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Abstract. In number theoretic cryptography there is always the prob-
lem of scaling-up security to a higher level. This usually means increasing
the size of the modulus, from, say 1024 bits to 2048 bits. In pairing-based
cryptography however another option is available, keeping the modulus
constant and increasing instead the embedding degree. This has a big
potential advantage in smart-card and embedded applications – security
can be scaled up while continuing to use the same sized calculations. For
example a cryptographic co-processor which does 512-bit modular mul-
tiplications can be directly re-used in the higher security setting. Here
we investigate the scaling-up issue in the context of prime characteristic
non-supersingular elliptic curves. We also confirm the observation that
at higher levels of security a slightly modified Weil pairing becomes more
efficient than the Tate pairing.
Keywords: Cryptographic key sizes, pairing-based cryptosystems.

1 Introduction

In the majority of number-theoretic cryptographic protocols, both over the finite
field and on elliptic and higher genus curves, the problem of increased security
implies only one obvious solution – increase the size of the modulus, traditionally
by doubling its size. Interestingly in the case of the RSA scheme, based as it is
not on the difficulty of a discrete logarithm problem, but rather on the problem
of integer factorisation, there is an alternative solution. Multi-prime RSA has
been frequently suggested by many people as an alternative to simply doubling
the length of the prime factors of the public key. If n = pq, and p and q are
originally 512 bits, then an increased security implementation might make p
and q both 1024-bits. The multi-prime alternative is to use n = pqrs where p,
q, r and s all remain 512-bit primes. This does not apparently introduce any
serious new weaknesses [14], and represents a completely viable solution, with
some significant performance advantages. And yet multi-prime RSA is not widely
used, and has only relatively recently appeared in standardisation documents
[18]. The reason for this may be that the optimal way of scaling RSA security
was never properly addressed early on by the research community. And it is
very simple to just double the bit length of p and q – for one thing it requires
no further security analysis.



For a particular discrete logarithm based scheme, there is no such choice. For
increased security, one must increase the size of the modulus. There is of course
the possibility of switching to a different scheme for which the same-sized mod-
ulus provides more security – for example one can switch from a standard finite
field setting to a scheme such as LUC [30], or XTR [19]. But as a way of scaling
security this seems very clumsy. And there is something else to be considered
– when attacking a discrete logarithm based system an attacker can choose to
exploit the small size of the group (using the Pollard Lambda algorithm), or the
small size of the field (using index calculus methods, if they apply, otherwise
the Pollard Rho algorithm) [24]. For balanced security in a finite field one might
choose a modulus of 1024-bits (to resist index calculus attacks) and a group size
of 160-bits (to resist Pollard Lambda attacks).

The issue of how to scale up security in pairing-based cryptosystems has also
recently and independently been addressed by Koblitz and Menezes [17]. As will
be seen our experimental evidence largely supports their conclusions.

In pairing based cryptography there are, as for RSA, two distinct strategies
to obtain increased levels of security; double the size of the prime modulus, or
double the embedding degree. In both cases the group size must also be increased
as appropriate.

However field size is a particularly significant parameter for smart-card and
embedded implementations that use co-processor support, as it is field size that
determines the hardware requirement.

Here we analyse the approach of simply doubling the embedding degree.
This has some immediate implications. Firstly supersinglar elliptic curves have a
maximum embedding degree of 6. While it is true that higher embedding degrees
can be obtained on hyper-elliptic curves [25], as a method of scaling security
switching to a different characteristic or to a higher genus curve again seems
very clumsy. Therefore we consider here only non-supersingular curves, while
acknowledging that small characteristic supersingular elliptic and hyperelliptic
curves can be a very efficient vehicle for pairing-based cryptography. See for
example [2] for some recent results, in particular the discovery of the new ηT

pairing.

The aim is to provide a mechanism for scaling security which requires mini-
mal changes to an existing implementation, in terms of algorithm, software and
hardware.

In most protocols it is the time taken to calculate the pairing that is most
significant. However the time taken for field exponentiation and elliptic curve
point multiplication must also be taken into account when evaluating in detail
the perfomance of a particular protocol. In many cases precomputation can
be exploited to eliminate much of the computational cost, and this must also
be taken into account. Such in-depth analysis must be done on a protocol by
protocol basis, and is outside the scope of this paper, where we concentrate solely
on the cost of the pairing.
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Generating suitable non-supersingular elliptic curves can be quite difficult.
Many algorithms have been suggested, but the current state-of-the-art has its
own constraints. To summarise:-

Let F be the number of bits in the field modulus p, and G the size of the
group order r in bits. The embedding degree is k. Then it is relatively easy to
generate suitable curves with G < F/2 for any k. In some specific cases it is
possible to generate curves with F/2 < G < F . For k = {3, 4, 6} it is possible to
find curves with G = F . Very recently Barreto and Naehrig [6] have discovered
a remarkable formula for easily generating curves with G = F and k = 12.

In some applications, like a short signature scheme [9], it is very important
that G = F . And at first glance this also appears to be most efficient. However in
the majority of applications it is not important, and so we will restrict ourselves
(mostly) to the condition G < F/2 where curves are plentiful and easy to find.
An added advantage of choosing G < F/2 is that in this case the group order r
can be chosen to have the lowest possibly Hamming weight, with performance
benefits [3].

For our purposes we define 3 levels of security, which are roughly within
the limits laid down by Lenstra and Verheul [20]. These are referred to here
as (1024/160) security, (2048/192) security, and (4096/224) security, where the
first figure refers to the effective field size kF , and the second refers to the group
size. Here we advocate fixing F = 512 and using k = 2, k = 4 and k = 8 to
achieve the higher levels of security. Of course much greater granualarity could be
achieved by using intermediate values of k, and different values for F . However
we justify our approach by pointing out that in practice the “algorithm” used
by cryptographers is that if using an N bit “RSA equivalent” level of security,
and cryptanalysts threaten at the N/2 level, then switch to 2N bit security.

Note that we could easily continue on to achieve yet higher levels of security.

2 The Tate pairing

In this section we will review the Tate pairing algorithm on non-supersingular
curves over fields of large prime characteristic p. We choose a prime r of size G
which has a low Hamming weight. Next we find an elliptic curve over Fp where
p is of size F and whose order is divisible by r, and where r|pk − 1. Assuming
that r does not divide pi − 1 for any value of i < k, then this is a curve suitable
for use in pairing-based cryptography, and has an embedding degree of k. Here
we will always assume that k is of the form 2n. Observe the well-known fact that
the cyclotomic polynomial

Φ2n(x) = x2n−1
+ 1

is irreducible, and

p2n − 1 = (p2n−1 − 1).Φ2n(p)

Since we know that r does not divide (p2n−1−1), then it must divide Φ2n(p).
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The general Tate pairing is written as er(P,Q), where P is a point on E(Fpk)
in a subgroup of order r and Q is also on E(Fpk), a representative of the coset
of points which includes a member of a distinct subgroup, also of order r. The
Tate pairing evaluates as a non-trivial element of the extension field Fpk of order
r.

The Tate pairing has the following relevant properties.

1. er(aP, bQ) = er(P,Q)ab for all a, b ∈ Fr (Bilinearity)
2. er(P, P ) = 1

The bilinearity property is the one that enables the implementation of many
novel protocols.

In practise it is common for efficiency reasons to choose P ∈ E(Fp). It is
also possible to manipulate Q as a point on the twisted curve defined over Fpk/2 ,
before mapping it to a point on E(Fpk) prior to calculation of the pairing [5]. The
coordinates of this point will exhibit some redundancy which can be exploited
to speed up the calculation.

The Tate pairing algorithm consists of an application of Miller’s algorithm
followed by a final exponentiation. The purpose of the final exponentiation is to
yield a unique result of order r. In Miller’s algorithm the point P is implicitly
multiplied by r using the standard double and add method, and at each itera-
tion a distance relationship between the current point and the fixed point Q is
calculated and accumulated in a Fpk variable.

Now the field Fpk has pk − 1 elements in it, and by definition r|pk − 1.
Assuming that k = 2n the final exponentiation is to the power of (p2n − 1)/r.
This can be written as (p2n−1−1)((Φ2n(p)/r). The exponentiation by (p2n−1−1)
is cheap, using the Frobenius action. The hard work here is the exponentiation
to the power of Φ2n(p)/r.

As demonstrated in [28] the output of the Tate pairing can be compressed
to half its size for even k. The compressed pairing returns an element of Fk/2.
The final exponentiation in this case is replaced with the somewhat simpler
calculation of a Lucas sequence.

2.1 Non-supersingular Vs Supersingular

There is a view (unsupported by any hard evidence) that non-supersingular
curves are intrinsically “more secure” than supersingular curves. We will not
comment on this. There is also a view that it is faster to use a supersingu-
lar curve. For prime field characteristic one is restricted to the case k = 2.
However in this case as demonstrated in [27] the optimal pairing algorithm for
non-supersingular curves is just as efficient as for supersingular curves. Recently
it has been suggested [17] that the ease of domain generation for supersingular
curves makes it easier to generate a modulus p with a low Hamming weight,
which in turn leads to faster implementation. But as they also point out a low
Hamming weight p raises security concerns. Furthermore it is also quite possible
to generate low Hamming weight moduli for non-supersingular curves, using for
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example the methods of [7] or [29]). See section 5 below for more details on curve
generation.

Nevertheless the vast majority of pairing based protocols have been described
in the context of super-singular curves. Most can be transferred directly onto a
non-supersingular curve and will work fine under the so-called co-Bilinear Diffie-
Hellman assumption, co-BDH, rather than under the original BDH assumption
[8]. However there are subtle differences. Recall that when using supersingular
curves a distortion map exists, and so ê(P,Q) = er(P, φ(Q)), where P,Q ∈
E(Fp). Then this distorted Tate pairing has the properties

1. êr(aP, bQ) = êr(P,Q)ab for all a, b ∈ Fr (Bilinearity)
2. êr(P, P ) 6= 1
3. êr(P, Q) = êr(Q,P )

Note that property 2 is different and property 3 is new. However the two
pairings do share the important property of bilinearity which is the property re-
quired for the new pairing-based protocols. Sometimes these different properties
can affect the behaviour of a protocol in interesting ways. However the main im-
plication is that when working on non-supersingular curves we need to remember
to treat the two parameters P ∈ E(Fp) and Q ∈ E(Fpk) quite differently. They
cannot be interchanged or moved from side to side of the pairing calculation. An-
other potentially significant difference is that manipulation of the Q parameter
prior to the pairing calculation is much simpler using super-singular curves, as
Q will be a point on the base curve rather than on the curve taken over a larger
extension field when k > 2, even using the “twist” idea (see below). Finally as
pointed out in [27] it is possible to do useful precomputation on the first para-
meter if it should be a constant, but not on the second. Since the parameters
can be switched from side to side with supersingular curves (using property 2
above) then this feature is easier to exploit than in the non-supersingular case.

3 A Tower of extensions

We will require a scalable implementation of finite field arithmetic over the field
Fp2n . The simplest way to do this will be to use a tower of extensions [23]. That
is an element of Fp2n will be represented as a pair of elements from Fp2n−1 , and
so on recursively, starting with an efficient implementation of Fp.

For a suitable extension field arithmetic representation we first need an ir-
reducible polynomial. For example if p = 3 mod 4, then x2 + 1 is a suitable
irreducible polynomial for representation of the extension field Fp2 . Elements of
the field can be represented as a polynomial ax+b where a, b ∈ Fp. Alternatively
”solve” the irreducible polynomial and set x =

√−1, and use as a representation
a + b.

√−1. Numbers in this form can be manipulated directly without explicit
reference to an irreducible poynomial. Note that −1 is a quadratic non-residue
with respect to p, iff p = 3 mod 4. However unfortunately this representation
with its simple irreducible polynomial does not permit a simple tower of exten-
sions to be built on top of it, as p2 = 1 mod 4.
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An alternative is to choose p = 1 mod 4. In this case the irreducible poly-
nomial x2 + 2 can be chosen, and it does support an infinite tower of similar
extensions. In practise we choose p = 5 mod 8, as it is important to have a sim-
ple formula for modular square roots, which does exist for this case, but not in
general for p = 1 mod 8 (the calculation of square roots is required to generate
points on the elliptic curve). So –

An element of Fp2 is a + b.(−2)1/2, or [a, b] a pair of elements from Fp.
An element of Fp4 is c + d.(−2)1/4, or [c, d] a pair of elements from Fp2 .
An element of Fp8 is e + f.(−2)1/8, or [e, f ] a pair of elements from Fp4 .

Now the implementation of each new layer of the tower can be built in an
identical fashion on top of the previous layer. In the terminology of the pro-
gramming language C++, a templated class which supports the operations of
field addition, subtraction, multiplication and division (plus square rooting and
Lucas powering) can be written just once which will support all these instanti-
ations. We omit implementation details as they are quite straightforward.

There is now an extra constraint on the curve generation process, that p = 5
mod 8. However we found that it was still easy to find a multitude of suitable
curves.

3.1 The Twist Idea

Let i be the k-th root of −2. Then if the point ([x, 0], [0, y]) is a point on the
curve E : y2 = x3 + Ax + B over the field Fpk , then it is easy to verify by
simple substitution that the point (i2x, i4y) is a point on the twisted curve
E′ : y2 = x3 + i4Ax + i6B over the field Fpk/2 . It is also a simple matter to map
points back from the twisted representation to the original curve.

3.2 Frobenius action

In the field Fpk the Frobenius action is defined as the well-known identity

(x + iy)p = xp + ipyp

This means that exponentiation by p is almost for free. Using the Tower of
extensions this formula can be applied recursively to xp and yp. However the term
ip needs to be handled carefully. For example if i = (−2)1/8, and p = 5 mod 8,
then ip = (−2)(p−5)/8i5, where the term (−2)(p−5)/8 can be precalculated.

4 The Algorithm

In this section we describe the compressed BKLS version of the Tate Pairing
algorithm (which in turn is based on the original Miller algorithm), closely fol-
lowing the treatment in [27], which is based on earlier work by Barreto et al [3]
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and Galraith et al [13]. Compressed pairings are described in [28]. For efficiency
we use a standard projective coordinate system, as described in [15], for the
implicit point multiplication on E(Fp). First we need a function to execute a
point addition, obtaining the line slope and finally calculating the contribution
of the current iteration of the algorithm. Capital letters denote curve points,
lower case letters and symbols represent elements of Fp or simple integers, and
boldface letters represent elements of Fpk/2 .

g(R, P,xq,yq)
1. x, y, z ← R
2. λn, λd = R.add(P )
3. return yλd − λn(xz − xqz3)− yqz3λd · i

The function A.add(B) performs the standard projective point addition, but
also returns the line slope as the rational λn/λd. Note that the line slope is
needed anyway to perform the point addition, so no extra work is involved.
Assume that the point P is of prime order r.

Tate(r, p, P,Q)
1. m = 1
2. R = P
3. n = r − 1
4. xq,yq ← untwist(Q)
5. for i ← blg(r)c − 2 downto 0 do
6. m = m2 · g(R,R,xq,yq)
7. if ni = 1 then m = m · g(R, P,xq,yq)
8. end for
9. m = m(pk/2−1)

10. return V(pk/2+1)/r(2ma)

The variable m is the Miller variable, and is the only variable that is an
element of the full extension field Fpk . Note that m = [ma,mb]. The notation
ni refers to the i-th bit of n. Note that the choice of a low Hamming weight r
means that this bit may be 1 only once in the entire calculation. The function
untwist converts the point Q on the twisted curve to the point ([xq, 0], [0,yq])
on the original curve over the full extension field Fpk , as described in section
3.1. The calculation in line 9 is greatly simplified by repeated application of the
Frobenius action, as described in section 3.2. The value of (pk/2 + 1)/r can be
precomputed and stored. The function Vn is the well-known Lucas function.

In certain circumstances the first parameter to the pairing algorithm, the
point P , may be a constant. If it is, then we can benefit significantly from a
precomputation. All the points and slopes in the implicit multiplication of P
by r can be precomputed and stored, and a much simpler affine version of the
function g(.) can be used [27].

Using a tower of extensions this same algorithm can be used for any positive
value of n, where the extension degree is k = 2n. Although implementations
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details might vary slightly (in particular in the untwist function and in the
Frobenius action), by and large it is fair to say that the same basic algorithm
works for any n. But how do we find suitable non-supersingular curves for k = 2,
k = 4, k = 8 etc?

5 Curve Generation

It was long known that non-supersingular curves might exhibit a low embed-
deding degree – hence the famous MOV condition [21] that was recommended
to avoid the use of such curves in classic elliptic curve cryptography. However
since they were generally regarded as a “bad thing”, there was not much interest
in deliberately generating them. However fortunately at around the time that
pairings became cryptographically interesting Miyaji et al. published their paper
on the construction of so-called MNT curves [22]. The original paper described
constructions for non-supersingular elliptic curves over fields of prime character-
istic with embedding degrees of 3, 4 and 6 with G = F (Recall that F is the
number of bits in the prime modulus p, and that G is the number of bits in the
prime group order r). The condition G = F implies that the curve E(Fp) is of
prime order r, and such curves are very rare, although subsequent developments
extended the idea to produce many more curves where the curve order was hr,
for small values of h [29]. The term MNT curve is now commonly used to refer
to any non-singular curve with a useful embedding degree.

A major development was an algorithm of Cocks and Pinch (unfortunately
unpublished, but essentially the same algorithm is described in [7]). This method
makes it quite easy to find a curve with any desired embedding degree, but with
the restriction G < F/2.

Subsequently a series of papers [4], [10], [11], [29] discovered alternative
strategies which in special cases could find curves with F/2 < G < F . Although
at first glance it appears preferable to choose curves with G = F , unfortunately
until very recently there was no known method for doing so with k > 6. This
situation changed with the surprising discovery by Barreto and Naehrig [6] that
solutions with G = F for the particular case of k = 12 were indeed possible.
However it seems to be generally true that for G > F/2 the number of possible
curves starts to become constrained, and in particular one no longer has control
of the choice of r. This is a pity because it is clearly more efficient if r is chosen
to have a low Hamming weight.

Since it is our ideal to develop a method which can be scaled without limit,
the Cocks and Pinch algorithm seems to be the only option, although we will
consider one candidate curve generated using the method described by Brezing
and Weng [10].

These algorithms give us enough information to know that a suitable curve
exists, with the desired embedding degree and with a curve order divisible by the
chosen r. However to find the actual curve parameters we must use the method
of Complex Multiplication as described in [15], and implemented in, for example,
[26].
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The actual elliptic curves En(Fp) that we used are described using the
standard Weierstrass representation [15] for curves of prime characteristic,
y2 = x3 + Ax + B.

E160

F = 512, G = 160, k = 2

p = 8d19a10497f9cc35bc026c6a7651da9ce4d794d4d67a4ab6e77d3b322e462b899

1a31e8fbfcb60b411f0e5afd85977d7eee3dd09cd197dafe4f377c3e23af2af

A = −3

B = 4d438977ff9360a5df4294efe4bd7465351b7d19e99c17463f3c7f72ab95ca3c95

c82339f2c8b9f8801bc29328ae2d73969493d719fbbe3d34f689778ebd85ae

r = 8000000000000000000000000000000000020001

E192

F = 512, G = 192, k = 4

p = b7fd9899de545d9d6b3644da15e9b662fd08ca211da537978b5556299c6b02f77

d5e776d48c14b14c65e905646de2318391b0ac3820ab2be9eb54b70927ee9b5

A = −3

B = 865b15c872e80609aC5a6b397438a020d9c1cfbccd2d7e57480b1c80f6325461f

b1bf32b28d689412c6875e267676d926dd0232dbcc049efa670cfe2cb971a65

r = 800000000000000000000000000000000000000000000005

E192bw

F = 256, G = 192, k = 8

p = cc485d26177a1a5fcc9d53ba93da298fd7f2f23d8fc02a8123bf24f9548a5f15

A = 0

B = 2

r = 9d0261dd89cf83d5d20198162c22c942ef68622a6df25621

E224

F = 512, G = 224, k = 8

p = bc1e1bf222c03dfd1bd55f2f220cf3b3f7f185834d6db68cdcc11d413e77ea4ee

cf8ffa5038e46c303a407da24b15aa57cc8bd6df69c5d9806742fca59f8604d

A = −3

B = 62dc6331021838f1b0557dd1b016b4898fc16c084b8f2a4b9368d0ce1c4e744c6

e4319e1bbdd27ad060439ba50f0eb6cbc79e74404cd371263f024aecabfa9c7

r = 80000000000000000000000000000000000000000000000000002001

The curves E160, E192 and E224 have a field size of 512 bits, and embedding
degrees of 2, 4 and 8 respectively. Observe the low Hamming weight group orders
r, which are of sizes 160, 192 and 224 bits respectively. These were all generated
using variations of the Cocks and Pinch algorithm. For the curve E160, p = 3
mod 4 and we can use the irreducible polynomial x2 + 1. This will be a little
faster. For all the other curves p = 5 mod 8 to facilitate the building of the
tower of extensions using the irreducible polynomial x2 + 2 as described above.
It was particularly easy to find curves using the Cocks and Pinch algorithm,
and we would expect that it would be as easy to find curves with higher embed-
ding degrees k > 8. The curve E192bw was generated using the Brezing-Weng
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algorithm [10], and has a field size of 256 bits, a group size of 192 bits, and an em-
bedding degree of 8. Therefore in terms of security it should be similar to E192.
The Brezing and Weng curve was much harder to find, given the constraints
imposed.

6 Results

Before presenting actual timings, it will be helpful to carry out some analysis of
the expected runtime of the algorithm. First consider the situation for a fixed
(kF/G) level of security. Here we often have a choice between a large k and small
F , or visa versa. To be concrete for (2048/192) security, should we use k = 2,
F = 1024, or k = 4, F = 512, or k = 8, F = 256? G will remain the same
irrespective.

In line 6 of the main algorithm we have the multiplication of elements from
Fpk , which are represented as a pair of elements from Fpk/2 . Let x be the time
required for the multiplication of elements from Fpk/2 . Then using the Karatsuba
method, the time required for the multiplication of elements from Fpk , will be
3x.

Using our concrete example, the question is – what is x? That is how long does
it take to multiply a pair of polynomials of fixed absolute size of 1024 bits, which
could be organised as a degree 0 polynomial with a single 1024-bit coefficient, or
as a degree 1 polynomial with 512-bit coefficients, or as a degree 3 polynomial
with 256 bit coefficients. In all cases the use of the Karatsuba algorithm for
polynomial multiplication can be assumed to be optimal for coefficients of these
sizes. In general when using the Karatsuba method polynomial multiplication
will be more efficient than integer multiplication (as will be required in the
first case), as no carries are required. On the other hand for large values of k
polynomial multiplication becomes quite inefficient as more small coefficients
need to be processed. Somewhere in between there will be an optimal choice,
which will depend largely on implementational details. Here we assume that x
is a “almost” a constant, an observation that is supported by our experimental
experience.

With this assumption, and letting y be the time required for a base field
multiplication over Fp, then the total time for the algorithm can be calculated
as

G(6x + yk + 7y + 8y) + 2x.(kF/2−G) + m.(3x + yk + 7y + 11y)

assuming that a point doubling on E(Fp) requires 8 multiplications in Fp, and
point addition requires 11 such multiplications, using standard algorithms [15].
Each iteration in the calculation of the Lucas sequence requires 2 multiplications
in Fpk/2 [16]. We neglect the time taken to ”untwist” the point Q in line 4 of
the algorithm (as it is negligible), and for the Frobenius calculations in line 9.
The first term accounts for the main loop of the algorithm, and the second term
is the the time required for the calculation of the Lucas sequence – the final
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exponentiation. The third term is the time taken when the “if” statement on
line 7 is executed assuming it is executed m times. Rearranging this expression
gives

x(4G + kF + 3m) + y((G + m)k + 15G + 18m)

Note that precomputation (for a constant first pairing parameter P ) reduces
the second term contribution to y((G + m)k/2).

For a given level of security, and as a consequence of the discussion above,
the first term is “almost” a constant, independent of the actual relationship be-
tween F and G. The second term clearly benefits from a smaller field size, but
as kF becomes much greater than G the second term contribution to the overall
cost becomes much less significant, and precomputation also becomes less rele-
vant. Note that the kF term originated with the final exponentiation, therefore
for higher levels of security we can conclude that the final exponentiation will
eventually become the dominant part of the calculation.

A final observation is that using the Cocks and Pinch construction with
G < F/2 we can choose a low Hamming weight value for r, and hence m = 1.
Other constructions typically result in m ≈ G/2. This can be reduced somewhat
using standard windowing methods, or using the technique described in [12].

To get a rough count of the number of base field multiplications required
for k = 2n, we can substitute x = 3n−1.y (assuming Karatsuba) into the above
formulae.

Actual timings were carried out on a 3GHz Pentium IV processor, and are
shown in Table 2. In particular we compare the scaling approach advocated
here, with fixed size prime modulus and doubling k, with the alternative scaling
method of simply doubling the size of the prime modulus, and keeping k = 2
fixed, using curves E192a and E224a. We also compare curves generated using
the Cocks and Pinch algorithm with an example curve E192bw generated using
an alternative approach [10] for which G > F/2

Table 1. Timings – Pentium IV 3GHz – Tate Pairing

Curve (kF/G) k F (bits) G (bits) Time (ms) with precomp.

E160 (1024/160) 2 512 160 8.9 4.9

E192 (2048/192) 4 512 192 20.5 16

E192bw (2048/192) 8 256 192 25 22

E192a (2048/192) 2 1024 192 45 26

E224 (4096/224) 8 512 224 92 85

E224a (4096/224) 2 2048 224 209 137

Observe that the curve generated using the simple Cocks and Pinch algorithm
E192 is in practice a little faster than the Brezing and Weng curve E192bw for
the same security level. (Note that the for the Brezing and Weng curve we do
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not use the algorithm as described above, but rather a standard windowing
algorithm, which is more suitable in this case where the Hamming weight of r
is not insignificant.) The method of doubling the prime modulus as a method
of scaling suffers, as point multiplication on an elliptic curve over a large prime
field is very expensive. Precomputation (if it applies) solves this problem to an
extent, but only at the cost of large precomputed tables.

7 The Weil Pairing

Originally it was thought that the Tate pairing would always be a better choice
than the Weil pairing, a view articulated for example in [7].

It has been suggested recently that at higher levels of security that the Weil
pairing may in fact be more efficient than the Tate pairing [1], [17]. This is sup-
ported by the observation that at higher security levels the final exponentiation
of the Tate pairing becomes the most time-consuming operation. On the other
hand the Weil pairing requires two invocations of Miller’s algorithm, but no fi-
nal exponentiation. Another way to look at it is to observe that whereas the
complexity of the Tate pairing is O((kF )3), the complexity of the Weil pairing
is only O((kF )2G) (using naive multiplication).

Here we will try to determine the cross-over point at which the Weil pairing
becomes superior. We observe that rather than using the standard Weil pairing
directly it will be advantageous to consider the Weil pairing raised to the power
of pk/2−1 (using the fast Frobenius action) as this permits various optimizations
similar to the denominator elimination optimization described by Barreto et al
[3]. This observation was also made independently by Koblitz and Menezes [17].

The parameters P and Q are as above, although this time it is a requirement
that Q should also be of order r.

The function g(.) is more complex for the Weil pairing, as a pair of point
additions are required as we implement two invocations of the Miller algorithm.
As before we use projective coordinates for the implicit point multiplication of
the point P on E(Fp), but affine coordinates for the much more expensive point
multiplication of Q on the twisted curve E′(Fpk/2). The untwisting required of
the points is merged into the formulae, whose derivation is left as an exercise
for the reader. Note that the function g(.) formally computes a numerator and
a denominator. However the denominator can be replaced by its conjugate, and
the implied division replaced by a multiplication, exploiting the exponentiation
of the final result to the power of pk/2 − 1.

g(R, P, S, Q, xp, yp,xq,yq)
1. x, y, z ← R
2. λn, λd = R.add(P )
3. n = yλd − λn(xz − xqz3)− yqz3λd · i
4. x,y ← S
5. λ = S.add(Q)
6. d = i4yp + (y − λ(x− i2xp)) · i
7. return (n · d)
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The full compressed Weil pairing algorithm can now be given. Note the ab-
sence of the final exponentiation. Otherwise the structure is very similar to that
of the Tate pairing.

Weil(r, p, P, Q)
1. m = 1
2. R = P
3. S = Q
4. n = r − 1
5. xp, yp ← P
6. xq,yq ← untwist(Q)
7. for i ← blg(r)c − 2 downto 0 do
8. m = m2 · g(R,R, S, S, xp, yp,xq,yq)
9. if ni = 1 then m = m · g(R, P, S, Q, xp, yp,xq,yq)
10. end for
11. m = m(pk/2−1)

12. return 2ma

Using the same curves as above, we proceeded to obtain timings for the Weil
pairing, for the curves using F = 512 and k = 2, 4, 8. For the Weil pairing
precomputation for a constant second parameter Q is particularly rewarding, as
the point multiplication on the twisted curve (for k = 4, 8) is very expensive –
so we include timings for this case.

Table 2. Timings – Pentium IV 3GHz – Weil Pairing

Curve (kF/G) k F (bits) G (bits) Time (ms) with precomp.

E160 (1024/160) 2 512 160 20 –

E192 (2048/192) 4 512 192 37 18

E192bw (2048/192) 8 256 192 40 23

E224 (4096/224) 8 512 224 90 55

Observe that the Weil pairing is slightly more efficient at the security level
(4096/224), and much more efficient if precomputation is possible. It is also
worth noting that at the (2048/192) security level, when using precomputation,
the Weil pairing is very nearly as efficient as the Tate Pairing.

8 Conclusions

We have demonstrated that using non-supersingular MNT curves we can easily
scale the security of pairing based cryptosystems, effectively without limit. The
basic algorithm remains the same at all levels of security. The proposed method
of doubling the embedding degree to reach the next level of security seems to

13



compare well with the alternative approach of simple doubling the size of the
modulus.

Finally we provide experimental evidence to support the view that at higher
levels of security the Weil pairing becomes more efficient than the Tate pairing,
and we identify the cross-over point.
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