), a, b, c

R←− Z∗q ].

For any randomized polynomial time (in k) algorithm A, the advantage AdvG,A(k) is negligible.

5 In particular ê(sP, tR) = ê(P, R)st for all P, R ∈ G1 and s, t ∈ Z∗q .



The above assumption implies the following computation Diffie-Hellman assumption.

Assumption 2 Computation Diffie-Hellman Assumption (CDH) Let G be a parameter
generator which with system parameters 1k as input generates a cyclic group G1 of prime order
q and a generator P of G1. We define the advantage of an algorithm A in solving the problem
(given 〈P, aP, bP 〉, to compute abP ) by:

AdvG,A(k) = Pr[ A(q,G1, P, aP, bP ) = abP |〈q,G1, P 〉 ← G(1k), a, b
R←− Z∗q ].

For any randomized polynomial time (in k) algorithm A, the advantage AdvG,A(k) is negligible.

Instead of using the CDH assumption directly, we use the following assumption in the
protocols presented in this report.

Assumption 3 Gap Diffie-Hellman Assumption (GDH) Let G be a parameter generator
which with system parameters 1k as input generates a cyclic group G1 of prime order q and
a generator P of G1. We define the advantage of an algorithm AF in solving the problem
(given 〈P, aP, bP 〉, to compute abP with the help of F which can decide if abP = cP given
〈P, aP, bP, cP 〉):

AdvG,AF (k) = Pr[ AF (q,G1, P, aP, bP ) = abP |〈q,G1, P 〉 ← G(1k), a, b
R←− Z∗q ,

1 ← F(aP, bP, cP ) if abP = cP, 0 ← F(aP, bP, cP ) otherwise].

For any randomized polynomial time (in k) algorithm AF with the access to F , the advantage
AdvG,AF (k) is negligible.

Note that the above definition of GDH is different from the common one. Here, algorithm F is
a deterministic algorithm, instead of a randomized one. Such algorithm can be constructed as
follow: if ê(P, cP ) = ê(aP, bP ), F returns 1, else F returns 0.

Definition 13 ([5]) A message authentication code (MAC) is a pair of polynomial algorithms
(G,M):

– On input 1k, algorithm G generates a bit string s.
– For every s in the range of G(1k) and for every m ∈ {0, 1}∗, the deterministic algorithm

M computes α = M(s,m). α is called the tag of message m under M(s, ·). We shorthand
M(s, ·) as Ms(·).

Definition 14 ([5] [29]) For a probabilistic oracle machine F , which has the access to the MAC
oracle Ms, we denote by QMs

F (x) the set of the queries made by F . A MAC scheme is secure if
for every probabilistic oracle machine F , the function ε(k) defined by:

ε(k) = Pr[Ms(m) = α ∧m /∈ QMs
F (1k) where (s) ← G(1k) and (m,α) ← FMs(1k)]

is negligible, where the probability is taken over the coin tosses of algorithms G and F .



In this report, algorithm G of a MAC scheme always uniformly chooses s from its range and we
shorthand a pair of message and tag {m, MACs(m)} as MACs(m). In the protocol description,
we use MACs(m) directly for better format and it is easy to remove some redundancy of a
message to save bandwidth.

Now we use the formulation to analyze a few pairing-based key agreement protocols. In this
report, all the pairing-based protocols use the same infrastructure. In the system there exists a
Key Generation Center (KGC) which with the given security argument 1k generates the system
parameters 〈q,G1,G2, ê, s, P, Ppub = sP, H1, l,H2,H3〉. G1 and G2 are two cyclic groups of prime
order q. P is the generator of G1. s is randomly chosen from Z∗q as the KGC’s private key and
sP (Ppub) acts as the public key of the center. In most protocols, H1 : {0, 1}∗ → G∗1 and H2 (and
H3): {0, 1}∗ → {0, 1}l are cryptographic hash functions. And in the system each party can apply
the hash function H1 on any party I’s identity IDI to find an element QI = H1(IDI) ∈ G∗1.
Party I extracts its private key dI = sQI from the KGC. In one exceptional protocol (the
MaCullagh-Barreto’s protocol discussed later), H1 : {0, 1}∗ → {0, 1}q and H2 and H3 are as
usual. In the scheme each party can apply the hash function H1 on any party I’s identity IDI

to find an element α = H1(IDI) ∈ {0, 1}q. Party I extracts its private key dI = (α+s)−1P from
the KGC. In this type of scheme, the security is based on the Bilinear Inverse Diffie-Hellman
Problem [52]: For α, β ∈ {0, 1}q, given 〈P, αP, βP 〉, to compute v = ê(P, P )α−1β is hard.

The ability of Definition 7 can be demonstrated by a pairing-based version of Protocol 1
in [16]. The specification of the pairing-based Protocol 1 is presented in Figure 1 where rA and
rB are random numbers from Z∗q and K ′ = H2(ê(dA, QB)) = H2(ê(QA, dB)) = H2(ê(QA, QB)s).
The agreed session key is generated as SK = H3(rArBP ). The security of Protocol 1 in the
model used by [16] follows from Theorem 8 of [16] by replacing the assumption of CDH with the
assumption of BDH. However, Protocol 1 suffers from the key-compromise impersonation attack.

A B
rAP−−−−−−−−−−−−−−−−−→

K′ = H2(ê(dA, QB))
MACK′ (2,B,A,rBP,rAP )←−−−−−−−−−−−−−−−−− K′ = H2(ê(QA, dB))

SK = H3(rArBP )
MACK′ (3,A,B,rAP,rBP )−−−−−−−−−−−−−−−−−→ SK = H3(rBrAP )

Fig. 1. Protocol 1

If party C knows A’s long-term private key dA, it can impersonate any party I to A by computing
K ′ = H2(ê(dA, QI)) used in message 2. On the other hand, the protocol cannot be proved to
be secure in the model using Definition 7. The adversary E participates in the game in this
way. First, it issues Corrupt(A, λ) query to obtain A’s long-term private key dA. Then E asks
a query SendP (Πs

A,B, rBP ). Once it receives the second message MACK′(2, A, B, rAP, rBP )
from the oracle Πs

A,B, E asks the last query SendP (Πs
A,B, MACK′(3, B,A, rBP, rAP )) where

K ′ = H2(ê(dA, QB)) is computable by E. Because the last message is valid, Πs
A,B will accept

the session. However, there is no oracle Πt
B,A existing with a matching conversation. Recall

that Πs
A,B is generated to respond to the first SendP query and Πt

B,A as an initiator can



only be generated by asking query SendP (Πt
B,A, λ). Apparently, the conditions of no-matching

(Definition 7) are satisfied. However, the condition 3 of Definition 9 (a secure AKC) is breached.
Similarly we can use the new model to analyze the security of AK protocols as well, such as

MaCullagh and Barreto’s pairing-based key agrement protocol [37] presented in Figure 2. In the

A B
rA(βP+sP )−−−−−−−−−−−−−−−→

K′ = H2(ê(dA, rB(αP + sP ))rA)
rB(αP+sP )←−−−−−−−−−−−−−−− K′ = H2(ê(rA(βP + sP ), dB)rB )

Fig. 2. MaCullagh-Barreto’s AK

protocol, rA and rB are random numbers from Z∗q and party A (resp. party B)’s private key is
dA = (α + s)−1P (resp. dB = (β + s)−1P ) and α = H1(IDA) (resp. β = H1(IDB)). The agreed
session key is K ′ = H2(ê(dA, rB(aP + sP ))rA) = H2(ê(rA(bP + sP ), dB)rB ) = H2(ê(P, P )rArB ).
Again this protocol is vulnerable to the key-compromise impersonation attack [19]. The attack
proceeds as in Figure 3. Assume that the adversary E compromised party A’s long-term private

A EB

rA(βP+sP )−−−−−−−−−−−−−−−→
K′ = H2(ê(dA, rB(βP + sP ))rA)

rB(βP+sP )←−−−−−−−−−−−−−−− K′ = H2(ê(rA(βP + sP ), dA)rB )

Fig. 3. Key-compromise Impersonation Attack on MaCullagh-Barreto’s AK

key dA = (α+s)−1P by issuing the Corrupt(A, λ) query. After that, when an oracle Πs
A,B sends

out the first message, E can simulate the oracle Πt
B,A by using the query SendP (Πs

A,B, rB(βP +
sP )) where rB is a random number chosen by E. Now the adversary can compute the session
key K ′ = H2(dA, rB(βP + sP ))rA) = H2(dA, rA(βP + sP ))rB ). If E chooses this session as the
challenge session, it wins the game with AdvantageE(k) 1/2 (i.e., with the probability equal to
1). The question left now is whether the challenge oracle Πs

A,B is fresh according to Definition 8.
First, for AK’s, every oracle is assumed to accept once it has received the required message in
the message space following the protocol. Second, in the attack B is not corrupted (Query
Corrupt(B, ·) or Replace(Πs

A,B, P ) has not been issued). Third, there is no oracle Πt
B,A (or

existing with negligible probability) having a matching conversation with Πs
A,B because the

message from oracle Πs
A,B was generated randomly (by using random rA) and intercepted by

E. Last, if we define “unattacked oracle” by applying the first two conditions (i.e., not being
asked queries Reveal and Coin), then Πs

A,B is “unattacked”. So, oracle Πs
A,B is a legitimate

choice in the challenge phase and the MaCullagh-Barreto’s protocol cannot be proved to be
secure in the new model. An updated version [38] fixed the identified vulnerability.

We present a few examples to demonstrate the ability of Coin query. Scott proposed a
pairing-based authenticated key agreement protocol without confirmation [45]. We extend the
protocol (in Figure 4) to an AKC version by applying the commonly used MAC technique. In
the protocol, the agreed secret is K = (ê(QA, dB)rB )rA = (ê(dA, QB)rA)rB and K ′ = H2(K)



and the generated session key is SK = H3(K). We find that the protocol can be easily broken

A B
ê(dA,QB)rA−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

K = (ê(QA, dB)rB )rA
MACK′ (2,B,A,ê(QA,dB)rB ,ê(dA,QB)rA )←−−−−−−−−−−−−−−−−−−−−−−−−−−−− K = (ê(dA, QB)rA)rB

K′ = H2(K)
MACK′ (3,A,B,ê(dA,QB)rA ,ê(QA,dB)rB )−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ K′ = H2(K)

SK = H3(K) SK = H3(K)

Fig. 4. Protocol 2

if the Coin query is allowed. If the adversary E intercepts message (1) and asks Coin query
to get rA, it can compute K, so as to obtain the session key SK. Even worse, E can use the
obtained information to compute ê(dA, QB) and so to impersonate A to B or B to A in other
sessions. Some other protocols also suffer from this attack, e.g., [32]. Scott’s protocol can be
broken by a single Coin query; while some protocols seem more secure and even if the random
flips of both parties are leaked, the session key is still safe, e.g., Protocol 2 in [16] and its
pairing-based version. In the pairing-based version (Protocol 3 in Figure 5), the agreed secret
is K = {rArBP, ê(QA, QB)s} and derived key used in MAC is K ′ = H2(K) and the session key
is SK = H3(K).

A B
rAP−−−−−−−−−−−−−−−−−→

K = {rArBP, ê(dA, QB)} MACK′ (2,B,A,rBP,rAP )←−−−−−−−−−−−−−−−−− K = {rBrAP, ê(QA, dB)}
K′ = H2(K)

MACK′ (3,A,B,rAP,rBP )−−−−−−−−−−−−−−−−−→ K′ = H2(K)
SK = H3(K) SK = H3(K)

Fig. 5. Protocol 3

However, all the previously mentioned protocols cannot achieve the key-compromise imper-
sonation resilience. Now, we show a protocol with many good security properties. Protocol 4
(in Figure 6) is a variant of the AKC proposed by Smart [48] (Protocol 4 using one pairing
in each party is faster than the one proposed by Smart which needs two pairings). The agreed

A B
rAP−−−−−−−−−−−−−−−−−→

K = ê(dA, rBP ) · ê(rAQB , sP )
MACK′ (2,B,A,rBP,rAP )←−−−−−−−−−−−−−−−−− K = ê(rBQA, sP ) · ê(dB , rAP )

K′ = H2(K)
MACK′ (3,A,B,rAP,rBP )−−−−−−−−−−−−−−−−−→ K′ = H2(K)

SK = H3(K) SK = H3(K)

Fig. 6. Protocol 4



secret is K = ê(rAQB + rBQA, sP ) = ê(QA, sP )rB · ê(QB, sP )rA and the key used in MAC is
K ′ = H2(K) and the session key is SK = H3(K). This protocol has an interesting property:
even if the random flips of two parties and the agreed secret K are leaked, this compromise will
not affect the security of other sessions between the two parties. The adversary gets nothing
more than the given two random flips from the attack and K can be recovered from rA, rB and
the publicly-known system parameters. This protocol also achieves the key-compromise imper-
sonation resilience property. The security of Protocol 6 can be defined by the following theorem
(Theorem 1) in which an “unattacked” oracle was not asked the Reveal and Coin queries.

Theorem 1 Protocol 4 is a secure AKC protocol against Type-I adversaries, in the model using
Definition 7 of no-matching and Definition 8 of fresh oracle and the Coin query Coin(Πs

i,j , r)
is allowed, provided that the BDH is hard and the MAC scheme is secure and H1,H2 and H3

are random oracles.

The proof is presented in Appendix. So, Protocol 4 is proved to achieve many desired security
properties: known session key security, known session-specific temporary information security,
key-compromise impersonation resilience and unknown key-share resilience. As pointed in [46],
the protocol does not achieve perfect forward secrecy (recall that a proof of an AKC satisfying
Definition 9 does not guarantee that the protocol obtains PFS). However, we can simply modify
the computation of K ′ and SK to achieve this property as follows (Fig. 7). Note that using the

K′ = H2(K‖rArBP‖rAP‖rBP )
SK = H3(K‖rArBP‖MACK′(2, B, A, rBP, rAP )‖MACK′(3, A, B, rAP, rBP ))

Fig. 7. New Key Generation Function of Protocol 4 with Perfect Forward Secrecy

new method, even when the master key of KGC is exposed, the session key is still secure, i.e.,
the perfect forward secrecy (including forward secrecy of KGC’s master key) is achieved.

Theorem 2 Protocol 4 with the new key generation function achieves PFS against Type-I ad-
versaries provided that the GDH is hard and H1,H2 and H3 are random oracles.

The proof is presented in Appendix.

4 The Security Definition of AK, Revisited

If the AK definition (Definition 11) uses the fresh oracle defined in Definition 8, as commented
in [16], “many protocols do not contain asymmetry in the formation of the agreed key to dis-
tinguish which party involved is initiator, and which is the protocol’s responder. Such protocols
certainly will not meet the security requirement”. This means, there exist a large category of AK
protocols whose security cannot be proved using the above definition. Put this in another way,
the definition is over-rigorous in many cases. In the following part, we elaborate this problem
in detail.



4.1 The Security Implications of Fresh Oracle

In the definition of AKC (Definition 9), the conditions 1 and 2 are not related with the fresh
oracle notion. Condition 3 implies that if an oracle Πs

i,j has accepted a conversation with an
uncorrupted j, then there must exist (the probability of nonexistence is negligible) an oracle
Πt

j,i which has had a matching conversation with Πs
i,j . (The assertion in [16] is even stronger, i.e.,

“The third says that essentially the only way for any adversary to get an uncorrupted party to
accept in a run of the protocol with any other uncorrupted party is by relaying communications
like a wire”. Note that there is no requirement on whether Πt

j,i is unopened). Condition 4 in
the model using the fresh oracle of Definition 8 requires that at least (1) Πs

i,j has accepted;
(2) Πs

i,j is unopened; (3) Πs
i,j is uncontrolled (not being asked the Coin query) (4) j is not

corrupted (in [14] [16], i is required not to be corrupted as well); (5) AdvantageE(k) is negligible.
From the requirements 1, 3 and 4 of fresh oracle and condition 3 of AKC (No-matchingE(k) is
negligible), we have that there must exist an oracle Πt

j,i which has a matching conversation to a
fresh oracle Πs

i,j . If Πt
j,i is opened, then AdvantageE(k) is 1/2. Hence in the model there must

exist an unopened Πt
j,i which has a matching conversation to Πs

i,j . Note that proving condition
3 does not need the fresh oracle notion, hence if an AKC is proved satisfying condition 3, the
prerequisite of TestD (or TestC ) query (the chosen fresh oracle) can be redefined as follows:

Definition 15 (fresh oracle 2) An oracle Πs
i,j is fresh if (1) Πs

i,j has accepted; (2) Πs
i,j is

unattacked; (3) j is not corrupted; (4) there is an unopened oracle Πt
j,i , which engaged in a

matching conversation to Πs
i,j .

Note that condition 3 of AKC (Definition 9) does not necessarily imply condition 4. A secure
entity authentication protocol must satisfy condition 3, but not necessarily meet condition 4. We
can tweak a security-proved AKC in the model by forcing the initiator of the session to release
the generated session key in the last message of a session (after authenticating the responder),
which satisfies that the event no-matching happens with negligible probability. However the
session key is exposed and the tweaked protocol cannot be regarded as secure.

Obviously, the two fresh oracle definitions are different in the AK model, because in AK’s
there is no conformation step and hence there is no requirement on No-matchingE(k) . In the
model using Definition 8, there is no requirement on whether there exists a peer oracle. But
Definition 15 requires that there exits a fresh oracle with a matching conversation.

Definition 8 implies a much stronger security notion than Definition 15 and many protocols
fail to meet its requirement. Let us first elaborate what attacks are covered by the AK model
using fresh oracle 1 (we refer to it as model 1) but not covered by the AK model using fresh
oracle 2 (we refer to it as model 2). This elaboration will help us understand the difficulty in
defining the security of AK protocols. We analyze a general protocol (Figure 8) with only two
messages (basically the normal AK protocols without confirmation can be transformed into this
general protocol). In the protocol, each party has a message generation function (f or g) which
takes the ephemeral random flips, the system parameters and possibly the long-term private
key as input to generate the outgoing message. After completing the message exchanges, a
party uses an agreed key generation function to form the agreed secret key. The agreed key is
generated based on the system parameters, the received message, the party’s long-term private
key and the random flips of the session. The notation used in the following part is summarised
in Table 1.



1k : the system parameters. The identifers of parties are part of them
randomI : party I’s random flips

skI : party I’s secret, could be pre-shared secret or private portion of a key pair.
sI : the agreed key generation function of party I.

f, g : the message generation functions.
[x] : the input x is an option.

A, B, E : party A, B and an adversary E.
msg1 := msg2 : replacing msg1 with msg2.

A
msg−−−→ B : party A sends message msg to party B.

Table 1. Notation

A B

msg1:=f(randomA,[skA],1k)−−−−−−−−−−−−−−−−−−−→
msg2:=g(randomB ,[skB ],1k)←−−−−−−−−−−−−−−−−−−−

sA(msg2, randomA, skA, 1k) sB(msg1, randomB , skB , 1k)

Fig. 8. Authenticated Key Agreement

Remark 5 We use randomI as an input to function sI instead of msgI because we want to
define a more general abstraction of AK protocols and msgI can be regenerated in sI based on
the inputs. A responder generates its message not based on the input message. A protocol in
which the responder uses some security scheme to bind the received message with an outgoing
message is treated as an AK with semi-confirmation whose security can be defined by a variant
of the definition of AKC (Definition 9).

The following are the attacks covered by model 1, but not in model 2.

1. Case 1. An adversary E generates msg1 or msg2 (this is one type of general impersonation
attack, although maybe E cannot recover the agreed key) or replays a previous valid message.
Note that in some protocols, it is possible that E can generate a valid message. For the
replayed message, it is also possible that the random flips for that message have been exposed
to E. Two attacks are presented in Figure 9. In this case, if the protocol is proved to be
secure in model 1, it means that even if an adversary E knows (only) one party’s random
flips (if the Coin query is allowed), it still cannot break the protocol.

2. Case 2. An adversary E modifies one or two messages to attack the protocol which is
presented in Figure 10. In this case, E may change a message (or messages) to the one in a
particular value set or having some particular property, such as the subgroup attack in [34].

3. Case 3. One attack presented in [16] is shown in Figure 11. It is similar to the reflection
attack on the entity authentication protocols. We call it the concatenation attack. When
party A launches two concurrent sessions s and t with party B, adversary E intercepts the
two outgoing messages from A and impersonates B by reflecting back the two intercepted
messages cross the sessions (session s’s message is sent to session t and vice versa). The at-



E B

msg1:=f(randomA,1k)−−−−−−−−−−−−−−−→
msg2:=g(randomB ,1k)←−−−−−−−−−−−−−−−

sA(msg2, randomA, skA, 1k) sB(msg2, randomB , skB , 1k)

A E

msg1:=f(randomA,1k)−−−−−−−−−−−−−−−→
msg2:=g(randomB ,1k)←−−−−−−−−−−−−−−−

sA(msg2, randomA, skA, 1k) sB(msg2, randomB , skB , 1k)

Fig. 9. Impersonation

A E B




msg1:=f(randomA,[skA],1k)−−−−−−−−−−−−−−−−−−−→ msg1:=msg′1−−−−−−−−→
msg2←−−−−−−−−− msg2:=g(randomB ,[skB ],1k)←−−−−−−−−−−−−−−−−−−−

sA(msg2, randomA, skA, 1k) sB(msg′1, randomB , skB , 1k)




msg1:=f(randomA,[skA],1k)−−−−−−−−−−−−−−−−−−−→ msg1−−−−−−−−−→
msg2:=msg′2←−−−−−−−− msg2:=g(randomB ,[skB ],1k)←−−−−−−−−−−−−−−−−−−−

sA(msg′2, randomA, skA, 1k) sB(msg1, randomB , skB , 1k)




msg1:=f(randomA,[skA],1k)−−−−−−−−−−−−−−−−−−−→ msg1:=msg′1−−−−−−−−→
msg2:=msg′2←−−−−−−−− msg2:=g(randomB ,[skB ],1k)←−−−−−−−−−−−−−−−−−−−

sA(msg′2, randomA, skA, 1k) sB(msg′1, randomB , skB , 1k)

Fig. 10. Modification Attack

A E

Sessions =





msgs
1 :=f(randoms

A,[skA],1k)−−−−−−−−−−−−−−−−−−−→
msgs

2 :=msgt
1←−−−−−−−−

sA(msgt
1, randoms

A, skA, 1k)

Sessiont =





msgt
1:=f(randomt

A,[skA],1k)−−−−−−−−−−−−−−−−−−−→
msgt

2:=msgs
1←−−−−−−−−

sA(msgs
1, randomt

A, skA, 1k)

Fig. 11. Concatenation Attack [16]

tack is only feasible when two messages of the protocol are generated by the same function
or the initiator’s messages can be modified to a responder’s valid message without being



detected or a party accepts a session with itself. We generalize this attack to remove the
above constraint as a general concatenation attack presented in Figure 12. If the two random
flips (one is introduced by the received message) are only used in the general commutative6

computations, e.g., for two random flips r1, r2, the computations gr1r2 , gr1+r2 are commu-
tative on the flips, in the agreed key generation function, then the attack is feasible. Model

A E B

Sessions =





msgs
1 :=f(randoms

A,[skA],1k)−−−−−−−−−−−−−−−−−−−→ msgs
1−−−−−−−−→

msgs
2 :=msgt

1←−−−−−−−− msgs
2 :=g(randoms

B ,[skB ],1k)←−−−−−−−−−−−−−−−−−−−
sA(msgt

1, randoms
A, skA, 1k) sB(msgs

1, randoms
B , skB , 1k)

Sessiont =





msgt
1←−−−−−−−− msgt

1:=g(randomt
B ,skB ,1k)←−−−−−−−−−−−−−−−−−−

msgt
2:=f(randomt

A,skA,1k)−−−−−−−−−−−−−−−−−−→ msgt
2:=msgs

1−−−−−−−−→
sA(msgt

1, randomt
A, skA, 1k) sB(msgs

1, randomt
B , skB , 1k)

Fig. 12. General Concatenation Attack

1 is sensitive to this type of attack. For example, in the concatenation attack, an adversary
E first asks Reveal query to A for session t and then chooses session s as the challenge. E
wins the game with advantage 1/2 (probability 1) because the two sessions have the same
agreed key. This attack is feasible in many AK protocols, including all the AK protocols
analyzed in this report and other protocols such as MTI A(0) [40] in Figure 13. In MTI A(0)
a party I has a private key xI ∈ Z∗q and a public key yI = gxI mod p where q is a prime
factor of p− 1 for a large prime p and g is a generator of a cyclic subgroup of Z∗p with order
q. B’s agreed key generation function is sB(tA, rB, xB, 1k) = g(xArB+xBrA) mod p, which is
general-commutative on random flips rA and rB. Note that the model allows party A to
engage in two concurrent sessions with party B and K1

A = K2
B = g(xBr1

A+xAr2
B) mod p in

the attack. Hence the attack is feasible.

4.2 Redefining The Security of AK

As commented in [16], the protocols which only use general-commutative computation on the
random flips in the agreed key generation function will not meet the security requirement of
model 1 because the attacks in case 3 are detectable in model 1. And as we showed in the above
attacks, model 2 certainly is not a sound security definition of AK’s because the attacks in case
1 and some attacks in case 2 should be covered in a rigorous model although the attacks in case
3 is not of particular interest in practice.

In [16], the authors did not present an alternative security definition for the AK proto-
cols which use general-commutative computation on random flips although they stated that
6 A general-commutative computation is such an operation that does not “distinguish which party involved is

initiator, and which is the protocol’s responder” [16].



(xA ∈R Z∗q , yA = gxA mod p)A E B(xB ∈R Z∗q , yB = gxB mod p)

S1 =





r1
A ∈ Z∗q , t1A = gr1

A mod p
t1A−−−−−→ t1A−−−−−→

t2B←−−−−− t1B←−−−−− r1
B ∈ Z∗q , t1B = gr1

B mod p,

K1
A = y

r1
A

B (t2B)xA mod p K1
B = y

r1
B

A (t1A)xB mod p

S2 =





t2B←−−−−− t2B←−−−−− r2
B ∈ Z∗q , t2B = gr2

B mod p,

r2
A ∈ Z∗q , t2A = gr2

A mod p
t2A−−−−−→ t1A−−−−−→

K2
A = y

r2
A

B (t2B)xA mod p K2
B = y

r2
B

A (t1A)xB mod p

Fig. 13. Attack on MTI A(0)

their definition only needs slight modification to address the issue. We carefully investigate the
problem and find that it seems that a slight modification does not work.

The rationale behind formalizing and defining the security of protocols is to test the security
strength of a protocol by ignoring (excluding) the possible weaknesses integrated in all protocols.
An (over-rigorous) model in which no protocol is secure has no meaning in practice. Hence we
first try to remedy model 1 by removing the attacks of case 3 which are feasible in all AK
protocols using only general-commutative computation on random flips. We define a new fresh
oracle to remove this type of attack.

Definition 16 Provided the session ID is defined as the concatenation of messages (each unique
message is denoted by a single symbol from an infinite symbol set), two oracles have “reverse
matching conversations” if one oracle’s session ID is the reverse symbol string of the other.

Definition 17 (fresh oracle 3) An oracle Πs
i,j is fresh if (1) Πs

i,j has accepted; (2) Πs
i,j is

unattacked and j is not corrupted; (3) there is no opened oracle Πt
j,i , which has had a matching

conversation to Πs
i,j ; (4) there is no opened oracle Πt

j,i , which has had a reverse matching
conversation with Πs

i,j ; (5) there is no opened oracle Πu
i,j, which has had a reverse matching-

session with Πs
i,j .

Remark 6 In the above definition, not all the criteria are required for an AK protocol. For ex-
ample, if an AK protocol’s two message generation functions are different then the concatenation
attack in Figure 11 is not feasible; hence there is no need of item (5).

The definition successfully removes the unnecessary consideration of attacks of case 3. How-
ever, this definition does not consider some attacks of case 2 which are also of no interest in
practice. Let us investigate two specific examples to demonstrate the deficiency of the new
definition.

The first example is the modified AK version of Protocol 4 which is slightly different from
Smart’ AK protocol in [48] (the hash function is removed). At the end of the protocol, A
computes KAB = ê(dA, rBP ) · ê(rAQB, sP ) = ê(rBQA + rAQB, Ps) and B computes KBA =
ê(rBQA, sP ) · ê(dB, rAP ) = ê(rBQA + rAQB, Ps). So the session key is K = KAB = KBA (The
computation of the established session key by SK = H2(K) is removed). This protocol can be



A B
rAP−−−−−−−−−−→

K = ê(dA, rBP ) · ê(rAQB , sP )
rBP←−−−−−−−−−− K = ê(rBQA, sP ) · ê(dB , rAP )

Fig. 14. Smart’s Protocol [48]

demonstrated insecure in the model with the new fresh oracle (Definition 17). An adversary E
which has the private key dE can launch the attack presented in Figure 15. After tampering

A E B

aP−−−−−−−−−→ aP+cQE−−−−−−−−−→
bP+cQE←−−−−−−−−− bP←−−−−−−−−−

K = ê(bQA + aQB , Ps) · ê(sQA, cQE) K = ê(aQB + bQA, Ps) · ê(sQB , cQE)

Fig. 15. Attack on Smart’s Protocol

with the messages, E issues a Reveal query to the session in A. Upon getting the result KAB,
E chooses the session in B as the challenge oracle. Obviously, the chosen oracle satisfies the
conditions of Definition 17, because the session ID in A is (aP, bP +cQE), on the other hand the
session ID in B is (bP, aP + cQE). These two session ID’s are neither matching session ID’s nor
reverse matching session ID’s. Hence the challenge oracle is a legitimate choice in the model. E
computes KAB = ê(QA, dE)−c · ê(QB, dE)c and responds to the challenge with the result KAB.
E wins the game with advantage 1/2 (probability 1). Note that an adversary E without a valid
private key can launch a similar attack as well.

One may argue that removing the hash operation affects the security of the protocol. Let
us investigate another example in Figure 16, the AK protocol proposed in [24]. At the end of

A B
rAQA−−−−−−−−−−−→

K = ê(dA, rAQB + rBQB)
rBQB←−−−−−−−−−−− K = ê(rAQA + rBQA, dB)

Fig. 16. Chen-Kudla’s AK [24]

the protocol, A computes KAB = ê(dA, rAQB + rBQB) = ê(QA, QB)s(rA+rB) and B computes
KBA = ê(rAQA+rBQA, dB) = ê(QA, QB)s(rA+rB). Hence, the agreed secret is K = KAB = KBA

and the established session key is SK = H2(K). A similar attack shown in Figure 17 is also
feasible to the protocol. Following the same strategy, even with the hash operation H2, E still
can win the game with advantage 1/2 (probability 1). That these attacks are feasible in the
model seems still because the positions of the random flips are general-commutative.

Note that many other protocols including MTI A(0) in Figure 13 suffer from this attack.
In practice, this attack has no particular interest. We think that a sound model should be



A E B

aQA−−−−−−−−−−→ aQA+cQA−−−−−−−−−−→
bQB+cQB←−−−−−−−−−− bQB←−−−−−−−−−−

K = ê(QA, QB)s(a+b+c) K = ê(QA, QB)s(a+b+c)

Fig. 17. Attack on Chen-Kudla’s AK [33]

able to differentiate serious attacks from this type of attack. Moveover, we do not think that
simply assuming that an adversary would not launch this type of attack in the model is a serious
formulation because this attack is undetectable in the model without some extra notion defined.
It seems that there is no alternative modification on the fresh oracle definition to remove the
sensitivity to the aforementioned attack. In [16], the authors proved the security of a protocol
by disallowing the adversary to use Reveal query to get around the attack. As the authors
suggested in [16], the model without Reveal query cannot guarantee the security of a protocol,
especially to counter the known session key attacks. A dumm version of the password-based
protocol EKE [11] in which two parties share a password pk shows this point. In the dumm
version, instead of applying a hash operation, the protocol proceeds as follows. It appears that

Alicepk Bobpk

x
R←− {1, . . . , | G |} A‖Epk(gx)−−−−−−−−−−→

B‖Epk(gy)←−−−−−−−−−− y
R←− {1, . . . , | G |}

KA = A‖B‖gx‖gy‖gxy‖pk KB = A‖B‖gx‖gy‖gxy‖pk

Fig. 18. EKE2

the protocol is secure if the Reveal query is disallowed. However, obviously the protocol is not
secure if an established session key is compromised, because the password pk is exposed as well.
A more convincing example would be the known session key attack on the tripartite protocol
ATK-2 [1] presented by Shim [47].

Here we present a partial solution. Note that the attacks of case 2 can be simulated by one
or two attacks of case 1 in practice. The two attacks presented above are the third type attack
in case 2 which only happen in theory. Basically, if adversary E can break the protocol, E does
not need to modify both messages in a session, because a party computes the established secret
only based on the input message, its random flips and the long-term private secret. Hence even
E modifies a party’s output message, it will not affect the security of the agreed key computed
by that party. And if E only modifies one message, the attack can be simulated by the attacks
of case 1. For the attacks of case 1, adversary E can launch a session by impersonating an oracle
in an AK even without knowing the private key. What E knows is the random flips at most
(if the message is generated by E following the protocol or a replayed message but with the
Coin query being issued). So we use the newly introduced Coin query to enable E to reveal one
oracle’s random flips of a session. E is even able to control the generation of a party’s random
flips. We redefine the security of an AK by requiring that in a session, even if one party is



corrupted (being asked a Corrupt query) and the other party’s random flips are generated by
the adversary, the adversary still can not differentiate the generated session key from a random
number chosen according to the session key distribution. This challenge session can be defined
as a fresh oracle as in Definition 15. Note that the definition only restricts the behavior of the
adversary in the challenge phase to choose a fresh session. Here, we do not restrict how many
parties can be asked the Coin query in other sessions. This depends on each protocol’s security
strength, for example, in Scott’s AK protocol [45], no Coin query should be allowed, while in
Smart’s AK protocol [48], both parties of a session can be asked the Coin query. However, we
do regard the situation that the adversary generates a message without going through an oracle
(i.e., a message to an oracle is not generated by another oracle7) as one Coin query has been
issued.

If the new simulation is the same as the possible attacks of case 1, then we can regard the
adversary of case 1 and 2 in practice as an unopened and uncorrupted oracle but with the
random flip exposed. Unfortunately for many protocols, E does not need to know the random
flips to launch an attack of case 1. For example, in the Chen-Kudla’s AK, E can randomly choose
i and send iP , but it does not know the value r such that rQB = iP . Even more it is likely that
such random r does not exist in protocols such as MTI A(0)8 because g is only the generator of a
proper cyclic subgroup of Z∗p. An attack on another pairing-based protocol vividly demonstrates
this point. Shim presented a two-party protocol in [46] (specified in Figure 19). After exchanging

A B
TA=rAP−−−−−−−−−−−−−→

K = ê(rAPpub + dA, TB + QB)
TB=rBP←−−−−−−−−−−−−− K = ê(rBPpub + dB , TA + QA)

Fig. 19. Shim’s Protocol [46]

the messages, A computes KA = ê(rAPpub + dA, TB + QB) and B computes KB = ê(rBPpub +
dB, TA + QA). The agreed secret is K = KA = KB = ê(P, P )rArBs · ê(QA, P )rBs · ê(P, QB)rAs ·
ê(QA, QB)s. Each party sets the session key as SK = H(K‖IDA‖IDB). The protocol was
demonstrated to be vulnerable to the man-in-the-middle attack in [44] as in Figure 20. In the

A E B

TA=aP−−−−−−−−−−−−→ T ′A=a′P−QA−−−−−−−−−−−−→
T ′B=b′P−QB←−−−−−−−−−−−− TB=bP←−−−−−−−−−−−−

K = ê(aPpub + dA, T ′B + QB) K = ê(T ′A + QA, bPpub + dB)

Fig. 20. Attack on Shim’s Protocol [44]

attack KAB = ê(aPpub + dA, T ′B + QB) = ê(P, P )asb′ · ê(QA, P )sb′ = ê(aP, Ppub)b′ · ê(QA, Ppub)b′ ,
7 Note that this situation is detectable in the model.
8 Note that the subgroup attack in [34] is detectable in the model.



and KBA = ê(T ′A + QA, bPpub + dB) = ê(P, P )a′sb · ê(QB, P )a′s = ê(Ppub, sP )a′ · ê(QB, Ppub)a′ .
Both keys are computable by the adversary. In this attack, the adversary cannot recover the
corresponding random flips r1 (resp. r2) such that r1P = a′P − QA (resp. r2P = b′P − QB).
This means that the new formalized model cannot cover all the possible attacks of case 1. On
the other hand, the model disallowing the Reveal query appears to be able to check this type
of attack.

Hence, it is more reasonable to check the security of a protocol using both methods. 9

Definition 18 Protocol Π is a secure AK which uses only general-commutative operations on
the random flips if:

1. In the presence of the benign adversary on Πs
i,j and Πt

j,i , both oracles always accept holding
the same session key σ, and this key is distributed uniformly at random on {0,1}k;

and if for every adversary E:

2. If two oracles Πs
i,j and Πt

j,i have matching conversations and both i and j are uncorrupted,
then both accept and hold the same session key σ;

3. AdvantageE(k) is negligible if the fresh oracle is defined as Definition 8 and the Reveal query
is disallowed;

4. AdvantageE(k) is negligible if the fresh oracle is defined as Definition 15.

We show an example of using the new model. Note that Shim’s attack [47] on ATK-2 [2] are
detectable if the new model is extended to the tripartite case. So ATK-2 cannot be proved to
be secure in the new model. In [24], the proof of the security of the Chen-Kudla’s AK is prob-
lematic [18]. In the revised version [25] of the paper the authors use the model without Reveal
query (so, the condition 3 of Definition 18 is satisfied). We present another proof (of condition
4) in the new model as a complement to demonstrate the security strength of the protocol.
The security of the Chen-Kudla’s AK can be defined by the following theorem (Theorem 3)
where an “unattacked” oracle was not asked the Reveal, Coin and Corrupt queries. The proof
is presented in Appendix.

Theorem 3 The Chen-Kudla’s AK is a secure AK protocol against Type-I adversaries under
Definition 18, provided that H1 and H2 are random oracles and the BDH is hard.

As how to formalize a general indistinguishability-based model for AK protocol remains
an open problem, before such a general model is presented, it is recommended to include the
asymmetric computation on random flips in the agreed key generation functions, which enable
us to prove the security of protocols. A simple way to introduce the asymmetric computation
is to apply a hash operation on the agreed secret and the exchanged messages of a session (or
the identity of involved parties) to generate the session key10.

9 Note that the other models of AK protocols in the literature are neither suitable for AK’s with general-
commutative computation, for example the model used in [11].

10 We should be careful to use the asymmetric operation properly, because it is possible that a protocol still
suffers from the general concatenation attack even with an asymmetric operation applied on the exchange
messages, such as the protocol in [50].



5 Conclusion

In this report, we review the development of indistinguishability-based security models of key
agreement protocols of simple cases and organize the models in a unified framework. By intro-
ducing a new Coin query and defining different fresh oracle and no-matching notions the model
enables an adversary to fully exploit its capability, so as to define a strong security notion for
AKC’s and some AK’s. By allowing different queries and using different definition variants of
fresh oracle and no-matching, the framework is flexible enough to prove the security of AKC
protocols with different properties. For AK’s, the model with the Coin query provides a heuris-
tic method, which is stronger than the model without Reveal query, to evaluate the security of a
large category of AK protocols. We use these models to analyze the security of a few pair-based
authenticated key agreement protocols.
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Appendix

Proof of Theorem 1.

Proof: In the proof, the session ID is used to define the matching conversations. However,
we use the complete transcript of an oracle as the session ID to prove conditions 1 and 2 in
Definition 9 of AKC which follow immediately from the description of the protocol. We use the
concatenation of the first two messages of a transcript as the session ID to prove conditions 3
and 4 (see Remark 4 for the reason).

The following part treats the condition 3. If the advantage of an adversary A against the
protocol is non-negligible, i.e., Pr[No-matchingA(k)] is non-negligible, we can construct an ad-
versary B using A as a subroutine against either a BDH problem or the used MAC scheme with
non-negligible advantage. We say that A wins if at the end of the game, there exists an oracle
Πs

i,j (j is uncorrupted and i has not been asked the Coin query Coin(Πs
i,j , r)) which has accepted

but no oracle Πt
j,i has had a matching conversation to Πs

i,j . Let us assume Pr[A wins]=n(k) for
some non-negligible function n(k). Suppose, in the game, there are T1(k) sessions initiated by
the engaged parties and A , and the random oracle H2 has been queried for q2(k) times and
the Corrupt query has been asked for qC(k) times.

In the sequel (in the proofs of Theorem 1 and 2), we slightly abuse the notation Πs
i,j as

the s-th session among all the sessions initiated by all the oracles or the adversary, instead of
the s-th instance of i. The session is still between party i and j. This abuse does not affect
the soundness of the model because s originally is just used to uniquely identify an instance of
party i. Now, we assume that there is a global counter and every time when an oracle or the
adversary launches a session, the counter is increased. The global counter is used to uniquely
identity the instance of a party in all the sessions.



Now let us construct the adversary B . B is provided with two challengers i.e., a BDH
challenger and a MACk′′ challenger where k′′ ∈R {0, 1}l. B needs to either answer a BDH
challenge or construct a pair of message and tag {msg, α} such that α =MACk′′(msg) and
the message msg has not been queried to its MACk′′ challenger. When given the BDH chal-
lenge 〈q,G1,G2, ê, P, sP, bP, rP 〉, B simulates the system parameter generator G of the KGC
by choosing system params as 〈q,G1,G2, ê, P, sP, H1, l,H2,H3〉, where H1 : {0, 1}∗ → G∗1 and
H2 (resp. H3): G∗2 → {0, 1}l are three random oracles controlled by B . B randomly chooses
u ∈R {1, . . . , T1(k)} and interacts with A in the following way:

1. H1(IDi) query. B maintains an initially empty list of tuples (IDi, Qi, hi, di, coinai) sorted
according to IDi, denoted as H list

1 . When A queries oracle H1 on IDi, B responds as follows:
(a) If one tuple corresponding to IDi is on the list, B returns Qi of the tuple.
(b) Otherwise, B generates a random coina ∈ {0, 1} so that Pr[coina = 0] = δ for some δ

that will be determined later.
(c) B picks a random hi ∈ Z∗q . If coina = 0, B computes Qi = hiP ∈ G∗1 and di = hisP ;

otherwise sets Qi = hibP and di = ⊥.
(d) B inserts the tuple (IDi, Qi, hi, di, coina) into the list H list

1 and returns H1(IDi) = Qi.
2. H2(p) query. B maintains an initially empty list of pairs (p, value), denoted as H list

2 . If one
pair corresponding to p is on the list, B returns the value of the pair. Otherwise, B randomly
selects an integer r from {0, 1}l and after inserting (p, r) in the list H list

2 returns r.
3. H3(p) query. B maintains an initially empty list of pairs (p, value), denoted as H list

3 . If one
pair corresponding to p is on the list, B returns the value of the pair. Otherwise, B randomly
selects an integer r from {0, 1}l and after inserting (p, r) in the list H list

3 returns r.
4. Corrupt query Corrupt(i, λ). B looks through H list

1 to find the corresponding tuple with i
equal to ID. If on the tuple coina = 0, B returns di, otherwise it reports a failure and aborts
(Event 1). Because in the IBC systems, we can regard the ID as the party’s public key, the
adversary cannot update the public and private key pair without changing the party’s ID.
Hence, we assume that the adversary will not try to replace a party’s public/private keys.

5. Replace query Replace(Πs
i,j , P ). As this protocol is an identity-based scheme, the public key

of a party is then related to the party’s identity. Hence, no adversary will try this attack,
because it will never succeed.

6. Coin query Coin(Πs
i,j , r). If s = u and coinai of the tuple corresponding to Πs

i,j on H list
1 is 0,

B then reports a failure and aborts (Event 2). Otherwise, if r = λ, B finds rs
i corresponding

to Πs
i,j from Coinlist and returns it as the response. Otherwise, (Πs

i,j , r) is inserted in the
Coinlist.

7. Send query SendP (Πs
i,j ,m). B maintains an initially empty list Coinlist to store the pairs

in form of (Πs
i,j , r

s
i ) and another initially empty list Convlist to store the conversation tran-

scripts in the form of (Πs
i,j , conv, Ks

i,j ,K
′s
i,j). B first finds the corresponding coinai, coinaj , di, dj ,

Qi, Qj , hi and hj from H list
1 . In the following cases, B responds differently.

– If s = u and (coinai 6= 0 or coinaj 6= 1), B reports a failure and aborts (Event 3).
– Otherwise, if s = u (then coinai = 0 and coinaj = 1)

• If m = λ (so i is the initiator), B responds with rP as the first message of the session.
• If m is the first message of the session (so i is the responder) in the form of R,
B accesses the oracle MACk′′ with message msg2 = (2, i, j, rP, R) to get the tag



α, then it responds with {msg2, α}. If this message is rejected by A , B computes
U−1 = ê(sP,R)hi and randomly chooses a tuple from the list H list

2 . Suppose the
value of p of the chosen tuple is V , B computes W = V · U−1. Then B responds to
its BDH challenger with W h−1

j .
• If m is the second message of the session (so i is the initiator) in the form of
{msg2, α}= MACX(2, j, i, R, rP ), then B takes the following steps. Note that the
valid agreed secret should be K = ê(hisP,R) · (rhjbP, sP ) if the session is com-
pleted. B computes U−1 = ê(sP, R)−hi and randomly chooses a tuple from the list
H list

2 . Suppose the value of p of the chosen tuple is V . B computes W = V · U−1.
Then B responds to its BDH challenger with W h−1

j .
• If m is the third message of the session (so i is the responder) in the form of
{msg3, β}= MACY (3, j, i, R, rP ), B computes U−1 = ê(sP, R)−hi and randomly
chooses a tuple from H list

2 . Suppose the value of p of the chosen tuple is V . B computes
W = V ·U−1. Finally B responds to its BDH challenger with W h−1

j and responds to
its MACk′′ challenger with {msg3, β} and terminates the game.

– Otherwise, if coinai = 1, B reports a failure and aborts (Event 4).
– Otherwise, B answers the query as specified by Π.

• B tries to find the random flips rs
i corresponding to Πs

i,j from Coinlist and if it fails,
B randomly selects an integer rs

i ∈ Z∗q and inserts (Πs
i,j , r

s
i ) into the Coinlist

• If m = λ (so i is the initiator), B responds with rs
i P as the first message of the

session, at the same time sets Ks
i,j = ⊥, K ′s

i,j = ⊥ and updates conv.
• If m is the first message of the session (so i is the responder) in the form of R,
B computes K = ê(di, R) · ê(rs

i Qj , sP ). Then it computes K ′ = H2(K) and responds
with MACK′(2, i, j, rs

i P, R), at the same time sets Ks
i,j = K, K ′s

i,j = K ′ and updates
conv.

• If m is the second message of the session (so i is the initiator) in the form of
{msg2, α}= MACX(2, j, i, R, rs

i P ), then B takes the following steps. First it com-
putes K = ê(di, R) · ê(rs

i Qj , sP ) and K ′ = H(K). Second, B checks the tag of the
input message. If α is a valid tag, then it responds with MACK′(3, i, j, rs

i P, R), at
the same time, sets Ks

i,j = K, K ′s
i,j = K ′ and updates conv and accepts. Otherwise,

B rejects the input message.
• If m is the third message of the session (so i is the initiator) in the form of {msg3, β}=

MACY (3, j, i, R, rs
i P ), B checks the tag and if it is valid, then it accepts the session.

Otherwise, B rejects the input message. Note that here, msg3 is used only for ease
of interpretation. When B checks the tag, it should generate msg3 by itself (in fact,
msg3 will not be exchanged in the real protocol).

8. Reveal query Reveal(Πs
i,j). If the session is accepted, then B returns H3(Ks

i,j); otherwise,
B outputs ⊥.

If the adversary B does not abort during the simulation then A ’s view is identical to its
view in the real attack. To complete the proof, firstly let us check the probability that B does
not abort during the simulation. Let F be the event that B does not abort the game and Hi be
Event i for i ∈ {1, 2, 3, 4} and let H0 be the event that A wins the game (making the oracle
Πs

i,j accept) in the u-th session. Let E be the event that B finds the correct response to the BDH



challenger or a valid pair of message and tag {msg3, β} where msg3 has not been queried to
the MAC oracle. Hence

Pr[B wins] = Pr[F ∧H0 ∧ E ]

and
Pr[F ] = Pr[¬H1 ∧ ¬H2 ∧ ¬H3 ∧ ¬H4].

We have
Pr[¬H1] = δqC

Pr[¬H2] = 1− δ
Pr[¬H3] = δ(1− δ)
Pr[¬H4] = δT1

Therefore the overall probability of non-abortion is at least δ(qC+T1+1)(1 − δ)2. This value is
maximized at δopt = qC+T1+1

qC+T1+3 . Using δopt, the probability that B does not abort the game is at
least 4

e(3+qC+T1)2
.

Suppose that A did make party i accept the u-the session with party j. If i is the initiator
of the session, A has to query the random oracle to find the random value of the corresponding
agreed secret because H2 is supposed to be fully random. Otherwise, A can only guess the
correct value with negligible probability, so to convince i to accept the session after receiving
the second message of the session. Because B randomly chooses a pair from H list

1 , we have
Pr[E|H0 ∧ F ] ≥ 1

q2
. If i is the responder of the session, because B uses the random key k′′

held by the MAC oracle to generate the pair of the second message {msg2, α}, A can force i to
accept the session either by generating the valid pair of {msg3, β} under key k′′ or by finding the
valid agreed secret K first and querying the oracle K ′ = H2(K) and generating the valid third
message under K ′. Hence, if A is in the former case, B wins the game with the MAC challenger
with probability 1; otherwise, B wins the game with the BDH challenger with probability at
least 1

q2
. Note that in the latter case, A could possibly reject the session (the second message

created by B ), and B correctly answers the BDH challenge with probability at least 1
q2

as well
because the behavior of B after the message was rejected. Overall Pr[E|H0∧F ] ≥ 1

q2
. So, B wins

the whole game with probability:

Pr[B wins] = Pr[F ∧H0 ∧ E ] ≥ n(k)
1

q2(k)
1

T1(k)
4

e(3 + qC(k) + T1(k))2

Using a very similar strategy we can prove that the condition 4 is also satisfied. In fact, it
appears that in this protocol (and many protocols using the similar structure), the condition
3 implies the condition 4. This can be interpreted in this way. As shown in the proof, the
strength of the protocol against the adversary to deceit a party into accepting a session relies
on the hardness to compute K. The proof above has shown that the adversary working as a
responder cannot succeed. Due to the security property of the used MAC scheme, given the third
message (a MAC tag of a new message), the adversary cannot generate new message/tag pairs
which implies that the adversary still cannot recovery K ′ and (so cannot compute) K (after
the completion of the protocol). As H3 is a random oracle, so the adversary cannot differentiate
SK = H3(K) from a random sample (without knowing K). However the condition 3 does not
always imply the condition 4 in all protocols (see the discussion in Section 4.1).



¤

Remark 7 In the proof, there is an assumption that the upper bound of qC(k) + T1(k) on the
number of Corrupt queries and SendP queries of A is known by B in advance. Furthermore,
the construction cannot answer some SendP queries. This certainly shows the limitation of the
proof. However, the strategy seems to be commonly used in the literature, e.g., [9] [26].

Proof of Theorem 2.

Proof: Suppose that there exits an adversary A against the PFS of Protocol 4 with the new
key generation function, we can construct an algorithm B using A as a subroutine to solve the
GDH problem.

When given the GDH challenge 〈q,G1, P, aP, bP 〉, B simulates the system parameter genera-
tor G of the KGC by randomly choosing s ∈ Z∗q and setting system params as 〈q,G1,G2, ê, P, sP,

H1, l,H2,H3〉, where H1 : {0, 1}∗ → G∗1 and H2 (resp. H3): G∗2 → {0, 1}l are three random or-
acles controlled by B . Suppose, in the game, there are T1(k) sessions initiated by the engaged
parties and A , and the random oracle H3 has been query for q3(k) times. B randomly chooses
u ∈R {1, . . . , T1(k)} and interacts with A in the following way.

1. H1(IDi) query. B maintains an initially empty list of tuples (IDi, Qi, hi) sorted according
to IDi, denoted as H list

1 . When A queries oracle H1 on IDi, B responds as follows:
(a) If one tuple corresponding to IDi is on the list, B returns Qi of the tuple.
(b) Otherwise, B picks a random hi ∈ Z∗q and sets Qi = hiP . B inserts the tuple (IDi, Qi, hi)

into the list H list
1 and returns H1(IDi) = Qi.

2. H2(p1, . . . , p4) query (recall that H2 in Fig. 7 takes four components as input). B maintains
an initially empty list of tuples (p1, . . . , p4, value), denoted as H list

2 . If one tuple correspond-
ing to (p1, . . . , p4) is on the list, B returns the value of the tuple. Otherwise, if a special tuple
with the form (K, ?, aP, bP, r) (which is generated in the following simulation) is on the list,
then B checks if p1 = K, p3 = aP, p4 = bP and ê(aP, bP ) = ê(p2, P ). If the conditions are
satisfied, B replaces ? with p2 and returns r as the result. Otherwise, B randomly selects an
integer r from {0, 1}l and after inserting (p1, . . . , p4, r) in the list H list

2 returns r.
3. H3(p1, . . . , p4) query (recall that H3 in Fig. 7 takes four components as input). B maintains

an initially empty list of tuples (p1, . . . , p4, value), denoted as H list
3 . If one tuple correspond-

ing to (p1, . . . , p4) is on the list, B returns the value of the tuple. Otherwise, B randomly
selects an integer r from {0, 1}l and after inserting (p1, . . . , p4, r) in the list H list

3 returns r.
4. Corrupt query Corrupt(i, λ). B looks through H list

1 to find the corresponding tuple with i
equal to ID. B returns di = shiP . Again we assume that adversary will not try to replace
a party’s public/private key pair.

5. Replace query Replace(Πs
i,j , P ). No adversary will try this attack, because it will never

succeed.
6. Coin query Coin(Πs

i,j , r). If s = u, B then reports a failure and aborts (Event 1). Otherwise,
if r = λ, B finds rs

i corresponding to Πs
i,j from Coinlist and returns it as the response;

otherwise, (Πs
i,j , r) is inserted in the Coinlist.

7. Send query SendP (Πs
i,j ,m). B maintains an initially empty list Coinlist to store the pairs

in the form of (Πs
i,j , r

s
i ) and another initially empty list Convlist to store the conversation



transcripts in the form of (Πs
i,j , conv, Ks

i,j ,K
′s
i,j). B first finds the corresponding Qi, Qj from

H list
1 and computes di = sQi, dj = sQj . In the following cases, B responds differently.
– If s 6= u, B responds by following the protocol, i.e., randomly choosing rs

i , computing
rs
i R (R is the component in the input message) and K and K ′s

i,j using di, dj , input
message and rs

i and checking the tag of the input message, so to accept or reject the
session. Finally, if the session is accepted, B computes SKs

i,j .
– Otherwise,

• If m = λ (i is the initiator), then B responds with aP .
• If the input message equals to aP (i is the responder), then B responds in the follow-

ing way. First, B computes K = ê(di, aP ) · ê(Qj , bP )s. Then B looks through H list
2

to find all the tuples with p1 = K, p3 = aP, p4 = bP . In the found tuples set, B tests
each p2 to find whether such a p2 satisfying ê(P, p2) = ê(aP, bP ) exists. If such a p2 is
found, then B responds to the GDH challenger with p2 and wins the game. (However,
this should happen with negligible probability because of the randomness of aP and
bP ). Otherwise, B randomly chooses k ∈ {0, 1}l and inserts a tuple (K, ?, aP, bP, k)
to H list

2 (note that there is only one such tuple generated in the whole simulation).
Finally, B generates message MACk(2, i, j, bP,R) with the message tag 1.

• If R in the input message (MACk(2, j, i, R, aP )) equals to bP (i is the initiator), then
B uses k again to generate the message tag 2 (MACk(3, i, j, aP, R)).

• For other situation, B reports an error and aborts (Event 2. A tempered with the
messages).

8. Reveal query Reveal(Πs
i,j). If s = u, B reports an error and aborts (Event 3). Otherwise,

B outputs responds SKs
i,j following the protocol.

9. Test query TestD(Πs
i,j). If s 6= u, B aborts the game (Event 4). Otherwise B randomly

chooses a number k′ ∈ {0, 1}l and gives it to A . When A responds, B randomly chooses
a tuple from H list

3 with p3 equal to tag 1 and p4 equal to tag 2 generated in session u.
B responds to the GDH challenger with the value of p2 of the chosen tuple.

If the adversary B does not abort during the simulation, then A ’s view is identical to its
view in the real attack. B aborts the game only when Event 1, 2, 3 and 4 happen. While
these events only happened when A did not choose session u as the challenge session (in which
both oracles were not asked the Coin query and the messages were faithfully conveyed). Hence
B does not abort the game with probability at least 1/T1(k). Let H be the event that abP as p2

has been queried to H3. Since H3 is a random oracle, and the challenged oracles Πs
i,j and Πs

j,i

are unopened, Pr[A wins|¬H] = 1
2 + ε(k) for some negligible function ε(k). Suppose, A wins the

game with non-negligible advantage n(k).

n(k) + 1
2 = Pr[A wins] ≤ Pr[A wins|H]Pr[H] + 1

2 + ε(k) ≤ Pr[H] + 1
2 + ε(k).

So Pr[H] ≥ n(k)− ε(k) > n′(k) which is non-negligible. Overall, B can solve the GDH problem
with advantage n′(k)

q3(k)·T1(k) . Obviously, if aP, bP are included as the inputs to H3, the reduction

can be tighter (with advantage n′(k)
T1(k)) by exploiting the fact that the decisional DH problem is

easy in the protocol’s setting.

¤



Remark 8 In this protocol, it appears that it is possible to prove the security based on the GDHP
in the model using the TestD query against the Type-I adversary because the cryptographic
hash function H3 is used (and treated as a random oracle in the reduction) in the protocol.
B responds to the TestD query with a random element from {0, 1}l, and randomly chooses a
value p2 from H list

3 as the response to the GDHP challenger. For a modified protocol without
H3, if in the model with the TestD query algorithm B responds with a random element from
G1 and A cannot differentiate the simulation from the real world, then at least the decisional
DHP is hard. Otherwise, we can simply modify each adversary in the real attack by adding a
procedure to check whether the response is the result of the challenge and the modified adversary
can easily win the game in the simulation.

Proof of Theorem 3.

Proof: In the proof, the session ID is used to define the matching conversation. The session ID
here is the concatenation of two messages. The proofs of the conditions 1 and 2 in Definition 18
of AK are straightforward. The proof in [25] shows that the protocol satisfies the condition 3.
The following part treats the condition 4.

If the advantage of an adversary A against the protocol is non-negligible, we can construct
an adversary B against a BDH problem with non-negligible advantage. After given the BDH
problem 〈q,G1,G2, ê, P, sP, aP, bP 〉, B simulates the system parameter generator of the KGC
by choosing system params as 〈q,G1,G2, ê, P, sP, H1, l, H2〉, where H1 : {0, 1}∗ → G∗1 and
H2 : G∗2 → {0, 1}l are two random oracles which are controlled by B . B interacts with A in the
following way.

1. H1(IDi) query. B maintains an initially empty list of tuples (IDi, Qi, hi, di, coinai, coinbi)
sorted according to IDi, denoted as H list

1 . When A queries oracle H1 on IDi, B responds
as follows:
(a) If one tuple corresponding to IDi is on the list, B returns Qi of the tuple.
(b) Otherwise, B generates a random coina ∈ {0, 1} so that Pr[coina=0]=δ for some δ that

will be determined later.
(c) B picks a random hi ∈ Z∗q . If coina = 0, B computes Qi = hiP ∈ G∗1 and di = hisP

and sets coinb = ⊥. Otherwise B uniformly picks coinb ∈ {0, 1}. If coinb = 0 compute
Qi = hiaP , else compute Qi = hibP . If coina = 1, B sets di = ⊥.

(d) B inserts the tuple (IDi, Qi, h, di, coina, coinb) into the list H list
1 and returns H1(IDi) =

Qi.
2. H2(p) query. B maintains an initially empty list of pairs (p, value), denoted as H list

2 . If one
pair corresponding to p is on the list, B returns the value of the pair. Otherwise, B randomly
selects an integer r from {0, 1}l and after inserting (p, r) in the list H list

2 returns r.
3. Corrupt query Corrupt(i,K). B looks through H list

1 to find the corresponding tuple with i
equal to ID. If on the tuple coina = 0, B returns di, otherwise it reports a failure and aborts
(Event 1). Again we assume that adversary will not try to replace a party’s public/private
key pair.

4. Replace query Replace(Πs
i,j , P ). No adversary will try this attack, because it will never

succeed.



5. Send query SendP (Πs
i,j ,m). B maintains an initially empty list Coinlist to store the pairs

in the form of (Πs
i,j , r

s
i ) and another initially empty list Convlist to store the conversation

transcripts in the form of (Πs
i,j , conv). First B tries to find the random flips rs

i corresponding
to Πs

i,j from Coinlist and if it fails, B randomly selects an integer rs
i ∈ Z∗q and inserts (Πs

i,j , r
s
i )

into the Coinlist. B responds with rs
i Qi, where Qi is found from the list H list

1 with i equal
to the ID field, and conv of Πs

i,j is updated as conv.m.rs
i Qi.

6. Coin query Coin(Πs
i,j , r). If r = λ, B finds rs

i corresponding to Πs
i,j from Coinlist and returns

it as the response. Otherwise, (Πs
i,j , r) is inserted in the Coinlist.

7. Reveal query Reveal(Πs
i,j). B responds to the query in the following ways:

(a) B uses i as the ID to find di and uses j as the ID to find Qj in the list H list
1 and finds

rs
i and conv corresponding to Πs

i,j from Coinlist and Convlist respectively (assuming the
received message is m on the conversation transcript of Πs

i,j).
(b) If di 6= ⊥ on the tuple with i as the ID, B returns H2(ê(di, r

s
i Qj + m)).

(c) Otherwise, it reports failure and aborts (Event 2).
8. Test query TestD(Πs

i,j). B takes the following actions:
(a) B responds to the TestD query with a random element from {0, 1}l. And after receiving

the decision from A ,
(b) B uses i as the ID to find coinai, coinbi and uses j as the ID to find coinaj , coinbj from

the list H list
1

(c) If coinai 6= 1 or coinaj 6= 1, it reports failure and aborts (Event 3).
(d) Otherwise (coinai = 1 and coinaj = 1), if coinbi = coinbj , it reports failure and aborts

(Event 4).
(e) Otherwise (coinbi 6= coinbj), B randomly chooses a pair from H list

2 . Suppose that the
value of the chosen pair is R. B then searches j’s conversation transcripts to find the
matching conversation Πt

j,i to Πs
i,j . As the challenged oracles should be fresh (according

to Definition 15), the matching conversation can be found. B uses two oracles to find
rs
i and rt

j from the Coinlist and uses i and j to find hi and hj from H list
1 . B computes

R[hihj(r
s
i +rt

j)]
−1

and returns it as the answer of the BDH problem.

Note that the model requires that, in the challenge session, only one party’s random flips
can be queried. This rule can be forced to be applied in the proof. For example, if oracle Πs

i,j (as
the initiator) that has been asked Coin query has the conversation transcript rs

i Qi.m where
rs
i is the random flips of Πs

i,j and m is the incoming message, then there must be an oracle
Πt

j,i which with the same conversation has sent message m and has not been issued Coin query.
Otherwise, the oracle regards that the adversary did not follow the rule. Note that there are two
circumstances where Πs

i,j would have such conversation in the model. First, the adversary sends
the response message m in the session without going through some oracle Πt

j,i . This behavior
is treated as if one Coin query has been issued in the session. The second circumstance is that
some oracle Πt

j,i sends m. Note that in the model, the only way that the adversary can force
oracle Πt

j,i to send a specific message m is to issue Coin(Πt
j,i ,r

t
j) query such that m = rt

jQj

because otherwise, Πt
j,i will randomly choose r (which equals to rt

j , so to generate m, with only
negligible probability) to send rQj . It is also required that for the Test query TestD(Πs

i,j), both
i and j are uncorrupted. This can also be checked (in fact, if two parties were corrupted, the
simulation would abort before the TestD query).



If the adversary B does not abort during the simulation then A ’s view is identical to its
view in the real attack. To complete the proof, firstly let us check the probability that B does
not abort during the simulation. Let F be the event that B does not abort the game. Let qR(k)
be the number of Reveal queries issued by A . Then the probability that B does not abort in the
Reveal query is at least δqR (Event 2 does not happens at least if coinai = 0, so that the Reveal
query can be answered) and the probability of non-abortion in the TestD query is 1

2(1−δ)2 (the
probability that neither Event 3 nor 4 happens). Let qC(k) be the number of Corrupt queries
issued by A . Then the probability of non-abortion in the Corrupt query is δqC (the probability
that Event 1 does not happen). Therefore the overall probability of non-abortion is at least
1
2δ(qR+qC)(1 − δ)2. This value is maximized at δopt = qR+qC

qR+qC+2 . Using δopt, the probability that
B does not abort the game is at least 2

e(2+qR+qC)2
.

Let H be the event that ê(P, P )sabhihj(r
s
i +rt

j) has been queried to H2. Since H2 is a random
oracle, and the challenged oracles Πs

i,j and Πt
j,i are unopened, Pr[A wins|¬H] = 1

2 + ε(k) for
some negligible function ε(k). Suppose, A wins the game with non-negligible advantage n(k).

n(k) + 1
2 = Pr[A wins] ≤ Pr[A wins|H]Pr[H] + 1

2 + ε(k) ≤ Pr[H] + 1
2 + ε(k).

So Pr[H] ≥ n(k) − ε(k) > n′(k) which is non-negligible. Let E be the event that B finds the
correct ê(P, P )sabhihj(r

s
i +rt

j) on the list H list
2 , so B computes the correct ê(P, P )sab. Let q2(k) be

the number of distinct H2 hash queries issued during the simulation. We have

Pr[B wins] = Pr[F ∧H ∧ E ] ≥ n′(k)
1

q2(k)
2

e(2 + qR(k) + qC(k))2
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