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Abstract

In this paper we will extend the Benes and Luby-Rackoff construc-
tions to design various pseudo-random functions and pseudo-random
permutations with near optimal information-theoretic properties. An
example of application is when Alice wants to transmit to Bob some
messages against Charlie, an adversary with unlimited computing power,
when Charlie can receive only a percentage τ of the transmitted bits.
By using Benes, Luby-Rackoff iterations, concatenations and fixing at
0 some values, we will show in this paper how to design near optimal
pseudo-random functions for all values of τ . Moreover we will show
how to design near optimal pseudo-random permutations when τ can
have any value such that the number of bits obtained by Charlie is
smaller than the square root of all the transmitted bits.

1 Introduction

In their famous paper [6], M. Luby and C. Rackoff have shown that in
adaptive plaintext attack (CPA-2) with m queries, the probability p to dis-
tinguish a 3-round random Feistel scheme (i.e. a Feistel scheme of 2n bits
→ 2n bits made by using 3 random round functions of n bits → n bits) from
a truly random permutation of 2n bits → 2n bits, is always p ≤ m2

2n , i.e. we
have CPA-2 security when m ¿ √

2n.
Similarly, the probability p to distinguish a 4-round random Feistel scheme
from a truly random permutation of 2n bits → 2n bits in an adaptive chosen
plaintext and chosen ciphertext attack (CPCA-2) with m queries, is always
p ≤ m2

2n , i.e. we have CPCA-2 security when m ¿ √
2n.

These results are valid if the adversary has unbounded computing power as
long as he does only m queries. The bound m ¿ √

2n is called the “birthday
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bound”.
These results of Luby and Rackoff have inspired a considerable amount of
research. In [11] a summary of existing works on this topic is given.
One direction of research, that we will also followed in the present paper,
is to improve the birthday bound, i.e. the security bound m ¿ √

2n for
various permutations or functions generators.
In [13], and independently in [1], it is shown that for the Luby-Rackoff the-
orems for 3 or 4 rounds, the bound m ¿ √

2n is optimal.
In [1], W. Aiello and R. Venkatesan have found a construction of locally
random functions, called “Benes”, where the optimal bound (m ¿ 2n, or
m ¿ O

(
2n(1−ε)

)
with a different constant in the O for all ε > 0 see [16])

can be obtained instead of the birthday bound. This bound m ¿ 2n is
called “optimal” or “optimal in information-theoretic cryptography”, since
it is the best possible bound against an adversary with unlimited computing
power. However here the functions are not permutations.
Similarly , U. Maurer in [7] and J. Patarin in [14] have found some other
construction of locally random functions (not permutations) where they can
get as close as wanted to the optimal bound: m ¿ 2n(1−ε) and for all ε > 0
they have a construction. However, unlike Benes and unlike the schemes
that we will study in this paper, we have here a different construction for
each ε > 0. Moreover, with Benes or with the function Ωp of [14], the
bound of the number of bits of security (i.e. the maximum number of bits
of queries) is always about ≤ the square root of the total number of possible
inputs (the functions are from 2n bits → 2n bits, so the total number of
inputs is ≤ 22n). With one-time-pad the number of bits of security is equal
with the total number of bits sent.
In this paper, we will look for constructions of pseudorandom functions or
pseudorandom permutations, where we will still be very near the optimal
information-theoretic cryptography bound, but where the number of bits of
security may have different values than the square root of the total number
of possible inputs (as with Benes) or the number of total bits sent (as with
one-time-pad). It can be noticed that our proof will be simple, since we will
use the (relatively difficult) results on Benes and Feistel schemes to design
new schemes by using only simple operations: concatenations, composition
of functions, and fixing at 0 some values.

Remark In [9], U. Maurer and J. Massey have also design some schemes
with, as the schemes of this paper, near-perfect local randomness. However
the designs of the schemes of [9] are completely different from the schemes of
this paper, since they use error correcting code theory, instead of variations
of Feistel and Benes constructions. The properties of the schemes of [9] are
also very different from the schemes of this paper. The schemes of [9] have
a uniform property of perfectly local randomness unlike the schemes of this
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paper where the schemes have a probabilistic security: the probability to
distinguish them from perfectly random schemes is negligible. The schemes
of [9] are linear, while the schemes of this paper are not linear. The complex-
ity of computation of the schemes of [9] is at least quadratic in the number
of bits sent while the complexity of the schemes of this paper will be linear
in the number of bits sent (when the keys are generated and stored). So the
schemes of [9] and the schemes of this paper are completely different, and
we believe that both are interesting for cryptography.

2 Notations and first examples

• CPA-2 means “adaptive chosen plaintext attack”.
• CPCA-2 means “adaptive chosen plaintext and chosen ciphertext attack”.
• In = {0, 1}n is the set of the 2n binary strings of length n.
• Fn is the set of all functions f : In → In. Thus |Fn| = 2n·2n

.
• For a, b ∈ In, a⊕ b stands for bit by bit exclusive or of a and b.
• For a, b ∈ In, a||b stands for the concatenation of a and b.
• For a, b ∈ In, we also denote by [a, b] the concatenation a||b of a and b.
• For any f, g ∈ Fn, f ◦ g denotes the usual composition of functions.
• Let f1 be a function of Fn. Let Li, Ri, Si and Ti be four n-bit strings in
In. Then by definition

Ψ(f1)[Li, Ri] = [Si, Ti]
def⇔

{
Si = Ri

Ti = Li ⊕ f1(Ri)

?

HHHHHHHHHHj

©©©©©©©©©©¼

Li Ri

⊕

f1

Figure 1: One round of Feistel Transformation ψ.

• Let f1, f2, . . . , fk be k functions of Fn. Then by definition:
Ψk(f1, . . . , fk) = Ψ(fk) ◦ · · · ◦Ψ(f2) ◦Ψ(f1).

The permutation Ψk(f1, . . . , fk) is called a “Feistel scheme with k rounds”
or shortly Ψk. When f1, . . . , fk are randomly and independently chosen in
Fn, then Ψk(f1, . . . , fk) is called a “random Feistel scheme with k rounds”
or a “Luby-Rackoff construction with k rounds”.
• Given four functions from n bits to n bits, f1, . . . , f4, we use them to define
the Butterfly transformation (see [1]) from 2n bits to 2n bits. On input
[Li, Ri], the output is given by [Xi, Yi], with:

Xi = f1(Li)⊕ f2(Ri) and Yi = f3(Li)⊕ f4(Ri).

• Given eight functions from n bits to n bits, f1, . . . , f8, we use them to
define the Benes transformation (see [1]) (back-to-back Butterfly) as the
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Figure 2: Butterfly transformation

composition of two Butterfly transformations. On input [Li, Ri], the output
is given by [Si, Ti], with: Benes(f1, · · · , f8)[Li, Ri] = [Si, Ti] if and only if:

Si = f5(f1(Li)⊕ f2(Ri))⊕ f6(f3(Li)⊕ f4(Ri)) = f5(Xi)⊕ f6(Yi)

Ti = f7(f1(Li)⊕ f2(Ri))⊕ f8(f3(Li)⊕ f4(Ri)) = f7(Xi)⊕ f8(Yi).

? ?

? ?
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©©©©©©©©©©¼
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Li Ri

⊕ ⊕

⊕ ⊕

f1 f4

f2f3

f5 f8

f6f7

Figure 3: Benes transformation (back-to-back Butterfly)

When we will study a scheme we will denote by:
• K the number of bits of the keys.
• N the total number of bits of all the messages that we can send.
• τ the proportion of the bits sent that the enemy can obtain in an adaptive
attack (all the other bits sent are not received by the enemy).
• m the number of messages that the enemy can obtain in an adaptive at-
tack.
• n′ the number of bits of each message.
• e the number of bits that the enemy can obtain in an adaptive attack. So
we have m ≤ e ≤ mn′, and τ = e

N .
• When we have security when e ¿ K1/2 we say that we have the “birthday
bound”. When we have security when e ¿ K2/3 we say that we have the
“3-collision bound”. When we have security when e ¿ Kθ−1/θ we say that
we have the “θ-collision bound”. If a scheme is such that we have for all
integer θ ≥ 1 security with the “θ-collision bound”, we say that the scheme
is “near-optimal”. Notice that the scheme does not change with θ: it is the
same scheme with the “θ-collision bound” for all integer θ ≥ 1.
•More precisely we will say that a scheme is “near-optimal” or “near-optimal
in the information-theoretic model” if the scheme is secure against crypto-
graphic attacks when ∀ε > 0, e ¿ f(ε)K1−ε where f(ε) is a function of
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ε only (not of K). By “cryptographic attacks” we mean here CPA-2 for
pseudorandom functions, and CPCA-2 for pseudorandom permutations.
• As always in cryptography, we will assume that the enemy knows every-
thing about the schemes, except the values of the secret keys (Kerckhoff’s
principle). However here K is as large as N .

Example 1 With one-time-pad, we have e = K = N , τ = 1, so the scheme
is “near-optimal” (with the definition above).

Example 2 If we send 2n messages with the algorithm Si = Xi⊕k, where
1 ≤ i ≤ 2n, Xi, Si, k ∈ In, k is the secret key (of n bits), we have N = 2n · n
(all the possible messages are all the elements of In, and we have here 2n

elements of n bits) and K = n. However, here there is a very simple known
plaintext attack: let X1 and X2 be some known values, X1 6= X2, and test
if S1 ⊕ S2 = X1 ⊕ X2. For a random function, the probability to have
S1 ⊕ S2 = X1 ⊕ X2 is 1

2n , and for this scheme the probability is 1. So
we can distinguish this scheme from a random function with only m = 2
messages in a known plaintext attack. So here for security with this scheme
we can send only one message. Moreover, even if we know only one bit
(for example bit number b) of S1, S2, X1, X2, then the probability to have
(S1⊕S2)b = (X1⊕X2)b is 1

2 for random functions and 1 for this scheme. So
an enemy will be able to distinguish this scheme from a random scheme with
a non negligible probability (1

2 here) with only two chosen bits (one bit of X1

and one bit chosen at the same position b of X2), and here K = n. Therefore
this scheme is not “near-optimal”: we do not even have the birthday bound
here since 2 is smaller than

√
n.

3 The theorems that we will use

Theorem 3.1 (Luby and Rackoff) The probability p to distinguish ψ4

(i.e. a 4-round Feistel scheme with 4 random functions f1, f2, f3, f4 of
In → In as round functions) from a truly random permutation of I2n → I2n

in an adaptive chosen plaintext/chosen ciphertext attack (CPCA-2) always
satisfies: p ≤ m(m−1)

2n .

Proof The theorem was originally given in [6]. Some simplified proof are
given for example in [7] for non-adaptive attacks, and in [12] for adaptive
attacks.

Information-theoretic properties With our notations of section 2, we
have here n′ = 2n, N = 22n · 2n, K = 4n · 2n (since f1, f2, f3, f4 are the
secret key here), and we have security when m ¿ √

2n. Here e ≤ mn′, so
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e ≤ √
2n · 2n, and K = 4n · 2n. So this scheme ψ4 is not “near-optimal” if

the key is f1, f2, f3, f4 (we just have the “birthday bound” here).

Remark However, from ψ4 we will design “near-optimal” schemes in this
paper, but in these schemes f1, f2, f3, f4 will not be truly random functions
of Fn.

Theorem 3.2 (Patarin) The probability p to distinguish ψ6 (i.e. a 6-
round Feistel scheme with 6 random functions f1, f2, f3, f4, f5, f6 of In → In

as round functions) from a truly random permutation of I2n → I2n in an
adaptive chosen plaintext/chosen ciphertext attack (CPCA-2) always satis-
fies: p ¿ 1 when m ¿ 2n. We will note: p ≤ Feistel 6 security (m, 2n),
with Feistel 6 security (x, y) → 0 when x ¿ y.

Proof This theorem is given in [15] p.110. Notice that we have here secu-
rity with 6 rounds when m ¿ 2n instead of m ¿ √

2n with 4 rounds.

Information-theoretic properties With our notations of section 2, we
have here n′ = 2n, N = 22n · 2n, K = 6n · 2n, and we have security when
m ¿ 2n. So we have security when e ¿ 2n, and K = 6n · 2n. Since
2n ≥ (6n · 2n)(1 − ε) for all ε > 0 and sufficiently large n this scheme is
“near-optimal” with our definition of section 2. However here, when τ is
fixed, N is fixed, or when K is fixed, N is fixed (N ' K2). In this paper we
will design some solutions for various independent values of N and K.

Theorem 3.3 (Aiello and Venkatesen) The probability p to distinguish
Benes(f1, · · · , f8) with 8 random functions (f1, · · · , f8) of In → In from a
truly random function of I2n → I2n in an adaptive chosen plaintext attack
(CPA-2) always satisfies: p ¿ 1 when m ¿ 2n. We will note: p ≤ Benes
security (m, 2n), with Benes 8 security (x, y) → 0 when x ¿ y.

Proof This theorem is given in [1]. However the proof given in [1] is valid
for most attacks, but not for all CPA-2 attacks (see [16]). Nevertheless
in [16] a complete proof is given, and it is shown that p ≤ m2

2·2n , p ≤ m3

22n ,
p ≤ m4

23n + 6m2

22n , and more generally, it is shown that for all integer k ≥ 1,
p ≤ k·k2km2

2·22n + mk+1

2nk . So for any ε > 0, for sufficiently large n, m ¿ 2n(1−ε)

gives CPA-2 security for Benes.

Information-theoretic properties With our notations of section 2, we
have here n′ = 2n, N = 22n · 2n, K = 8n · 2n, and we have security when
m ¿ 2n(1−ε) for any ε > 0, so when τ ¿ 2n·2n

22n·2n
= 1

2n . Here we have security
when e
ll2n(1−ε) for any ε > 0, and K = 8n · 2n. Since for all ε′ > 0 we can find an
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ε > 0 such that for sufficiently large n, 2n(1−ε) ≥ (8n · 2n)(1−ε) this scheme
is “near-optimal” with our definition of section 2. However here (as with
ψ6), when τ is fixed, N is fixed, or when K is fixed, N is fixed (N ' K2).
In this paper we will design some solutions for various independent values
of N and K.

4 A stream cipher from a pseudorandom function

From a pseudorandom permutation G of α bits → α bits, we have im-
mediately a block encryption scheme: each cleartext Mi will have α bits,
1 ≤ i ≤ m, and the ciphertext Ci will be: Ci = G(Mi). If the probability
to distinguish G from a truly random permutation of α bits in CPCA-2 is
negligible when the number m of messages is ≤ m0, then this scheme is
secure against CPCA-2 when m ≤ m0.
From a pseudorandom function G of α bits → β bits, we can also easilly
design a scheme to encrypt messages. We can proceed like this: each clear-
text Mi will have β bits, 1 ≤ i ≤ m, and the ciphertext Ci of the cleartext
number i will be: Ci = G(i) ⊕Mi (this is a stream cipher). If the proba-
bility to distinguish G from a truly random permutation of α bits → β bits
in CPA-2 is negligible when the number m of messages is ≤ m0, then this
scheme is secure against CPCA-2 when m ≤ m0. This comes from the fact
that in CPCA-2, when Mi is chosen and Ci is given then this is equivalent
to choose i and get G(i), and when Ci is chosen and Mi is given, then this
is again equivalent to choose i and get G(i).

5 First variants of Benes, concatenations

5.1 Concatenation of two Benes: Benes from 2n bits → 4n
bits

Let [Li, Ri], 1 ≤ i ≤ m, be the inputs, [Li, Ri] ∈ I2n, let f1, · · · , f16 be 16
functions of Fn, and let G(f1, · · · , f16)[Li, Ri] = [Si, Ti, S

′
i, T

′
i ] if and only if:

{
Benes(f1, · · · , f8)[Li, Ri] = [Si, Ti]
Benes(f9, · · · , f16)[Li, Ri] = [S′i, T

′
i ]

Theorem 5.1 The probability p to distinguish G(f1, · · · , f16) with 16 ran-
dom functions f1, · · · , f16 of In → In from a truly random function of
I2n → I2n in CPA-2 always satisfies: p ¿ 1 when m ¿ 2n. More precisely:
p ≤ 2 Benes security (m, 2n), where Benes security (m, 2n) represents the
security bound of the original Benes function (as seen in section 3).
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Proof G(f1, · · · , f16) is the concatenation of two Benes functions with
independent keys. The probability p to distinguish the [Si, Ti, S

′
i, T

′
i ] val-

ues from random values [Ai, Bi, Ci, Di] in CPA-2 is p ≤ p1 + p2, where
p1 is the probability to distinguish the [Si, Ti, S

′
i, T

′
i ] from [Si, Ti, Ci, Di]

in CPA-2 (where Ci, Di are random values), and p1 is the probability to
distinguish the [Si, Ti, Ci, Di] from [Ai, Bi, Ci, Di], 1 ≤ i ≤ m, in CPA-2
(where Ai, Bi, Ci, Di, 1 ≤ i ≤ m, are random values). Now p1 ≤ Benes
security(m, 2n) (because if we want to distinguish [Si, Ti, S

′
i, T

′
i ] from [Si, Ti,

Ci, Di] with probability p1, we can distinguish [S′i, T
′
i ] from [Ci, Di], 1 ≤ i ≤

m, with probability p1) and similarly p2 ≤ Benes security(m, 2n). So p ≤ 2
Benes security(m, 2n) as claimed.

Information-theoretic properties of this scheme With our notations
of section 2, we have here n′ = 4n (from a function generator of α bits → β
bits we can build a stream cipher with messages of β bits as explained in
section 4, and here β = 4n), N = 22n ·4n, K = 16n ·2n, and we have security
when m ¿ 2n(1−ε) for any ε > 0. Here we have security when e ¿ 2n(1−ε)

for any ε > 0, and K = 16n · 2n, so the scheme is “near-optimal” with our
definition of section 2.

5.2 Other variants of Benes from 2n bits → 4n bits

Instead of using 16 functions of Fn as the key, we can use only 12 functions
of Fn (or even less), as we will explain now. However this change (12 instead
of 16) is not a very important change for us, since we want to obtain “near-
optimal” schemes and with our definition of “near-optimal”, a change by
factor 12

16 , or 2, or any small constant, does not change the property of
“near-optimal” (unlike the change by factor 2n or

√
2n), i.e. we concentrate

the analysis on the dominant terms of the values K, N , τ . However in
practical applications, to divide, the length of the key by a factor 12

16 or by
a factor 2 might be interesting.

Let [Li, Ri], 1 ≤ i ≤ m, be the inputs, [Li, Ri] ∈ I2n, let f1, · · · , f12 be
12 functions of Fn, and let G(f1, · · · , f12)[Li, Ri] = [Si, Ti, S

′
i, T

′
i ] if and only

if: 



Si = f5(Xi)⊕ f6(Yi)
Ti = f7(Xi)⊕ f8(Yi)
S′i = f9(Xi)⊕ f10(Yi)
T ′i = f11(Xi)⊕ f12(Yi)

with {
Xi = f1(Li)⊕ f2(Ri)
Yi = f3(Li)⊕ f4(Ri)

Theorem 5.2 The probability p to distinguish G(f1, · · · , f12) with 12 ran-
dom functions f1, · · · , f12 of In → In from a truly random function of
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I2n → I2n in CPA-2 always satisfies: p ¿ 1 when m ¿ 2n. More precisely:
p ≤ the probability q to have a “circle in X,Y ” when f1, f2, f3, f4 are ran-
domly chosen, and this probability q is ¿ 1 when m ¿ 2n (or m ¿ 2n(1−ε)

for any fixed ε > 0

Definition 5.1 We will say that we have “a circle in X, Y of length k” if
we have k pairwise distinct indices such that Xi1 = Xi2, Yi2 = Yi3, Xi3 =
Xi4,. . ., Xik−1

= Xik , Yik = Yi1. We will say that we have “a circle in X,Y ”
if there is an even integer k, k ≥ 2, such that we have a circle in X, Y of
length k.

Proof of theorem 5.2 (We give here only the main idea since for our
purpose theorem 5.1 is sufficient as explained above). In [1] and in [16] it
is explained that if f1, f2, f3, f4 are such that we have no circle in X,Y ,
then f5, f6, f7, f8 will make Si, Ti perfectly random, because in each new
equation we have f5 or f6 or f7 or f8 on a new variable. With exactly the
same argument, we see that if f1, f2, f3, f4 are such that we have no circle in
X, Y , f5, f6, f7, f8, f9, f10, f11, f12 will make Si, Ti, S

′
i, T

′
i perfectly random.

Moreover in [16] it is proved that the probability q to have a circle in X,Y
when f1, f2, f3, f4 are randomly chosen in Fn is ¿ 1 when m ¿ 2n(1−ε) (for
any fixed ε > 0).

5.3 Concatenation of λ Benes: Benes from 2n bits → λ(2n)
bits

What we have done in sections 5.1 and 5.2 for two Benes, we can do it for
any number λ of Benes. We obtain like this from 8λ (or 4λ + 4) functions
fi of n bits → n bits, a function G of 2n bits → λ(2n) bits. For each fixed
value of λ, G is with K = 8λ · n · 2n (or K = (4λ + 4)n2n), n′ = 2λn,
N = 22n · 2λn, and we have security when m ¿ 2n(1−ε) for any ε > 0. Here
we have security when e ¿ 2n(1−ε) for any ε > 0, and K = 8λn · 2n, so for
each fixed value of λ, the scheme is “near-optimal” with our definition of
section 2.

6 First variants of Benes, fixing some output bits

6.1 Benes from 2n bits → n bits

Here we can decide to use a Benes scheme such that the output is only Si

(we do not need Ti anymore). We obtain like this a pseudorandom function
G of 2n bits → n bits, the secret key is made of 6 random functions fi (we
do not need f7 and f8 anymore). From theorem 3.3 we have:

Theorem 6.1 The probability p to distinguish this scheme G with 6 ran-
dom functions fi in CPA-2 always satisfies: p ¿ 1 when m ¿ 2n. More
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precisely: p ≤ Benes security (m, 2n), with the same notation for Benes
security (m, 2n) as above.

Proof Each CPA-2 on G with probability p gives a CPA-2 on the orig-
inal Benes with probability p. So theorem 6.1 is immediately implied by
theorem 3.3.

Information-theoretic properties of this scheme Here n′ = n, N =
22n · n, K = 6n · 2n, and we have security when m ¿ 2n(1−ε) for any ε >
0.Here we have security when e ¿ 2n(1−ε) for any ε > 0, and K = 6nλn ·2n,
so the scheme is “near-optimal” with our definition of section 2.

6.2 Benes from 2n bits → β bits, 1 ≤ β ≤ n

Let [Li, Ri], 1 ≤ i ≤ m, be the inputs, [Li, Ri] ∈ I2n, let f1, · · · , f4 be
4 random functions of In → In, let f5, · · · , f8 be 4 random functions of
In → Iβ, and let G(f1, · · · , f8)[Li, Ri] = [Si] if and only if: Si = f5(f1(Li)⊕
f2(Ri))⊕ f6(f3(Li)⊕ f4(Ri)). Here G is the restriction of Benes to the first
β bits.

Theorem 6.2 The probability p to distinguish this scheme G with 4 random
functions of In → In, and 4 random functions of In → Iβ in CPA-2 always
satisfies: p ¿ 1 when m ¿ 2n. More precisely: p ≤ Benes security (m, 2n),
with the same notation for Benes security (m, 2n) as above.

Proof Each CPA-2 on G with probability p gives a CPA-2 on the orig-
inal Benes with probability p. So theorem 6.2 is immediately implied by
theorem 3.3.

Information-theoretic properties of this scheme Here n′ = β, N =
22n · β, K = 4n · 2n + 4β · 2n, and we have security when m ¿ 2n(1−ε) for
any ε > 0. Here we have security when e ¿ 2n(1−ε) for any ε > 0, and
K = 4n · 2n + 4β · 2n ≤ 8n · 2n, so the scheme is “near-optimal” with our
definition of section 2.

Conclusion of sections 5 and 6 By combining the constructions of
sections 5 and 6, we can design “near-optimal” pseudorandom functions
generator G of 2n bits → β bits, for all integer β. So it is relatively easy to
modify the length of the outputs of G. Let Fα,β be the set of all functions
if Iα → Iβ. |Fα,β| = (2β)2

α
= 2β·2α

. So a random element of Fα,β is given
by β · 2α bits. This value increases only linearly in β, but exponentially in
α. This explains, in a way why, when we design pseudorandom functions
generator G of α bits → β bits, to modify β is relatively easier than to
modify α. In the next sections, we will modify α.
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7 “Concentration” of the key for pseudorandom
functions

7.1 Benes from α bits → 2n bits, n ≤ α ≤ 2n

Let [Li, ri], 1 ≤ i ≤ m, be the inputs, Li ∈ In, ri ∈ Iα−n. Let Ri = ri||02n−α

where 02n−α is 2n − α bits at 0. So Ri ∈ In (since ri has α − n bits and
02n−α has 2n− α bits). Let f1, · · · , f8 be 8 random functions of Fn, and let
G(f1, · · · , f8)[Li, ri] = Benes(f1, · · · , f8)[Li, Ri].

Theorem 7.1 The probability p to distinguish this scheme G(f1, · · · , f8)
with 8 random functions f1, · · · , f8 of In → In from truly random functions
of Iα → I2n in CPA-2 always satisfies: p ¿ 1 when m ¿ 2n. More precisely:
p ≤ Benes security (m, 2n), where Benes security (m, 2n) represents the
security bound of the original Benes function.

Proof Each CPA-2 on G with probability p gives immediately a CPA-2
on the original Benes with probability p, since in a CPA-2 on the original
Benes we can always decide to choose Ri values with the 2n−α last bits at
0. So theorem 7.1 is immediately implied by theorem 3.3

Remark This construction of “near-optimal” pseudorandom function of
α bits → 2n bits from a “near-optimal” pseudorandom function of 2n bits
→ 2n bits is very easy (even obvious), but with pseudorandom permutation
we will not be able to get such a simple construction (because if we fix at
0 some bits of the input we do not obtain a permutation anymore). The
“concentration” of the key for pseudorandom permutations is a much more
difficult problem than with pseudorandom functions.

Information-theoretic properties of this scheme Here n′ = 2n, N =
2α · 2n, K = 8n · 2n (or K = 7n · 2n + n · 2α−n since we can define f2 from
Iα−n → In), and we have security when m ¿ 2n(1−ε) for any ε > 0, so we
have security when e ¿ 2n(1−ε) for any ε > 0, and K = 8n · 2n. So this
scheme is “near-optimal” with our definition of section 2.

7.2 Pseudorandom functions of α bits → 2n bits, 1 ≤ α ≤ n

Let li, 1 ≤ i ≤ m, be the inputs, li ∈ Iα. Let f1, f2 be 2 random functions
of Iα → In, and let G be the function of Iα → I2n defined by: G(li) =
f1(li)||f2(li).

Theorem 7.2 If f1, f2 are 2 perfectly random functions of Iα → In, inde-
pendently chosen, then G is a perfectly random function of Iα → I2n.
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Proof The proof is obvious: for each new value li, the value f1(li) and
f2(li) are perfectly random variables of In, independently chosen, so f1(li)||f2(li)
is a perfectly random variable of I2n.

Remark The only interest of this theorem 7.2 is to illustrate the fact that
in theorem 7.1 the condition n ≤ α is not a real restriction in the design of
our pseudorandom functions. Or, equivalently, that when the length K of
the key becomes larger than the number of bits to define G, we can have a
perfectly random function G.

7.3 Pseudorandom functions of α bits → β bits, n ≤ α ≤ 2n

By combining the construction of section 7.1 and of section 5.3 we get im-
mediately a “near-optimal” function from α bits → β bits, n ≤ α ≤ 2n, for
all value α, with security against CPA-2 when m ¿ 2n.

8 “Dilution” of the key for pseudorandom func-
tions

8.1 Pseudorandom functions of 4n bits → 4n bits with secu-
rity when m ¿ 2n

Definition of G Let f
(1)
1 , · · · , f (1)

8 , f
(2)
1 , · · · f (2)

8 , · · ·, f
(8)
1 , · · · f (8)

8 be 64
random functions of Fn, independently chosen. Let F1, · · · , F8 be 8 random
functions of I2n → I2n such that:
F1 = Benes(f (1)

1 , · · · , f (1)
8 )

F2 = Benes(f (2)
1 , · · · , f (2)

8 )
...
F8 = Benes(f (8)

1 , · · · , f (8)
8 ).

Let G(f (1)
1 , · · · , f (8)

8 ) be the function of I4n → I4n defined by

G = Benes(F1, · · · , F8).

Expression of G Let [Li, Ri], 1 ≤ i ≤ m, be the inputs of G, Li, Ri ∈ I2n,
with Li = [li, ri], Ri = [l′i, r

′
i], li, ri, l

′
i, r

′
i ∈ In.

Then ∀i, 1 ≤ i ≤ m, ∀[Si, Ti] ∈ I4n, G[Li, Ri] = [Si, Ti] if and only if:
{

Si = F5(F1(Li)⊕ F2(Ri))⊕ F6(F3(Li)⊕ F4(Ri))
Ti = F7(F1(Li)⊕ F2(Ri))⊕ F8(F3(Li)⊕ F4(Ri))

with, for example,
F1(Li) = F1[li, ri]=[f (1)

5 (f (1)
1 (li)⊕ f

(1)
2 (ri))⊕ f

(1)
6 (f (1)

3 (li)⊕ f
(1)
4 (ri)),

f
(1)
7 (f (1)

1 (li)⊕ f
(1)
2 (ri))⊕ f

(1)
8 (f (1)

3 (li)⊕ f
(1)
4 (ri))]
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Theorem 8.1 The probability p to distinguish G(f (1)
1 , · · · , f (8)

8 ) with 64 ran-
dom functions f

(1)
1 , · · · , f (8)

8 randomly and independently chosen in Fn from
truly random functions of I4n → I4n in CPA-2 always satisfies: p ¿ 1 when
m ¿ 2n. More precisely: p ≤ Benes security (m, 22n)+8 Benes security
(m, 2n), where Benes security (m, 2n) represents the security bound of the
original Benes function.

Proof p ≤ q + r1 + r2 + · · ·+ r8

• where q iq the probability to distinguish Benes(F1, · · · , F8) from a
random function of F4n when F1, · · · , F8 are 8 random functions inde-
pendently chosen in F2n.

• where ri, 1 ≤ i ≤ 8, is the probability to distinguish Fi = Benes(f (i)
1 ,

· · · , f (i)
8 ) from a random function of F2n when f

(i)
1 , · · · , f (i)

8 are 8 ran-
dom functions independently chosen in F2n.

So q = Benes security (m, 22n), and ∀i, 1 ≤ i ≤ 8, ri = Benes security
(m, 2n), so we have p ≤ Benes security (m, 22n) + 8 Benes security (m, 2n),
as claimed.

Remark Here Benes security (m, 22n) is much smaller than Benes security
(m, 2n) but we do not need this property. More precisely, in a construction
G = H(F1, · · · , F8) with F1, · · · , F8 build with Benes as above, the birthday
bound for H is sufficient to prove that G will be near-optimal (this comes
from the fact that here the Fi are of 2n bits→ 2n bits and G of 4n bits→ 4n
bits with security when m ¿ 2n). We will use this property in section 9.1
where H will be, in this example, a Feistel scheme with 4 rounds.

Information-theoretic properties of this scheme Here n′ = 4n, N =
24n ·4n, K = 64n ·2n, and we have security when m ¿ 2n(1−ε) for any ε > 0,
so when e ¿ 2n(1−ε), with K = 64n · 2n. So this scheme is “near-optimal”
with our definition of section 2.

8.2 Pseudorandom functions of 2αn bits → 2αn bits with se-
curity when m ¿ 2n

We can build a “near-optimal” function G of 8n bits → 8n bits with G =
Benes(F1, · · · , F8) where F1, · · · , F8 are 8 functions of 4n bits→ 4n bits gen-
erated as in section 8.1. So here the secret key is made by 8× 64 = 512 ran-
dom functions fi of n bits → n bits, and the proof that G is “near-optimal”
is obtained as we did for the proof of theorem 8.1. This construction can
be generalized immediately for each fixed value α, to get a “near-optimal”
function of 2αn bits → 2αn bits with security when m ¿ 2n (however α
must be small if we want a key not too large).

13



8.3 Pseudorandom functions of α bits → β bits

By combining the constructions of sections 5, 6, 7 and 8, we can build a
“near-optimal” function of α bits → β bits, for all values α and β, with
security against CPA-2 when m ¿ 2n (here unlike with the original Benes
or Feistel schemes, α and β are not fixed when n is fixed).
For example, to get a function of 3n bits → n bits, with security when m
2n we will start from the construction of section 8.2 of 4n bits → 4n bits and
then by fixing some input/output values as we did in sections 5, 6, we get a
quasi-optimal function of 3n bits → n bits (here instead of 64 functions we
need only 60 functions since we do not need f

(2)
2 , f

(2)
4 , f

(4)
2 and f

(4)
4 since we

start from 3n bits instead of 4n bits).

8.4 A natural scheme that is not near-optimal here: the
Benes/Damg̊ard scheme

To obtain a pseudorandom function of 3n bits → n bits with security when
m ¿ 2n, we have seen a solution in section 8.3 above. This solution uses
64-4=60 random functions of n bits → n bits. We might think of a simpler
construction, for example the scheme H below. Let [li, ri, l

′
i], 1 ≤ i ≤ m,

be the inputs, li, ri, l
′
i ∈ In. Benes is a function of 2n bits → 2n bits. Let

Benes∗ denotes the function of 2n bits → n bits that is made of the first n
bits of Benes.
Let f1, · · · , f6, f

′
1, · · · , f ′6 be 12 random functions of Fn. Let H be the

function of 3n bits → n bits such that: H[li, ri, l
′
i] = ti if and only if:

ti = Benes∗(f ′1, · · · , f ′6)(Benes∗(f1, · · · , f6)[li, ri], l′i). So we have: ti =
f ′5(f ′1(si)⊕f ′2(l′i))⊕f ′6(f ′3(si)⊕f ′4(l′i)) with si = f5(f1(li)⊕f2(ri))⊕f6(f3(li)⊕
f4(ri)).
We call this scheme H a “Benes/Damg̊ard” scheme, since the construction
is very similar to the Damg̊ard construction of [3] when we apply this con-
struction to build a Hash function of 3n bits → n bits from a Hash function
of 2n bits → n bits. the construction of [3] is proved secure in the following
sense: from a function of 2n bits → n bits resistant to collisions, then the
construction of 3n bits → n bits will also be resistant to collisions. However
the property to be resistant to CPA-2 when m ¿ 2n is not equivalent with
the property to be resistant to collision: as we will see below, this property
is true for Benes∗ of 2n bits → n bits, and will be wrong for H of 3n bits
→ n bits.

A (non-adaptive) chosen plaintext attack on H when m ' √
2n

Let us choose l′i = constant, and let N be the number of (i, j), 1 ≤ i < j ≤ m,
such that ti = tj .

• For random values ti, we will have N ' m(m−1)
2·2n (1) since ti ∈ In.

14



• For ti = H[li, ri, l
′
i], since l′i = l′j , we can have ti = tj if si = sj , or

if si 6= sj and f ′5(f ′1(si) ⊕ f ′2(l′i)) ⊕ f ′6(f ′3(si) ⊕ f ′4(l′i)) = f ′5(f ′1(sj) ⊕
f ′2(l′j))⊕ f ′6(f ′3(sj)⊕ f ′4(l′j)). So we will have N ' 2m(m−1)

2·2n (2). When
m ' √

2n, we will be able to distinguish if we are in case (1) or (2), so
when m ' √

2nwe can distinguish H from a truly random function of
3n bits → n bits.

So H is not near-optimal (we just have the birthday bound for H). This
example shows that not all the simple constructions from Benes are near-
optimal, and that our results of sections 8.1, 8.2 and 8.3 are not obvious.

9 “Dilution” of the key for pseudorandom permu-
tations

9.1 Pseudorandom permutation of 4n bits → 4n bits with
security when m ¿ 2n

Definition of G Let f
(1)
1 , · · · , f (1)

8 , f
(2)
1 , · · · f (2)

8 , · · ·, f
(4)
1 , · · · f (4)

8 be 32
random functions of Fn, independently chosen. Let F1, F2, F3, F4 be 4 ran-
dom functions of I2n → I2n such that:
F1 = Benes(f (1)

1 , · · · , f (1)
8 )

F2 = Benes(f (2)
1 , · · · , f (2)

8 )
F3 = Benes(f (3)

1 , · · · , f (3)
8 )

F4 = Benes(f (4)
1 , · · · , f (4)

8 ).
Let G(f (1)

1 , · · · , f (4)
8 ) be the function of I4n → I4n defined by

G = ψ4(F1, F2, F3, F4).

Expression of G Let [Li, Ri], 1 ≤ i ≤ m, be the inputs of G, Li, Ri ∈ I2n,
with Li = [li, ri], Ri = [l′i, r

′
i], li, ri, l

′
i, r

′
i ∈ In.

Then ∀i, 1 ≤ i ≤ m, ∀[Si, Ti] ∈ I4n, G[Li, Ri] = [Si, Ti] if and only if:

(1)

{
Si = Li ⊕ F1(Ri)⊕ F3(Ri ⊕ F2(Li ⊕ F1(Ri)))
Ti = Ri ⊕ F2(Li ⊕ F1(Ri))⊕ F4(Si)

We also have this expression of the [Li, Ri] from the [Si, Ti]:

(2)

{
Ri = Ti ⊕ F4(Si)⊕ F2(Si ⊕ F3(Ti ⊕ F4(Si)))
Li = Si ⊕ F3(Ti ⊕ F4(Si))⊕ F1(Ri)

Theorem 9.1 The probability p to distinguish G(f (1)
1 , · · · , f (4)

8 ) with 32 ran-
dom functions f

(1)
1 , · · · , f (4)

8 randomly and independently chosen in Fn from
truly random permutations of I4n → I4n in CPCA-2 always satisfies: p ¿ 1
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when m ¿ 2n. More precisely: p ≤ m(m−1)
22n + 4 Benes security (m, 22n),

where Benes security (m, 2n) represents the security bound of the original
Benes function.

Remark As already noticed in [14], here we have CPCA-2 security for G,
from CPCA-2 security for ψ4 and only CPA-2 security (not CPCA-2) for
the Fi functions.

Proof We give here the main ideas since a similar proof was done in [14]
p.147. In CPCA-2 we can have two types of queries: direct or inverse.

First case: direct query If [Li, Ri] is the input of a direct query, then
we will get [Si, Ti] with the expression (1). So [Si, Ti] can be computed
from the values F1(Ri), F2(Li ⊕ F1(Ri)), F3(Ri ⊕ F2(Li ⊕ F1(Ri))) and
F4(Li ⊕ F1(Ri)⊕ F3(Ri ⊕ F2(Li ⊕ F1(Ri)))).

Second case: inverse query If [Si, Ti] is the input of an inverse query,
then we will get [Li, Ri] with the expression (2). So [Li, Ri] can be com-
puted from the values F4(Si), F3(Ti⊕F4(Si)), F2(Si⊕F3(Ti⊕F4(Si))) and
F1(Ti ⊕ F4(Si)⊕ F2(Si ⊕ F3(Ti ⊕ F4(Si)))).

Let us assume that we have a CPCA-2 to distinguish G from a truly
random permutation of 4n bits → 4n bits with probability p. From the-
orem 3.1 (Luby and Rackoff) and the analysis above of direct and inverse
queries, we know that p ≤ m(m−1)

22n + q, where q is the probability to dis-
tinguish F1, F2, F3, F4 from 4 truly random functions of 2n bits → 2n bits
in CPA-2. Now from theorem 3.3 (Security of Benes) we know that q ¿ 1
when m ¿ 2n, and more precisely that q ≤ 4 Benes security (m, 2n). So we
have p ≤ m(m−1)

22n + 4 Benes security (m, 2n), as claimed.

Information-theoretic properties of this scheme Here n′ = 4n, N =
24n ·4n, K = 32n ·2n, and we have security when m ¿ 2n(1−ε) for any ε > 0,
so when e ¿ 2n(1−ε), with K = 32n · 2n. So this scheme is “near-optimal”
with our definition of section 2.

Remark Here as noticed in section 8.1, when G = H(F1, · · · , F4), the
birthday bound for H is sufficient to prove that G will be near-optimal,
because G is a function of 4n bits → 4n bits, the Fi are from 2n bits → 2n

bits, and the key is made from functions f
(j)
i of n bits → n bits.
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9.2 Pseudorandom permutations of 2α bits → 2α bits with
security when m ¿ 2n

Let F1, F2, F3, F4 be 4 pseudorandom functions of α bits → α bits, α ≥ 2n,
build with independent keys, such that the probability q to distinguish these
functions from truly random functions of Iα → Iα satisfies q ¿ 1 when m ¿
2n, and such that these functions are near-optimal. We know from section 8
how to build such functions. Let G be the pseudorandom permutation of
2α bits → 2α bits such that: G = ψ4(F1, F2, F3, F4).

Theorem 9.2 The probability p to distinguish G from a truly random per-
mutation of I2α → I2α in CPCA-2 satisfies: p ¿ 1 when m ¿ 2n.

Proof The proof is the same as the proof of theorem 9.1: the probability p
to distinguish G from a truly random permutation of I2α in CPCA-2 satisfies
p ≤ q + r, where q is the probability to distinguish F1, F2, F3, F4 from truly
random functions of Iα → Iα in CPA-2, and where r is the probability
to distinguish ψ4(F1, F2, F3, F4) from a truly random permutation of I2α

when F1, F2, F3, F4 are randomly and independently chosen in the set of all
functions of Iα → Iα. From Luby-Rackoff theorem we have r ≤ m(m−1)

2α .
Since here by hypothesis α ≥ 2n, q and r are negligible if m ¿ 2n, so p is
negligible if m ¿ 2n.

Information-theoretic properties of this scheme Here n′ = 2α, N =
22α · 2α, K = O(n · 2n), and we have security when m ¿ 2n(1−ε) for any
ε > 0, so when e ¿ 2n(1−ε). So this scheme is “near-optimal” with our
definition of section 2.

9.3 Pseudorandom permutation of 2α bits → 2α bits, 2α ≥ 2n
with security when m ¿ 2n

Let F1, F2, F3, F4, F5, F6 be 6 pseudorandom functions of α bits → α bits,
α ≥ n, build with independent keys, such that the probability q to distin-
guish these functions from truly random functions of Fα satisfies q ¿ 1 when
m ¿ 2n, and such that these functions are near-optimal. We know from
sections 7 and 8 how to build such functions. Let G be the pseudorandom
permutation of 2α bits → 2α bits such that: G = ψ6(F1, F2, F3, F4, F5, F6).

Theorem 9.3 The probability p to distinguish G from a truly random per-
mutation of I2α → I2α in CPCA-2 satisfies: p ¿ 1 when m ¿ 2n.

Proof The proof is the same as the proof of theorem 9.2, except that in-
stead of using theorem 3.1 for ψ4, we use now theorem 3.2 for ψ6. The
probability p to distinguish G from a truly random permutation of I2α
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in CPCA-2 satisfies p ≤ q + r, where q is the probability to distinguish
F1, F2, F3, F4, F5, F6 from truly random functions of Iα → Iα in CPA-2, and
where r is the probability to distinguish ψ6(F1, F2, F3, F4, F5, F6) from a
truly random permutation of I2α when F1, F2, F3, F4, F5, F6 are randomly
and independently chosen in the set of all functions of Iα → Iα. From the-
orem 3.2 we have r ¿ 1 when m ¿ 2α (instead of m ¿ 2α/2 for ψ4). Since
here by hypothesis α ≥ n, q and r are negligible if m ¿ 2n, so p is negligible
if m ¿ 2n.

Information-theoretic properties of this scheme Here n′ = 2α, N =
22α · 2α, K = O(n · 2n), and we have security when m ¿ 2n(1−ε) for any
ε > 0, so when e ¿ 2n(1−ε). So this scheme is “near-optimal” with our
definition of section 2.

10 “Concentration” of the key for pseudorandom
permutations

To build a pseudorandom permutation of 2α bits → 2α bits, n ≤ α < 2n,
with security when m ¿ 2n with near-optimal security is still an open
problem. We suggest that the analysis of unbalanced Feistel schemes of
2n bits → 2n bits built from random round functions of α bits → α bits,
n < α < 2n might be useful, but such an analysis has only been done so far
up to birthday bound (cf. [11]).

11 Examples of applications

• As mentioned in [1], the Benes scheme can be useful to design keyed
hash functions. The variants given in this paper can also be used to
design keyed hash functions, with a compression that can be chosen
independently from the length of the key.

• As mentioned in [9], schemes with local randomness properties can
be excellent building blocks within practical ciphers for spreading lo-
cal randomness when used together with compressing transformations
that guarantee confusion.

• As also mentioned in [9], they are very useful wherever a secret key
must be expanded, for example in key scheduling within block ciphers.

• Finally, they can be used to send message with unconditional security
when the number of bits obtained by the enemy is smaller compared
with the number of bits of the secret key, as explained in this paper.
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12 Conclusion

In this paper, we have seen how to design pseudorandom functions and pseu-
dorandom permutations with a security bound near the optimal information-
theoretic security bound, and with various density of the secret keys.
For pseudorandom functions, we have shown some solutions for all the pos-
sible densities of the secret keys. For pseudorandom permutations, we have
also shown some solutions for all possible densities of the secret keys when
the number of bits of the keys is about ≤ the square root of the total number
of possible inputs. If the densities of secret keys is such that the number
of bits of the keys is larger than the square root of the total number of
possible inputs (i.e. “densification of the keys” for pseudorandom permuta-
tions) then, to obtain similar result, we suggest to study unbalanced Feistel
schemes with rounds of functions of α bits → β bits, with α > β (the anal-
ysis of such schemes beyong the birthday bound is still an open problem.
The security up to the birthday bound was proved in [11]).
We can notice that all our constructions use only the original Benes and
Feistel constructions with very simple changes: concatenations, composi-
tion of functions and fixing at 0 some values. Our schemes are very fast to
compute (the complexity is linear in the number of bits of the messages to
be sent) when the keys have been generated and stored. The schemes are
also very flexible, since Alice can send as many messages as wanted one day,
and these messages will be decrypted by Bob with the keys, and then Alice
can send some other messages the other days (with the same keys), with still
the same global security property (i.e. we have security against Charlie with
unbounded computing power if the number of bits of information obtained
by the enemy in an adaptive attack is very small compared with the number
of bits of the key). These schemes can also be seen as generalizations of
the one-time-pad but here instead of a number of bits of key equal to the
number of bits of the message sent, we need a number of bits of key about
equal with the number of bits of information obtained by the enemy in an
adaptive attack.
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