
A Sender Verifiable Mix-Net and
a New Proof of a Shuffle

Douglas Wikström

Royal Institute of Technology (KTH)
KTH, Nada, SE-100 44 Stockholm, Sweden

dog@nada.kth.se

May 31, 2005

Abstract. We introduce the first El Gamal based mix-net in which
each mix-server partially decrypts and permutes its input, i.e., no re-
encryption is necessary. An interesting property of the construction is
that a sender can verify non-interactively that its message is processed
correctly. We call this sender verifiability.
We prove the security of the mix-net in the UC-framework against static
adversaries corrupting any minority of the mix-servers. The result holds
under the decision Diffie-Hellman assumption, and assuming an ideal bul-
letin board and an ideal zero-knowledge proof of knowledge of a correct
shuffle.
Then we construct the first proof of a decryption-permutation shuffle,
and show how this can be transformed into a zero-knowledge proof of
knowledge in the UC-framework. The protocol is sound under the strong
RSA-assumption and the discrete logarithm assumption.
Our proof of a shuffle is not a variation of existing methods. It is based
on a novel idea of independent interest, and we argue that it is at least
as efficient as previous constructions.

1 Introduction

The notion of a mix-net was invented by Chaum [10]. Properly constructed a
mix-net takes a list of cryptotexts and outputs the cleartexts permuted using a
secret random permutation. Usually a mix-net is realized by a set of mix-servers
organized in a chain that collectively execute a protocol. Each mix-server receives
a list of encrypted messages from the previous mix-server, transforms them,
using partial decryption or random re-encryption, reorders them, and outputs
the result. The secret permutation is shared by the mix-servers.

1.1 Previous Work

Chaum’s original “anonymous channel” [10,43] enables a sender to send mail
anonymously. When constructing election schemes [10,17,44,49,42] a mix-net can
be used to ensure that the vote of a given voter cannot be revealed. Abe gives an

efficient construction of a general mix-net [2], and argues about its properties.
Jakobsson has written (partly with Juels) more general papers on the topic of
mixing [31,32,33] focusing on efficiency. There are two known approaches to
proving a correct shuffle efficiently. These are introduced by Furukawa et al.
[19,20,21], and Neff [40,41] respectively. Groth [28] generalizes Neff’s protocol to
form an abstract protocol for any homomorphic cryptosystem.

Desmedt and Kurosawa [13] describe an attack on a protocol by Jakobsson
[31]. Similarly Mitomo and Kurosawa [39] exhibit a weakness in another pro-
tocol by Jakobsson [32]. Pfitzmann has given some general attacks on mix-nets
[46,45], and Michels and Horster give additional attacks in [38]. Wikström [51]
gives several attacks for a protocol by Golle et al. [27]. He also gives attacks
for the protocols by Jakobsson [32] and Jakobsson and Juels [34]. Abe [3] has
independently found related attacks.

Canetti [9], and independently Pfitzmann and Waidner [47] proposed secur-
ity frameworks for reactive processes. We use the former universal composability
(UC) framework. Both frameworks have composition theorems, and are based
on older definitional work. The initial ideal-model based definitional approach
for secure function evaluation is informally proposed by Goldreich, Micali, and
Wigderson in [23]. The first formalizations appear in Goldwasser and Levin [25],
Micali and Rogaway [37], and Beaver [5]. Canetti [8] presents the first defini-
tion of security that is preserved under composition. See [8,9] for an excellent
background on these definitions.

Wikström [52] defines the notion of a mix-net in the UC-framework, and
provides a construction that is provably secure against static adversaries un-
der the decisional Diffie-Hellman assumption. The scheme is practical when the
number of mix-servers is small, but for more than a handful of mix-servers it is
not.

1.2 Contributions

We introduce a new type of El Gamal based mix-net in which each mix-server
only decrypts and permutes its input. No re-encryption is necessary. This allows
an individual sender to verify non-interactively that its message was processed
correctly, i.e., the scheme is sender verifiable. Although some older constructions
have this property, our is the first provably secure scheme.

Then we give the first proof of a decrypt-permutation shuffle of El Gamal
cryptotexts. There are two known approaches, [40,28] and [19], to construct such
a protocol, but our solution is based on a novel idea of independent interest, and
we argue that it is at least as efficient as previous schemes.

We also give the first transformation of a proof of a shuffle into an efficient
zero-knowledge proof of knowledge in the UC-framework. An important technical
advantage of the new decrypt and permute construction is that witnesses are
much smaller than for previous shuffle relations.

Combined, our results give a mix-net that is universally composable under
the DDH-assumption and the strong RSA-assumption against static adversar-

2

ies corrupting any minority of the mix-servers. The mix-net is efficient for any
number of mix-servers, improving the result in Wikström [52].

1.3 Outline of the Paper

The paper is organized as follows. We introduce notation in Section 2. In Section
3 we define the ideal mix-net functionality we wish to realize. The first partial
result in this direction is given in Section 4, where we describe a sender verifiable
mix-net and discuss what sender verifiability means. In Section 5 we describe a
zero-knowledge proof of knowledge that a mix-server processes its input correctly.
Then in Section 6 we show how this can be transformed into a realization of an
ideal zero-knowledge functionality in the UC-framework.

Proofs of all claims and formal definitions of our assumptions are given in
the appendix.

2 Notation

Throughout, S1, . . . , SN denote senders and M1, . . . ,Mk mix-servers. All parti-
cipants are modeled as interactive Turing machines. We abuse notation and use
Pi and Mj to denote both the machines themselves and their identity. We de-
note the set of permutations of N elements by ΣN . We use the term “randomly”
instead of “uniformly and independently at random”. A function f : N→ [0, 1] is
said to be negligible if for each c > 0 there exists a K0 ∈ N such that f(K) < K−c

for K > K0 ∈ N. A probability p(K) is overwhelming if 1− p(K) is negligible.
We assume that Gq is a group of prime order q with generator g for which the

Decision Diffie-Hellman (DDH) Assumption holds. Definition 10 in Section G.4
formalizes this assumption. Informally, it means that it is hard to distinguish
the distributions (gα, gβ , gαβ) and (gα, gβ , gγ) when α, β, γ ∈ Zq are randomly
chosen. This implies that also the Discrete Logarithm (DL) assumption holds,
namely that it is hard to compute the logarithm in base g of a random element in
Gq. For concreteness we let Gq be a subgroup of prime order q of the multiplic-
ative group Z∗p for some prime p. When we say that an element in Zq is prime,
we mean that its representative in {0, . . . , q − 1} is a prime when considered as
an integer.

We review the El Gamal [14] cryptosystem employed in Gq. The private key
x is generated by choosing x ∈ Zq randomly. The corresponding public key is
(g, y), where y = gx. Encryption of a message m ∈ Gq using the public key (g, y)
is given by E(g,y)(m, r) = (gr, yrm), where r is chosen randomly from Zq, and
decryption of a cryptotext on the form (u, v) = (gr, yrm) using the private key x
is given by Dx(u, v) = u−xv = m. Tsionis and Yung [50] show that the El Gamal
cryptosystem is semantically secure [26,36] under the DDH-assumption. We also
use an RSA modulus N = pq, where p and q are strong primes. We denote by
QRN the group of squares in ZN and adopt the convention that any element
b in QRN is written in boldface. We assume that the strong RSA-assumption
holds for such rings. Definition 11 in Section G.5 formalizes this assumption.

3

Informally, it means that given random (N,h), where h ∈ QRN, it is hard to
find a non-trivial eth root b of h, i.e., an e 6= ±1 such that be = h. This differs
from the RSA-assumption in that e is not fixed.

The primary security parameter K1 is the number of bits in q. Several other
security parameters are introduced later in the paper.

We denote by PRG a pseudo-random generator as defined in Section G.2. We
denote by Sort the algorithm that given a list of strings as input outputs the
same set of strings in lexicographical order.

2.1 The Universally Composable Security Framework

We give a concise and formal review of the framework in Appendix H, and
present an informal review here. The informal review should suffice to make the
paper intelligible, but to understand the proofs the reader may need to consult
Appendix H (or [9]).

The core of the framework consists of the real model, the ideal model, and
many different hybrid models. In all models the corresponding adversary may
corrupt a certain fraction of the parties.

The real model is a model of real world computing, i.e. a list of interactive
Turing machines execute a protocol over an asynchronous authenticated open
network. The real adversary can see all communication and decide when mes-
sages are delivered. The ideal model contains an ideal functionality, i.e. a trusted
party, that defines a service we wish to implement. Thus, a protocol in the ideal
model is trivial and consists of machines that forwards any input to the ideal
functionality, and gives any output from the ideal functionality as output. The
ideal adversary decides when messages are delivered from the ideal functionality
but it cannot see any contents. To be able to seamlessly move from a real model
to an ideal model there are many hybrid models. A protocol running in a hybrid
model is a list of interactive Turing machines that has access to some set of ideal
functionalities.

The definition of security is based on the simulation paradigm. A protocol
is said to securely realize an ideal functionality if for any real adversary in the
real model, there is an ideal adversary in the ideal model that has the same
advantage. In contrast to classical definitions the distinguisher is present during
the execution and may influence the adversary based on part of the transcript.

The definition of security allows secure composition of protocols, i.e. given a
protocol secure in a hybrid model, and protocols that securely realize all ideal
functionalities in use, we have a natural protocol that turns out to be secure.

Universally composable security may be viewed both as a tool for modular
analysis of protocols and as an argument of the security of a protocol run in a
turbulent environment. Appendix H contains details for how the communication
model is defined.

The notion of a communication model, CI , used below is not explicit in
Canetti [9]. It works as a router between participants and between participants
and ideal functionalities. Given the input ((A1, B1, C1, . . .), . . . , (As, Bs, Cs, . . .)
it interprets Aj as the receiver of (Bj , Cj , . . .). The adversary cannot read the

4

correspondence with ideal functionalities, but it has full control over when a
message is delivered.

Our results hold for both blocking and non-blocking adversaries, where a
blocking adversary is allowed to block the delivery of a message indefinitely.

Definition 1. We define Ml to be the set of static adversaries that corrupt
less than l out of k participants of the mix-server type, and arbitrarily many
participants of the sender type.

Throughout we implicitly assume that a message handed to an ideal functional-
ity that is not on the form prescribed in its definition is returned to the sender
immediately. In particular this includes verifying membership in Gq when ap-
propriate. We use the same convention for definitions of protocols.

3 The Ideal Mix-Net

Although other definitions of security of mix-nets have been proposed, the most
natural definition is given by Wikström [52] in the UC-framework. He formalizes
a trusted party that waits for messages from senders, and then when a majority of
the mix-servers request it, outputs these messages but in lexicographical order.
For simplicity it accepts only one input from each sender. We prove security
relative this functionality.

Functionality 1 (Mix-Net (cf. [52])). The ideal functionality for a mix-net,
FMN, running with mix-servers M1, . . . ,Mk, senders P1, . . . , PN , and ideal ad-
versary S proceeds as follows

1. Initialize a list L = ∅, and set JP = ∅ and JM = ∅.
2. Suppose (Pi, Send,mi), mi ∈ Gq, is received from CI . If i 6∈ JP , set JP ←

JP ∪ {i}, and append mi to the list L. Then hand (S, Pi, Send) to CI .
3. Suppose (Mj , Run) is received from CI . Set JM ← JM ∪ {j}. If |JM | > k/2,

then sort the list L lexicographically to form a list L′, and hand
((S,Mj , Output, L′), {(Ml, Output, L′)}kl=1) to CI . Otherwise, hand CI the
list (S,Mj , Run).

4 A Sender Verifiable El Gamal Based Mix-Net

In recent El Gamal based mix-nets the mix-servers form a chain, and each mix-
server randomly permutes, partially decrypts, and re-encrypts the output of
the previous mix-server. In older constructions decryption is instead carried out
jointly at the end of the chain. Our construction is different in that each mix-
server partially decrypts and sorts the output of the previous mix-server. Thus,
no cryptotext is re-encrypted and the permutation is not random, but determ-
ined by the lexicographical order of the cryptotexts.

Let us consider why re-encryption is often considered necessary. In several
previous mix-nets each mix-server Mj holds a secret key xj ∈ Zq corresponding

5

to a public key yj = gxj . A joint public key y =
∏k

j=1 yj is used by a sender Si

to compute a cryptotext (u0,i, v0,i) = (gri , yrimi) of a message mi for a random
ri ∈ Zq. The mix-servers take turns and compute

(uj,i, vj,i)N
i=1 =

(
gsj,iuj−1,πj(i),

(k∏
l=j+1

yl

)sj,i

vj−1,πj(i)/u
−xj

j−1,πj(i)

)N

i=1

,

for random sj,i ∈ Zq and πj ∈ ΣN , i.e., each mix-server permutes, partially
decrypts and re-encrypts its input. In the end (vk,i)N

i=1 = (mπ(i))N
i=1 for some

random joint permutation π. The reason that re-encryption is necessary with
this type of scheme is that otherwise the first component u0,i of each cryptotext
remains unchanged during the transformation, which allows anybody to break
the anonymity of all senders. For the older type of construction it is obvious why
re-encryption is necessary.

4.1 Our Modification

We modify the El Gamal cryptosystem to ensure that also the first component
uj−1,i is changed during partial decryption. Each mix-server is given a secret key
(wj , xj) ∈ Z2

q and a corresponding public key (zj , yj) = (gwj , gxj). To partially
decrypt and permute its input it computes

(u1/wj

j−1,i, vj−1,i/u
xj/wj

j−1,i)N
i=1 , (1)

from Lj−1, and sorts the result lexicographically. The result is denoted by Lj =
(uj,i, vj,i)N

i=1. Note that both components of each cryptotext are transformed
using the secret key of the mix-server. For this transformation to make any
sense we must also modify the way the joint key is formed. We define

(Zk+1, Yk+1) = (g, 1) and (Zj , Yj) = (Zwj

j+1, Yj+1Z
xj

j+1) . (2)

A sender encrypts its message using the public key (Z1, Y1), i.e., (u0,i, v0,i) =
(Zri

1 , Y ri
1 mi) for some random ri. The structure of the keys are chosen such

that a cryptotext on the form (uj−1,i, vj−1,i) = (Zri
j , Y ri

j mi) given as input to
mix-server Mj satisfies

(u1/wj

j−1,i, vj−1,i/u
xj/wj

j−1,i) = (Zri/wj

j , Y ri
j /Z

rixj/wj

j mi)

= ((Z1/wj

j)ri , (Yj/Z
xj/wj

j)rimi) = (Zri
j+1, Y

ri
j+1mi) .

Thus, each mix-server Mj transforms a cryptotext (uj−1,i, vj−1,i) encrypted with
the public key (Zj , Yj) into a cryptotext (uj,i, vj,i) encrypted with the public key
(Zj+1, Yj+1). Note that Sort({vk,i}Ni=1) = Sort({mi}Ni=1), since Yk+1 = 1.

There are several seemingly equivalent ways to set up the scheme, but some
of these do not allow a reduction of the security of the mix-net to the DDH-
assumption. In fact the relation in Equation (1) is carefully chosen to allow such
a reduction.

6

4.2 Sender Verifiability

An important consequence of our modification is that a sender can compute
(Zri

j+1, Y
ri
j+1mi) and verify that this pair is contained in Lj for j = 1, . . . , k.

Furthermore, if this is not the case the sender can easily prove to any outsider
that its message was tampered with. We call this sender verifiability, since it
allows a sender to verify that its cryptotext is processed correctly by the mix-
servers. This is not a new property. In fact Chaum’s original construction [10]
has this property, but our construction is the first provably secure scheme with
this property.

We think that sender verifiability is an important property that deserves
more attention. The verification process is unconditional and easily explained
to anybody with only a modest background in mathematics, and a verification
program can be implemented with little skills in programming. This means that
in the main application of mix-nets, electronic elections, a sender can convince
herself that her vote was processed correctly.

The reader may worry that this allows a voter to point out its vote to a
coercer. This is the case, but the sender can do this in previous mix-nets as well
by pointing at its message in the original list L0 of cryptotexts and revealing the
randomness used during encryption, so this problem is not specific to our scheme.
Furthermore, our scheme becomes coercion-free whenever the sender does not
know the randomness of its cryptotext, as other El Gamal based mix-nets, but
sender verifiability is then lost.

4.3 A Technical Advantage

There is also an important technical consequence of the lack of re-encryption in
the mixing process. The witness of our shuffle relation consists of a pair (wj , xj),
which makes it easy to turn our proof of knowledge into a secure realization of
the ideal functionality FRDP

ZK . This should be contrasted with all previous shuffle
relations, where the witness contains a long list of random exponents used to
re-encrypt the input that must somehow be extracted by the ideal adversary in
the UC-setting.

A potential alternative to our approach is to formalize the proof of a shuffle as
a proof of membership [7] in the UC-framework. However, a proof of membership
is not sufficient for the older constructions where decryption is carried out jointly
at the end of the mixing chain. The problem is that the adversary could corrupt
the last mix-server Mk and instruct it to output L0 instead of a re-encryption and
permutation of Lk−1. This would obviously break the anonymity of all senders.
The malicious behavior is not detected, since the ideal proof of membership only
expects an element in the language and no witness from corrupted parties, and
L0 is a re-encryption and permutation of Lk−1. Interestingly, it seems that the
adversary cannot attack the real protocol if the proof of membership of a correct
shuffle is implemented using a proof of knowledge in the classical sense.

It is an open question if a proof of membership suffices for mix-nets where
each mix-server partially decrypts and then re-encrypts and permutes its input.

7

Another more general open question is if it is possible to formalize some sort of
zero-knowledge proof in the UC-framework that avoids the need for straight-line
extraction of the witness, but enforces that a witness can be extracted using
rewinding.

4.4 Preliminaries

We describe the mix-net in a hybrid model as defined in the UC-framework. This
means that the mix-servers and senders have access to a set of ideal functional-
ities introduced in this section.

We assume the existence of an authenticated bulletin board. All parties can
write to it, but no party can erase any message from it. In Section G.1 we
reproduce from [52] the definition of the ideal functionality FBB. We also assume
an ideal functionality corresponding to the key set-up sketched in Section 4.1.
This is given below.

Functionality 2 (Special El Gamal Secret Key Sharing). The ideal Spe-
cial El Gamal Secret Key Sharing over Gq, FSKS, with mix-servers M1, . . . ,Mk,
senders P1, . . . , PN , and ideal adversary S.

1. Initialize sets Jj = ∅ for j = 0, . . . , k.
2. Until |J0| = k wait for (Mj , MyKey, wj , zj , xj , yj) from CI such that wj , xj ∈

Zq, zj = gwj , yj = gxj , and j 6∈ J0. Set J0 ← J0 ∪ {j} and hand
(S, PublicKey,Mj , wj , zj) to CI .

3. Set (Zk+1, Yk+1) = (g, 1) and (Zj , Yj) = (Zwj

j+1, Yj+1Z
xj

j+1). Then hand
((S, PublicKeys, (Zj , Yj , zj , yj)k

j=1), {(Pi, PublicKeys, (Zj , Yj , zj , yj)k
j=1)}Ni=1,

{(Ml, Keys, wl, xl, (Zj , Yj , zj , yj)k
j=1)}kl=1) to CI .

4. If (Mj , Recover,Ml) is received from CI , set Jl ← Jl ∪ {j}. If |Jl| > k/2,
then hand ((S, Recovered,Ml, wl, xl), {(Mj , Recovered,Ml, wl, xl)}kj=1) to
CI , and otherwise hand (S,Mj , Recover,Ml) to CI .

The above functionality can be securely realized by letting each mix-server
secret share its secret key using Feldman’s [15] verifiable secret sharing scheme.
Note that the functionality explicitly allows corrupted mix-servers to choose
their keys in a way that depends on the public keys of uncorrupted mix-servers.
The special joint keys would then be computed iteratively using Equation (2),
and during this process each mix-server would prove that it does this correctly
using standard methods.

Each mix-server partially decrypts each cryptotext and sorts the resulting
cryptotexts. Thus, proving correct behavior corresponds to proving knowledge
of a secret key (w, x) such that the cryptotexts (ui, vi) input to a mix-server are
related to the cryptotexts (u′i, v

′
i) it outputs by the following relation.

Definition 2 (Knowledge of Correct Decryption-Permutation). Define
for each N a relation RDP ⊂ (G3

q ×G2N
q ×G2N

q)× (Zq × Zq), by

((g, z, y, {(ui, vi)}Ni=1, {(u′i, v′i)}Ni=1), (w, x)) ∈ RDP

8

precisely when z = gw, y = gx and (u′i, v
′
i) = (u1/w

π(i), vπ(i)u
−x/w
π(i)) for i = 1, . . . , N

and some permutation π ∈ ΣN such that the list {(u′i, v′i)}Ni=1 is sorted lexico-
graphically.

To avoid a large class of “relation attacks” [46,45,51] no sender can be allowed
to construct a cryptotext of a message related to the message encrypted by some
other sender. To ensure this each sender is required to prove knowledge of the
randomness it uses to form its cryptotexts. This corresponds to the following
relation.

Definition 3 (Knowledge of Cleartext). Define a relation RC ⊂ G4
q×Zq by

((Z, Y, u, v), r) ∈ RC precisely when logZ u = r.

Formally, we need a secure realization of the following functionality with the
above relations.

Functionality 3 (Zero-Knowledge Proof of Knowledge). Let L be a lan-
guage given by a binary relation R. The ideal zero-knowledge proof of knowledge
functionality FR

ZK of a witness w to an element x ∈ L, running with provers
P1, . . . , PN , and verifiers M1, . . . ,Mk, proceeds as follows.

1. Upon receipt of (Pi, Prover, x, w) from CI , store w under the tag (Pi, x),
and hand (S, Pi, Prover, x,R(x,w)) to CI . Ignore further messages from Pi.

2. Upon receipt of (Mj , Question, Pi, x) from CI , let w be the string stored
under the tag (Pi, x) (the empty string if nothing is stored), and hand
((S,Mj , Verifier, Pi, x,R(x,w)), (Mj , Verifier, Pi, R(x,w)) to CI .

In [52] a secure realization πC of FRC
ZK is given, under the DDH-assumption,

which is secure against Mk/2-adversaries. The functionality FRDP
ZK is securely

realized in Section 6.

4.5 The Mix-Net

We now give the details of our mix-net. It executes in a hybrid model with access
to the ideal functionalities described above.

Protocol 1 (Mix-Net). The mix-net protocol πMN = (P1, . . . , PN ,M1, . . . ,Mk)
consists of senders Pi, and mix-servers Mj .

Sender Pi. Each sender Pi proceeds as follows.
1. Wait for (PublicKeys, (Zj , Yj , zj , yj)k

j=1) from FSKS.
2. Wait for an input (Send,mi), mi ∈ Gq. Then choose ri ∈ Zq randomly and

compute (ui, vi) = E(Z1,Y1)(mi, ri) = (Zri
1 , Y ri

1 mi).
3. Hand (Prover, (Z1, Y1, ui, vi), ri) to FRC

ZK .
4. Hand (Write, (ui, vi)) to FBB.

Mix-Server Mj. Each mix-server Mj proceeds as follows.
1. Choose wj , xj ∈ Zq randomly and hand (MyKey, wj , zj , xj , yj) to FSKS.

9

2. Wait for (Keys, (wj , xj), (Zj , Yj , zj , yj)k
j=1) from FSKS, where wj , xj ∈ Zq

and Zj , Yj , zj , yj ∈ Gq.
3. Wait for an input (Run), and then send (Write, Run) to FBB.
4. Wait until more than k/2 different mix-servers have written Run on FBB,

and let the last entry of this type be (cRun,Mi, Run).
5. Form the list L∗ = {(uγ , vγ)}γ∈I∗ , for some index set I∗, by choosing for

γ = 1, . . . , N the entry (c, Pγ , (uγ , vγ)) with the smallest c < crun such that
uγ , vγ ∈ Gq, if present.

6. For each γ ∈ I∗ do the following,
(a) Hand (Question, Pγ , (Z1, Y1, uγ , vγ)) to FRC

ZK .
(b) Wait for (Verifier, Pγ , bγ) from FRC

ZK .
Then form L0 = {(u0,i, v0,i)}N

′

i=1 consisting of pairs (uγ , vγ) such that bγ = 1.
7. For l = 1, . . . , k do

(a) If l 6= j, then do
i. Wait until an entry (c,Ml, (List, Ll)) appears on FBB, where Ll is

on the form {(ul,i, vl,i)}N
′

i=1 for ul,i, vl,i ∈ Gq.
ii. Hand (Question,Ml, (g, zl, yl, Ll−1, Ll)) to FRDP

ZK , and wait for
(Verifier,Ml, bl) from FRDP

ZK .
iii. If bl = 0, then hand (Recover,Ml) to FSKS, and wait for

(Recovered,Ml, (wl, xl)) from FSKS. Then compute

Ll = {(ul,i, vl,i)}N
′

i=1 = Sort({(u1/wl

l−1,i, vl−1,iu
−xl/wl

l−1,i)}N
′

i=1) .

(b) If l = j, then compute

Lj = {(uj,i, vj,i)}N
′

i=1 = Sort({(u1/wj

j−1,i, vj−1,iu
−xj/wj

j−1,i)}N
′

i=1) ,

Finally hand (Prover, (g, zj , yj , Lj−1, Lj), (wj , xj)) to FRDP
ZK , and hand

(Write, (List, Lj)) to FBB.
8. Output (Output,Sort({vk,i}N

′

i=1)).

Theorem 1. The protocol πMN above securely realizes FMN in the
(FBB,FSKS,FRC

ZK ,FRDP
ZK)-hybrid model for Mk/2-adversaries under the DDH-

assumption in Gq. Each mix-server computes 2N exponentiations.

The number of mix-servers actually doing any shuffling of cryptotexts can
be reduced to dk/2e without any loss in security, thus reducing the overall com-
plexity. We state the protocol in a symmetrical way for sake of simplicity.

5 A New Efficient Proof of a Shuffle

We want to securely realize the ideal functionality FRDP
ZK . It turns out that a

useful step in this direction is to construct a statistical zero-knowledge proof for
the relation RDP, i.e., a proof of the decryption-permutation shuffle. First we
explain the key ideas in our approach. Then we give a detailed description of our
protocol. Finally, we explain how it can be turned into a public coin protocol.

10

5.1 Our Approach

The protocol for proving the relation RDP is complex, but the underlying ideas
are simple. To simplify the exposition we follow Neff [40,41] and consider the
problem of proving that a list of elements in Gq has been exponentiated and
permuted. More precisely, let y, u1, . . . , uN , u′1, . . . , u

′
N ∈ Gq be defined by y = gx

and u′i = ux
π(i) for a permutation π. Only the prover knows x and π and he must

show that the elements satisfy such a relation. We also omit numerous technical
details. In particular we remove several blinding factors, hence the protocols are
not zero-knowledge as sketched here.

Extraction Using Linear Independence. The verifier chooses a list P =
(pi)N

i=1 ∈ ZN
q of random primes and computes U =

∏N
i=1 upi

i . Then it requests
that the prover computes U ′ =

∏N
i=1(u

′
i)

pπ(i) , proves that U ′ = Ux and that it
knows a permutation π such that U ′ =

∏N
i=1(u

′
i)

pπ(i) .
The idea is then that if a prover succeeds in doing this it can be rewound and

run several times with different random vectors Pj , giving different Uj and U ′j ,
until a set P1, . . . , PN of linearly independent vectors in ZN

q are found. Linear
independence implies that there are coefficients al,j such that

∑N
j=1 al,jPj equals

the lth unity vector el, i.e., the vector with a one in the lth position and all other
elements zero. We would then like to conclude that

ux
l =

(N∏
j=1

U
al,j

j

)x

=
N∏

j=1

(U ′j)
al,j =

N∏
j=1

(N∏
i=1

(u′i)
pj,π−1(i)

)al,j

= u′π(l) , (3)

since that would imply that the elements satisfy the shuffle-relation.

Proving a Permutation of Prime Exponents. The prover can use standard
techniques to prove knowledge of integers ρ1, . . . , ρN such that U ′ =

∏N
i=1(u

′
i)

ρi ,
but it must also prove that ρi = pπ(i) for some permutation π.

Suppose that
∏N

i=1 pi =
∏N

i=1 ρi over Z. Then unique factorization in Z
implies that each ρi equals some product of the pi and −1. If in addition we
demand that ρi ∈ [−2K +1, 2K −1], no such product can contain more than one
factor. This implies that every product must contain exactly one factor. Thus,
ρi = ±pπ(i) for some permutation π. If we also have

∑N
i=1 pi =

∑N
i=1 ρi, then

we must clearly have ρi = pπ(i).
We observe that proving the above is relatively simple over a group of un-

known order such as the group QRN of squares modulo an RSA modulus N.
The prover forms commitments

b0 = g , (bi,b′i)
N
i=1 = (htib

pπ(i)
i−1 ,ht′igpπ(i))N

i=1 ,

with random ti and t′i and proves, using standard methods, knowledge of ρi, τi, τ
′
i

such that

U ′ =
N∏

i=1

(u′i)
ρi , bi = hτibρi

i−1 , and b′i = hτ ′igρi . (4)

11

Note that bN = hτg
QN

i=1 ρi for some τ , so the verifier can check that
∏N

i=1 ρi =∏N
i=1 pi by asking the prover to show that it knows τ such that bN/g

QN
i=1 pi =

hτ . We then note that a standard proof of knowledge over a group of unknown
order also gives an upper bound on the bit-size of the exponents, i.e., it implicitly
proves that ρi ∈ [−2K + 1, 2K − 1]. Finally, since

∏N
i=1 b′i = hτ ′g

PN
i=1 ρi for a

τ ′ =
∑N

i=1 τ ′i , the verifier can check that
∑N

i=1 ρi =
∑N

i=1 pi by asking the prover
to show that it knows τ ′ such that

∏N
i=1 b′i/g

PN
i=1 pi = hτ ′ .

Fixing a Permutation. In Equation (3) above it is assumed that a fixed
permutation π is used for all prime vectors P1, . . . , PN . Unfortunately, this is
not necessarily the case, i.e., the permutation used in the jth proof may depend
on j and we should really write πj .

To solve this technical problem we force the prover to commit to a fixed
permutation π before it receives the prime vector P . The commitment is on the
form (wi)N

i=1 = (gr′igπ−1(i))N
i=1. The verifier then computes W =

∏N
i=1 wpi

i and
the prover proves that W = gr′

∏N
i=1 gρi

i in addition to Equations (4). The idea is
that the prover must use π to permute the ρi or find a non-trivial representation
of 1 ∈ Gq using g, g1, . . . , gN , which is infeasible under the DL-assumption.

5.2 An Honest Verifier Statistical Zero-Knowledge Computationally
Convincing Proof of Knowledge of a Decryption-Permutation

In this section we describe our proof of a shuffle in detail. Although we consider
a decrypt-permutation relation, our approach can be generalized to a proof of a
shuffle for the other shuffle relations considered in the literature. For complete-
ness we detail such protocols in Section F.

We introduce several security parameters. We use K1 to denote the number
of bits in q, the order of the group Gq, and similarly K2 to denote the number
of bits in the RSA-modulus N. We use K3 to denote the number bits used in
the random primes mentioned above. At some point in the protocol the verifier
hands a challenge to the prover. We use K4 to denote the number of bits in
this challenge. At several points exponents must be padded with random bits to
achieve statistical zero-knowledge. We use K5 to denote the number additional
random bits used to do this. We assume that the security parameters are chosen
such that K3 + K4 + K5 < K1,K2, and K5 < K3 − 2. Below the protocol we
explain how the informal description above relates to the different components
of the protocol.

Protocol 2 (Proof of Decryption-Permutation). The common input con-
sists of an RSA modulus N and g,h ∈ QRN, generators g, g1, . . . , gN ∈ Gq, a
public key (z, y) ∈ G2

q, and two lists L = (ui, vi)N
i=1 and L′ = (u′i, v

′
i)

N
i=1 in G2N

q .
The private input to the prover consists of (w, x) ∈ Z2

q such that (z, y) = (gw, gx)

and (u′i, v
′
i) = (u1/w

π(i), vπ(i)/u
x/w
π(i)) for a permutation π ∈ ΣN such that L′ is lex-

icographically sorted.

12

1. The prover chooses r′i ∈ Zq randomly, computes (wi)N
i=1 = (gr′igπ−1(i))N

i=1,
and hands (wi)N

i=1 to the verifier.

2. The verifier chooses random primes p1, . . . , pN ∈ [2K3−1, 2K3−1], and hands
(pi)N

i=1 to the prover.

3. Both parties compute (U, V,W) = (
∏N

i=1 upi

i ,
∏N

i=1 vpi

i ,
∏N

i=1 wpi

i).

4. The prover chooses the following elements randomly k1, k2, k3, k4, k5 ∈ Zq,
l1, . . . , l7, lr′ , l1/w, lx/w, lw, lx ∈ Zq, ti, t

′
i ∈ [0, 2K2+K5 − 1],

si, s
′
i ∈ [0, 2K2+K4+2K5 − 1], ri ∈ [0, 2K3+K4+K5 − 1] for i = 1, . . . , N ,

s ∈ [0, 2K2+NK3+K4+K5+log2 N −1], and s′ ∈ [0, 2K2+K5+log2 N −1]. Then the
prover computes

(b1, b2) = (gk1U1/w, gk2Ux/w) (5)

(b3, b4, b5) = (gk3
1 g1/w, gk4

1 bx
3 , gk5

1 bw
3) (6)

(β1, β2) =
(
gl1U l1/w , gl2U lx/w) (7)

(β3, β4) = (gl3
1 gl1/w , gl6

1 glx/w) (8)

(β5, β6, β7, β8, β9) = (gl4
1 blx

3 , glx , gl5
1 blw

3 , glw , gl7
1

)
(9)

(α1, α2, α3) =
(

gl1

N∏
i=1

(u′i)
ri , g−l2

N∏
i=1

(v′i)
ri , glr′

N∏
i=1

gri
i

)
(10)

b0 = g (11)

(bi,b′i)
N
i=1 = (htib

pπ(i)
i−1 ,ht′igpπ(i))N

i=1 (12)

(γi,γ
′
i)

N
i=1 = (hsibri

i−1,h
s′igri)N

i=1 (13)

(γ,γ′) = (hs,hs′) , (14)

and ((bi)5i=1, (βi)9i=1, (α1, α2, α3), (bi,b′i)
N
i=1, (γi,γ

′
i)

N
i=1, (γ,γ′)) is

handed to the verifier.

5. The verifier chooses c ∈ [2K4−1, 2K4−1] randomly and hands c to the prover.

6. Define t = tN +pπ(N)(tN−1 +pπ(N−1)(tN−2 +pπ(N−2)(tN−3 +pπ(N−3)(. . .))),
t′ =

∑N
i=1 t′i, r′ =

∑N
i=1 r′ipi, k6 = k4 + k3x, and k7 = k5 + k3w. The prover

computes

13

(fi)7i=1 = (cki + li)7i=1 mod q

f1/w = c/w + l1/w mod q

fx/w = cx/w + lx/w mod q

fw = cw + lw mod q

fx = cx + lx mod q

fr′ = cr′ + lr′ mod q

(ei, e
′
i)

N
i=1 = (cti + si, ct

′
i + s′i)

N
i=1 mod 2K2+K4+2K5

(di)N
i=1 = (cpπ(i) + ri)N

i=1 mod 2K3+K4+K5

e = ct + s mod 2K2+NK3+K4+K5+log2 N

e′ = ct′ + s′ mod 2K2+K5+log2 N

Then it hands (((fi)7i=1, f1/w, fx/w, fw, fx, fr′), (ei, e
′
i)

N
i=1, (di)N

i=1, (e, e
′)) to

the verifier.
7. The verifier checks that bi, βi, αi ∈ Gq, and that L′ is lexicographically sorted

and that

(bc
1β1, b

c
2β2) = (gf1Uf1/w , gf2Ufx/w) (15)

(bc
3β3, b

c
4β4) = (gf3

1 gf1/w , gf6
1 gfx/w) (16)

(bc
4β5, y

cβ6) = (gf4
1 bfx

3 , gfx) (17)

(bc
5β7, z

cβ8, (b5/g)cβ9) = (gf5
1 bfw

3 , gfw , gf7
1) (18)

(bc
1α1, (V/b2)cα2,W

cα3) =
(

gf1

N∏
i=1

(u′i)
di , g−f2

N∏
i=1

(v′i)
di , gfr′

N∏
i=1

gdi
i

)
(19)

(bc
iγi, (b

′
i)

cγ′i)
N
i=1 = (heibdi

i−1,h
e′igdi)N

i=1 (20)

(g−
QN

i=1 pibN)cγ = he (21)(
g−

PN
i=1 pi

N∏
i=1

b′i

)c

γ′ = he′ . (22)

Equations (5)-(9) are used to prove that (b1, V/b2) = (gκ1U1/w, g−κ2V/Ux/w)
using standard Schnorr-like proofs of knowledge of logarithms. Equations (12)
contain commitments corresponding to those in the outline of our approach.
Equations (13) are used to prove knowledge of exponents τi, τ

′
i , ρi such that

(bi,b′i) = (hτibρi

i−1,h
τ ′igρi). We remark that the verifier need not check that

bi,b′i,γi,γ
′
i,γ,γ′ ∈ QRN for our analysis to go through. Equations (14) are

used to prove that
∏N

i=1 ρi =
∏N

i=1 pi and
∑N

i=1 ρi =
∑N

i=1 pi, i.e., that ρi in
fact equals pπ(i) for some permutation π. Equation (10) is used to prove that
(b1, V/b2) also equals
(gk1

∏N
i=1(u

1/wj

i)pi , g−k2
∏N

i=1(vi/u
xj/wj

i)pi). If the two ways of writing b1 and

14

b2 are combined we have

(U1/w, V/Ux/w) =
(N∏

i=1

(u1/wj

i)pi ,

N∏
i=1

(vi/u
xj/wj

i)pi

)
,

which by the argument in Section 5.1 implies that ((g, z, y, L, L′), (w, x)) ∈ RDP.

5.3 Security Properties

Formally, the security properties of our protocol are captured by the following
propositions.

Proposition 1 (Zero-Knowledge). Protocol 2 is honest verifier statistical
zero-knowledge.

The protocol could be modified by adding a first step, where the verifier
chooses (N,g,h) and (g1, . . . , gN). This would give a computationally sound
proof of knowledge. However, in our application we wish to choose these para-
meters jointly and only once, and then let the mix-servers execute the proof with
these parameters as common inputs. Thus, there may be a negligible portion of
the parameters on which the prover can convince the verifier of false statements.
Because of this we cannot hope to prove that the protocol is a proof of knowledge
in the formal sense. Damgård and Fujisaki [12] introduce the notion of a compu-
tationally convincing proof of knowledge to deal with situations like these. We
do not use the notion of “computationally convincing proofs” explicitly in our
security analysis, but the proposition below implies that our protocol satisfies
their definition.

We consider a malicious prover A which is given Γ = (N,g,h) and g =
(g1, . . . , gN) as input and run with internal randomness rp. The prover outputs
an instance IA(Γ , g, rp), i.e., public keys z, y ∈ Gq and two lists L,L′ ∈ G2N

q

and then interacts with the honest verifier on the common input consisting of
(Γ , g, z, y, L, L′). Denote by TA(Γ , g, rp, rv) the transcript of such an interaction
when the verifier runs with internal randomness rv. Let Acc be the predicate tak-
ing a transcript T as input that outputs 1 if the transcript is accepting and 0 oth-
erwise. Let LRDP be the language corresponding to the decryption-permutation
relation RDP. We prove the following proposition.

Proposition 2 (Soundness). Suppose the strong RSA-assumption and the DL-
assumption are true. Then for all polynomial-size circuit families A = {AK} it
holds that ∀c > 0, ∃K0, such that for K1 ≥ K0

Pr
Γ ,g,rp,rv

[Acc(TA(Γ , g, rp, rv)) = 1 ∧ IA(Γ , g, rp) 6∈ LRDP] <
1

K1
c .

15

5.4 Generation of Primes From a Small Number of Public Coins

In our protocol the verifier must generate vectors in ZN
q such that each compon-

ent is a “randomly” chosen prime in [2K3−1, 2K3−1]. We define a generator PGen
that generates prime vectors from public coins. Let p(n) be the smallest prime
at least as large as n. Our generator PGen takes as input N random integers
n1, . . . , nN ∈ [2K3−1, 2K3 − 1] and defines pi = p(ni). To find pi it first redefines
ni such that it is odd by incrementing by one if necessary. Then it executes the
Miller-Rabin primality test for ni, ni +2, ni +4, . . . until it finds a prime. We put
an explicit bound on the running time of the generator by bounding the number
of integers it considers and the number of iterations of the Miller-Rabin test it
performs in total. If the generator stops due to one of these bounds it outputs ⊥.
If N ≥ K3, the bound corresponds to 6K3

4

K1
3 N exponentiations modulo a K1-bit

integer.
The generator can be used in the obvious way to turn the protocol above

into a public-coin protocol. The verifier sends n1, . . . , nN to the prover instead
of p1, . . . , pN and the prover and verifier generates the primes by computing
(p1, . . . , pN) = PGen(n1, . . . , nN).

A result by Baker and Harman [4] implies that the resulting distribution is
close to uniform.

Theorem 2 (cf. [4]). For large integers n there exists a prime in [n−n0.535, n].

Corollary 1. For all primes p ∈ [2K3−1, 2K3−1], Pr[p(n) = p] ≤ 2−0.465(K3−1),
where the probability is taken over a random choice of n ∈ [2K3−1, 2K3 − 1]

The corollary gives a very pessimistic bound. It is commonly believed that the
theorem is true with 0.465 replaced by any constant less than one. Further-
more, Cramér argues probabilistically that there is a prime in every interval
[n− log2 n, n]. See Ribenboim [48] for a discussion on this.

We must argue that the generator fails with negligible probability. There are
two ways the generator can fail. Either it outputs p1, . . . , pN , where pi 6= p(ni)
for some i, or it outputs ⊥.

Lemma 1. The probability that PGen(n1, . . . , nN) 6= (p(n1), . . . , p(nN)) condi-
tioned on PGen(n1, . . . , nN) 6= ⊥ is negligible.

Unfortunately, the current understanding of the distribution of the primes
does not allow a strict analysis of the probability that PGen(n1, . . . , nN) = ⊥.
Instead we give a heuristic analysis in Cramér’s probabilistic model of the primes
defined below.

Definition 4 (Cramér’s Model). For each integer n, let Xn be an independ-
ent binary random variable such that Pr[Xn = 1] = 1/ lnn. An integer n is said
to be prime∗ if Xn = 1.

The idea is to consider the primality of the integers as a typical outcome of
the sequence (Xn)n∈Z. Thus, when we analyze the generator we assume that

16

the primality of an integer n is given by Xn, and our analysis is both over the
internal randomness of PGen and the randomness of Xn. We prove the following
lemma.

Lemma 2. In Cramér’s model the probability that PGen(n1, . . . , nN) = ⊥ is
negligible.

We stress that zero-knowledge and soundness of the modified protocol are not
heuristic. The zero-knowledge property holds for arbitrarily distributed integers
pi. Soundness follows from Lemma 1. It is only completeness that is argued
heuristically. Although this is not always clear, similar heuristic arguments are
common in the literature, e.g. to generate strong primes and to encode arbitrary
messages in Gq.

Although we now have a public-coin protocol it requires many random bits.
This can be avoided by use of a pseudo-random generator PRG as suggested by
Groth [29]. Instead of choosing n1, . . . , nN randomly and sending these integers
to the prover, the verifier chooses a random seed s ∈ [0, 2K1 − 1] and hands this
to the prover. The prover and verifier then computes (n1, . . . , nN) = PRG(s)
and computes the primes from the integers as described above. The output
(n1, . . . , nN) may not appear to the prover as random, since he holds the seed
s. However, we prove in the full version [?] that if we define Pj = PGen(PRG(s))
and let P1, . . . , Pj−1 ∈ ZN

q be any linearly independent vectors, the probability
that Pj ∈ Span(P1, . . . , Pj−1) or pj,i = pj,l for some i 6= l is negligible for all
1 ≤ j ≤ N . This is all we need in our application.

Universal Verifiability and Random Oracles. Several authors propose
turning their proofs of a shuffle into a non-interactive zero-knowledge proofs
in the random oracle model using the Fiat-Shamir heuristic. This allows any
outsider to check, non-interactively, that a mix-server behaves correctly. If the
verification involves no trusted parameters the resulting mix-net is called “uni-
versally verifiable”.

The Fiat-Shamir heuristic can be applied to our protocol as well. However,
we do not see how the prover can generate the RSA parameters (N,g,h) by
itself and not know the factorization of N or a non-trivial root. Thus, a verifier
must trust that the RSA parameters are generated in a secure way, and the res-
ulting mix-net is not really universally verifiable although very little interaction
is necessary.

However, we can achieve universal verifiability under the root assumption in
class groups with prime discriminant. A class group is defined by its discriminant
∆. It is conjectured that finding non-trivial roots in a class group with discrim-
inant ∆ = −p for a prime p is hard (cf. [30]). The idea would be to generate a
prime p of suitable size from random coins handed to the prover by the verifier
in the first round. Then the integer part of the protocol would be executed in
the class group defined by ∆ = −p. With this modification the protocol gives a
universally verifiable mix-net.

17

It is important to understand that universal verifiability only gives heuristic
security because of the dependence of the random oracle model. Furthermore, in
practice we expect only a handful of outsiders to implement software to verify
the actions of the mix-servers, and given the efficiency of the proof of a shuffle the
mix-servers can readily answer such requests interactively. In an interactive proof
the outsider can choose the RSA parameters, since the protocol is statistically
zero-knowledge. For this to hold the outsider must prove that g is contained in
the group generated by h.

5.5 Complexity

In Section C we describe in detail the assumptions we make in our estimates and
how we have summed the cost of each step in the protocol. Here we discuss the
results on how they compare with previous protocols.

Comparing the complexity of protocols is tricky, since any comparison must
take place for equal security rather than for equal security parameters. The
only rigorous method to do this is to perform an exact security analysis of each
protocol and choose the security parameters accordingly. Various optimization
and pre-computing techniques are also applicable to different degrees in different
protocols and in different applications. Despite this we argue informally about
the complexity of our protocol.

Furukawa [21] estimates the complexity of previous shuffle-proofs, and claims
that his protocol is the most efficient and that it requires the least amount of
rounds for a shuffle that involves decryption, namely 5 rounds. It requires 8N
and 6N exponentiations for the prover and verifier respectively. Using standard
optimizations this corresponds to less than 2N general exponentiations in Gq

for each party.
Our protocol requires 5 rounds as well. We estimate the complexity of our

proof of a shuffle without any optimizations and then with the same optimiza-
tions as Furukawa [21] uses. The asymptotic complexity of our protocol is roughly
5N and 2N exponentiations in Gq for the prover and verifier respectively. With
optimizations this corresponds to about N/2 and N/5 general exponentiations
in Gq.

To give the reader an idea of the practical complexity of our protocol we
estimate the complexity for a common set of parameters. We set K1 relatively
large to ensure long term security, e.g. K1 = 2048. A much smaller value of
K2 suffices, since it need only guarantee security during the execution of the
protocol, e.g. K2 = 1024. A small challenge suffices since the protocol is run
interactively, e.g. K4 = 160. The size of the primes need only guarantee that
prime vectors are linearly independent with high probability, e.g. K3 = 100.
Finally, a small value of K5 suffices to ensure the statistical zero-knowledge of the
protocol, e.g. K5 = 50. With these parameters the complexity is less than 2.5N
and 1.6N exponentiations in Gq for the prover and verifier. With optimizations
as in [21] this corresponds to 0.5N and 0.8N general exponentiations in Gq. This
indicates that our scheme is at least as efficient as previous protocols.

18

Consider now the overall complexity of the mix-net for these parameters.
We ignore the cost for realizing FCF and FRSA, since a joint RSA-modulus can
be generated in advance and the only costly invocation of FCF can be done in
advance as well. The cost for realizing FRC

ZK for each sender is less than 1.5N (cf.
[52]). From the above discussion and using the observation at the end of Section
4.5 we see that the complexity of one step in the mixing chain is bounded by
2N + 0.5N + 0.8N ≤ 3.5N and the complexity of the mix-net as a whole is
bounded by (2k + 4)N .

6 Secure Realization of FRDP
ZK

In this section we transform the proof of a shuffle into a secure realization of
FRDP

ZK in a (FRSA,FCF,FBB)-hybrid model, where FRSA is an RSA common
reference string functionality, and FCF is a coin flipping functionality.

Functionality 4 (RSA Common Reference String). The ideal RSA Com-
mon Reference String, FRSA, with mix-servers M1, . . . ,Mk, senders P1, . . . , PN ,
and ideal adversary S proceeds as follows.

1. Generate two random K2/2-bit primes p and q such that (p − 1)/2 and
(q− 1)/2 are prime and compute N = pq. Then choose g and h randomly
in QRN. Finally, hand
((S, RSA,N,g,h), {(Pj , RSA,N,g,h)}Nj=1, {(Mj , RSA,N,g,h)}kj=1) to CI .

There are special purpose protocols [6,16] for generating a joint RSA mod-
ulus, but these are not analyzed in the UC-framework, so for technical reasons
we cannot apply these directly. If these protocols cannot be modified to give a
UC-secure protocol, general methods [11] can be used since this need only be
done once.

Functionality 5 (Coin-Flipping). The ideal Coin-Flipping functionality, FCF,
with mix-servers M1, . . . ,Mk, and adversary S proceeds as follows.

1. Set JK, = ∅ for all K.
2. On reception of (Mj , GenerateCoins,K) from CI , set JK ← JK ∪ {j}. If
|JK | > k/2, then set JK ← ∅ choose c ∈ {0, 1}K and hand
((S, Coins, c), {(Pj , Coins, c)}Nj=1, {(Mj , Coins, c)}kj=1) to CI .

It is not hard to securely realize the coin-flipping functionality using a UC-
secure verifiable secret sharing scheme (cf. [1]). Each mix-server Mj chooses a
random string cj of K bits and secretly shares it. Then all secrets are recon-
structed and c is defined as ⊕k

j=1cj .
Finally, we give the protocol in a hybrid model which securely realizes FRDP

ZK .
This is essentially a translation of Protocol 2 into a multiparty protocol in the
UC-setting.

19

Protocol 3 (Zero-Knowledge Proof of Decryption-Permutation). The
protocol πDP = (M1, . . . ,Mk) consists of mix-servers Mj and proceeds as follows.

Mix-Server Mj. Each mix-server Mj proceeds as follows.

1. Wait for (RSA,N,g,h) from FRSA.
2. Hand (GenerateCoins, NK1) to FCF and wait until it returns

(Coins, (g′1, . . . , g
′
N)). Then map these strings to elements in Gq by gi =

(g′i)
(p−1)/q mod p (recall that Gq ⊂ Z∗p).

3. On input (Prover, (g, z, y, L, L′), (w, x)), where ((g, z, y, L, L′), (w, x)) ∈ LRDP

do
(a) Hand (Prover, (g, z, 1, 1), w) and (Prover, (g, y, 1, 1), x) to FRC

ZK .
(b) Denote by W the first message of the prover in Protocol 2. Then hand

(Write, W,W) to FBB.
(c) Then hand (GenerateCoins,K1) to FCF and wait until it returns (Coins, s).

Then set P = PGen(PRG(s)).
(d) Denote by C the second message of the prover in Protocol 2. Hand

(Write, C, C) to FBB. Then hand (GenerateCoins,K4 − 1) to FCF and
wait until it returns (Coins, c′). Define c = c′ + 2K4−1.

(e) Denote by R the third message of the prover in Protocol 2. Hand (Write, R, R)
to FBB.

4. On input (Question,Ml, (g, z, y, L, L′)), where L,L′ ∈ G2N
q and (z, y) ∈ Gq

do
(a) Hand (Question,Ml, (g, z, 1, 1)) to FRC

ZK and wait until it returns (Verifier,Ml, bz,l).
Then hand (Question,Ml, (g, y, 1, 1)) and wait until it returns (Verifier,Ml, by,l).
If bz,l = 0 or by,l = 0 output
(Verifier,Ml, 0).

(b) Then wait until (Ml, W,W) appears on FBB. Hand (GenerateCoins,K1)
to FCF and wait until it returns (Coins, s). Then set P = PGen(PRG(s)).

(c) Wait until (Ml, C, C) appears on FBB. Then hand (GenerateCoins,K4−
1) to FCF and wait until it returns (Coins, c′), and until (Ml, R, R) ap-
pears on FBB. Define c = c′ + 2K4−1. Then verify (W,P,C, c, R) as in
Protocol 2 and set bj = 1 or bj = 0 depending on the result.

(d) Hand (Write, Judgement,Ml, bj) to FBB and wait until (·, Judgement,Ml, bl′)
appears on FBB for l′ 6= j. Then set b = 1 if there are more than k/2 dis-
tinct bl′ = 1 and otherwise b = 0. Finally, output (Verifier,Ml, L, L′, b).

Theorem 3. The ideal functionality FRDP
ZK is securely realized by πDP in the

(FRC
ZK ,FCF,FRSA,FBB)-hybrid model with respect toMk/2-adversaries under the

DL-assumption and the strong RSA-assumption.

Corollary 2. The composition of πMN, πC, πDP, securely realizes FMN in the
(FSKS,FCF,FRSA,FBB)-hybrid model with respect to Mk/2-adversaries under
the DDH-assumption and the strong RSA-assumption.

As indicated in the body of the paper all assumptions except the assumption
of a bulletin board can be eliminated. The assumption of a bulletin board can
only be eliminated for blocking adversaries (cf. [52]).

20

7 Conclusion

We have introduced a novel way to construct a mix-net, and given the first
provably secure sender verifiable mix-net. We have also introduced a novel ap-
proach to construct a proof of a shuffle, and showed how this can be used to
securely realize the ideal zero-knowledge proof of knowledge functionality for a
decrypt-permutation relation. Combined, this gives the first universally compos-
able mix-net that is efficient for any number of mix-servers.

8 Acknowledgments

I thank Johan Håstad for excellent advise. In particular for discussing efficient
generation of the primes. I also thank Mårten Trolin for discussions.

References

1. M. Abe, S. Fehr, Adaptively Secure Feldman VSS and Applications to Universally-
Composable Threshold Cryptography, to appear at Crypto 2004. (full version at
Cryptology ePrint Archive, Report 2004/118, http://eprint.iacr.org/, May, 2004).

2. M. Abe, Universally Verifiable mix-net with Verification Work Independent of the
Number of Mix-centers, Eurocrypt ’98, pp. 437-447, LNCS 1403, 1998.

3. M. Abe, Flaws in Some Robust Optimistic Mix-Nets, In Proceedings of Information
Security and Privacy, 8th Australasian Conference, LNCS 2727, pp. 39-50, 2003.

4. R. C. Baker and G. Harman, The difference between consecutive primes, Proc.
Lond. Math. Soc., series 3, 72 (1996) 261–280. MR 96k:11111 (Abstract available)

5. D. Beaver, Foundations of secure interactive computation, Crypto ’91, LNCS 576,
pp. 377-391, 1991.

6. D. Boneh, and M. Franklin, Efficient generation of shared RSA keys, Crypto’ 97,
LNCS 1233, pp. 425-439, 1997.

7. J. Buus Nielsen, Universally Composable Zero-Knowledge Proof of Membership,
manuscript, http://www.brics.dk/ buus/, April, 2005.

8. R. Canetti, Security and composition of multi-party cryptographic protocols,
Journal of Cryptology, Vol. 13, No. 1, winter 2000.

9. R. Canetti, Universally Composable Security: A New Paradigm for Cryptographic
Protocols, http://eprint.iacr.org/2000/067 and ECCC TR 01-24. Extended ab-
stract appears in 42nd FOCS, IEEE Computer Society, 2001.

10. D. Chaum, Untraceable Electronic Mail, Return Addresses and Digital Pseudo-
nyms, Communications of the ACM - CACM ’81, Vol. 24, No. 2, pp. 84-88, 1981.

11. R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, Universally Composable Two-Party
and Multi-Party Secure Computation, 34th STOC, pp. 494-503, 2002.

12. I. Damgård, E. Fujisaki, A Statistically-Hiding Integer Commitment Scheme Based
on Groups with Hidden Order, Asiacrypt 2002, LNCS 2501, pp. 125-142, 2002.

13. Y. Desmedt, K. Kurosawa, How to break a practical MIX and design a new one,
Eurocrypt 2000, pp. 557-572, LNCS 1807, 2000.

14. T. El Gamal, A Public Key Cryptosystem and a Signiture Scheme Based on Dis-
crete Logarithms, IEEE Transactions on Information Theory, Vol. 31, No. 4, pp.
469-472, 1985.

21

15. P. Feldman, A practical scheme for non-interactive verifiable secret sharing, 28th
FOCS, pp. 427-438, 1987.

16. P. Fouque and J. Stern, Fully Distributed Threshold RSA under Standard Assump-
tions, Cryptology ePrint Archive, Report 2001/008, 2001.

17. A. Fujioka, T. Okamoto and K. Ohta, A practical secret voting scheme for large
scale elections, Auscrypt ’92, LNCS 718, pp. 244-251, 1992.

18. E. Fujisaki, T. Okamoto, Statistical Zero Knowledge Protocols to Prove Modular
Polynomial Relations, Crypto 97, LNCS 1294, pp. 16-30, 1997.

19. J. Furukawa, K. Sako, An efficient scheme for proving a shuffle, Crypto 2001,
LNCS 2139, pp. 368-387, 2001.

20. J. Furukawa, H. Miyauchi, K. Mori, S. Obana, K. Sako, An implementation of a
universally verifiable electronic voting scheme based on shuffling, Financial Cryp-
tography ’02, 2002.

21. J. Furukawa, Efficient, Verifiable Shuffle Decryption and its Requirements of Un-
linkability, PKC 2004, LNCS 2947, pp. 319-332, 2004.

22. Gnu Multiple Precision Arithmetic Library (GMP), http://swox.com/gmp/, Mars,
2005.

23. O. Goldreich, S. Micali, and A. Wigderson, How to Play Any Mental Game, 19th
STOC, pp. 218-229, 1987.

24. O. Goldreich, Foundations of Cryptography, Cambridge University Press, 2001.
25. S. Goldwasser, L. Levin, Fair computation of general functions in presence of im-

moral majority, Crypto ’90, LNCS 537, pp. 77-93, 1990.
26. S. Goldwasser, S. Micali, Probabilistic Encryption, Journal of Computer and Sys-

tem Sciences (JCSS), Vol. 28, No. 2, pp. 270-299, 1984.
27. P. Golle, S. Zhong, D. Boneh, M. Jakobsson, A. Juels, Optimistic Mixing for Exit-

Polls, Asiacrypt 2002, LNCS, 2002.
28. N. Groth, A Verifiable Secret Shuffle of Homomorphic Encryptions, PKC 2003, pp.

145-160, LNCS 2567, 2003.
29. N. Groth, Personal Communication, 2004.
30. J. Buchmann, S. Hamdy, A Survey on IQ Cryptography, In Public-Key Crypto-

graphy and Computational Number Theory, Walter de Gruyter, pp. 1-15, 2001.
31. M. Jakobsson, A Practical Mix, Eurocrypt ’98, LNCS 1403, pp. 448-461, 1998.
32. M. Jakobsson, Flash Mixing, In Proceedings of the 18th ACM Symposium on

Principles of Distributed Computing - PODC ’98, pp. 83-89, 1998.
33. M. Jakobsson, A. Juels, Millimix: Mixing in small batches, DIMACS Techical re-

port 99-33, June 1999.
34. M. Jakobsson, A. Juels, An optimally robust hybrid mix network, In Proceedings of

the 20th ACM Symposium on Principles of Distributed Computing - PODC ’01,
pp. 284-292, 2001.

35. A. Menezes, P. van Oorshot, S. Vanstone, Handbook of Applied Cryptography, CRC
Press, ISBN 0-8493-8523-7, 1997.

36. S. Micali, C. Rackoff, B. Sloan, The notion of security for probabilistic cryptosys-
tems, SIAM Journal of Computing, Vol. 17, No. 2, pp. 412-426, 1988.

37. S. Micali, P. Rogaway, Secure Computation, Crypto ’91, LNCS 576, pp. 392-404,
1991.

38. M. Michels, P. Horster, Some remarks on a reciept-free and universally verifiable
Mix-type voting scheme, Asiacrypt ’96, pp. 125-132, LNCS 1163, 1996.

39. M. Mitomo, K. Kurosawa, Attack for Flash MIX, Asiacrypt 2000, pp. 192-204,
LNCS 1976, 2000.

22

40. A. Neff, A verifiable secret shuffle and its application to E-Voting, In Proceedings
of the 8th ACM Conference on Computer and Communications Security - CCS
2001, pp. 116-125, 2001.

41. A. Neff, Verifiable Mixing (Shuffling) of ElGamal Pairs, preliminary full version of
[40], http://www.votehere.com/documents.html, Mars, 2005.

42. V. Niemi, A. Renvall, How to prevent buying of votes in computer elections, Asiac-
rypt’94, LNCS 917, pp. 164-170, 1994.

43. W. Ogata, K. Kurosawa, K. Sako, K. Takatani, Fault Tolerant Anonymous Chan-
nel, Information and Communications Security - ICICS ’97, pp. 440-444, LNCS
1334, 1997.

44. C. Park, K. Itoh, K. Kurosawa, Efficient Anonymous Channel and All/Nothing
Election Scheme, Eurocrypt ’93, LNCS 765, pp. 248-259, 1994.

45. B. Pfitzmann, Breaking an Efficient Anonymous Channel, Eurocrypt ’94, LNCS
950, pp. 332-340, 1995.

46. B. Pfitzmann, A. Pfitzmann, How to break the direct RSA-implementation of mixes,
Eurocrypt ’89, LNCS 434, pp. 373-381, 1990.

47. B. Pfitzmann, M. Waidner, Composition and Integrity Preservation of Secure Re-
active Systems, 7th Conference on Computer and Communications Security of the
ACM, pp. 245-254, 2000.

48. P. Ribenboim, The new book of prime number records, 3rd ed., ISBN 0-38794457-5,
Springer-Verlag, 1996.

49. K. Sako, J. Killian, Reciept-free Mix-Type Voting Scheme, Eurocrypt ’95, LNCS
921, pp. 393-403, 1995.

50. Y. Tsiounis, M. Yung, On the Security of El Gamal based Encryption, International
workshop on Public Key Cryptography, LNCS 1431, pp. 117-134, 1998.

51. D. Wikström, Five Practical Attacks for “Optimistic Mixing for Exit-Polls”, In
proceedings of Selected Areas of Cryptography (SAC), LNCS 3006, pp. 160-174,
2003.

52. D. Wikström, A Universally Composable Mix-Net, Proceedings of First Theory of
Cryptography Conference (TCC ’04), LNCS 2951, pp. 315-335, 2004.

A Security Analysis of Protocol 1

Proof (Theorem 1 on Page 10). We describe an ideal adversary S(·) that runs
any hybrid adversary A as a black-box. Then we show that if S(A) does not
simulate A sufficiently well, we can break the DDH-assumption.

The Ideal Adversary S. Let IP and IM be the set of indices of participants
corrupted by A of the sender type and the mix-server type respectively. The
ideal adversary S corrupts the dummy participants P̃i for which i ∈ IP , and the
dummy participants M̃i for which i ∈ IM . The ideal adversary is best described
by starting with a copy of the original hybrid ITM-graph

(V,E) = Z ′(H(A, π(π̃
FBB
1 ,π̃

FSKS
2 ,π̃

FRC
ZK

3 ,π̃
FRDP

ZK
4))) ,

where Z is replaced by a machine Z ′.
The adversary S simulates all machines in V except those in A, and the

corrupted machines Pi for i ∈ IP and Mi for i ∈ IM under A’s control. We now
describe how each machine is simulated.

23

S simulates the machines Pi, i 6∈ IP and the ideal functionalities FBB, FRC
ZK

and FSKS honestly. All Mj for j 6∈ IM are also simulated honestly, except for Ml,
where l is chosen as the maximal index not in IM , i.e. the last honest mix-server.
The machine Ml plays a special role.

Simulation of Links (Z,A), (Z, Pi) for i ∈ IP , and (Z,Mj) for j ∈ IM . S
simulates Z ′, P̃i, for i ∈ IP , and M̃j for j ∈ IM , such that it appears as if Z and
A, Z and Pi for i ∈ IP , and Z and Mj for j ∈ IM are linked directly.

1. When Z ′ receives m from A, m is written to Z, by S. When S receives m
from Z, m is written to A by Z ′. This is equivalent to that Z and A are
linked directly.

2. When Z ′ receives m from Pi for i ∈ IP , m is written to Z by P̃i. When P̃i,
i ∈ IP , receives m from Z, m is written to Pi by Z ′. This is equivalent to
that Z and Pi are linked directly for i ∈ IP .

3. When Z ′ receives m from Mj for j ∈ IM , m is written to Z by M̃j . When
M̃j , j ∈ IM , receives m from Z, m is written to Mj by Z ′. This is equivalent
to that Z and Mj are linked directly for j ∈ IM .

Extraction from Corrupt Mix-Servers and Simulation of Honest Mix-Servers.
When a corrupt mix-server Mj , for j ∈ IM , writes Run on FBB, S must make
sure that M̃j sends (Run) to FMN. Otherwise it may not be possible to deliver
an output to honest mix-servers at a later stage. If an honest dummy mix-server
M̃j , for j 6∈ IM , receives (Run) from Z, S must make sure that Mj receives (Run)
from Z ′. If an honest mix-server Mj , for j 6∈ IM , outputs (Output, L′), S must
make sure that M̃j does the same. This is done as follows.

1. Let j ∈ IM . If (·,Mj , Run) appears on FBB M̃j hands (Run) to FMN. When
S receives (S, M̃j , Run) or ((S, M̃j , Output, L′), {(M̃l, τl)}kl=1) from CI the
simulation of FBB is continued.

2. Let j 6∈ IM . If S receives (S, M̃j , Run) or ((S,Mj , Output, L′), {(Ml, τl)}kl=1)
from FMN, Z ′ hands (Run) to Mj .

3. Let j 6∈ IM . If Z ′ receives (Output, L′) from Mj , S sends (1, τj) to CI , i.e. S
instructs CI to deliver (Output, L′) to M̃j .

Extraction from Corrupt Senders and Simulation of Honest Senders. If a corrupt
sender Pi, for i ∈ IP , in the hybrid protocol produces a cryptotext and informs
FRC

ZK such that its input is deemed valid, then S must instruct P̃i to hand this
as input to FMN .

When an honest dummy sender P̃i, for i 6∈ IP , receives a message mi from
Z, S must ensure that Pi receives some message m′i from Z ′. But S cannot see
mi, and must therefore hand some other message m′i 6= mi to Pi, and then later
fix this flaw in the simulation before A or Z notice it. This is done as follows.

1. Let i ∈ IP . Until S receives ((S,Mj , Output, L′), {(Ml, τl)}kl=1) from CI .
(a) If FRC

ZK receives a message (Pi, Prover, (Z1, Y1, ui, vi), ri) such that
((Z1, Y1, ui, vi), ri) ∈ RDP, then consult the storage of FBB and look for
a pair (c, Pi, (ui, vi)).

24

(b) If FBB receives (Pi, Write, (ui, vi)) then look if FRC
ZK stored ri under

(Pi, (Z1, Y1, ui, vi)) such that ((Z1, Y1, ui, vi), ri) ∈ RDP.
If such a pair [(c, Pi, (ui, vi)), (Pi, (Z1, Y1, ui, vi), ri)] is found then P̃i sends
mi = viY

−ri
1 to FMN and ignores further such pairs. When FMN writes

(P̃i, Send) to S, the simulation, of FRC
ZK or FBB respectively, is continued.

2. Let i 6∈ IP . When S receives (P̃i, Send) from FMN, then Z ′ sends a randomly
chosen message m′i ∈ Gq to Pi. By definition Pi chooses a random r′i ∈ Zq and
forms its cryptotext as (ui, vi) = (Zr′i

1 , Y
r′i
1 m′i). Note that this corresponds

to a pair of random elements in Gq.

How Ml and FRDP
ZK fix the flaw in the simulation. S must make sure that the

faulty messages m′i 6= mi introduced during simulation of honest senders, because
it does not know the real messages mi of the honest dummy participants P̃i for
i ∈ iP , are not noticed. This is done by modifying Ml and FRDP

ZK as follows.

1. If FRDP
ZK receives a tuple (Mj , Question,Ml, (g, zl, yl, Ll−1, Ll)) it verifies

that a tuple on the form (Ml, Prover, (g, zl, yl, Ll−1, Ll), ·) has been received.
If so it sets b = 1 and otherwise b = 0. Finally it hands
((S,Mj , Verifier,Ml, (zl, yl, Ll−1, Ll), b), (Mj , Verifier,Ml, b)) to CI .

2. Note that by construction S has received ((S,Mj , Output, L′), . . .), i.e. it
knows the output L′. Let {mi}N

′

i=1 be the messages in L′, except that they
are ordered such that mi is the message sent by Pi for all i ∈ IP . The other
messages are ordered arbitrarily. Note that S knows ri and mi for all i ∈ IP ,
since it simulated the handing of these to FMN itself.
Ml does the following instead of Step 7b in the protocol. It chooses ri ∈ Zq,
for i 6∈ IP , and πl ∈ ΣN randomly, and computes the list

Ll = {(ul,i, vl,i)}N
′

i=1 = Sort
({(

Zri

l+1, Y
ri

l+1mi

)}N ′

i=1

)
.

Finally it hands (Prover, (g, zl, yl, Ll−1, Ll), ·) to FRDP
ZK , and it hands

(Write, (List, Ll)) to FBB.

The first step ensures that FRDP
ZK plays along with Ml and pretends to other Mj

that Ml did prove his knowledge properly. The second step ensures that Ml fixes
the flaw in the simulation introduced by S at the point when it did not know
the messages sent by honest dummy participants P̃i, for i 6∈ IP .

Note that the cryptotexts of all corrupted parties are identically distributed
as in the real protocol. The same randomness ri is used to encrypt the message
mi sent by Pi for i ∈ IP .

This concludes the definition of the ideal adversary S.

Reaching a Contradiction. Next we show, using a hybrid argument, that if
the ideal adversary S defined above does not imply the security of Protocol 1,
then we can break the DDH-assumption.

Suppose that S does not imply the security of the protocol. Then there
exists a hybrid adversary A, an environment Z with auxiliary input z = {zn},

25

a constant c > 0 and an infinite index set N ⊂ N such that for n ∈ N

|Pr[Zz(I(S, π̃FMN)) = 1]− Pr[Zz(H(A′, π(π̃
FBB
1 ,π̃

FSKS
2 ,π̃

FRC
ZK

3 ,π̃
FRDP

ZK
4))) = 1]| ≥ 1

nc

where S runs A as a black-box as described above, i.e. S = S(A).

Defining the Hybrids. Without loss we assume that {1, . . . , N}\IP = {1, . . . , η},
and define an array of hybrid machines T0, . . . , Tη. Set T0 = Zz(I(S(A), π̃FMN)),
and then define Ts by the following modification to T0.

1. When S receives (P̃i, Send) from FMN, for i 6∈ IP , it checks if i ∈ {1, . . . , s}.
(a) If so it consults the storage of FMN to find the message mi sent by P̃i.

Then Z ′ sends mi to Pi and treats i as if i ∈ IP in the simulation of Ml.
This means that ri = r′i, and m′i = mi.

(b) Otherwise Z ′ sends a random message m′i ∈ Zq to Pi, as in the original
simulation.

By inspection of the constructions we see that the output of Tη is identically

distributed to the output of Zz(H(A′, π(π̃
FBB
1 ,π̃

FSKS
2 ,π̃

FRC
ZK

3 ,π̃
FRDP

ZK
4))) since the only

essential difference is that Ml does not hand knowledge of his transformation to
FRDP

ZK , but FRDP
ZK ignores Ml’s inability so this is not discovered by A or Z.

If we set ps = Pr[Ts = 1], we have 1
nc ≤ |p0 − pη| ≤

∑η
i=1 |ps−1 − ps|, which

implies that there exists some fixed 0 < s ≤ η such that |ps−1−ps| ≥ 1
ηnc ≥ 1

Nnc .

Defining a Distinguisher. We are now finally ready to define a distinguisher D for
the experiment considered in Lemma 10, i.e., a variation of the DDH-experiment.

D is confronted with the following test. An oracle first chooses r, w, r′, x, r′′ ∈
Zq and a bit b ∈ {0, 1} randomly

1. If b = 0, then it defines (a, y, v, z, u) = (gr, gw, gr′ , gx, gr′′).
2. If b = 1, then it defines (a, y, v, z, u) = (gr, gw, grw, gx, grx).

The distinguisher D must guess the value of b, i.e., which type of input it gets.
D replaces (zl, yl) by (z, y) in Ml’s key generation. This does not change the

distribution of this key and thus does not change any of the hybrids. D computes

Zj and Yj as follows. It computes Zl = z
Qk

j=l+1 wj

l , and for j 6= l it computes

Zj = Z
wj

j+1 as usual. It computes Yl = Yl+1y
Qk

j=l+1 wj

l , and for j 6= l it computes
Yj = Yj+1Z

xj

j+1 as usual. Note that the scheme is carefully chosen to allow the
simulator to generate Zj and Yj without knowledge of w or x.

Since Ml appears to behave honestly (with the help of FRDP
ZK), the fact that

Ml does not know w = logg zl or x = logg yl is never revealed, and since less
than k/2 mix-servers are corrupted w or x need never be recovered. The reader
should think of r as the randomness of a sender, w as wl and x as xl. D simulates
Ts until Ps receives the message (Send,ms), at which point it forms a cryptotext

(us, vs) =
(
u

Q
j 6=l wj , a

P
j 6=l xj

Qk
j′=j+1 wj′ v

Qk
j=l+1 wj ms

)
.

26

Note that if b = 1, we have (us, vs) = (Zr
1 , Y r

1 mi). The sender Ps is modi-
fied to hand (Write, (us, vs)) to FBB, and the tuple (Prover, (Z1, Y1, us, vs), 1)
to FRC

ZK . Furthermore, FRC
ZK is modified to a handle this message as if we had

((Z1, Y1, us, vs), 1) ∈ RC, i.e. it lies on Pi’s behalf. Finally, we must change the
way Ml forms its output. Suppose that (uj,l−1, vj,l−1) corresponds to the input
(us, vs). Instead of decrypting this pair Ml replaces it by

(u′s, v
′
s) =

(
a

Qk
j=l+1 wj , a

Pk
j=l+1 xj

Qk
j′=j+1 wj′mi

)
= (Zr

l+1, Y
r
l+1mi) .

D then continues the simulation of Ts until it outputs a bit b′, which is then
output by D.

If b = 0, then u and v are random elements in Gq. This implies that (us, vs)
is identically distributed to the corresponding cryptotext in the simulation and
the output of D is identically distributed to the output of Ts−1.

If b = 1, then (us, vs) is a valid encryption of mi with randomness r, and
(u′s, v

′
s) is a partial decryption of (us, vs) using the secret keys wl = w and xl = x.

This implies that the output of D is identically distributed to the output of Ts.
We conclude that

|Pr[D(gr, gw, grw, gx, grx) = 1]− Pr[D(gr, gw, gr′ , gx, gr′′) = 1]|

= |ps−1 − ps| ≥
1

Nnc
.

Lemma 10 in Section G shows that this contradicts the DDH-assumption.

B Analysis of the Prime Vector Generator

The generator PGen is not allowed to test more than N ′ = lnn(N +
√

NK3)
integers, and it is not allowed to do more than N ′′ = NK3 + 2(N ′ +

√
N ′K3)

iterations of the Miller-Rabin test in total.
Since each iteration of the Miller-Rabin test corresponds to computing a

single exponentiation modulo an K3-bit integer, the running time of the gener-
ator may be expressed as (NK3+2(N ′+

√
N ′K3))K3

3

K1
3 . If we assume that N ≥ K3

this can be bounded by 6K3
4

K1
3 N exponentiations modulo a K1-bit integer.

Remark 1. Using GMP [22] we have compared for N = 1000 the complexity
of running the generator with K3 = 100 and the complexity of exponentiation
modulo a K1-bit integer for K1 = 1000. Our estimate suggests a ratio 6/10,
whereas the experiment gives 0.46, so the estimate seems reasonable.

Proof (Lemma 1 on Page 16). Suppose that PGen(n1, . . . , nN) 6= ⊥. Then PGen
outputs a list of integers (p1, . . . , pN) and for each integer n between ni and
pi an iteration of the Miller-Rabin primality test has found a witness that n
is composite. Thus, there exists no primes between ni and pi. The probability
that pi is considered to prime despite that it is not, is bounded by 2−K3 since
K3 iterations of the Miller-Rabin test are executed. The union bound implies
that the probability that pi 6= p(ni) for any i is bounded by N2−K3 , which is
negligible.

27

Proof (Lemma 2 on Page 17). We must bound the probability that the generator
need too many invocations of Miller-Rabin or too many iterations in total. For
simplicity we assume that no integer is tested twice for primality.

Denote by Yi the event that the integer tested in the ith invocation of Miller-
Rabin is a prime. Since the generator never checks the same integer twice, we
assume that the Yi are independent. Set Y =

∑N ′

i=1 Yi. Then Exp[Y] = N ′

ln n =
N +

√
NK3. We bound the probability that the generator fails by having to

check to many integers by

Pr [Y ≤ N] = Pr
[
Y ≤ Exp[Y]−

√
NK3

]
≤ e−2K3 .

Suppose now that at least N of the Yi are ones. We must bound the prob-
ability that the generator need more than N ′′ iterations in the Miller-Rabin
test. At most N primes are tested and for each such prime K3 iterations are
needed giving NK3 iterations for the primes. Along the way a number of com-
posite numbers are tested. Our bound stipulates that at most 2(N ′ +

√
N ′K3)

iterations can be spent on composites, and at most N ′ integers can be tested
at all. Denote by Zi the indicator variable for the event that the ith iteration
of the Miller-Rabin test, when run on a composite outputs “composite”. Define
Z =

∑2(N ′+
√

N ′K3)
i=1 Zi. In each iteration of the Miller-Rabin test on a composite

the test outputs “composite” with probability at least 1/2 so Pr[Zi] ≥ 1
2 and

Exp[Z] ≥ N ′ +
√

N ′K3.
The probability of failure is bounded by the probability that the generator

is not allowed to perform more Miller-Rabin tests despite that there are more
integers to be tested. This probability is captured below.

Pr [Z ≤ N ′] = Pr
[
Z ≤ Exp[Z]−

√
N ′K3

]
≤ e−2K3 .

Thus, it follows that the probability that the generator outputs ⊥ negligible.

C Complexity Analysis of Protocol 2

In this section we substantiate our complexity claims. Denote by tEXP the time it
takes to compute an exponentiation in Gq, i.e. with an K1-bit exponent modulo
a K1-bit integer. If the exponent instead has K bits, we assume that computing
the exponentiation takes time K

K1
tEXP. This is reasonable since exponentiation

is normally implemented using the square-and-multiply algorithm. We must also
relate the time it takes to compute an exponentiation with a K-bit exponent and
modulus to tEXP. We assume that this takes time (K

K1
)3tEXP. This is reasonable

since exponentiation normally takes cubic time in the bit-size of the inputs. We
use the same conventions for exponentiation in QRN with K1 replaced by K2.

We use the same convention as Furukawa [21] when we estimate the effect of
standard optimization techniques [35], i.e., simultaneous exponentiation reduces
the cost by a factor of 1/3, and fixed base exponentiation reduces the cost by a
factor of 1/12.

28

First we consider the theoretical requirements. For simplicity we set K1 = K2.
Recall that, using the number field sieve, discrete logarithms modulo an K1-bit
prime can be solved in time exp(O(K1

1/3 log K1)) ≤ exp(O(K1
2/5)). Thus, from

a theoretical point of view we may assume that K3 = K1
2/5. We count all terms

that do not go to zero with increasing K1. It can be seen that the cost for the
prover and verifier is roughly 5N and 2N exponentiations respectively. With
optimizations the corresponding estimates would be 5

12N and 1
6N .

Our estimates for the practical complexity of the protocol follows from the
Scheme program below. We have simply counted the number of exponentiations
using the assumptions above. Each function veriStepi computes the complexity
of verifier in the ith step of the protocol and correspondingly for proStepi. In
Table 1 we give the complexity for some common parameters.

Parameters Non-Optimized Optimized
K1 K2 K4 K3 K5 Prover Verifier Prover Verifier
1024 1024 160 100 50 7.8N 8.2N 1.4N 4.8N
2048 1024 160 100 50 2.4N 1.5N 0.4N 0.8N
2048 2048 160 100 50 6.4N 3.7N 0.9N 1.1N
3072 2048 160 100 50 2.9N 1.4N 0.4N 0.4N
3072 3072 160 100 50 5.9N 3.0N 0.7N 0.6N

Table 1. The table gives estimates of the complexity, without and with optimization,
of the prover and verifier in terms of general exponentiations in Gq for some common
security parameters.

D Security Analysis of Protocol 2

In this section we analyze the security of Protocol 2. The zero-knowledge prop-
erty is relatively straightforward, so most of our effort is spent on analyzing the
soundness of the protocol.

D.1 The Protocol is Honest Verifier Statistical Zero-Knowledge

Proof (Proposition 1 on Page 15). The simulator chooses p1, . . . , pN and c hon-
estly. Then it chooses f1, . . . , f7, f1/w, fx/w, fw, fx, fr′ ∈ Zq,
e ∈ [0, 2K2+NK3+K4+K5+log2 N − 1], e′ ∈ [0, 2K2+K5+log2 N − 1], (ei, e

′
i)

N
i=1 ∈

[0, 2K2+K4+2K5 − 1]N , and (di)N
i=1 ∈ [0, 2K3+K4+K5 − 1]N randomly. It also

chooses b1, . . . , b5 ∈ Gq and bi,b′i ∈ QRN randomly. Finally, the simulator
defines, (β1, . . . , β9) by Equations (15)- (18), (α1, α2, α3) by Equations (19), γi

and γ′i by Equation (20), γ by Equation (21), and γ′ by Equation (22) re-
spectively. The distribution of the resulting elements is statistically close to the
distribution of the corresponding elements in the protocol.

29

; Load file with (load ‘‘complexity.scm’’)
; Compute complexity with (comp 2048 1024 160 100 50 (/ 1 12) (/ 1 3))

(define (veriStep2 k1 k2 k3 k4 k5 fixbasefak simulfak)
(/ (* 6 k3 k3 k3 k3) (* k1 k1 k1)))

(define (veriStep3 k1 k2 k3 k4 k5 fixbasefak simulfak)
(* simulfak 3 (/ k3 k1)))

(define (veriStep7 k1 k2 k3 k4 k5 fixbasefak simulfak)
(+ (* simulfak 3 (/ (+ k3 k4 k5) k1))

(* (/ (* k2 k2 k2) (* k1 k1 k1))
(+ (+ (* fixbasefak (/ (+ k2 k4 (* 2 k5)) k2))

(/ (+ k3 k4 k5) k2))
(* fixbasefak

(+ (/ (+ k2 k4 (* 2 k5)) k2) (/ (+ k3 k4 k5) k2)))
(/ k3 k2)))))

(define (veri k1 k2 k3 k4 k5 fixbasefak simulfak)
(float (+ (veriStep2 k1 k2 k3 k4 k5 fixbasefak simulfak)

(veriStep3 k1 k2 k3 k4 k5 fixbasefak simulfak)
(veriStep7 k1 k2 k3 k4 k5 fixbasefak simulfak))))

(define (proStep1 k1 k2 k3 k4 k5 fixbasefak simulfak)
fixbasefak)

(define (proStep3 k1 k2 k3 k4 k5 fixbasefak simulfak)
(veriStep3 k1 k2 k3 k4 k5 fixbasefak simulfak))

(define (proStep4 k1 k2 k3 k4 k5 fixbasefak simulfak)
(+ (* simulfak 3 (/ (+ k3 k4 k5) k1))

(* (/ (* k2 k2 k2) (* k1 k1 k1))
(+ (* fixbasefak (/ (+ k2 k5) k2))

(/ k3 k2)
(* fixbasefak (+ (/ (+ k2 k5) k2) (/ k3 k2)))
(* fixbasefak (/ (+ k2 k4 (* 2 k5)) k2))
(/ (+ k3 k4 k5) k2)
(* fixbasefak

(+ (/ (+ k2 k4 (* 2 k5)) k2)
(/ (+ k3 k4 k5) k2)))))))

(define (pro k1 k2 k3 k4 k5 fixbasefak simulfak)
(float (+ (proStep1 k1 k2 k3 k4 k5 fixbasefak simulfak)

(proStep3 k1 k2 k3 k4 k5 fixbasefak simulfak)
(proStep4 k1 k2 k3 k4 k5 fixbasefak simulfak))))

Table 2. Scheme program for estimation of the complexity of the protocol.

30

D.2 The Protocol is Sound

As explained at the end of Section 5.2, we cannot hope to prove formally that
the protocol is an interactive proof, or a proof of knowledge. Instead we prove
that for every adversary A, the probability, over the random choice of the RSA-
parameters (N,g,h) and the independent generators g1, . . . , gN ∈ Gq, that the
adversary first outputs a common input (z, y, L, L′) 6∈ RDP and then convinces
the verifier that it knows a witness (w, x) such that ((g, z, y, L, L′), (w, x)) ∈ RDP

is negligible.
Although our proof of a shuffle is complex the analysis is similar in structure

to most analyses of proofs of knowledge. First we identify conditions on a set of
related transcripts that allow us to extract the knowledge held by the prover.
This corresponds to finding a “fork” in standard Schnorr-like proofs of knowledge
of a logarithm. Then we describe how such transcripts can be generated by
interacting with a prover.

Notation. We need to consider many transcripts and be able to distinguish
between these. To simplify we denote the jth transcript in a list of transcripts
by Tj = (Ij ,Wj , Pj , Cj , cj , Rj) where Ij denotes the common input, Wj denotes
the list of commitments wi, and

Pj = (pj,1, . . . , pj,N)
Cj = ((bj,i)5i=1, (βj,i)9i=1, (αj,1, αj,2, αj,3), (bj,i,b′j,i)

N
i=1, (γj,i,γ

′
j,i)

N
i=1, (γj ,γ

′
j))

Rj = ((fj,i)7i=1, fj,1/w, fj,x/w, fj,w, fj,x, fj,r′), (ej,i, e
′
j,i)

N
i=1, (dj,i)N

i=1, (ej , e
′
j)) .

Since Ij and Wj are fixed for all j in most of our analysis we do not introduce
any notation indexed on j for their parts. We think of (Pj , Cj , cj , Rj) as “the
primes”, “the commitments”, “the challenge” and “the reply” in the jth transcript.

Extraction From Suitable Transcripts. Recall that for standard Schnorr-
like proofs of knowledge it suffices to find a “fork”, i.e., two accepting transcripts
with identical commitments from the prover, but distinct challenges from the
verifier, to extract the knowledge held by the prover.

Our protocol has a similar, but more complicated property. The lemma below
shows that given 2N transcripts of a special form, we can either extract a witness
of the decryption-permutation relation, or one of a small number of special cases
occur.

In a later section we show that if one of the special cases occur with non-
negligible probability we can break a standard complexity assumption, so the
reader should think of the lemma as saying that we can extract a witness for the
decryption-permutation relation.

Lemma 3. Let T1, . . . , T2N be accepting transcripts such that

1. (I1,W1) = (I2,W2) = . . . = (IN ,WN),
2. (Pj , Cj) = (Pj+N , Cj+N) and cj 6= cj+N , and

31

3. Span(P1, . . . , PN) = ZN
q and pj,i 6= pj,l for i 6= l.

Then we can find one of the following things in polynomial time

1. Main Conclusion. Elements w, x ∈ Zq and a permutation π ∈ ΣN s.t.

((g, z, y, L, L′), (w, x)) ∈ RDP .

2. An element b ∈ QRN, and integers η0 6= 0, and η1, η2, not both zero such
that one of the following holds.
(a) The integer η0 does not divide both η1 and η2, and bη0 = hη1gη2 .
(b) The integer η0 does not divide η1, and bη0 = hη1 .

3. Integers η1, η2, not both zero, such that hη1 = gη2 .
4. Elements ρ′i and ρ′i,j in Zq such that wi = gρ′i

∏N
j=1 g

ρ′i,j

j , and such that
(ρ′ij)

N
i,j=1 is not a permutation matrix.

5. Elements η0, . . . , ηN ∈ Zq, not all zero, such that gη0
∏N

i=1 gηi

i = 1.

Proof. The proof is quite complex and is divided into a number of cases, some
of which are subdivided into sub-cases. The main track of the proof leads to the
main conclusion. To aid the reader we adopt the convention that whenever the
proof divides into two cases it is always the first case that leads to the main
conclusion.

We first analyze the integer commitments of the protocol, and only then
proceed with the analysis of the components in Gq. Our integer commitments
are not standard, since the bases bj,i are chosen by the adversary during the
protocol, and we compose commitments in various ways. This said, we do use
ideas from Fujisaki and Okamoto [18] and Damgård and Fujisaki [12].

The Prover Can Open bj,i and b′j,i To Some ρi. We consider Equations
(20) iteratively for i = 1, . . . , N . For a given i, the equations imply that

bcj+N−cj

j,i = hej+N,i−ej,ibdj+N,i−dj,i

j,i−1 , and

(b′j,i)
cj+N−cj = he′j+N,i−e′j,igdj+N,i−dj,i .

There are several cases to consider.

1. If cj+N − cj divides ej+N,i − ej,i, dj+N,i − dj,i and e′j+N,i − e′j,i, we set
τi = (ej+N,i − ej,i)/(cj+N − cj), τ ′i = (e′j+N,i − e′j,i)/(cj+N − cj) and

ρi = (dj+N,i − dj,i)/(cj+N − cj) , (23)

and conclude that

bj,i = hτibρi

j,i−1 , and b′j,i = hτ ′igρi . (24)

We apply the equalities iteratively and get

bj,N = hτg
QN

i=1 ρi

where τ = τN + ρN (τN−1 + ρN−1(τN−2 + ρN−2(τN−3 + ρN−3(. . .))).

32

2. Suppose now that cj+N−cj divides ej+N,i−ej,i, e′j+N,i−e′j,i and dj+N,i−dj,i

for all i < l, but not for i = l. Then we can only conclude that

bj,l−1 = hτ∗g
Ql−1

i=1 ρi

where τ∗ = τl−1+ρl−1(τl−2+ρl−2(τl−3+ρl−3(τl−4+ρl−4(. . .))). This implies
that

bcj+N−cj

j,l = hτ∗(dj+N,l−dj,l)+(ej+N,l−ej,l)g(
Ql−1

i=1 ρi)(dj+N,i−dj,i) .

Remark 2. For readers familiar with the proof in Damgård and Fujisaki [12],
we point out that here it seems impossible to conclude that one of the ex-
ponents on the left is not divisible by the exponent on the right, which is
necessary to reach a contradiction to the strong RSA-assumption. This is dif-
ferent from [12], where no additional factors corresponding to τ∗ and

∏l−1
i=1 ρi

are present. The sole purpose of the b′j,i commitments is to handle this prob-
lem. Thus, if the problem could be solved otherwise this would simplify the
protocol and improve its efficiency somewhat.

There are two cases to consider.
(a) If cj+N − cj does not divide e′j+N,l − e′j,l and dj+N,l − dj,l, then set

b = b′j,l, η0 = cj+N − cj , η1 = e′j+N,l − e′j,l, and η2 = dj+N,l − dj,l. This
implies that bη0 = hη1gη2 and η0 does not divide both η1 and η2, i.e.
Conclusion 2a of the lemma is satisfied.

(b) If cj+N − cj divides e′j+N,i − e′j,i and dj+N,l − dj,l, then set

b = bj,l

(
hτ∗g

Ql−1
i=1 ρi

)− dj+N,l−dj,l
cj+N−cj

,

η0 = cj+N − cj , and η1 = ej+N,l−ej,l. By assumption η0 does not divide
η1. This implies that bη0 = hη1 and η0 does not divide η1, i.e. Conclusion
2b of the lemma is satisfied.

There is no need to consider Case 2 further, but we must show that Case 1 leads
to one of the conclusions in the lemma.

Each ρi Equals a Prime pj,πj(i) Up to Sign For Some πj ∈ ΣN . Equation
(21) implies that

(g−
QN

i=1 pjibj,N)cj+N−cj = hej+N−ej .

There are two cases to consider.

1. If cj+N − cj divides ej+N − ej we set τ∗ = (ej+N − ej)/(cj+N − cj) and
conclude that

bj,N = hτ∗g
QN

i=1 pji .

There are two sub-cases to consider.

33

(a) If (τ∗,
∏N

i=1 pji) = (τ,
∏N

i=1 ρi), then it follows from unique factorization
in Z that ρi =

∏
l∈Γi

pj,l for some subset Γi ⊂ {1, . . . , N}. We also
have cjρi ∈ [−2K3+K4+K5 + 1, 2K3+K4+K5 − 1] by definition. Since cj ∈
[2K4−1, 2K4 − 1], this is only possible if ρi ∈ [−2K3+K5 + 1, 2K3+K5 − 1].
We know that pj,l ∈ [2K3−1, 2K3 − 1] and K5 < K3 − 2 so no product of
more than one prime can be contained in [−2K3+K5 +1, 2K3+K5−1], i.e.
|Γi| ≤ 1. This implies that each ρi has at least one factor. We conclude
that ρi = ±pj,πj(i) for some permutation πj ∈ ΣN .

(b) If (τ∗,
∏N

i=1 pji) 6= (τ,
∏N

i=1 ρi), we have

hτ−τ∗g
QN

i=1 ρi−
QN

i=1 pji = 1 .

If we set η1 = τ − τ∗, and η2 = −(
∏N

i=1 ρi −
∏N

i=1 pji), these integers
satisfy Conclusion 3 of the lemma.

2. If cj+N − cj does not divide ej+N − ej , then set b = g−
QN

i=1 pjibj,N , η0 =
cj+N − cj , and η1 = ej+N − ej . Then bη0 = hη1 and η0 does not divide η1,
i.e., Conclusion 2a of the lemma is satisfied.

The only case we must consider further is Case 1a.

All ρi Are Positive. Equation (24) implies that

N∏
i=1

b′j,i = h
PN

i=1 τ ′ig
PN

i=1 ρi . (25)

From Equation (22) we conclude that(
g−

PN
i=1 pj,i

N∏
i=1

b′j,i

)cj+N−cj

= he′j+N−e′j .

There are two cases to consider.

1. If cj+N − cj divides e′j+N − e′j , we define τ ′ = (e′j+N − e′j)/(cj+N − cj) and
conclude that

N∏
i=1

b′j,i = hτ ′g
PN

i=1 pj,i .

There are two sub-cases to consider.
(a) If (τ ′,

∑N
i=1 pj,i) = (

∑N
i=1 τi,

∑N
i=1 ρi), we conclude that ρi is positive.

To see this, note that pj,i > 0 and ρi = ±pj,πj(i) 6= 0. Thus, if any ρi is
negative we have

∑N
i=1 pj,i >

∑N
i=1 ρi.

(b) If (τ ′,
∑N

i=1 pj,i) 6= (
∑N

i=1 τi,
∑N

i=1 ρi), we have

hτ ′−
PN

i=1 τig
PN

i=1 pj,i−
PN

i=1 ρi = 1 .

If we set η1 = τ ′ −
∑N

i=1 τi and η2 = −(
∑N

i=1 pj,i −
∑N

i=1 ρi), these
integers satisfy Conclusion 3 of the lemma.

34

2. If cj+N − cj does not divide e′j+N − e′j , then set b = g−
PN

i=1 pj,i
∏N

i=1 b′j,i,
η0 = cj+N − cj , and η1 = e′j+N − e′j . This implies that bη0 = hη1 and η0

does not divide η1, i.e., Conclusion 2b of the lemma is satisfied.

We have now established that either we have ρi = pj,πj(i) for some permuta-
tion πj , or one of the Conclusions 2a, 2b, or 3 of the lemma holds. We stress
that we do not necessarily have πj = πj′ for j 6= j′.

From this point on we compute in Gq, and q is prime so the exponents live
in the finite field Zq, i.e., every non-zero element can be inverted.

The Commitments wi Are On The Expected Form. We now argue that
the commitments wi are a commitment of a permutation π. From Equation (19)
we have

W
cj+N−cj

j = gfj+N,r′−fj,r′

N∏
i=1

g
dj+N,i−dj,i

i .

We define γ′j = (fj+N,r′ − fj,r′)/(cj+N − cj) and conclude that

N∏
i=1

w
pj,i

i = gγ′j

N∏
i=1

g
pj,πj(i)

i . (26)

Since the vectors P1, . . . , PN are linearly independent over ZN
q by assumption,

this means that for each i there exists coefficients ai,1, . . . , ai,N ∈ Zq such that∑N
j=1 ai,jPj = (δi,1, . . . , δi,N) with δi,j = 0 for j 6= i and δi,i = 1. This implies

that

wi =
N∏

j=1

(
N∏

l=1

w
pj,l

l

)ai,j

=
N∏

j=1

(
gγ′j

N∏
l=1

g
pj,πj(l)

l

)ai,j

= gρ′i

N∏
l=1

g
ρ′i,l

l ,

where ρ′i =
∑N

j=1 γ′jai,j and ρ′i,l =
∑N

j=1 pj,πj(l)ai,j .
We expect that 

ρ′11 ρ′12 · · · ρ′1N

ρ′21 ρ′22 · · · ρ′2N
...

...
. . .

...
ρ′N1 ρ′N2 · · · ρ′NN


is a permutation matrix. If it is not, then Conclusion 4 is satisfied, so we assume
it is a permutation matrix such that

wi = gρ′igπ−1(i) . (27)

All Permutations Used Are Equal. We must show that all permutations
πj are equal. If πj 6= π, we have from Equation (26) and (27) that

gγ′j

N∏
i=1

g
pj,πj(i)

i =
N∏

i=1

w
pj,i

i = g
PN

i=1 ρ′ipj,i

N∏
i=1

g
pj,π(i)
i

35

with some pj,πj(i) − pj,π(i) 6= 0, since pj,i 6= pj,l if i 6= l by assumption. Then
setting η0 = γ′j −

∑N
i=1 ρ′ipj,i and ηi = pj,πj(i) − pj,π(i) implies gη0

∏N
i=1 gηi

i = 1
and Conclusion 5 of the lemma is satisfied.

The Common Input (g, z, y, L, L′) Satisfies ((g, z, y, L, L′), (w, x)) ∈ RDP.
From the above we may assume that πj = π for all j = 1, . . . , N , so we drop the
subscript and simply write π from now on. Equations (15) and (16) imply that

b
cj+N−cj

1 = gfj+N,1−fj,1Ufj+N,1/w−fj,1/w ,

b
cj+N−cj

2 = gfj+N,2−fj,2Ufj+N,x/w−fj,x/w ,

b
cj+N−cj

3 = gfj+N,3−fj,3gfj+N,1/w−fj,1/w , and

b
cj+N−cj

4 = gfj+N,6−fj,6Ufj+N,x/w−fj,x/w .

Define

ω′ = (fj+N,1/w − fj,1/w)/(cj+N − cj) ,

ξ′ = (fj+N,x/w − fj,x/w)/(cj+N − cj) ,

κ1 = (fj+N,1 − fj,1)/(cj+N − cj) , (28)
κ2 = (fj+N,2 − fj,2)/(cj+N − cj) , (29)
κ3 = (fj+N,3 − fj,3)/(cj+N − cj) , and (30)
κ6 = (fj+N,6 − fj,6)/(cj+N − cj) . (31)

Then we have

b1 = gκ1Uω′ , (32)

b2 = gκ2Uξ′ , (33)

b3 = gκ3
1 gω′ , and (34)

b4 = gκ6
1 gξ′ . (35)

Equations (17) and (18) imply that

b
cj+N−cj

4 = g
fj+N,4−fj,4
1 b

fj+N,x−fj,x

3 , (36)
ycj+N−cj = gfj+N,x−fj,x , (37)

b
cj+N−cj

5 = g
fj+N,5−fj,5
1 b

fj+N,w−fj,w

3 , (38)
zcj+N−cj = gfj+N,w−fj,w , (39)

(b5/g)cj+N−cj = gfj+N,7−fj,7 . (40)

Define ω = (fj+N,w − fj,w)/(cj+N − cj) ξ = (fj+N,x − fj,x)/(cj+N − cj), and

ω = (fj+N,w − fj,w)/(cj+N − cj) ,

ξ = (fj+N,x − fj,x)/(cj+N − cj) ,

κ4 = (fj+N,4 − fj,4)/(cj+N − cj) , (41)
κ5 = (fj+N,5 − fj,5)/(cj+N − cj) , and (42)
κ7 = (fj+N,7 − fj,7)/(cj+N − cj) . (43)

36

Then we have gx = y = gξ and gw = z = gω, so ξ = x and ω = w. This means
that we have

b4 = gκ4
1 bx

3 (44)
b5 = gκ5

1 bw
3 (45)

b5 = gκ7
1 g (46)

If we combine Equation (34) and Equation (45) we get

b5 = gκ5
1 gwκ3

1 gwω′ . (47)

There are two cases

1. If ω′ = 1/w we conclude from Equations (34) and (35) that

b3 = gκ3
1 g1/w , and (48)

b4 = g
κ4+x/κ3
1 gx/w . (49)

If ξ′ 6= x/w, we set η0 = κ4 + xκ3 − κ6 and η1 = x/w − ξ′. This gives
gη0gη1

1 = 1, i.e., Conclusion 5 is satisfied. Thus, we may assume that ξ′ =
x/w. Combined with Equations (32) and (33) this gives

b1 = gκ1U1/w , and (50)
b2 = gκ2Ux/w . (51)

2. If ω′ 6= 1/w we define η0 = wω′−1 and η1 = κ5 +wκ3−κ7. From Equations
(47) and (46) we conclude that gη0gη1

1 = 1, i.e., Conclusion 5 is satisfied.

From Equation (19) we have

b
cj+N−cj

1 = gfj+N,1−fj,1

N∏
i=1

(u′i)
dj+N,i−dj,i , and

(V/b2)cj+N−cj = g−(fj+N,2−fj,2)
N∏

i=1

(v′i)
dj+N,i−dj,i .

Our definitions of κ1 and κ2 in Equations (28) and (29), and the definition of
ρi, which equals pj,π(i) in Equation (23) imply that

b1 = gκ1

N∏
i=1

(u′i)
pj,π(i) , and

V/b2 = g−κ2

N∏
i=1

(v′i)
pj,π(i) .

37

If we combine Equations (50) and (51) with the two equations above we have

N∏
i=1

(u1/w
i)pji = U1/w =

N∏
i=1

(u′i)
pj,π(i) , and (52)

N∏
i=1

(vi/u
x/w
i)pji = V/Ux/w =

N∏
i=1

(v′i)
pj,π(i) , (53)

for j = 1, . . . , N . We apply the coefficients al,1, . . . , al,N ∈ Zq introduced above
to the Equations (52) and (53) and conclude that

u
1/w
l =

N∏
j=1

(N∏
i=1

(u1/w
i)pji

)al,j

=
N∏

j=1

(N∏
i=1

(u′i)
pj,π(i)

)al,j

= u′π−1(l) , and

vl/u
x/w
l =

N∏
j=1

(N∏
i=1

(vi/u
x/w
i)pji

)al,j

=
N∏

j=1

(N∏
i=1

(v′i)
pj,π(i)

)al,j

= v′π−1(l) .

This concludes the proof.

Random Prime Vectors are Linearly Independent. We show that given
linearly independent vectors P1, . . . , Pj−1 ∈ ZN

q , a random prime vector Pj is
contained in the subspace spanned by P1, . . . , Pj−1 with negligible probability
as long as j ≤ N .

Lemma 4. Let P1, . . . , Pj−1 ∈ ZN
q be linearly independent vectors. If Pj =

(pj,1, . . . , pj,N) is a list of independently and identically distributed primes such
that Pr[pj,i = p] ≤ ε for every prime p, we have

Pr[Pj ∈ Span(P1, . . . , Pj−1)] ≤ εN−j+1 .

Proof. The vectors P1, . . . , Pj−1 form a matrix

P =


p1,1 p1,2 · · · p1,j−1 p1,j · · · p1,N

p2,1 p2,2 · · · p2,j−1 p2,j · · · p2,N

...
...

. . .
...

...
. . .

...
pj−1,1 pj−1,2 · · · pj−1,j−1 pj−1,j · · · pj−1,N

 .

Suppose that we replace P1, . . . , Pj−1 with a set of rows P ′1, . . . , P
′
j−1 formed by

elementary row operations. Then clearly Pr[Pj ∈ Span(P1, . . . , Pj−1)] = Pr[Pj ∈
Span(P ′1, . . . , P

′
j−1)], since Span(P ′1, . . . , P

′
j−1) = Span(P1, . . . , Pj−1). Given a

permutation π of N elements, we denote by Pπ
i the vector with permuted com-

ponents defined as (pi,π(1), pi,π(2), . . . , pi,π(N)). Since the primes pj,1, . . . , pj,N are
identically and independently distributed we conclude that

Pr[Pj ∈ Span(P1, . . . , Pj−1)] = Pr[Pj ∈ Span(Pπ
1 , . . . , Pπ

j−1)]

38

for every permutation π of N elements.
Thus, we can by elementary row operations and by permuting the columns

in the matrix form a new matrix P ′ from P on the form

P ′ =


P ′1
P ′2
...

P ′j−1

 =


1 0 · · · 0 p′1,j · · · p′1,N

0 1 · · · 0 p′2,j · · · p′2,N
...

...
. . .

...
...

. . .
...

0 0 · · · 1 p′j−1,j · · · p′j−1,N

 ,

with Pr[Pj ∈ Span(P1, . . . , Pj−1)] = Pr[Pj ∈ Span(P ′1, . . . , P
′
j−1)]. We have Pj ∈

Span(P ′1, . . . , P
′
j−1) if and only if

j−1∑
i=1

pj,ip
′
i,l = pj,l

for l = j, . . . , N . From independence we conclude that the probability of this
event is at most εN−j+1, which concludes the proof.

Corollary 3. Let P1, . . . , Pj−1 ∈ ZN
q be linearly independent vectors and define

Pj = PGen(PRG(s)) for a randomly chosen seed s ∈ [0, 2K1 − 1].
Then Pr[Pj ∈ Span(P1, . . . , Pj−1)] is negligible.

Proof. Suppose that Pr[Pj ∈ Span(P1, . . . , Pj−1)] ≥ 1/K1
c for some linearly

independent vectors P1, . . . , Pj−1 ∈ ZN
q and K1 in some infinite set N of security

parameters. Consider the distinguisher A that is given (n1, . . . , nN) generated
either by choosing ni ∈ [0, 2K3 − 1] randomly, or by choosing s ∈ [0, 2K1 −
1] randomly and computing (n1, . . . , nN) = PRG(s). The distinguisher simply
checks if Pj ∈ Span(P1, . . . , Pj−1) and outputs 1 or 0 depending on the result.
It follows from Lemma 4 that A can distinguish uniformly and independently
generated integers from pseudo-randomly generated integers. This contradicts
the fact that PRG is a pseudo-random generator as in Definition 8.

A Non-Permutation Matrix Does Not Behave Like One.

Lemma 5. Let B = (bij) be an N×N -matrix over Zq and let X = (X1, . . . , XN)
consist of independently and identically distributed random variables such that
Pr[Xi = xi] ≤ ε for all xi ∈ Zq. Then if B is not a permutation matrix

Pr[∃π ∈ ΣN s.t. BX = Xπ] ≤ Nε .

Proof. The set of permutation matrices are characterized as the matrices such
that in each row and and in column exactly one element equal one and the rest
are zero. We say that a column or row is bad if it does not have the above
property. Thus, if B is not a permutation matrix, it must have a bad row or a
bad column.

39

Suppose first that there is a bad row. Without loss we assume that the first
row is bad. We have

Pr[∃π ∈ ΣN s.t. BX = Xπ] ≤ Pr

[
∃1 ≤ j ≤ N s.t.

N∑
l=1

b1lXl −Xj = 0

]

≤
N∑

j=1

Pr

[
N∑

l=1

b1lXl −Xj = 0

]
≤ Nε .

where we use the union bound, and the fact that Pr[
∑N

l=1 bilXl −Xj = 0] ≤ ε,
since the expression

∑N
l=1 bilXl −Xj is not identically zero for any j.

Suppose now that no row is bad. Then there are exactly N ones in total
in the matrix B, so if some column is bad there must be an all zero column
as well. Suppose that the jth column is an all zero column, i.e., bi,j = 0 for
i = 1, . . . , N . This implies that Pr[

∑N
l=1 bilXl = Xj] ≤ ε for all i, since Xj is

independent of all expressions
∑N

l=1 bilXl for i = 1, . . . , N . Thus, it follows that
Pr[∃π ∈ ΣN s.t. BX = Xπ] ≤ Nε also in this case.

Corollary 4. Let B = (bij) be an N × N -matrix over Zq and define P =
PGen(PRG(s)) for a randomly chosen seed s ∈ [0, 2K1 − 1]. Then if B is not a
permutation matrix

Pr[∃π ∈ ΣN s.t. BP = Pπ] ≤ Nε .

Proof. The proof is almost identical to the proof of Corollary 3 and omitted.

Generation of Suitable Transcripts. We describe how the adversary can
extract transcripts that satisfy Lemma 3. Let A be the machine that given an
RSA modulus N and g,h ∈ QRN, and g, g1, . . . , gN ∈ Gq as input generates the
remainder of the common input consisting of a public key z, y ∈ Gq, and two lists
L = (ui, vi)N

i=1 ∈ G2N
q and L′ = (u′i, v

′
i)

N
i=1 ∈ G2N

q , and then plays the role of the
prover in Protocol 2 on common input ((N,g,h), (g, g1, . . . , gN), (z, y), (L,L′)).
To simplify the exposition we sometimes write Γ and g instead of (N,g,h) and
(g1, . . . , gN) respectively.

We consider the transcript from the interaction of A with an honest verifier
as a list of functions TA = (IA,WA, P, CA, c, RA), where IA is the part of the
common input constructed by A, WA is the first commitments computed by A, P
is the list of N primes chosen by the verifier, CA is the second set of commitments
of the prover, c is the challenge chosen by the verifier, and RA is the reply of
the prover. Denote by rp and rv the random input of the prover and verifier
respectively. Then TA is clearly a function of Γ = (N,g,h), g = (g1, . . . , gN),
rp, and rv, but not all parts depend on all variables. If we divide rv in two parts
rv
′ and rv

′′, where the former is used to construct the list of primes P , and the
latter is used to construct the challenge c the dependencies are given by

TA(Γ , g, rp, rv) =
(
IA(Γ , g, rp),WA(Γ , g, rp), P (rv

′), CA(Γ , g, rp, rv
′),

c(rv
′′), RA(Γ , g, rp, rv

′, rv
′′)
)

.

40

Denote by Acc a predicate that given a transcript T outputs 1 or 0, depending
on if the verifier accepts the proof or not, and define

δA(Γ , g, rp) = Pr
rv

[Acc(TA(Γ , g, rp, rv)) = 1] .

This is the probability that the prover A outputs an accepting transcript on
input (Γ , g), when run on the fixed random input rp. The probability is taken
over the random choices of the honest verifier.

Denote by B denote the distribution on a bit defined by Prb←B [b = 1] =
δA(Γ , g, rp)/32. This distribution can be sampled efficiently without explicit
knowledge of δA(Γ , g, rp) by choosing rv ∈ {0, 1}∗ and n ∈ {1, . . . , 32} randomly
and outputting 1 if Acc(TA(Γ , g, rp, rv)) = 1 and n = 1, and 0 otherwise.

We define an algorithm FF that given (Γ , g) and a list (P1, . . . , Pj−1) of
vectors in ZN

q outputs a pair of transcripts (Tj , Tj+N) such that Acc(Tj) = 1,
Acc(Tj+N) = 1, (Ij ,Wj , Pj) = (Ij+N ,Wj+N , Pj+N), and cj 6= cj+N . Further-
more, Pj 6∈ Span(P1, . . . , Pj−1). Note that this is a fork in the sense of the forking
lemma.

Algorithm 1 (Fork Finder).
FF(Γ , g, rp, (P1, . . . , Pj−1))
Loop

Do {
rv
′, rv

′′ ← {0, 1}∗
Tj ← T (Γ , g, rp, rv

′, rv
′′)

} While (Acc(Tj) = 0 or Pj ∈ Span(P1, . . . , Pj−1)
or ∃i, l : i 6= l and pj,i = pj,l)

Do {
rv
′′′ ← {0, 1}∗ , b← B

Tj+N ← T (Γ , g, rv
′, rv

′′′)
} While (Acc(Tj+N) = 0 or cj+N = cj) and b 6= 1)
If ((Acc(Tj+N) = 1 and cj+N = cj) Then

Return (Tj , Tj+N)
EndIf

EndLoop

Lemma 6. Consider an execution of FF on input (Γ , g, rp, (P1, . . . , Pj−1)).
If δA(Γ , g, rp) is non-negligible the expected number of times it invokes A is
O(1/δA).

Proof. Consider a fixed iteration of the outer loop. By definition, the first con-
dition in the first while-loop is satisfied with probability δA(Γ , g, rp). Corollary
3 and Corollary 1 imply that the second and third conditions are satisfied with
overwhelming probability. The union bound then implies that both conditions
are satisfied with probability at least δA(Γ , g, rp)/2. Thus, the expected num-
ber of iterations of the loop and the number of invocations of A is bounded by
2/δA(Γ , g, rp).

41

Consider now the second while-loop. Denote by Iheavy the set of rv
′ such that

Pr
rv

[Acc(TA(Γ , g, rp, rv)) = 1 ∧ Pj 6∈ Span(P1, . . . , Pj−1) | rv
′ ∈ Iheavy]

≥ δA(Γ , g, rp)/4 .

An averaging argument implies that

Pr
rv

[rv
′ ∈ Iheavy | Acc(TA(Γ , g, rp, rv)) = 1 ∧ Pj 6∈ Span(P1, . . . , Pj−1)] ≥ 1/2 .

Thus, with probability 1/2 the value of rv
′ fixed in the first loop belongs to

Iheavy.
By definition of the distribution B we have Pr[b = 1] = δA(Γ , g, rp)/32. Thus,

if the first condition of the while-loop is removed the expected number of itera-
tions is 32/δA(Γ , g, rp), and the probability that more than 16/δA(Γ , g, rp) itera-
tions are needed is at least (1−δA(Γ , g, rp)/32)16/δA(Γ ,g,rp). Set δ = δA(Γ , g, rp)/32.
Then this can be bounded by (1− δ)1/2δ ≥ (e−δ−δ2/2)1/2δ ≥ e−3/4 ≥ 2/5

The number of iterations in the unmodified while-loop is obviously also
bounded by 32/δA(Γ , g, rp). Thus, the expected number of invocations of A
in the second while-loop is bounded by 64/δA(Γ , g, rp), since one invocation is
needed in the construction of the transcript and one invocation in the sampling
of B.

We must estimate the probability that last if-statement is satisfied, condi-
tioned on rv

′ ∈ Iheavy. We estimate the probability that the second while-loop
is terminated by the first condition. The probability that cj+N = cj is 2K4−1.
Thus, the union bound implies that the first condition is satisfied, conditioned
on rv

′ ∈ Iheavy, with probability at least δA(Γ , g, rp)/8. If the second condition
of the while-loop is removed the expected number of iterations would then be
bounded by 8/δA(Γ , g, rp) and the probability that more than 16/δA(Γ , g, rp)
iterations are necessary is at most 1/2 by Markov’s inequality. This implies that
the probability that the second loop is terminated by the first condition is at
least 1

2
2
5 = 1

5 , conditioned on rv
′ ∈ Iheavy.

We have argued that the expected number of invocations in a single itera-
tion of the outer loop is O(1/δA(Γ , g, rp)) and the probability that the return
statement is reached in such an iteration is at least 1

2
1
5 = 1

10 , and the claim
follows.

Algorithm 2 (Transcript Finder).
T F(Γ , g, rp)
For (j = 1, . . . , N) Do

(Tj , Tj+N)← FF(Γ , g, rp, (P1, . . . , Pj−1))
EndLoop
Return (T1, . . . , T2N)

Corollary 5. Consider an execution of the algorithm T F on input (Γ , g, rp).
If δA(Γ , g, rp) is non-negligible, the expected number of times it invokes A is at
most O(N/δA(Γ , g, rp)). The output satisfy the hypothesis of Lemma 3.

Proof. This follows immediately from Lemma 6.

42

Concluding that the Protocol is Sound. We now show that if there exists
an adversary that can generate a common input (g, z, y, (L,L′)) 6∈ LRDP , and
still convince the verifier of the contrary, we can construct algorithms that break
either the strong RSA-assumption or the DDH-assumption. More precisely we
prove Proposition 2.

Denote by CRSA, CRSA′ , and CREP, the algorithms that given transcripts
T1, . . . , T2N that satisfy the hypothesis of Lemma 3 try to extract values corres-
ponding to Conclusion 2, 3, and 4 or 5 respectively . If this is not possible the
algorithms output ⊥.

Proof (Proposition 2 on Page 15). Assume that the proposition is false. Then
there exists an adversary A, a constant c, and an infinite index set N that shows
that the inequality is false. In the rest of the proof we consider only security
parameters in N . Denote by Igood the set of good tuples, i.e. tuples such that

Pr
Γ ,g,rp,rv

[Acc(TA(Γ , g, rp, rv)) = 1 ∧ IA(Γ , g, rp) 6∈ LRDP | (Γ , g, rp) ∈ Igood]

≥ 1
2K1

c .

It follows straightforwardly that the probability that a random tuple is good is
relatively high as well.

Claim 1. PrΓ ,g,rp [(Γ , g, rp) ∈ Igood] ≥ 1
2K1

c .

Claim 2. (Γ , g, rp) ∈ Igood implies that IA(Γ , g, rp) 6∈ LRDP .

Proof. Consider any fixed tuple (Γ , g, rp) such that IA(Γ , g, rp) ∈ LRDP . Then
we must have Prrv [Acc(TA(Γ , g, rp, rv)) = 1 ∧ IA(Γ , g, rp) 6∈ LRDP] = 0.

By definition of Igood and Corollary 5, T F invokes A expected O(NK1
c)

times on inputs from Igood. Similarly, FF invokes A expected O(K1
c) times

on such inputs. In the following we assume that these algorithms are turned
into strict polynomial machines by bounding the number of invocations of A to
twice the number of expected invocations. By Markov’s inequality the resulting
algorithms delivers an output with probability at least 1/2.

Suppose now we execute T F on a fixed input (Γ , g, rp) ∈ Igood. Then T F
delivers a set of transcripts T1, . . . , T2N that satisfy the hypothesis of Lemma 3
with probability 1/2, and as a consequence we have one of the conclusions of the
lemma. Claim 2 implies that the main conclusion of the lemma cannot be true.
Thus, one of the other conclusions must be true if T F gives an output. A simple
averaging argument implies that one of the following equations must hold

Pr
rT F

[CRSA(T F(Γ , g, rp)) 6= ⊥] ≥ 1/6 ,

Pr
rT F

[CRSA′(T F(Γ , g, rp)) 6= ⊥] ≥ 1/6 , or

Pr
rT F

[CREP(T F(Γ , g, rp)) 6= ⊥] ≥ 1/6 ,

43

where the probability is taken over the internal randomness rT F of T F . As a
consequence, we also have

Pr
Γ ,g,rp,rT F

[CRSA(T F(Γ , g, rp)) 6= ⊥ | (Γ , g, rp) ∈ Igood] ≥ 1/6 , (54)

Pr
Γ ,g,rp,rT F

[CRSA′(T F(Γ , g, rp)) 6= ⊥ | (Γ , g, rp) ∈ Igood] ≥ 1/6 , or (55)

Pr
Γ ,g,rp,rT F

[CREP(T F(Γ , g, rp)) 6= ⊥ | (Γ , g, rp) ∈ Igood] ≥ 1/6 . (56)

To conclude the proof of the lemma we show that if the first or second equa-
tions hold, then the strong RSA-assumption is false, and if the third equation
holds the DL-assumption is false.

Claim 3. If Equation (54) holds, then the strong RSA-assumption is false.

Proof. We describe an adversary that contradicts the strong RSA-assumption.
Our proof follows the proof given in [12] closely. Denote by extgcd the extended
Euclidean algorithm, i.e., given input (η0, η1) it outputs (f, a, b), where f =
gcd(η0, η1) and f = aη0 + bη1. The adversary tries to extract a non-trivial root
of h.

Algorithm 3 (Root Finder).
RSAR(N,h)
rp ← {0, 1}∗
e← [0, 2K2+K5 − 1]
g← he

g1, . . . , gN ← Gq

(T1, . . . , T2N)← T F((N,g,h), (g, g1, . . . , gN), rp)
(b, η0, η1, η2)← CRSA(T1, . . . , T2N)
(f, a, b)← extgcd(η0, η1 + eη2)
(b, η)← (gabb, η0/f)
Return (b, η)

With the modification of T F above the algorithm runs in polynomial time,
since the adversary A is assumed to be polynomial time. We must argue that its
success probability is notable.

The probability that the input (Γ , g, rp) = ((N,g,h), (g, g1, . . . , gN), rp) be-
longs to Igood is at least 1

2K1
c by Claim 1. By assumption the probability that

CRSA(T F(Γ , g, rp)) 6= ⊥, conditioned on (Γ , g, rp) ∈ Igood, is at least 1/6. Thus,
with probability 1

12K1
c the tuple (b, η0, η1, η2) satisfies Conclusion 2a, i.e. it sat-

isfies

bη0 = hη1gη2 = hη1+eη2 , (57)

and η0 does not divide both of η1 and η2.
We argue that for any fixed (g, η0, η1, η2) the probability that η0 - (η1 + eη2)

is at least 1/4 over the random choice of e, conditioned on g = he.

44

To start with we note that if η0 | (η1 + eη2) and η0 | η2 then clearly η0 | η1 as
well, which is a contradiction. Thus, if η0 | η2, the probability that η0 - (η1 +eη2)
is one.

Consider now the case where η0 - η2. This implies that there exists a prime
power pi such that pi | η0 but pi - η2. It follows that

Pr
e

[η0 | (η1 + eη2) | g = he] ≤ Pr[η1 + eη2 = 0 mod pi | g = he] .

We define t = (p − 1)(q − 1)/4 and write e = e′t + (e mod t). By definition
gcd(t, pi) = 1, so t is a generator in Zpi . This implies that

Pr
e

[η1 + eη2 = 0 mod pi | g = he]

= Pr
e

[η1 + (e mod t)η2 + e′t = 0 mod pi | g = he] .

Note that η1 + (e mod t)η2 is constant for any fixed (g, η0, η1, η2), but since t is
a generator in Zpi the probability that e′t takes on any given value is at most
bpi/K5c+ 1/K5 ≤ 3/4.

We have established that (b, η0, η1, η2) satisfies Equation (57) and η0 - (η1 +
eη2) with probability at least 1

52K1
c . We now argue that if this event occurs, the

output of RSAR is a non-trivial root of h. Suppose that η0 - (η1 + eη2). Then

hf = haη0+b(η1+eη2) = (habb)η0 .

The value of f satisfies f 6= 0, f | η0 and f 6= ±η0, so η = η0/f 6= ±1, and the
output requirement on the adversary in the strong RSA-assumption is satisfied
with probability 1

52K1
c , which is a contradiction.

Claim 4. If Equation (55) holds, then the strong RSA-assumption is false.

Proof. We describe an adversary that contradicts the strong RSA-assumption,
but this adversary is quite different from the adversary above.

Algorithm 4 (Second Root Finder).
RSAR′(N,h)
rp ← {0, 1}∗
e← [0, 2K2+K5 − 1]
g← he

g1, . . . , gN ← Gq

d← {0, 1} , g′ ← gdh1−d, , h′ ← g1−dhd

(T1, . . . , T2N)← T F((N,g′,h′), (g, g1, . . . , gN), rp)
(η1, η2)← CRSA′(T1, . . . , T2N)
If (η1 = ±η2) Then

(b, η)← (h, η1 + 1)
Else

(f, a, b)← extgcd(η1, η2)
(b, η)← ((g′)−a(h′)b, (dη2 + (1− d)η1)/f)

EndIf
Return (b, η)

45

That the algorithm is polynomial time can be seen as in the proof of the previous
claim. We must argue that its success probability is notable.

Assume that d = 1, i.e. all probabilities are conditioned on this event. The
probability that the input (Γ , g, rp) = ((N,g,h), (g, g1, . . . , gN), rp) belongs to
Igood is at least 1

2K1
c by Claim 1.

By assumption the probability that CRSA′(T F(Γ , g, rp)) 6= ⊥, conditioned on
(Γ , g, rp) ∈ Igood, is at least 1/6. Thus, with probability 1

12K1
c the pair (η1, η2)

satisfies Conclusion 3, i.e. it satisfies

hη1 = gη2 , (58)

and (η1, η2) 6= (0, 0).

If η1 = ±η2 then (h′/g′)η1 = 1 or (h′g′)η1 = 1. There are two possible
explanations for this. Either g = h or h−1, which happens with negligible prob-
ability. The other explanation is that t | η1, with t = (p − 1)(q − 1)/4, which
implies that hη1+1 = h and the output is a non-trivial root.

If η1 6= ±η2 there are two cases. If η2 - η1 we have

hf = haη1+bη2 = (gahb)η2 .

The value of f satisfies f 6= 0, and η = η2/f 6= ±1 so the output is a non-trivial
root.

If η2 | η1 we have a problem, since then f = η2 and the extracted root
is trivial. Note that if the roles of g and h are reversed in Equation (58) the
problem disappears.

The idea of the algorithm is that the adversary cannot tell if (g′,h′) was
defined as (g,h) or as (h,g), i.e. if it outputs (η1, η2) such that hη1 = gη2 or
such that gη1 = hη2 . In fact the distribution of (η1, η2) conditioned on d = 0 is
statistically close to its distribution conditioned on d = 1, since the distribution
of g is statistically close to the distribution of h. Thus, the probability that
(dη2 + (1− d)η1)/f = ±1, conditioned on η1 6= ±η2 is less than 3/4.

We conclude that the algorithm outputs a non-trivial root with probability
at least 1

52K1
c , which again contradicts the strong RSA-assumption.

Claim 5. If Equation (56) holds, then the DL-assumption is false.

Proof. We construct an adversary that outputs a non-trivial representation of
1 ∈ Gq with notable probability.

46

Algorithm 5 (Representation Finder).
REP(g)
rp ← {0, 1}∗
Γ ← FRSA

(T1, . . . , T2N)← T F(Γ , g, rp)
s← CREP(T1, . . . , T2N)
If (s is on the form (ηj)N

j=0) Then
Return s

Else
(ρ′, (ρ′ij))← s

EndIf
(T2N+1, T2N+2)← FF(Γ , g, rp)
η0 ←

∑N
i=1 ρ′ip2N+1,i − γ′2N+1

(ηj)N
j=1 ← (

∑N
i=1 ρ′i,jp2N+1,i − p2N+1,π2N+1(j))

N
j=1

Return (ηj)N
j=0

That the above algorithm is polynomial time can be seen as in the proofs of the
previous two claims.

The probability that the input (Γ , g, rp) = ((N,g,h), (g, g1, . . . , gN), rp) be-
longs to Igood is at least 1

2K1
c by Claim 1. By assumption the probability that

CREP(Γ , g, rp) 6= ⊥, conditioned on (Γ , g, rp) ∈ Igood is at least 1
6 . Thus, with

probability 1
12K1

c the output s satisfies Conclusion 4 or 5 of Lemma 3, i.e. either
the output of CREP is a non-trivial representation (ηj)N

j=0, or it consists of in-

tegers (ρ′, (ρ′ij)) such that wi = gρ′i
∏N

j=1 g
ρ′i,j

j and (ρ′ij) is not a permutation
matrix.

The first type of output of CREP obviously implies that that REP outputs a
non-trivial representation of 1 ∈ Gq.

Consider now the second type of output. The fork-finder FF gives output
with probability at least 1/2. Equation (26) in the proof of Lemma 3 implies
that

gγ′2N+1

N∏
i=1

g
p2N+1,π2N+1(i)

i =
N∏

i=1

w
p2N+1,i

i =
N∏

i=1

gρ′i

N∏
j=1

g
ρ′i,j

j

p2N+1,i

= g
PN

i=1 ρ′ip2N+1,i

N∏
j=1

g
PN

i=1 ρ′i,jp2N+1,i

j .

From the proof of Lemma 6 and Markov’s inequality we know that FF
executes its outer loop more than 16 times with probability at most 1/2. Thus,
Corollary 4 and Corollary 1 imply that the probability that

∑N
i=1 ρ′i,jp2N+1,i =

p2N+1,π2N+1(j) for j = 1, . . . , N is negligible. We conclude that the probability
that REP outputs a non-trivial representation of 1 ∈ Gq is at least 1

25K1
. Lemma

9 then implies that the DL-assumption is false.

47

E Security Analysis of Protocol 3

Proof (Theorem 3 on Page 20). We describe an ideal adversary S(·) that runs
any hybrid adversary A as a black-box. Then we show that if S does not imply
that the protocol is secure, then we can break one of the assumptions.

The Ideal Adversary S. Let IM be the set of mix-servers corrupted by A.
The ideal adversary S corrupts the dummy participants M̃i for which i ∈ IM .
The ideal adversary is best described by starting with a copy of the original
hybrid ITM-graph

(V,E) = Z ′(H(A, π
(π̃
FBB
1 ,π̃

FRC
ZK

(z)

2 ,π̃
FRC

ZK
(y)

3 ,π̃
FCF
4 ,π̃

FGG
5)

DP) ,

where Z is replaced by a machine Z ′. The adversary S simulates all ideal func-
tionalities honestly except FCF, FRC

ZK

(z)
, and FRC

ZK

(y)
. The simulation of these

functionalities and Mj for j 6∈ IM is described below.

Simulation of Links (Z,A), and (Z,Mj) for j ∈ IM . S simulates Z ′, and M̃j

for j ∈ IM , such that it appears as if Z and A, and Z and Mj for j ∈ IM are
linked directly.

1. When Z ′ receives m from A, m is written to Z, by S. When S receives m
from Z, m is written to A by Z ′. This is equivalent to that Z and A are
linked directly.

2. When Z ′ receives m from Mj for j ∈ IM , m is written to Z by M̃j . When
M̃j , j ∈ IM , receives m from Z, m is written to Mj by Z ′. This is equivalent
to that Z and Mj are linked directly for j ∈ IM .

Extraction from Corrupt Provers. When a corrupt prover Mj , for j ∈ IM , man-
ages to convince the honest verifiers that it knows a witness, that witness must
be forwarded to FRDP

ZK . To do that the witness must be extracted, but this is
easy.

The ideal adversary waits until (Mj , R, R) appears on FBB. Then it inter-
rupts the simulation of FBB and checks if the honest verifiers would accept
R as the final message of the prover in Protocol 2. If so, it looks at the in-
ternal tapes of FRC

ZK

(z)
and FRC

ZK

(y)
to see if w and x have been stored under the

tags (Mj , z) and (Mj , y) respectively. If this is the case it instructs M̃j to hand
(Prover, (g, z, y, (ui, vi)N

i=1, (u
′
i, v
′
i)

N
i=1), (w, x)) to FRDP

ZK . Then it waits until it re-
ceives (Mj , Prover, (g, z, y, (ui, vi)N

i=1, (u
′
i, v
′
i)

N
i=1), b) from FRDP

ZK , at which point
it resumes the simulation of FBB. Note that there is no automatic guarantee
that b = 1. In fact we essentially prove below that b = 1 with overwhelming
probability.

Simulation of Honest Provers. When an honest dummy prover M̃j hands a wit-
ness to FRDP

ZK , the ideal adversary must simulate a proof that convinces the
corrupted verifiers. This must be done without knowledge of the witness.

48

When S receives (Mj , Prover, (g, z, y, (ui, vi)N
i=1, (u

′
i, v
′
i)

N
i=1), 1) from FRDP

ZK ,
it inputs (Prover, (g, z, y, (ui, vi)N

i=1, (u
′
i, v
′
i)

N
i=1), (1, 1)) to Mj , and instructs it to

ignore the fact that the witnesses are invalid. It also instructs FRC
ZK

(z)
and FRC

ZK

(y)

respectively to behave as if the submitted witnesses from Mj are correct, despite
that it is handed (z, 1) and (y, 1) respectively.

Then c ∈ [2K4−1, 2K4 − 1] is chosen randomly and the simulator described in
the proof of Proposition 1, i.e. the simulator of the honest verifier zero-knowledge
public coin proof is invoked, to generate C. Then Mj is instructed to use this C,
instead of computing it, and FCF is instructed to output c. This implies that all
verifiers accept the proof.

Reaching a Contradiction. Next we show that if the ideal adversary S
defined above does not imply the security of Protocol 3, then we can break the
DL-assumption in Gq or the strong RSA-assumption.

Suppose that S does not imply the security of the protocol. Then there
exists a hybrid adversary A, an environment Z with auxiliary input z = {zn},
a constant c > 0 and an infinite index set N ⊂ N such that for K1 ∈ N

|Pr[Zz(I(S, π̃F
RDP
ZK)) = 1]

−Pr[Zz(H(A, π
(π̃
FBB
1 ,π̃

FRC
ZK

(z)

2 ,π̃
FRC

ZK
(y)

3 ,π̃
FCF
4 ,π̃

FGG
5)

DP)) = 1]| ≥ 1
K1

c ,

where S runs A as a black-box as described above, i.e. S = S(A).
Denote by T the machine that simulates Zz(I(S(A′), π̃FMN)), except that

instead of simulating honest provers Mj for j 6∈ IM as described above, it
simply looks at the internal tapes of FRDP

ZK to extract the message on the form
(Mj , Prover, (g, z, y, (ui, vi)N

i=1, (u
′
i, v
′
i)

N
i=1), (w, x)) handed to FRDP

ZK by Mj , and
then inputs (Prover, (g, z, y, (ui, vi)N

i=1, (u
′
i, v
′
i)

N
i=1), (w, x)) to Mj , which then

follows the protocol honestly.
From Proposition 1 we know that Protocol 2 is statistical zero-knowledge. In

fact the proof of this proposition implies that

|Pr[T = 1]− Pr[Zz(I(S(A′), π̃FMN)) = 1]| < O(2−K5) .

For simplicity we ignore this negligible difference in the remainder of the proof.
We know from Lemma 2 that the prime vectors of the honest parties are

identical with overwhelming probability. Thus, we ignore also this difference in
the remainder of the proof.

The only remaining difference between the simulation carried out by T and
an execution in the real model, is that it could happen that S hands
(Prover, (g, z, y, (ui, vi)N

i=1, (u
′
i, v
′
i)

N
i=1), (w, x)) to FRDP

ZK , despite that
((g, z, y, (ui, vi)N

i=1, (u
′
i, v
′
i)

N
i=1), (w, x)) 6∈ RDP.

Denote by Bl the event that this happens the lth time a proof is carried
out. Since the adversary A, the environment Z, and all honest parties and func-
tionalities run in polynomial time for some polynomial p(K1), there are at most
p(K1) potential such l.

49

Since the simulation is statistically close to the real model in all respects
except that some event Bl may occur, and we know that the environment can
distinguish the hybrid model from the ideal model with notable probability, we
conclude that

Pr
[
B1 ∨B2 ∨ · · · ∨Bp(K1)

]
≥ 1

K1
c .

An averaging argument implies that Pr[Bl] ≥ 1
p(K1)K1

c for some fixed l.
Next we argue that this contradicts Proposition 2, i.e., the soundness of the

proof of a shuffle given in Protocol 2. Denote by A′ the adversary that accepts
(Γ , g) as input and simulates simulates T , except for the following changes. It
uses its input, instead of generating these parameters during the simulation of
FRSA and FCF. The simulation is continued until the lth proof is about to be
executed. Then it waits for an input s ∈ [0, 2K1−1] and instructs FCF to output
s in the generation of the primes, i.e., Pj = PGen(PRG(s)). Then it waits for
another input c ∈ [2K4−1, 2K4 − 1] and instructs FCF to output c′ = c − 2K4−1

in the generation of the challenge. It follows that

Pr
Γ ,g,rp,rv

[Acc(TA′(Γ , g, rp, rv)) = 1 ∧ IA′(Γ , g, rp) 6∈ LRDP] ≥ 1
p(K1)K1

c ,

where rp denotes the randomness of all machines in the simulation of T , and rv

denotes the randomness of the honest verifier. This contradicts Proposition 2.

F Two Other Shuffles

As explained in Section 4 we consider a new shuffle-relation in the main part of
the paper. However, without too much work our approach gives proofs of shuffles
for the two previously considered relations, i.e., the re-encryption shuffle and
decryption-re-encryption shuffle. For each type of proof of a shuffle we describe
briefly the structure of the mix-net in which it can be employed. Then we give
a detailed description of the protocol, and sketch the minor changes needed in
the security analysis of the proof of a shuffle. We stress that we do not prove the
overall security of these mix-nets.

F.1 The Re-encryption Shuffle

The first El Gamal based mix-nets exploits that a cryptotext can be randomly re-
encrypted. A secret key x ∈ Zq is shared somehow between the mix-servers. The
corresponding public key y = gx is known by all parties. To encrypt its message
mi a sender forms (ui, vi) = E(g,y)(mi, ri) = (gri , yrimi) and also proves know-
ledge of ri to avoid the relation attacks. The mix-servers form a list (u0,i, v0,i)N

i=1

from the cryptotexts with valid proofs of knowledge. Then for j = 1, . . . , k mix-
server Mj computes Lj = (uj,i, vj,i)N

i=1 = (gxj,πj(i)uj−1,πj(i), y
xj,πj(i)vj−1,πj(i)),

for a randomly chosen permutation πj ∈ ΣN and random exponents xj,i ∈ Zq,

50

and then proves knowledge of (xj,πj(i))
N
i=1 that satisfy this relation. Finally, the

mix-servers jointly and verifiably decrypt the output (uk,i, vk,i)N
i=1 of the last

mix-server. The last step corresponds to a joint decryption in a threshold ver-
sion of El Gamal.

The relation that the input Lj−1 and output Lj of a mix-server Mj must
satisfy is formalized as follows.

Definition 5 (Knowledge of Correct Re-encryption-Permutation). Define
for each N a relation RRP ⊂ (G2

q ×G2N
q ×G2N

q)× ZN
q , by

((g, y, {(ui, vi)}Ni=1, {(u′i, v′i)}Ni=1), (xi)N
i=1) ∈ RRP

precisely when (u′i, v
′
i) = (gxπ(i)uπ(i), y

xπ(i)vπ(i)) for i = 1, . . . , N and some per-
mutation π ∈ ΣN .

We are now ready to transform Protocol 2 into a protocol for proving the
above relation instead.

Protocol 4 (Proof of Re-encryption-Permutation). The common input
consists of an RSA modulus N and g,h ∈ QRN, generators g, g1, . . . , gN ∈ Gq,
a public key y, and two lists L = (ui, vi)N

i=1 and L′ = (u′i, v
′
i)

N
i=1 such that

(u′i, v
′
i) = (gxπ(i)uπ(i), y

xπ(i)vπ(i)) for some permutation π of N elements. The
private input to the prover consists of (xi)N

i=1.

1. The prover chooses r′i ∈ Zq randomly, computes (wi)N
i=1 = (gr′igπ−1(i))N

i=1,
and hands (wi)N

i=1 to the verifier.
2. The verifier chooses random primes p1, . . . , pN ∈ [2K3−1, 2K3−1], and hands

(pi)N
i=1 to the prover. Then the prover defines xs =

∑N
i=1 xipi.

3. Both parties compute (U, V,W) = (
∏N

i=1 upi

i ,
∏N

i=1 vpi

i ,
∏N

i=1 wpi

i).
4. The prover chooses k1, k2 ∈ Zq, l1, l2, ls, lr′ ∈ Zq randomly. Then it chooses

ti, t
′
i ∈ [0, 2K2+K5−1], si, s

′
i ∈ [0, 2K2+K4+2K5−1], and ri ∈ [0, 2K3+K4+K5−

1] for i = 1, . . . , N randomly. Then it chooses an element
s ∈ [0, 2K2+NK3+K4+K5+log2 N −1], and s′ ∈ [0, 2K2+K5+log2 N −1] randomly
and computes

(b1, b2) = (gk1
1 gxs , gk2

1 yxs) (59)

(β1, β2) =
(
gl1
1 gls , gl2

1 yls) (60)

(α1, α2, α3) =
(

gl1
1

N∏
i=1

(u′i)
ri , gl2

1

N∏
i=1

(v′i)
ri , glr′

N∏
i=1

gri
i

)
(61)

b0 = g (62)

(bi,b′i)
N
i=1 = (htib

pπ(i)
i−1 ,ht′igpπ(i))N

i=1 (63)

(γi,γ
′
i)

N
i=1 = (hsibri

i−1,h
s′igri)N

i=1 (64)

(γ,γ′) = (hs,hs′) , (65)

and ((b1, b2), (β1, β2), (α1, α2, α3), (bi,b′i)
N
i=1, (γi,γ

′
i)

N
i=1, (γ,γ′)) is

handed to the verifier.

51

5. The verifier chooses c ∈ [2K4−1, 2K4−1] randomly and hands c to the prover.
6. The prover computes

f1 = ck1 + l1 mod q

f2 = ck2 + l2 mod q

fs = cxs + ls mod q

fr′ = cr′ + lr′ mod q

(ei, e
′
i)

N
i=1 = (cti + si, ct

′
i + s′i)

N
i=1 mod 2K2+K4+2K5

(di)N
i=1 = (cpπ(i) + ri)N

i=1 mod 2K3+K4+K5

e = ct + s mod 2K2+NK3+K4+K5+log2 N

e′ = ct′ + s′ mod 2K2+K5+log2 N

Then it hands ((f1, f2, fs, fr′), (ei, e
′
i)

N
i=1, (di)N

i=1, (e, e
′)) to the verifier.

7. The verifier checks that L′ is lexicographically sorted and that

(bc
1β1, b

c
2β2) = (gf1

1 gfs , gf2
1 yfs) (66)

((b1U)cα1, (b2V)cα2,W
cα3) =

(
gf1
1

N∏
i=1

(u′i)
di , gf2

1

N∏
i=1

(v′i)
di , gfr′

N∏
i=1

gdi
i

)
(67)

(bc
iγi, (b

′
i)

cγ′i)
N
i=1 = (heibdi

i−1,h
e′igdi)N

i=1 (68)

(g−
QN

i=1 pibN)cγ = he (69)(
g−

PN
i=1 pi

N∏
i=1

b′i

)c

γ′ = he′ . (70)

Security Analysis. The security analysis of the protocol is almost identical to
the analysis of Protocol 2. For completeness we give a careful description of all
modifications that are necessary.

Proposition 3. Protocol 4 is honest verifier statistical zero-knowledge.

Proof (Proposition 3). The simulator chooses p1, . . . , pN and c honestly. Then it
chooses f1, f1, fx, fr′ ∈ Zq, e ∈ [0, 2K2+NK3+K4+K5+log2 N−1], e′ ∈ [0, 2K2+K5+log2 N−
1], (ei, e

′
i)

N
i=1 ∈ [0, 2K2+K4+2K5 − 1]N , and (di)N

i=1 ∈ [0, 2K3+K4+K5 − 1]N ran-
domly. It also chooses b1, b2 ∈ Gq and bi,b′i ∈ QRN randomly. Finally, the
simulator defines, (β1, β2) by Equations (66), (α1, α2, α3) by Equations (67),
γi and γ′i by Equation (68), γ by Equation (69), and γ′ by Equation (70) re-
spectively. The distribution of the resulting elements is statistically close to the
distribution of the corresponding elements in the protocol.

We now discuss the soundness of the protocol. Compared with the analysis of
Protocol 2 we must change the notation slightly. We denote the jth transcript in

52

a list of transcripts by Tj = (Ij ,Wj , Pj , Cj , cj , Rj) where Ij denotes the common
input, Wj denotes the list of commitments wi, and

Pj = (pj,1, . . . , pj,N)
Cj = ((bj,1, bj,2), (βj,1, βj,2), (αj,1, αj,2, αj,3), (bj,i,b′j,i)

N
i=1, (γj,i,γ

′
j,i)

N
i=1, (γj ,γ

′
j))

Rj = ((fj,1, fj,2, fj,s, fj,r′), (ej,i, e
′
j,i)

N
i=1, (dj,i)N

i=1, (ej , e
′
j)) .

Lemma 7. Lemma 3 holds also for Protocol 4, but with the notation above and
with the main conclusion replaced by

1. Main Conclusion∗. Elements x1, . . . , xN ∈ Zq and a permutation π ∈ ΣN

s.t.

((g, y, L, L′), (xi)N
i=1) ∈ RRP .

Proof. The proof is identical except for the last section of the proof. This must
be replaced by the following.

The Common Input (g, y, L, L′) Satisfies ((g, y, L, L′), (xi)N
i=1) ∈ RRP. From

the above we may assume that πj = π for all j = 1, . . . , N , so we drop the
subscript and simply write π from now on. Equations (66) imply that

b
cj+N−cj

1 = g
fj+N,1−fj,1
1 gfj+N,s−fj,s , and

b
cj+N−cj

2 = g
fj+N,2−fj,2
1 yfj+N,s−fj,s .

Define

κ1 = (fj+N,1 − fj,1)/(cj+N − cj) , (71)
κ2 = (fj+N,2 − fj,2)/(cj+N − cj) , and (72)

ξj,s = (fj+N,s − fj,s)/(cj+N − cj) . (73)

Then we have

b1 = gκ1
1 gξj,s , and (74)

b2 = gκ2
1 yξj,s . (75)

From Equation (67) we have

(b1U)cj+N−cj = g
fj+N,1−fj,1
1

N∏
i=1

(u′i)
dj+N,i−dj,i , and

(b2V)cj+N−cj = g
fj+N,2−fj,2
1

N∏
i=1

(v′i)
dj+N,i−dj,i .

53

Our definitions of κ1 and κ2 in Equations (71) and (72), and the definition of
ρi, which equals pj,π(i) in Equation (23) imply that

b1U = gκ1
1

N∏
i=1

(u′i)
pj,π(i) , and

b2V = gκ2
1

N∏
i=1

(v′i)
pj,π(i) .

If we combine Equations (74) and (75) with the two equations above we have

gξj,s

N∏
i=1

u
pji

i = gξj,sU =
N∏

i=1

(u′i)
pj,π(i) , and (76)

yξj,s

N∏
i=1

v
pji

i = yξj,sV =
N∏

i=1

(v′i)
pj,π(i) , (77)

for j = 1, . . . , N . We apply the coefficients al,1, . . . , al,N ∈ Zq introduced above
to the Equations (76) and (77) and conclude that

g
PN

j=1 ξj,sal,j ul =
N∏

j=1

(
gξj,s

N∏
i=1

u
pji

i

)al,j

=
N∏

j=1

(N∏
i=1

(u′i)
pj,π(i)

)al,j

= u′π−1(l) , and

y
PN

j=1 ξj,sal,j vl =
N∏

j=1

(
yξj,s

N∏
i=1

v
pji

i

)al,j

=
N∏

j=1

(N∏
i=1

(v′i)
pj,π(i)

)al,j

= v′π−1(l) .

This concludes the proof, since we can set xl =
∑N

j=1 ξj,sal,j .

Consider the following definitional changes compared with the analysis of
Protocol 2. Let A be the machine that given an RSA modulus N and g,h ∈ QRN,
and g, g1, . . . , gN ∈ Gq as input generates the remainder of the common input
consisting of a public key y ∈ Gq, and two lists L = (ui, vi)N

i=1 ∈ G2N
q and

L′ = (u′i, v
′
i)

N
i=1 ∈ G2N

q , and then plays the role of the prover in Protocol 4 on
common input ((N,g,h), (g, g1, . . . , gN), y, (L,L′)). We let Acc be the predicate
that given a transcript T outputs 1 or 0 depending on if the verifier in the
protocol above would accept the transcript or not.

Given these changes is straightforward to see, from the analysis in Sections
D.2 and D.2, that the following proposition holds.

Proposition 4. Assume the strong RSA-assumption and the DL-assumption.
Then for all polynomial-size circuit families A = {AK} it holds that ∀c > 0,
∃K0, such that for K1 ≥ K0

Pr
Γ ,g,rp,rv

[Acc(TA(Γ , g, rp, rv)) = 1 ∧ IA(Γ , g, rp) 6∈ LRRP] <
1

K1
c .

54

F.2 Decryption-Re-encryption Shuffle

More recent El Gamal based mix-nets, considered in [20,41,52], exploit re-encryption
combined with partial decryption. In other words each mix-server both partially
decrypts and re-encrypts the input cryptotexts before permuting them. Each
mix-server holds a secret key xj and a public key yj = gxj and a sequence of
joint keys is defined by Yj =

∏k
l=j+1 yj . The secret key xj of every mix-server

is secretely shared among the other mix-servers. To encrypt its message mi a
sender forms (ui, vi) = E(g,Y1)(mi, ri) = (gri , Y ri

1 mi) and also proves knowledge
of ri to avoid the relation attacks. The mix-servers form a list (u0,i, v0,i)N

i=1 from
the cryptotexts with valid proofs of knowledge. Then for j = 1, . . . , k mix-server
Mj computes

Lj = (uj,i, vj,i)N
i=1 = (gxj,πj(i)uj−1,πj(i), Y

xj,πj(i)

j vj−1,πj(i)/u
xj

j−1,πj(i)
)

for a randomly chosen permutation πj ∈ ΣN and random exponents xj,i ∈ Zq,
and then proves knowledge of ((xj,πj(i))

N
i=1, x) that satisfy this relation. The list

of cleartexts is given by (vk,i)N
i=1. The relation that the input Lj−1 and output

Lj of a mix-server Mj must satisfy is formalized as follows.

Definition 6 (Knowledge of Correct Decryption-Re-encryption-
Permutation). Define for each N a relation RDRP ⊂ (G3

q × G2N
q × G2N

q) ×
(Zq × Zq), by

((g, y, Y, {(ui, vi)}Ni=1, {(u′i, v′i)}Ni=1), ((xi)N
i=1, x) ∈ RDRP

precisely when y = gx and (u′i, v
′
i) = (gxπ(i)uπ(i), Y

xπ(i)vπ(i)/ux
π(i)) for i =

1, . . . , N and some permutation π ∈ ΣN .

We are now ready to transform Protocol 2 into a protocol for proving the
above relation instead.

Protocol 5 (Proof of Decryption-Re-encryption-Permutation). The com-
mon input consists of an RSA modulus N and g,h ∈ QRN, generators g, g1, . . . , gN ∈
Gq, public keys y = gx, Y , and two lists L = (ui, vi)N

i=1 and L′ = (u′i, v
′
i)

N
i=1 such

that (u′i, v
′
i) = (gxπ(i)uπ(i), Y

xπ(i)vπ(i)/ux
π(i)) for some permutation π of N ele-

ments. The private input to the prover consists of ((xi)N
i=1, x).

1. The prover chooses r′i ∈ Zq randomly, computes (wi)N
i=1 = (gr′igπ−1(i))N

i=1,
and hands (wi)N

i=1 to the verifier.
2. The verifier chooses random primes p1, . . . , pN ∈ [2K3−1, 2K3−1], and hands

(pi)N
i=1 to the prover.

3. Both parties compute (U, V,W) = (
∏N

i=1 upi

i ,
∏N

i=1 vpi

i ,
∏N

i=1 wpi

i).
4. The prover chooses k1, k2 ∈ Zq, l1, l2, lx, ls, lr′ ∈ Zq randomly. Then it

chooses ti, t
′
i ∈ [0, 2K2+K5 − 1], si, s

′
i ∈ [0, 2K2+K4+2K5 − 1], and ri ∈

[0, 2K3+K4+K5 − 1] for i = 1, . . . , N randomly. Then it chooses an element

55

s ∈ [0, 2K2+NK3+K4+K5+log2 N −1], and s′ ∈ [0, 2K2+K5+log2 N −1] randomly
and computes

(b1, b2) = (gk1
1 gxs , gk2

1 Y xsU−x) (78)

(β1, β2, β3) =
(
gl1
1 gls , gl2

1 Y lsU−lx , glx) (79)

(α1, α2, α3) =
(

gl1
1

N∏
i=1

(u′i)
ri , gl2

1

N∏
i=1

(v′i)
ri , glr′

N∏
i=1

gri
i

)
(80)

b0 = g (81)

(bi,b′i)
N
i=1 = (htib

pπ(i)
i−1 ,ht′igpπ(i))N

i=1 (82)

(γi,γ
′
i)

N
i=1 = (hsibri

i−1,h
s′igri)N

i=1 (83)

(γ,γ′) = (hs,hs′) , (84)

and ((b1, b2), (β1, β2, β3), (α1, α2, α3), (bi,b′i)
N
i=1, (γi,γ

′
i)

N
i=1, (γ,γ′)) is

handed to the verifier.
5. The verifier chooses c ∈ [2K4−1, 2K4−1] randomly and hands c to the prover.
6. Define xs =

∑N
i=1 xipi. The prover computes

f1 = ck1 + l1 mod q

f2 = ck2 + l2 mod q

fx = cx + lx mod q

fs = cxs + ls mod q

fr′ = cr′ + lr′ mod q

(ei, e
′
i)

N
i=1 = (cti + si, ct

′
i + s′i)

N
i=1 mod 2K2+K4+2K5

(di)N
i=1 = (cpπ(i) + ri)N

i=1 mod 2K3+K4+K5

e = ct + s mod 2K2+NK3+K4+K5+log2 N

e′ = ct′ + s′ mod 2K2+K5+log2 N

Then it hands ((f1, f2, fs, fr′), (ei, e
′
i)

N
i=1, (di)N

i=1, (e, e
′)) to the verifier.

7. The verifier checks that L′ is lexicographically sorted and that

(bc
1β1, b

c
2β2, y

cβ3) = (gf1
1 gfs , gf2

1 Y fsU−fx , gfx) (85)

((b1U)cα1, (b2V)cα2,W
cα3) =

(
gf1
1

N∏
i=1

(u′i)
di , gf2

1

N∏
i=1

(v′i)
di , gfr′

N∏
i=1

gdi
i

)
(86)

(bc
iγi, (b

′
i)

cγ′i)
N
i=1 = (heibdi

i−1,h
e′igdi)N

i=1 (87)

(g−
QN

i=1 pibN)cγ = he (88)(
g−

PN
i=1 pi

N∏
i=1

b′i

)c

γ′ = he′ . (89)

56

Security Analysis. Again, the security analysis of the protocol is almost
identical to the analysis of Protocol 2.

Proposition 5. Protocol 4 is honest verifier statistical zero-knowledge.

Proof (Proposition 5). The simulator chooses p1, . . . , pN and c honestly. Then it
chooses f1, f1, fx, fr′ ∈ Zq, e ∈ [0, 2K2+NK3+K4+K5+log2 N−1], e′ ∈ [0, 2K2+K5+log2 N−
1], (ei, e

′
i)

N
i=1 ∈ [0, 2K2+K4+2K5 − 1]N , and (di)N

i=1 ∈ [0, 2K3+K4+K5 − 1]N ran-
domly. It also chooses b1, b2 ∈ Gq and bi,b′i ∈ QRN randomly. Finally, the
simulator defines, (β1, β2, β3) by Equations (85), (α1, α2, α3) by Equations (86),
γi and γ′i by Equation (87), γ by Equation (88), and γ′ by Equation (89) re-
spectively. The distribution of the resulting elements is statistically close to the
distribution of the corresponding elements in the protocol.

We denote the jth transcript in a list of transcripts by Tj = (Ij ,Wj , Pj , Cj , cj , Rj)
where Ij denotes the common input, Wj denotes the list of commitments wi,
and

Pj = (pj,1, . . . , pj,N)
Cj = ((bj,1, bj,2), (βj,1, βj,2, βj,3), (αj,1, αj,2, αj,3), (bj,i,b′j,i)

N
i=1, (γj,i,γ

′
j,i)

N
i=1, (γj ,γ

′
j))

Rj = ((fj,1, fj,2, fj,x, fj,s, fj,r′), (ej,i, e
′
j,i)

N
i=1, (dj,i)N

i=1, (ej , e
′
j)) .

Lemma 8. Lemma 3 holds also for Protocol 5, but with the notation above and
with the main conclusion replaced by

1. Main Conclusion∗∗. Elements x, x1, . . . , xN ∈ Zq and a permutation π ∈
ΣN s.t.

((g, y, L, L′), (x, (xi)N
i=1)) ∈ RDRP .

Proof. The proof is identical except for the last section of the proof. This must
be replaced by the following.

The Common Input (g, y, Y, L, L′) Satisfies ((g, y, Y, L, L′), ((xi)N
i=1, x)) ∈

RRP. From the above we may assume that πj = π for all j = 1, . . . , N , so we
drop the subscript and simply write π from now on. Equations (85) imply that

b
cj+N−cj

1 = g
fj+N,1−fj,1
1 gfj+N,s−fj,s ,

b
cj+N−cj

2 = g
fj+N,2−fj,2
1 Y fj+N,s−fj,sU−(fj+N,x−fj,x) , and

ycj+N−cj = gfj+N,x−fj,x .

Define

κ1 = (fj+N,1 − fj,1)/(cj+N − cj) , (90)
κ2 = (fj+N,2 − fj,2)/(cj+N − cj) , (91)
ξ = (fj+N,x − fj,x)/(cj+N − cj) , and (92)

ξj,s = (fj+N,s − fj,s)/(cj+N − cj) . (93)

57

Then we have gx = y = gξ, so ξ = x. We also have

b1 = gκ1
1 gξj,s , and (94)

b2 = gκ2
1 Y ξj,sU−x . (95)

From Equation (86) we have

(b1U)cj+N−cj = g
fj+N,1−fj,1
1

N∏
i=1

(u′i)
dj+N,i−dj,i , and

(b2V)cj+N−cj = g
fj+N,2−fj,2
1

N∏
i=1

(v′i)
dj+N,i−dj,i .

Our definitions of κ1 and κ2 in Equations (90) and (91), and the definition of
ρi, which equals pj,π(i) in Equation (23) imply that

b1U = gκ1
1

N∏
i=1

(u′i)
pj,π(i) , and

b2V = gκ2
1

N∏
i=1

(v′i)
pj,π(i) .

If we combine Equations (94) and (95) with the two equations above we have

gξj,s

N∏
i=1

u
pji

i = gξj,sU =
N∏

i=1

(u′i)
pj,π(i) , and (96)

Y ξj,sU−x
N∏

i=1

v
pji

i = Y ξj,sU−xV =
N∏

i=1

(v′i)
pj,π(i) , (97)

for j = 1, . . . , N . We apply the coefficients al,1, . . . , al,N ∈ Zq introduced above
to the Equations (96) and (97) and conclude that

g
PN

j=1 ξj,sal,j ul =
N∏

j=1

(
gξj,s

N∏
i=1

u
pji

i

)al,j

=
N∏

j=1

(N∏
i=1

(u′i)
pj,π(i)

)al,j

= u′π−1(l) , and

Y
PN

j=1 ξj,sal,j vlu
−x
l =

N∏
j=1

(
Y ξj,sU−x

N∏
i=1

v
pji

i

)al,j

=
N∏

j=1

(N∏
i=1

(v′i)
pj,π(i)

)al,j

= v′π−1(l) .

This concludes the proof, since we can set xl =
∑N

j=1 ξj,sal,j .

Consider the following definitional changes compared with the analysis of
Protocol 2. Let A be the machine that given an RSA modulus N and g,h ∈
QRN, and g, g1, . . . , gN ∈ Gq as input generates the remainder of the common
input consisting of public keys y, Y ∈ Gq, and two lists L = (ui, vi)N

i=1 ∈ G2N
q

58

and L′ = (u′i, v
′
i)

N
i=1 ∈ G2N

q , and then plays the role of the prover in Protocol
2 on common input ((N,g,h), (g, g1, . . . , gN), y, Y, (L,L′)). We let Acc be the
predicate that given a transcript T outputs 1 or 0 depending on if the verifier in
the protocol above would accept the transcript or not.

Given these changes is straightforward to see, from the analysis in Sections
D.2 and D.2, that the following propositions hold.

Proposition 6. Assume the strong RSA-assumption and the DL-assumption.
Then for all polynomial-size circuit families A = {AK} it holds that ∀c > 0,
∃K0, such that for K1 ≥ K0

Pr
Γ ,g,rp,rv

[Acc(TA(Γ , g, rp, rv)) = 1 ∧ IA(Γ , g, rp) 6∈ LRRP] <
1

K1
c .

F.3 Further Shuffle Relations

We have given a detailed description of our approach for the relations RDP, RRP,
and RDRP, but the approach is easily adapted to a proof of a shuffle for many
other relations that involve permutation of the cryptotexts.

G Cryptographic Assumptions

In this section we define the cryptographic assumptions we need.

G.1 The Ideal Bulletin Board

Functionality 6 (Bulletin Board (cf. [52])). The ideal bulletin board func-
tionality, FBB, running with participants P1, . . . , Pk and ideal adversary S.

1. FBB holds a database indexed on integers. Initialize a counter c = 0.
2. Upon receiving (Pi, Write,mi), mi ∈ {0, 1}∗, from CI , store (Pi,mi) under

the index c in the database, hand (S, Write, c, Pi,mi) to CI , and set c← c+1.
3. Upon receiving (Pj , Read, c) from CI check if a tuple (Pi,mi) is stored in the

database under c. If so hand ((S, Pj , Read, c, Pi,m), (Pj , Read, c, Pi,mi)) to
CI . If not, hand ((S, Pj , NoRead, c), (Pj , NoRead, c)) to CI .

G.2 Pseudo-Random Generator

Definition 7 (Pseudo-Random Ensemble). The ensemble X = {Xn}n∈N
of random variables is pseudo-random if there exists an ensemble U = {Ul(n)}nN
such that X and U are indistinguishable in polynomial time.

Definition 8 (Pseudo-Random Generator). A pseudo-random generator is
a deterministic polynomial-time algorithm PRG satisfying the following two con-
ditions:

1. There exists a function l : N → N such that l(n) > n for all n ∈ N and
|PRG(s)| = l(|s|) for all s ∈ {0, 1}∗.

2. The ensemble {PRG(Un)}n∈N is pseudo-random.

59

G.3 The Discrete Logarithm Assumption

Definition 9 (Discrete Logarithm Assumption). Let Gq be a group of
prime order q with generator g, and let h be randomly chosen in Gq. The Discrete
Logarithm (DL) assumption states that for all polynomial-size circuit families
A = {AK}, ∀c > 0, ∃K0, such that for K > K0 we have

Pr[A(h) = logg h] <
1

Kc
.

Lemma 9 (Representation Problem). Let Gq be a group of prime order q
with generator g, and let g1, . . . , gN be randomly chosen in Gq (with N polyno-
mial in K). Then under the DL-assumption it holds that for all polynomial-size
circuit families A = {AK}, ∀c > 0, ∃K0, such that for K > K0 we have

Pr[A(g1, . . . , gN) = (η1, . . . , ηN) 6= 0 ∧
N∏

i=1

gηi

i = 1] <
1

Kc
.

Proof. If the lemma is false there exists an adversary A, a constant c, and an
infinite index set N such that the left side is larger than 1/Kc for K ∈ N .
Consider the adversary A′ defined as follows. Given (g, h) as input it sets e1 = 1,
chooses e2, . . . , eN ∈ Zq and 2 ≤ i ≤ N randomly and defines g1 = g, gl = gel for
l 6= i and gi = h. Then it computes (ηl)N

l=0 ← A((gl)N
l=1) and outputs 1

ei

∑
l 6=i elηl

if ei 6= 0 and ⊥ otherwise. If ei 6= 0 we have∏
l 6=i

gηl

l = h−ei

and it follows that the output is the logarithm of h.
The event ei 6= 0 is independent of the event that A outputs a non-trivial

representation, since the generated (g1, . . . , gN) is identically distributed to those
in the lemma. Thus, from independence follows that A′ outputs logg h with
probability at least 1

NKc , which contradicts the DL-assumption.

G.4 The Decision Diffie-Hellman Assumption

Definition 10 (Decision Diffie-Hellman Assumption). Let α, β, γ ∈ Zq

be randomly chosen. The (non-uniform) Decision Diffie-Hellman Assumption
(DDH-assumption) for Gq states that for all polynomial-size circuit families A =
{AK}, ∀c > 0, ∃K0, such that for K > K0 we have

|Pr[A(gα, gβ , gγ) = 1]− Pr[A(gα, gβ , gαβ) = 1]| < 1
Kc

.

We use a variant of the DDH-problem captured by the lemma below.

Lemma 10 (Variant DDH-Assumption). Let α, β, β′, γ, γ′ ∈ Zq be ran-
domly chosen. Then under the DDH-assumption it holds that for all polynomial-
size circuit families A = {AK}, ∀c > 0, ∃K0, such that for K > K0

|Pr[A(gα, gβ , gγ , gβ′ , gγ′) = 1]− Pr[A(gα, gβ , gαβ , gβ′ , gαβ′) = 1]| < 1
Kc

.

60

Proof. Suppose that the lemma is false. Then there exists a circuit family A, a
constant c > 0, and an infinite index set N such that

|Pr[A(gα, gβ , gγ , gβ′ , gγ′) = 1]− Pr[A(gα, gβ , gαβ , gβ′ , gαβ′) = 1]| ≥ 1
Kc

.

This implies that one of the following inequalities hold

|Pr[A(gα, gβ , gγ , gβ′ , gγ′) = 1]− Pr[A(gα, gβ , gγ , gβ′ , gαβ′) = 1]| ≥ 1
2Kc

, and

|Pr[A(gα, gβ , gγ , gβ′ , gαβ′) = 1]− Pr[A(gα, gβ , gαβ , gβ′ , gαβ′) = 1]| ≥ 1
2Kc

.

The former is impossible, since given a triple (u, v, w), the tuple (u, gβ , gγ , v, w)
for random β, γ ∈ Zq is identically distributed to the input to A in the right or left
probability in the first equation depending on if (u, v, w) is a DDH-triple or not.
The latter is impossible, since given a triple (u, v, w), the tuple (u, v, w, gβ′ , uβ′),
for a random β′ ∈ Zq, is identically distributed to the input to A to the left or
right probability in the second equation depending on if (u, v, w) is a random
triple or if it is a DDH-triple.

G.5 The Strong RSA-Assumption

The strong RSA-assumption says that it is hard to compute any non-trivial
root in ZN where N is an RSA modulus, even if allowed to select which root
to compute. This differs from the standard RSA-assumption, where the root to
compute is predetermined.

Definition 11 (Strong RSA-Assumption). The strong RSA-assumption states
that for all polynomial-size circuit families A = {AK}, ∀c > 0, ∃K0, such that
for K > K0

Pr[(p,q)← RSA(1K),h← Z∗pq, (b, e)← A(pq,h),be = h, e 6= ±1] <
1

Kc
.

H Review of the UC-Security Framework

In this section we give a short review of the universally composable security
framework of Canetti [9]. This framework is very general, quite complex, and
hard to describe both accurately and concisely. We have chosen to use a slightly
simplified approach. For a general in depth discussion, intuition, and more details
we refer the reader to Canetti [9]. Note that we consider only static adversaries.

Following Goldreich [24] and Canetti [9] we define the participants to be
interactive Turing machines, and denote the set of interactive Turing machines
by ITM.

Canetti assumes the existence of an “operating system” that takes care of the
creation of subprotocols when needed. This is necessary to handle protocols with
a large number of possible trees of calls to subprotocols, but for our purposes

61

we may assume that all subprotocols are instantiated already at the start of the
protocol.

Canetti models an asynchronous communication network, where the ad-
versary has the power to delete, modify, and insert any messages of his choice.
To do this he is forced to give details for exactly what the adversary is allowed
to do. This becomes quite complex in the hybrid model. We instead factor out
all aspects of the communication network into a separate concrete “communica-
tion model”-machine. The real, ideal, and hybrid models are then defined solely
on how certain machines are linked. The adversary is defined as any ITM, and
how the adversary can interact with other machines follows implicitly from the
definitions of the real and ideal communication models.

Since each protocol or subprotocol communicate through its own copy of
the “communication model”, and all protocols are instantiated at the start of
the protocol we need not bother with session ID:s. Such ID:s would clearly be
needed if our protocols would be rewritten in the more general original security
framework, but it is notationally convenient to avoid them.

We also assume that we may connect any pair of machines by a “link”. Such
a link is more or less equivalent to the notion of a link introduced by Goldreich
[24]. But the original notion of a link has the problem that it requires a machine
to have a pair of communication tapes for each link, which is problematic when
the number of potential links is unbounded. This is a purely definitional problem
of no importance and we trust the reader to fill in the details of this in any way
he or she chooses. Thus the following is meaningful.

Definition 12. An ITM-graph is a set V = {P1, . . . , Pt} ⊂ ITM with a set of
links E such that (V,E) is a connected graph, and no Pi is linked to any machine
outside V . Let ITMG be the set of ITM-graphs.

During the execution of an ITM-graph, at most one participant is active. An
active participant may deactivate itself and activate any of its neighbors, or it
may halt, in which case the execution of the ITM-graph halts.

The real communication model models an asynchronous communication net-
work, in which the adversary can read, delete, modify, and insert any message
of its choice. We will not make use of this communication model, since all com-
munication in our protocols take place over an ideal bulletin board, but for
completeness we give a definition.

Definition 13. A real communication model C is a machine with a link lPi , to
Pi for i = 1, . . . , k, and a link lA to a real adversary A. Its program is defined
as follows.

1. If m is read on ls, where s ∈ {P1, . . . , Pk}, then (s,m) is written on lA and
A is activated.

2. If (r, m) is read on lA, where r ∈ {P1, . . . , Pk}, then m is written on lr, and
r is activated.

62

The ideal communication model below captures the fact that the adversary
may decide if and when it would like to deliver a message from the ideal func-
tionality to a participant, but it cannot read the contents of the communication
between participants and the ideal functionality.

Definition 14. An ideal communication model CI is a machine with a link lPi ,
to Pi for i = 1, . . . , k, and links lF , and lS to an ideal functionality F and an
ideal adversary S respectively. Its program is defined as follows.

1. If a message m is read on ls, where s ∈ {P1, . . . , Pk}, then (s,m) is written
on lF and F is activated.

2. If a message (s,m) written on lF is returned unaltered1, m is written on ls.
If not, any string read from lF is interpreted as a list ((r1,m1), . . . , (rt,mt)),
where ri ∈ {S, P1, . . . , Pk}. For each mi a random string τi ∈ {0, 1}n is
chosen, and (ri,mi) is stored under τi. Then ((r1, |m1|, τ1), . . . , (rt, |mt|, τt)),
where |mi| is the bit-length of mi, is written to lS and S is activated.

3. Any string read from lS is interpreted as a pair (b, τ), where b ∈ {0, 1} and τ
is an arbitrary string. If b = 1 and (ri,mi) is stored in the database under the
index τ , mi is written on lri and ri is activated. Otherwise (S, τ) is written
to lF and F is activated.

An adversary can normally corrupt some subset of the participants in a
protocol. A dummy participant is a machine that given two links writes any
message from one of the links on the other. There may be many copies of the
dummy participant. Following Canetti we use the ˜ -notation, e.g. P̃ , for dummy
participants.

The ideal model below captures the setup one wishes to realize, i.e. the envir-
onment may interact with the ideal functionality F , except that the adversary
S has some control over how the communication model behaves.

Definition 15. The ideal model is defined to be a map I : ITM2 × ˜ITM
∗ →

ITMG, where I : (F ,S, P̃1, . . . , P̃k) 7→ (V,E) is given by:

V = {CI ,F ,S, P̃1, . . . , P̃k}, E = {(S, CI), (CI ,F)} ∪
k⋃

i=1

{(P̃i, CI)} .

If π̃ = (P̃1, . . . , P̃k), we write I(S, π̃F) instead of I(F ,S, P̃1, . . . , P̃k) to ease
notation.

The real model is supposed to capture the properties of the real world. The
participants may interact over the real communication model.

Definition 16. The real model is defined to be a map R : ITM∗ → ITMG,
where R : (A, P1, . . . , Pk) 7→ (V,E) is given by:

V = {C,A, P1, . . . , Pk}, E = {(A, C)} ∪
k⋃

i=1

{(Pi, C)} .

1 This special rule simplifies security proofs.

63

Let (V,E) = I(F ,S, P̃1, . . . , P̃k). Then we write Z(I(F ,S, P̃1, . . . , P̃k)) for
the ITM-graph (V ′, E′) defined by V ′ = V ∪ {Z}, and E′ = E ∪ {(Z,S)} ∪⋃k

i=1{(Z, P̃i)}. We use the corresponding notation in the real model case.
A hybrid model is a mix between a number of ideal and real models, and

captures the execution of a real world protocol with access to some ideal func-
tionalities. It is also a tool to modularize security proofs. It may be viewed as if
we “glue” a number of ideal and real models onto an original real model.

Definition 17. Suppose that we are given (V,E) = R(A, π), π = (P1, . . . , Pk).
Let (Vj , Ej) = I(Sj , π̃

Fj

j), π̃j = (P̃j,1, . . . , P̃j,k) for j = 1, . . . , t, and (Vj , Ej) =
R(Sj , πj), πj = (Pj,1, . . . , Pj,k) for j = t + 1, . . . , s.

We denote by H(A(S1,...,St), π(π̃
F1
1 ,...,π̃

Ft
t ,πt+1,...,πs)) the hybrid model defined

as the ITM-graph (V ′, E′), where

V ′ = V ∪
t⋃

j=1

Vj , and E′ = E ∪
t⋃

j=1

Ej ∪
k⋃

i=1

{(Si,A)} ∪
t⋃

j=1

{(Pi, P̃j,i)}

 .

Similarly as above we write Z(H(A(S1,...,St), π(π̃
F1
1 ,...,π̃

Ft
t ,πt+1,...,πs))) to denote

the ITM-graph (V ′′, E′′) defined by V ′′ = V ′ ∪ {Z}, and E′′ = E′ ∪ {(Z,A)} ∪⋃k
i=1{(Z, Pi)}.

Note that all real subprotocols πj , for j = t + 1, . . . , s, above may be integ-
rated into the original real protocol π. Thus a hybrid model with no ideal func-
tionalities involved is equivalent to a real model, except that it may use several
communication models. One may either augment the definition of a real model
to allow this, or only use communication models with the property that two
communication models can be simulated using a single communication model.
The real communication model above, Definition 13, has this property.

The concept of hybrid models is generalized in the natural way, e.g. we write

H(A(A
S11
1 ,A

S21
2), π(π

π̃F11
1 ,π

π̃F21
2)) for a hybrid model for a real protocol that executes

two subprotocols, where each subprotocol has access to a separate copy of the
ideal functionality F . Some care needs to be taken when defining the adversary
for such models. If an adversary corrupts a participant, it automatically corrupts
all its sub-participants that are involved in subprotocols2.

We also write Zz to denote that Z takes auxiliary input z, and always assume
that in any execution of such an ITM-graph, Z is activated first.

The following definition is somewhat sloppy in that we have not defined the
notion of M-adversaries rigorously. We trust the reader to resolve this, and
assume thatM is some class of adversaries.

Definition 18 (Secure Realization). Let F be an ideal functionality. Let
π = (P1, . . . , Pk), and let π̃j = (P̃j,i, . . . , P̃j,i) be the corresponding dummy par-
ticipants for Fj, for j = 1, . . . , t.

2 The most general definition allows some violations of this rule.

64

Then π(π̃
F1
1 ,...,π̃

Ft
t) realizes π̃F securely with regards to M-adversaries if for

allM-adversaries A(S1,...,St) with auxiliary input z = {zn}, ∃S ∈ ITM such that
∀c > 0, ∃n0, such that ∀n > n0

|Pr[Zz(I(S, π̃F)) = 1]− Pr[Zz(H(A(S1,...,St), π(π̃
F1
1 ,...,π̃

Ft
t))) = 1]| < 1

nc
.

Since the dummy participants are of no real importance we also say that π realizes
F in the (F1, . . . ,Ft)-hybrid model.

Canetti [9] proves a powerful composition theorem that can handle polyno-
mially many instances of a constant number of ideal functionalities, but we only
need the following weaker special case.

Theorem 4 (Composition Theorem). Suppose that π(π̃
F1
1 ,...,π̃

Ft
t) securely

realizes π̃F , and that π
(π̃
Fi1
i1 ,...,π̃

Fiti
iti

)

i securely realizes π̃Fi
i , for i = 1, . . . , l, with

regards to M-adversaries.

Then π(π
(π̃
F11
11 ,...,π̃

F1t1
1t1

)

1 ,...,π
(π̃
Fl1
l1 ,...,π̃

Fltl
ltl

)

l ,π̃
Fl+1
l+1 ,...,π̃

Ft
t) securely realizes π̃F with

regards to M-adversaries.

Proof. A full proof of the more general statement can be found in Canetti [9].

Note that the hybrid protocol can be transformed into a protocol in the
(F11, . . . ,F1t1 , . . . ,Fl1, . . . ,Fltl

,Fl+1, . . . ,Ft)-hybrid model. However, in this hy-
brid model the underlying real model may use several different communication
models.

I Chernoff Bounds

Theorem 5. Let X1, . . . , XN be mutually independent indicator variables and
define X =

∑N
i=1 Xi. Then for arbitrary γ > 0 we have:

Pr[X < Exp[X]− γN] < e−2γ2N .

Theorem 6. Let X1, . . . , XN be mutually independent indicator variables and
define X =

∑N
i=1 Xi. Then for arbitrary γ > 0 we have:

Pr[X < (1− γ)Exp[X]] < e−
γ2Exp[X]

2 .

65

