
How to Split a Shared Number into Bits

in Constant Round and Unconditionally Secure

Ivan Damgård Matthias Fitzi∗ Jesper Buus Nielsen†

Tomas Toft‡

University of Aarhus

Department of Computer Science

IT-parken, Aabogade 34

DK-8200 Aarhus N, Denmark

{ivan|fitzi|buus|tomas}@daimi.au.dk

May 13, 2005

Abstract

We show that if a set of players hold shares of a value a ∈ Zp for some prime p (where
the set of shares is written [a]p), it is possible to compute, in constant round and with
unconditionally security, sharings of the bits of a, i.e. compute sharings [a0]p, . . . , [al]p such

that l = dlog2(p)e, a0, . . . , al ∈ {0, 1} and a =
∑l−1

i=0
ai2

i.
This result immediately implies solutions to other long-standing open problems, such

as constant-round and unconditionally secure protocols for comparing shared numbers and
deciding whether a shared number is zero.

If one can set p optimally, the protocol uses 134 · l2/15κ+54 · l4/3 invocations of the multi-
plication protocol for the underlying secret sharing scheme, where κ is a security parameter.
In the worst case, where p can be arbitrary, the number of invocations of the multiplication
protocol is 35 · l2/15κ2 + 31 · l4/3κ.

Our protocol is secure against active adversaries and work for any linear secret sharing
scheme with a multiplication protocol.

1 Introduction

Assume that n parties have shared values a1, . . . , al from some field F using some linear secret
sharing scheme, such as Shamir’s. Let f : F

l → F
m. By computing f with unconditional security

on the sharings we mean that the parties run among themselves a protocol using a network with
perfectly secure point-to-point channels. The protocol results in the parties obtaining sharings of
(b1, . . . , bm) = f(a1, . . . , al), while leaking no information on the values a1, . . . , al or b1, . . . , bm.
The question which functions can be computed with unconditional security on sharings, using a

constant round protocol is a long standing open problem.

∗Supported by SECOQC, Secure Communication based on Quantum Cryptography, under the Information
Societies Technology Programme of the European Commission, IST-2003-506813

†Supported by FICS, Foundations In Cryptology and Security, centre of the Danish National Science Re-
search Council and ECRYPT, European Network of Excellence in Cryptology, under the Information Societies
Technology Programme of the European Commission, IST-2002-507932.

‡Supported by SCET, Secure Computing, Economy, and Trust, Alexandra Instituttet A/S.

1

However, a number of functions are known to have unconditionally secure, constant round
protocols. The most general class with known solutions are functions with a constant-depth
arithmetic circuit (counting unbounded fan-in addition and unbounded fan-in multiplication as
one gate).

The only non-trivial part needed in these solutions is unbounded fan-in multiplication [
∏l

i=1
ai] =

∏l
i=1

[ai]. If all ai are guaranteed to be non-zero this can be done in constant round using the
techniques by Bar-Ilan and Beaver [BB89], which can also handle the case of general ai when
the size of F is polynomial. When F is large and the ai can be arbitrary a technique by Cramer
and Damgård is needed [CD98].

However, a number of functions do not have small constant-depth arithmetic solutions. Con-

sider e.g. the function
?
<: Fp × Fp → Fp, where (a

?
< b) ∈ {0, 1} and (a

?
< b) = 1 iff a < b (where

a and b are considered as residues a, b ∈ {0, 1, . . . , p − 1}). This function has a huge number of
zeros and is not constant zero. Therefore we cannot hope for an efficient arithmetic solution to
this problem (the function can of course be expressed as a polynomial over the field, and thus a
constant-depth circuit, but the circuit would have a number of gates proportional to the size of
the field).

On the other hand a number of results are known where if the inputs are given in a particular
form, then any function which can be expressed by a binary Boolean circuit with g gates and
depth d, can be computed unconditionally securely in constant round, by evaluating a constant-
depth arithmetic circuit with O(2dg) gates.

If in particular the input a is delivered as bitwise sharings [a0]p, . . . , [al−1]p and b = f(a)
can be computed using a BBC with depth d and g gates, then sharings of the bits of b = f(a)
can be computed with complexity1 O(2dm), unconditionally secure in constant round. This can
e.g. be done using Yao’s circuit scrambling technique with an unconditionally secure encryption
scheme — an observation first made by [IK02]. This would e.g. allow to compute the function
?
<: (Fp)

l × (Fp)
l → Fp, ((a0, . . . , al−1), (b0, . . . , bl−1)) 7→ ∑l−1

i=0
ai2

i
?
<

∑l−1

i=0
bi2

i unconditionally
securely in constant round.

So, different representations of the inputs allow different classes of functions to be computed
unconditionally securely in constant round — at least with our current knowledge of the area.
It would therefore be very useful to be able to change representations efficiently. Previously it
was not known how to do this. For instance, this was the reason why the protocols of Cramer
and Damgård [CD98] for linear algebra in constant round could not handle handle fields with
large characteristic without assuming that the input was shared bit-wise to begin with, which
limits the applicability of those protocols. In this paper, we therefore investigate the problem
of changing between sharings modulo a prime p and bitwise sharings.

The only assumptions we need about the underlying secret sharing scheme are the following:
1) the secret sharing scheme is linear (i.e. given sharings [a]p and [b]p the parties can compute a
sharing [a + b mod p]p without interaction) and 2) there exists a multiplication protocol for the
secret sharing scheme (i.e. given sharings [a]p and [b]p the parties can securely compute a sharing
[ab mod p]p by interacting). If the multiplication protocol (and the secret sharing scheme) is
secure against active adversaries, our protocol will be actively secure too. The assumption on
multiplication implies that the adversary structure must be Q2 which in the standard threshold
case means we need honest majority.

Changing representations from bits to modulo p is trivial. Assume that 0 ≤ a < p and that
we are given sharings [a0]p, . . . , [al−1]p of the bits of a. By computing [a]p =

∑l−1

i=0
2i[ai]p we

1For the rest of the paper we measure the complexity of protocols by the maximal number of invocations of
the multiplication protocol, which is typically the dominating term in the communication complexity. The exact
communication complexity then depends on the communication complexity of the multiplication protocol used.

2

get a sharing of a in constant round. Computing the other direction has however been a long
standing open problem. We will show how to compute [a0]p, . . . , [al−1]p from [a]p unconditionally
secure in constant round. For n parties and security parameter κ and p < 2κ, the complexity
is bounded by 35 · l2/15κ2 + 31 · l4/3κ invocations of the multiplication protocol, and can be as
small as 134 · l2/15κ + 54 · l4/3 if p is close to a power of two, e.g. a Mersenne prime 2k − 1.

These results immediately imply that we can also in constant round compute a single shared
bit containing the result of a comparison between two shared numbers, or containing the result
of asking whether a shared number is zero. This last function was exactly what was missing
in [CD98] in order to handle large characteristic fields.

We note that, while unconditional security is typically defined by requiring that the informa-
tion leaked by the protocol is exponentially small in some security parameter κ, our protocols
obtain a slightly stronger notion, which has also been considered in the literature. In particular,
our protocols are perfectly secure except with probability 2−κ — i.e. with probability 1 − 2−κ

no information is leaked at all. Furthermore, the parties will be able to detect when a run of
the protocol is in progress which would leak information if completed, and have the power to
abort such a run. This yields a perfectly private protocol, which however with probability 2−κ

terminates with some abort symbol ⊥.2

1.1 Related Work

There has been a considerable amount of previous work on unconditionally secure constant-round
multiparty computation with honest majority, see for instance [BB89], [FKN94], [CD98], [IK00]
and [IK02]. As mentioned, this work has shown that some functions can indeed be computed
in constant round with unconditional security, but this has been limited to restricted classes of
functions, such as NC1 or non-deterministic log-space.

In concurrent independent work, Eike Kiltz sets out to solve essentially the same set of
problems we look at here [Kil05], using a quite different technique. We have learned, however,
from personal communication with Kiltz that in the current version, a central part of the protocol
does not work. He expects to be able to solve the problem in a forthcoming version.

1.2 Organization

In Section 2 we give some technical preliminaries. In Section 3 we give the high-level protocol
for bit decomposition, assuming a number of results from subsequent sections, in particular that
it is possible to add bitwise shared numbers and compare bitwise shared number within certain
complexities. In Section 4 we then list some known results and simple observations. In Section 5
we give a protocol for the so-called sub-sequence-product problem. In Section 6 we use Section 5
to give a protocol for all so-called preprocessed carry functions, and in Section 7 we then give
protocols for adding bitwise shared numbers and comparing bitwise shared number within the
promised complexities.

2Choosing between unconditional (but imperfect) termination, correctness or privacy, we find that settling for
imperfect termination but perfect correctness (on termination) and perfect privacy is the better choice. Simply
because the other unconditional notions can be obtained from such a solution. To get perfect termination and
perfect correctness but only unconditional privacy, when the protocol aborts, reconstruct the inputs and compute
the results. This yields a protocol which is perfect except that it leaks information with probability 2−κ. To get
perfect termination, perfect privacy but only unconditional correctness, when the protocol aborts, simply return
with some dummy guess at the results. This yields a protocol which is perfect except that it is incorrect with
probability 2−κ. Finally, to get a perfect protocol rerun the protocol when it aborts. This gives a completely
perfect protocol. It however only runs in expected constant round, as the protocol is run c times with probability
(2−κ)c−1.

3

2 Preliminaries

In this section with introduce some notation.
We assume that n parties are connected by perfectly secure channels in some network. We

assume that the network is synchronous.
We use F to denote a finite field, and we let f = dlog2(|F|)e. By [a]F we denote a secret

sharing of a ∈ F over F.
We assume that the secret sharing scheme allows to compute a sharing [a + b]F from [a]F

and [b]F without interaction, and that it allows to compute [ab]F from a ∈ F and [b]F without
interaction. We also assume that the secret sharing scheme allows to compute a sharing [ab]F
from [a]F and [b]F in constant round.

If our protocols should be actively secure, the secret sharing scheme and the multiplication
protocol should be actively secure. This in particular means that the adversary structure must
be Q2. By the adversary structure we mean the set Γ of subset C ⊂ [n] which the adversary
might corrupt; It is Q2 if it holds for all C ∈ Γ that [n] \ C 6∈ Γ.

We assume that all parties have access to uniformly random coins c ∈R Zn for any integer
n. This is not to disable perfect security because of the simple fact that no finite computation
can sample a uniformly random c ∈ Zn given only uniformly random coins c′ ∈ Z2, unless n is
a power of 2. We will e.g. need to sample uniformly random numbers modulo a large prime n.

3 Bit-Decomposition

Let p be a prime p ∈ [2l−1, 2l]. We look at the bit-decomposition function f : Fp → (Fp)
l, a 7→

(a0, . . . , al−1) given by a0, . . . , al−1 ∈ {0, 1} ⊆ Fp and a =
∑l−1

i=0
ai2

i when a ∈ Fp is considered
a residue a ∈ {0, 1, . . . , p − 1}.

Assume first that the parties are able to securely generate a random solved instance

[b]p, [b0]p, . . . , [bl−1]p ,

where b is a uniformly random b ∈ Fp, b0, . . . , bl−1 ∈ {0, 1} and b =
∑l−1

i=0
bi2

i.
Below we use [x]B = [x0]p, . . . , [xl−1]p to denote a bitwise sharing of an integer x, and we

use [z]B = [x]B + [y]B to denote computing a bitwise sharing of x + y from the bitwise sharings,

[x]B and [y]B, of integers x and y. Finally we use [x
?
< y]p to denote computing a sharing of

the bit (x
?
< y) ∈ {0, 1}, where (x

?
< y) = 1 iff x < y, starting from the bitwise sharings,

[x]B and [y]B, of integers x and y. It is shown in Section 7 how to add and compare bitwise
sharings unconditionally secure in constant round within the complexity 33l17/15κ/f + 18l4/3

when x, y ∈ {0, . . . , 2l − 1} and κ is the security parameter, f = log2(|Fp|) and the complexity
is measured in the number of invocations of the multiplication protocol.

Given a random solved instance [b]p and [b]B, the protocol proceeds as follows. First the
parties compute

[a − b]p = [a]p − [b]p

and reveal
c = a − b mod p .

This leaks no information as b is uniformly random.
Let c0, . . . , cl−1 ∈ {0, 1} be given by c =

∑l−1

i=0
ci2

i. Then using Section 7 the parties compute
a bitwise sharing

[d]B = [d0]p, . . . , [dl]p ,

4

of d = b+c ∈ {0, . . . , 2l+1−1}. Clearly d = a+qp, where q ∈ {0, 1}. Using Section 7 the parties
compute a sharing

[q]p = [d
?

< p]p .

Then the parties compute a bitwise sharing [g]B of (−qp) mod 2l as follows. Define f0, . . . , fl−1 ∈
{0, 1} by 2l − p =

∑l
i=0

fi2
i. Then for i = 0, . . . , l, compute

[gi]p = fi[q]p .

The parties now have the followings bitwise sharings

[d]B = [a + qp]B

[g]B = [(2l − qp) mod 2l]B .

Using again Section 7 they compute

[a′]B = [d]B + [g]B .

As q ∈ {0, 1}, we have that a′ = a + qp + (2l − qp mod 2l) = a + q2l. So, if we only compute
the l least significant bits of the sum (just ignore the sharing of the most significant bit), then
the term q2l will disappear and we will have that a′ = a, as desired.

The complexity for one addition or one comparison is upper bounded by 33l17/15κ/f +18l4/3.
This gives a total complexity of 99l17/15κ/f + 54l4/3. Since we here have that l = f , we can
write the complexity as

99f2/15κ + 54f4/3 .

3.1 Generating Random Solved Instances

This whole thing hinged on our ability to generate a random solved instance

[b ∈R Fp]p, [b]B = [b0]p, . . . , [bl−1]p ,

where b0, . . . , bl−1 ∈ {0, 1} and b =
∑l−1

i=0 bi2
i. This is done as follows.

First the parties generate

[b0 ∈R {0, 1}]p, . . . , [bl−1 ∈R {0, 1}]p ,

i.e. sharings of l uniformly random bits. We show in Section 4 how to do this within the
complexity l(2κ/f) = 2κ. Then using Section 7 the parties compute and reveal

[

l−1
∑

i=0

2ibi
?
< p]p .

If
∑l−1

i=0
2ibi < p, then they compute

[b]p =
l−1
∑

i=0

2i[bi]p .

The complexity of this is 33f 2/15κ + 18f4/3. If
∑l−1

i=0
2ibi ≥ p, then the protocol aborts.

This clearly yields a uniformly random b ∈ Fp when the protocol does not abort.

5

In case one is able to control the choice of the prime p, an optimal choice would be to let p
be a Mersenne prime p = 2l − 1 for some l > κ. In that case the probability that b ≥ p is less
than 2−κ. Though the distance between the Mersenne primes soon becomes large, this would
work for small values of l. At the time of writing p = 224036583 − 1 is the largest p for which we
know this works.

In the worst-case, where we have no control over p, our only guarantee is that p ∈ [2l−1, 2l]
for some l. In that case the probability that b ≤ p when b ∈R Z2l can be as large as 1/2. This
is dealt with by generating κ candidates and adopting one of the successful ones.

The total complexity for one attempt can be bounded by 33f 2/15κ+18f4/3+2κ < 35f 2/15κ+
18f4/3. The reduction from a given instance to a random solved instance had complexity
99f2/15κ + 54f4/3. This means that if p and f have been set such that the abort-probability is
2−κ, then the total complexity of a bit decomposition can be bounded by

134f2/15κ + 54f4/3 .

If κ attempts are needed, then the complexity is bounded by 35f 2/15κ2+(99f2/15+18f4/3)κ+
+54f4/3. For f, κ ≥ 10, this is bounded by

35f2/15κ2 + 31f4/3κ .

4 Some Simple Observations

In this section we list some known techniques and simple observations.

Linear Functions. We assumed that it is possible to compute additions without any commu-
nication. This means that given c0, c1, . . . , cl ∈ F it is possible to compute [c0 +

∑l
i=1

ciai]
from [a1], . . . , [al] by the parties doing local computations. We write this computation as
c0 +

∑l
i=1

ci[ai].

Multiplication. We assume that it is possible to compute multiplications perfectly secure in
constant round. We write [c] = [ab] = [a][b]. We will measure complexity by invocations of the
multiplication protocol.

Random Elements The parties can share a uniformly random, unknown field element. We
write [a ∈R F]F. This is done by letting each party Pi deal a sharing [ai ∈R F]F, and letting
[a]F =

∑n
i=1

[ai]F. The communication complexity of this is given by n dealings, which we assume
is upper bounded by the communication complexity of one invocation of the multiplication
protocol.

If passive security is considered, this is trivially secure. If active security is considered and
some party refuses to contribute with a dealing, the sum is just taken over the contributing
parties. This means that the sum is at least taken over ai for i ∈ H, where H = [n]\C for some
C ∈ Γ. Since Γ is Q2 it follows that H 6∈ Γ. So, at least one honest party will contribute to the
sum, which is sufficient to argue privacy.

Random Bits. It is possible to efficiently generate a sharing [a]F of a uniformly random
a ∈ {0, 1} ⊆ F unconditionally secure in constant round. Here we treat the case where F does
not have characteristic 2. Since we will later restrict our study to F = Zp for an odd prime p,
this is sufficient. If F has characteristic 2, a slightly different technique is needed.

6

First some notation. Let F
∗ be the set of non-zero elements of F and let Q(F) ⊂ F

∗ be
the subset of squares. For a ∈ Q(F), let SQRT (a) = {b ∈ F

∗|b2 = a}. For each a ∈ Q(F)
we have that |SQRT (a)| = 2. Impose an arbitrary ordering < of the elements in F, e.g. the
lexicographical ordering on the bit-string representation of the elements. Define a map

√
:

Q(F) → F by letting
√

a = b where b is the smaller element of SQRT (a). Notice that given any
element b ∈ SQRT (a) we can compute

√
a as the smaller element of b and −b.

Extend the map by
√

0 = 0 and let S : F → F be given by S(0) = 0, S(x) = 1 if x ∈ F
∗

and x =
√

x2, and S(x) = −1 if x ∈ F
∗ and x 6=

√
x2. Notice that it holds for all x ∈ F that

x = S(x)
√

x2.
It is straight-forward to verify that if a ∈R F

∗ is a uniformly random non-zero element, then
S(a) is uniformly random in {1,−1}. Furthermore, S(a) = a(

√
a2)−1.

This suggests the following protocol. First the parties compute [a ∈R F]F. Then the parties
compute [a2]F = [a]F[a]F and reveal a2. Then the parties compute b =

√
a2. If b = 0, then abort,

otherwise compute [c]F = b−1[a]F = [S(a)]F and then compute [d]F = 2−1([c]F + 1).
When the protocol does not abort, this clearly yields a uniformly random d. Furthermore,

no information is leaked on S(a), so no information is leaked on d.
If b = 0, then the protocol aborts. This happens with probability 2−f , where f = log2(|F|).

To make the abort probability 2−κ one generates κ/f candidates and adopts the first one for
which b 6= 0. If no such candidate arises the protocol aborts.

The complexity of generating [a ∈R F]F is bounded by the complexity of one multiplication.
Then one multiplication is needed to compute [a2]F. The rest is for free. The total complexity
with abort probability 2−κ is thus 2κ/f .

Random invertible elements. The parties can share a uniformly random, unknown, invert-
ible field element using [BB89]. We write [a ∈R F

∗]F.
This is done by first generating two elements [b ∈R F]F and [c ∈R F]F. Then the parties

compute and reveal [d]F = [b]F[c]F. If d ∈ F
∗, then (b, c) is a uniformly random element from

F
∗ × F

∗ for which bc = d, and thus b is a uniformly random element in F
∗ independent of d.

Therefore we can set [a]F = [b]F.
If d 6∈ F

∗, then the algorithm aborts. This happens with probability less than 2/|F| = 2−f+1.
The abort-probability can be forced down to 2−κ by running (κ + 1)/f attempts in parallel and
using the first [bi]F for which di ∈ F

∗. The complexity in multiplications is 3(κ + 1)/f . For
simplicity we will use the estimate 3κ/f in the following.

Inverting. It is possible to invert an invertible element using [BB89]. Assume that we have
input [a ∈ F

∗]F. First generate [b ∈R F
∗]F and compute and reveal [c]F = [a]F[b]F. Then compute

[a−1]F = c−1[b]F. The complexity is 3κ/f + 1.

Unbounded Fan-In Multiplication. Using the technique from [BB89] it is possible to do
unbounded fan-in multiplication in constant round.

Assume first that we have inputs [a1]F, . . . , [al]F, where ai ∈ F
∗. For 1 ≤ i0 ≤ i1 ≤ l, let

ai0,i1 =
∏i1

i=i0
ai. We are interested in computing a1,l, and the method allows to compute any

other ai0,i1 at the cost of two extra multiplications (we use A to denote the number of ai0,i1

which we want to compute).
First generate [b0 ∈R F

∗]F, [b1 ∈R F
∗]F, . . . , [bl ∈R F

∗]F, and for i = 1, . . . , l compute [b−1
i]F

and then compute and reveal [ci]F = [bi−1]F[ai]F[b−1
i]F. Now we have that di0,i1 =

∏i1
i=i0

di =

bi0−1(
∏i1

i=i0
ai)b

−1
i1

= bi0−1ai0,i1b
−1
i1

, so we can compute [ai0,i1]F = [b−1
i0−1

]Fdi0,i1 [bi1]F.

7

The complexity without the multiplication to compute [ai0,i1]F = [b−1
i0−1

]Fdi0,i1 [bi1]F is (l +
1)((3κ/f) + (3κ/f + 1)) + 2l = l(6κ/f + 3) + 6κ/f + 1. The total complexity for computing A
of the values [ai0,i1]F is thus l(6κ/f +3)+6κ/f +A+1, which we can bound by 7lκ/f +3l +A,
except for very small parameter values.

Assume now that we have inputs [a1]F, . . . , [al]F, where ai ∈ F (i.e. the elements are no
longer guarantee to be invertible). We use a technique from [CD98]. Assume that we know
distinct elements b0, . . . , bl such that {b0, . . . , bl} ∩ {a1, . . . , al} = ∅.3

For i = 1, . . . , l define the polynomial fi(X) = ai − X. Define the polynomials fi0,i1(X) =
∏i1

i=i0
fi(X). Notice that fi0,i1(0) =

∏i1
i=i0

ai = ai0,i1 .
We proceed to compute the A desired [fi0,i1(0)] = [ai0,i1]. For i = 1, . . . , l and j = 0, . . . , l,

compute [fi(bj)] = [ai]− bj. Notice that fi(bj) 6= 0. So, use an unbounded fan-in multiplication
of invertible elements to compute [fi0,i1(bj)] =

∏i1
i=i0

[fi(bj)].
Now for each (i0, i1) we know (b0, [fi0,i1(b0)]), . . . , (bl, [fi0,i1(bl)]). Since f has degree l we can

therefore use Lagrange interpolation to compute [fi0,i1(0)] without further interaction.
This costs l + 1 invocations of the unbounded fan-in protocol for invertible elements. To

keep our expressions reasonable to look at we will use the bound which would have arisen from l
invocations of the unbounded fan-in protocol for invertible elements, which is 7l2κ/f +3l2 + lA.

5 Sub-Sequence Product

Assume that we have inputs [a1]F, . . . , [al]F and want to compute sharings [ai0,i1]F of a number
A of sub-sequence products ai0,i1 =

∏i1
i=i0

ai.
If A = l this can be done with complexity 7l2κ/f + 4l2 using an unbounded fan-in multipli-

cation. We will however later need to solve this problem for A = l2, where the complexity using
unbounded fan-in multiplication would be 7l2κ/f + 3l2 + l3. We describe an algorithm which
does considerably better.

5.1 Prefix Product

We first demonstrate our technique for prefix product. Assume that we have inputs [a1]F, . . . , [al]F,
where ai ∈ F, and that we want to compute [b1]F, . . . , [bl]F, where bi =

∏i
j=1

aj . Assume for

notational convenience that l = λ3 for an integer λ.
We will first work on λ2 blocks of size λ, then a problem size of λ2, and then do some

post-processing.
For i = 1, . . . , λ2, let λi = (i − 1)λ and for 1 ≤ j ≤ λ, compute the products

[bi,j]F =

λi+j
∏

k=λi+1

[ai]F .

Using the unbounded fan-in algorithm these A = λ − 1 products for each block of size λ
can be computed with complexity 7λ2κ/f + 3λ2 + λ(λ − 1) = 7λ2κ/f + 4λ2 − λ, giving a total
complexity of 7λ4κ/f + 4λ4 − λ3 for the λ2 blocks.

It is now clear that if I mod λ = 0, then

bI =

I/λ
∏

i=1

bi,λ ,

3If one does not know such elements they can be generated by moving the computation to an extension field
of F, but we will not need this, as we will later have that ai ∈ {0, 1} and that F is large enough to pick the
bj ∈ F \ {0, 1}.

8

and that otherwise

bI = (

bI/λc
∏

i=1

bi,λ)bbI/λc+1,I mod λ .

The A = (λ2 − 1) prefix products
∏bI/λc

i=1
bi,λ can be computed with complexity 7(λ2)2κ/f +

3(λ2)2 + λ2(λ2 − 1) = 7λ4κ/f + 4λ4 − λ2. Then at most one additional multiplication is
needed to compute each of the λ3 results [bI]F. Therefore the total complexity is within
(

7λ4κ/f + 4λ4 − λ3
)

+
(

7λ4κ/f + 4λ4 − λ2
)

+ λ3 < 14λ4κ/f + 8λ4 = 14l4/3κ/f + 8l4/3.

5.2 Sub-Sequence Product

We then look at computing all the sub-sequence products. Assume that we have inputs [a1]F, . . . , [al]F,
where ai ∈ F. For notational convenience we set λ = l2/5 and ignore rounding issues. We will
first work on l/λ blocks of size λ, then a problem size of l/λ, and then do some post-processing.

For i = 1, . . . , l/λ, let λi = (i − 1)λ and for 1 ≤ i0, i1 ≤ λ, compute the products

[bi,i0,i1]F =

λi+i1
∏

k=λi+i0

[ai]F .

Using the unbounded fan-in algorithm these A < λ(λ − 1) products for each block of size λ
can be computed with complexity 7λ2κ/f + 3λ2 + λλ(λ− 1) = 7λ2κ/f +2λ2 + λ3. This is done
for l/λ blocks, giving a complexity of 7lλκ/f + 2lλ + lλ2 = 7l7/5κ/f + 2l7/5 + l9/5.

Then for 1 ≤ i0, i1 ≤ l/λ compute the products

[bi0,i1]F =

i1
∏

i=i0

[bi,1,λ]F .

Having l/λ elements and A ≤ l/λ(l/λ − 1), this can be done with complexity 7(l/λ)2κ/f +
3(l/λ)2 +(l/λ)l/λ(l/λ− 1) = 7l6/5κ/f +2l6/5 + l9/5, allowing us to bound the complexity so far
by 14l7/5κ/f + 4l7/5 + 2l9/5.

It is now clear that each ai0,i1 can be expressed as ai0,i1 = bi,I0,I1 for some i, I0, I1 or can be
expressed as bI0,j0,λbI0+1,I1−1bI1,1,j1 for some I0, j0, I1, j1. I.e. each of the < l2 values ai0,i1 can
be computed using at most 2 multiplications. This gives an overall complexity of 14l7/5κ/f +
4l7/5 + 2l9/5 + 2l2 < 14l7/5κ/f + 5l2, except for very small values of l.

6 Carry Functions

Assume that we are given inputs [a1 ∈ {0, 1}]F, . . . , [al ∈ {0, 1}]F, [b1 ∈ {0, 1}]F, . . . , [bl ∈ {0, 1}]F
and [f0 ∈ {0, 1}]F and want to compute [f1 ∈ {0, 1}]F, . . . , [fl ∈ {0, 1}]F, where for some known
function f we can express fi as fi = f(ai, bi, fi−1) for i = 1, . . . , l. We call this a carry function.

Assume that instead of [a1 ∈ {0, 1}]F, . . . , [al ∈ {0, 1}]F, [b1 ∈ {0, 1}]F, . . . , [bl ∈ {0, 1}]F we
get inputs

[f0]F, (([c1 ∈ {0, 1}]F, [d1 ∈ {0, 1}]F), . . . , ([cl ∈ {0, 1}]F, [dl ∈ {0, 1}]F)) ,

where ci = f(ai, bi, 0) and di = f(ai, bi, 1). Below, we call this an instance of the preprocessed
carry problem.

We show how to compute [f1 ∈ {0, 1}]F, . . . , [fl ∈ {0, 1}]F unconditionally secure in constant
round given an instance of the preprocessed carry problem. The solution is independent of the
function f .

9

First, express fi as

fi = f(ai, bi, fi−1)

= fi−1(f(ai, bi, 1) − f(ai, bi, 0)) + f(ai, bi, 0)

= fi−1(di − ci) + ci

= fi−1ei + ci , where ei = di − ci .

Letting c0 = f0 and expanding this expression we get that

fi =

i
∑

j=0

cj

i
∏

k=j+1

ek

 .

The sub-sequence products [
∏i

k=j+1
ek]F, for i = 1, . . . , l and j = 1, . . . , i, can be computed

using a sub-sequence product with complexity 14l7/5κ/f + 5l2. Then each of the ≤ l2 − l sub-
sequence products should be multiplied by some [cj]F, costing another l2 − l multiplications.
Summing up the [fi]F is then for free. All in all this results in a complexity bounded by
14l7/5κ/f + 6l2.

We can optimize this considerably. Let λ > 1 be some integer and assume for notational
convenience that l/λ is also an integer. We change the way of indexing elements x1, . . . , xl

by letting xi,j = xλi+j. For each i = 0, . . . , l/λ we get a block of the problem given by
(([ci,1]F, [di,1]F) . . . , ([ci,λ]F, [di,λ]F)).

If we knew [fi,0]F = [fi−1,λ]F we could solve this block by solving the following instance of
the preprocessed carry function

[fi,0]F, (([ci,1]F, [di,1]F), . . . , ([ci,λ]F, [di,λ]F)) .

If we denote the result by [fi,·]F = ([fi,1]F, . . . , [fi,λ]F), then the solution to the overall problem
is seen to be ([f0,·]F, . . . , [fl/λ−1,·]F).

We do however not know [fi,0]F. Instead what we do is solve the following two instances of
the preprocessed carry problem

[0]F, (([ci,1]F, [di,1]F), . . . , ([ci,λ]F, [di,λ]F)) ,

[1]F, (([ci,1]F, [di,1]F), . . . , ([ci,λ]F, [di,λ]F)) .

Let the results be
([f0

i,1]F, . . . , [f 0
i,λ]F)

respectively
([f1

i,1]F, . . . , [f 1
i,λ]F) .

Let T (m) denote the complexity of solving an instance of the preprocessed carry problem of
length m. Then the overall complexity for doing the above for each of the l/λ blocks is 2l/λT (λ).

Assume now again that we knew [fi,0] = [fi−1,λ]. In that case we could compute [fi,·] =
([fi,1], . . . , [fi,λ]) by letting

[fi,j] = [fi,0]([f
1
i,j] − [f0

i,j]) − [f0
i,j] .

Overall, this would require another l multiplications, bring the complexity up to 2l/λT (λ) + l.
By the above observation we in particular have that

[fi,λ] = [fi,0]([f
1
i,λ] − [f0

i,λ]) − [f0
i,λ] .

10

Since fi,λ = fi+1,0 this means that

[fi+1,0] = [fi,0]([f
1
i,λ] − [f0

i,λ]) − [f0
i,λ] .

Since we already know [f 1
i,λ] and [f 0

i,λ] and know [f0,0] = [f0] we can therefore compute all [fi,0]
by solving an instance of the preprocessed carry problem of size l/λ. This brings the overall
complexity up to 2l/λT (λ) + l + T (l/λ).

Having T (m) = 14m7/5κ/f + 6m2 and letting λ = l1/3, this gives an overall complexity of

2l2/3(14(l1/3)7/5κ/f + 6(l1/3)2) + l + 14(l2/3)7/5κ/f + 6(l2/3)2

= 2l2/3(14l7/15κ/f + 6l2/3) + l + 14l14/15κ/f + 6l4/3

= 28l17/15κ/f + 12l4/3 + l + 14l14/15κ/f + 6l4/3

< 33l17/15κ/f + 18l4/3 .

7 Addition, Bitwise

Assume that sharings [a0]F, . . . , [al−1]F and [b0]F, . . . , [bl−1]F are given with a0, . . . , al−1, b0, . . . , bl−1 ∈
{0, 1}. Let a =

∑l−1

i=0
ai2

i and b =
∑l−1

i=0
bi2

i and let d = a + b. Define d0, . . . , dl ∈ {0, 1} by

d =
∑l

i=0
di2

i. We want to compute sharings [d0]F, . . . , [dl]F. The addition can be done rather
efficiently in l rounds by using the addition with carry iteratively. We want a constant round
protocol.

Assume first that we have already computed

[c]B = [c0]F, . . . , [cl]F ,

where ci is the i’th carry, i.e. ci = 1 iff
∑i−1

j=0 aj2
j +

∑i−1

j=0 bj2
j ≥ 2i. We can then compute the

result as
[d]B = [a0]F ⊕ [b0]F ⊕ [c0]F, . . . , [al−1]F ⊕ [bl−1]F ⊕ [cl−1]F, [cl]F ,

where ⊕ denotes addition modulo 2.
It is straight-forward to verify that ai ⊕ bi ⊕ ci = ai + bi + ci − 2ci+1. So, computing the

results from the carry-vector can be done without interaction.
We describe how to compute sharings of the bits ci. Clearly c0 = 0, so use a dummy

sharing of 0 as [c0]F. For the remaining values ci it can be verified that if ci−1 = 0, then
ci = c0

i = ai ∧ bi = aibi and if ci−1 = 1, then ci = c1
i = ai ∨ bi = ai + bi − aibi = ai + bi − c0

i .
This allows to compute [0]F, (([c0

0]F, [c1
0]F), . . . , ([c0

l−1
]F, [c0

l−1
]F)) using l multiplications.

Then ([c0]F, . . . , [cl−1]F) can be computed by solving an instance of the preprocessed carry
problem in complexity 33l17/15κ/f + 18l4/3. The bound 33l17/15κ/f + 18l4/3 was rather conser-
vative and we can therefore neglect the initial l multiplications and assume that the complexity
of a bitwise addition is bounded by 33l17/15κ/f + 18l4/3, except for very small values of l.

It is straight-forward to verify that by solving an instance of the preprocessed carry problem
one can securely compute a number of other functions on [a]B = [a0]F, . . . , [al−1]F and [b]B =

[b0]F, . . . , [bl−1]F within this complexity. This includes e.g. the function [a
?

< b]F, where (a
?

<

b) ∈ {0, 1} and (a
?
< b) = 1 iff a < b.

11

References

[BB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in con-
stant number of rounds of interaction. In Proc. ACM PODC’89, pages 201–209, 1989.

[CD98] Ronald Cramer and Ivan Damgaard. Zero-knowledge proofs for finite field arithmetic,
or: Can zero-knowledge be for free. In Hugo Krawczyk, editor, Advances in Cryptology

- Crypto ’98, pages 424–441, Berlin, 1998. Springer-Verlag. Lecture Notes in Computer
Science Volume 1462.

[FKN94] Uri Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation
(extended abstract). In Proc. 26th STOC, pages 554–563. ACM, 1994.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In Proceedings of ICALP 2002, pages 244–256, Berlin, 2002.
Springer-Verlag. Lecture Notes in Computer Science Volume 2380.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In Proc. 41st FOCS, pp. 294–304,
2000.

[Kil05] Eike Kiltz: Unconditionally Secure Constant Round Multi-Party Computation for
Equality, Comparison, Bits and Exponentiation, Cryptology ePrint Archive: Report
2005/066, February 28, 2005.

12

