
High Speed Architecture for Galois/Counter
Mode of Operation (GCM)

Bo Yang, Sambit Mishra, Ramesh Karri
ECE Department

Polytechnic University, Brooklyn, NY

Abstract

In this paper we present a fully pipelined high speed hardware architec-
ture for Galois/Counter Mode of Operation (GCM) by analyzing the data
dependencies in the GCM algorithm at the architecture level. We show
that GCM encryption circuit and GCM authentication circuit have sim-
ilar critical path delays resulting in an efficient pipeline structure. The
proposed GCM architecture yields a throughput of 34 Gbps running at
271 MHz using a 0.18 µm CMOS standard cell library.

1 Introduction
Advanced Encryption Standard (AES) [1] and HMAC-MD5 [2] or HMAC-SHA1
[3] are the primary encryption and authentication infrastructures for current
network security applications. They have been implemented as Application
Specific Integrated Circuits (ASICs) [4][5][6][10][11] or on Field Programmable
Gate Array (FPGAs) [8][9] to meet high throughput requirements.

Secret key encryption algorithms can operate in various modes of operation,
such as non-feedback electronic book code mode (ECB), output feedback mode
(OFB), cipher feedback mode (CFB), and cipher block chaining mode (CBC)
[12]. In the feedback modes, the current computation step depends on the re-
sult of the previous step resulting in iterative hardware implementations [5][6][8]
whose throughput are generally less than 4 Gbps. For example, an iterative
AES implementation targeting a 0.18 µm CMOS ASIC library can achieve a
throughput of 3.84 Gbps [7]. The only design that has a 10 Gbps throughput
even in feedback mode is from IBM [6], but most of the contribution to the
high throughput is from the advanced fabrication technology. A fully pipelined
AES architecture can be applied to non-feedback ECB mode. Since there are
10 round operations in AES, a fully pipelined AES implementation can achieve
30 ∼ 70 Gbps throughput [4] consuming almost 10 times the area of an iterative
implementation.

1

MD5 and SHA1 are inherently iterative in which every 512-bit message block is
processed by 16 steps and the result is fed back for the computation of the next
512-bit message block. They are not parallelizable and cannot be pipelined.
Their hardware implementations yields a throughput of around 1 Gbps [10][11].
The throughput of MD5 and SHA1 implementations are much smaller than
that of AES implementations and are bottlenecks in any integrated authenti-
cated encryption system that uses them. There is a compelling need for a mode
of operation that can efficiently provide authenticated encryption at 10 Gbps
and beyond in high speed network and computer system applications.

Several proposals have been submitted to National Institution of Standards and
Technology (NIST) for the authenticated encryption modes [13]. These include
Counter with CBC-MAC (CCM) [14], EAX [15], Carter Wegman with Counter
(CWC) [17], and Galois Counter Mode (GCM) [16]. All of these proposals use
AES in Integer Counter Mode (ICM) for encryption. In ICM, AES block cipher
encrypts the value of a counter in the ECB mode to generate a keystream that
is then bitwise exclusive-ored into the plaintext to produce the ciphertext. In
ICM, pipelined AES implementations can be used resulting in encryption rates
of > 10 Gbps. CCM [14] and EAX [15] modes also use AES in CBC mode to
provide authentication. Since CBC is a feedback mode, authentication in CCM
and EAX cannot be speeded up.

In contrast, CWC [17] and GCM [16] use universal hash based authentication, in
which additions and multiplications are the main operations. Message authenti-
cation in CWC uses 127-bit integer multiplication and 127-bit integer addition,
while message authentication in GCM uses 128-bit Galois Field (GF) multipli-
cation and 128-bit GF addition (this is a simple bit-wise exclusive or operation).
NIST is considering CWC and GCM as candidates for authenticated encryption
[13].

One straightforward approach to designing high speed GCM hardware architec-
ture is to use fast implementations of AES and GF multiplier cores. Efficient
hardware implementations of AES [6][9] and GF multiplier [21] [23][22] have
been extensively studied. For example, different implementations such as look-
up table, composite field and Binary Decision Diagram have been proposed to
optimize S-box circuit that dominates the critical path of AES circuit [6][9].
The Galois field multiplier can be optimized for some specific types of modulus
polynomials [22] or by using different bases for representation [24]. In this paper
we will analyze the AES and GF multiplier cores and data dependencies in the
GCM algorithm at the architecture level to develop hardware architectures for
GCM.

The rest of the paper is organized as follows. In section 2, we will briefly
introduce the GCM algorithm. We will then discuss the features of AES and
GHASH cores in section 3. We will present the high speed GCM architecture
in section 4. We will report the experimental results of the proposed GCM

2

architecture using a 0.18 µm CMOS standard cell library in section 5. We will
discuss how this architecture can be adapted to CWC in section 6. Finally, we
will summarize our contributions in section 7.

2 GCM Algorithm
GCM is a block cipher mode of operation that uses universal hashing over a
binary Galois field to provide authenticated encryption. GCM supports au-
thenticated encryption and authenticated decryption [16].

2.1 GCM Encryption
GCM authenticated encryption operation has four inputs:

• A secret key K. We assume that it is 128 bits long consistent with the
underlying AES block cipher.

• An initialization vector (IV) can have up to 264 bits. A 96-bit IV is
recommended for efficiency.

• A plaintext P that can have up to ∼ 239 bits.
• Additional authenticated data A that have up to 264 bits. This additional

authenticated data is authenticated but not encrypted.

and two outputs:

• A ciphertext C whose length is identical to that of the plaintext P.
• An authentication tag T that have up to 128 bits. The length of the tag

is denoted as t.

The plaintext data and the additional authenticated data are segmented into
128-bit blocks. Suppose there are n plaintext blocks P1, P2, ...Pn−1, Pn and m
additional authenticated data blocks A1, A2, ...Am−1, Am

1. The GCM authen-
ticated encryption operation is defined as follows [16]:

H = E(K, 0128)

Y0 =

{
IV || 0311 if len(IV)=96
GHASH(H, {}, IV) otherwise.

Yi = incr(Yi−1) for i = 1, ..., n (1)
Ci = Pi ⊕ E(K, Yi) for i = 1, ..., n

C∗n = Pn ⊕MSBu(E(K, Yn))

T = MSBt(GHASH(H, A,C)⊕ E(K,Y0))

1Pn and Am may not be 128-bit blocks. 0’s are appended to make them into 128-bit blocks.

3

GHASH compresses a 128× (m + n + 1)-bit message stream into a 128-bit hash
value Xm+n+1 as follows [16]:

Xi =

0 for i=0
(Xi−1 ⊕Ai) ·H for i=1,...m
(Xi−1 ⊕ Ci−m) ·H for i=m+1,...m+n
(Xm+n ⊕ (length(A)||length(C))) ·H for i=m+n+1

(2)

length() returns a 64-bit string representing the number of bits in its argument,
with the least significant bit on the right.

2.2 GCM Decryption
The authenticated decryption operation has five inputs: secret key (K), ini-
tialization vector (IV) , ciphertext (C), additional authenticated data (A), and
authentication tag (T); and it generates a single output: either the plaintext
value P or a FAIL signal that indicates that the inputs are not authentic. A
ciphertext C, and tag T are authentic for key K when they are generated by the
encrypt operation with inputs K, IV , A and P, for some plaintext P.
GCM authenticated decryption computes the authentication tag T’ and com-
pares it with the input authentication tag T. If the two tags match, then the
ciphertext is returned. Otherwise, the FAIL signal is returned. Authenticated
decryption operation is similar to the encryption operation, but with the order
of the hash and encryption steps reversed.

3 Component Design
AES and GHASH are the basic components in GCM encryption and in GCM
decryption. We will describe the AES and GHASH component design and
discuss architectural features of AES and GHASH that will be considered in
designing a high speed GCM architecture.

3.1 AES Core
AES encrypts 128-bit data blocks under the control of a 128-bit user key. AES
encryption or decryption supports 10 rounds, with each round using one round
key. An additional key is used during pre-processing. Intuitively, AES operates
on a two-dimensional table of plaintext bytes called State. Operations used in
a round of AES are a nonlinear byte substitution operation (byte sub), a cyclic
left shift of the rows in State (shift row), GF(28) multiplication of State with
a constant polynomial (mix column), and exclusive-or of round key with State
(key-xor) [1].

The hardware implementations of AES can be either iterative [6][8][7] or pipelined
[4][8][9] as shown in Figure 1. Since there are 10 round operations in AES, the

4

Plaintext RgisterPlaintextMUXOne Round CircuitCiphertext RgisterCiphertext
Select Critical Data Path One Round CircuitPlaintext RgisterPlaintextRound Register 1...Round Register 9Ciphertext

Critical Data Path
(a) (b)One Round CircuitCiphertext Register

Figure 1: (a)The AES iterative data path (b)The AES pipelined data path

pipelined implementations can be understood as using ten times as much hard-
ware overhead to achieve ten times the throughput. The iterative and pipelined
architectures have similar critical paths and can run at similar clock rates, which
are determined by the delay of one round circuit as shown in Figure 1 (a) and
(b). Compared to the data path, the control logic segments of both the iterative
and pipelined AES architectures are very simple and are omitted from Figure
1.

Pipelined AES implementations can only be used for some modes, such as ECB
and CTR. In ECB, the output ciphertext is only determined by the input plain-
text. To make use of the high throughput pipelined AES implementations,
GCM encryption and GCM decryption run AES in counter mode (CTR). In
CTR, the AES core generates a continuous key stream by encrypting a counter
whose initial value is the IV. After the first 10 clock cycles, the AES core can
output a 128-bit block of keystream every clock cycle 2.

3.2 GHASH Core
The GHASH architecture is shown in Figure 2. At the core of the GHASH
architecture is a 128-bit parallel GF(2128) multiplier. One operand of the GF
multiplier is H. H is obtained by encrypting the secret key K with an all 0’s
key as described in Equation 1. The Register X that holds the hash value is
initially set to zero. In the first m clock cycles, the 128-bit additional authen-

2If the IV is updated frequently, the throughput of the AES pipeline will degrade. If the IV
is updated every 10 clock cycles or less, the pipelined AES architecture will have no advantage
over an iterative AES architecture in terms of performance.

5

H RegisterGF(2128) MultiplierX Register
+AC Register

Hash Value
128 128

128128128128
Figure 2: GHASH hardware architecture

ticated data words A1, A2, ...Am are applied to the right input one by one as
described by Equation 23. In the next n clock cycles, the 128-bit ciphertext
C1, C2, ...Cn−1, Cn are applied to the right input as described in the third row
in Equation 24. In the last clock cycle, 128-bit word length(A)||length(C) is
applied as described in the last row of Equation 2. Overall, it takes m + n + 1
cycles to compute the hash value.

A GF(2w) multiplier multiplies two w-bit operands modulo a polynomial gener-
ating a w-bit output [18]. The polynomial used in GHASH is 1 + α + α2 + α7 +
α128. A GF multiplier can be implemented in either parallel [19], digit-serial [20]
or bit-serial architecture [21]. The hardware complexity of a parallel GF(2w)
multiplier using a modulus of fixed sparsity is O(w2) and the delay of the critical
path is O(log w). A bit-serial GF(2w) multiplier takes w clock cycles to perform
one multiplication. The hardware complexity of a bit-serial GF(2w)is O(w) and
the delay of the critical path is O(1), so a bit-serial GF multiplier can run at
a very high clock rate. Digit-serial GF multiplier trade off hardware simplicity
and for computational speed.

In the proposed GHASH architecture, we use a parallel GF multiplier. This is a
pure combinational circuit that operates in a single clock cycle. In the GHASH
architecture, the temporary result Xi is fed back and exclusive-ored with the
next input to register AC to generate the next operand for the GF multiplier.
Although the parallel GF multiplier can be pipelined to achieve a higher clock
rate [25] this does not improve the throughput in the context of GHASH because
of this feedback condition5.

3If the last word of additional authenticated data is only v bits , 128−v zeros are appended.
4If C∗n is not 128 bits long it is appended with approproate number of zeroes.
5feedback prohibits efficient CWC hardware architecture design

6

Header Sequence DataA IV PGCM EncryptionHeader Sequence Encrypted Data TAGTComputation Latency
Figure 3: Using GCM to encrypt and authenticate a packet

3.3 Architectural Level Data Dependencies in GCM
GCM encrypts and authenticates a packet as shown in Figure 3. The data field
is encrypted and authenticated, and is carried along with a header and a se-
quence number. The header is authenticated by including it in the additional
authenticated data. The sequence number is included in the IV. The authen-
tication tag is carried along with the encrypted data in an authentication tag
field. The computation latency between getting the first payload word and out-
putting the first encrypted payload word is as shown in Figure 3. A design with
high computation latency needs a lot of memory to buffer incoming packets and
is not suitable for high data rates.

The data dependencies in GCM encryption are shown in Figure 4(a). It takes 10
clock cycles to compute H from the user key K for both iterative and pipelined
AES implementations because of the cold start of the pipelined structure. Gen-
erally, a single secret key is used for all packets processed in a given secure
session. This secret key is determined upon session initiation. Hence, the secret
key and H are ready before packets are transmitted. GCM starts computing
temporary hash value Xi when it receives packet header as additional authenti-
cated data (A). It takes m clock cycles to generate Xm. Then the hash compu-
tation has to be halted for 11 + r clock cycles until the first cipher text is ready
as shown in Figure 4(a). According to IEEE and IETF proposed standards,
the IV is always 96 bits long, and Y0 can be generated without any latency.
Otherwise, it takes r clock cycles to generate Y0, assuming that the IV has r
128-bit words.

The key stream for GCM encryption is available 10 clock cycles after Y0 is
available. Once the AES ICM pipeline is full, a 128-bit ciphertext word Ci is
generated every clock cycle. The hash computation resumes when C1 is ready.
There is a one clock cycle bubble between the last cipher word Cn and the final
hash value Xm+n+1 because of the computation of (length(A)||length(C)) ·H.

The data dependencies in GCM decryption are shown in Figure 4(b). Since

7

10 cyclesm cyclesr cycles(0 cycle)10 cycles1 cycle1 cycle Xm+n-2n-3 cycles

KH AXm IVY0 P0C1C2Xm+1 Cn-1… …CnXm+n-11 cycle LenXm+n1 cycle Xm+n+11 cycle

KH AXm IVY0 C0P1P2Xm+10
Pn-1… …PnLen Xm+n+1

T
Xm+2Xm+3T’

(a) (b)

Packet Starts
ComputationLatencyIV startsData starts

Key stream Key stream
Figure 4: (a) The data dependency of GCM encryption (b) The data dependency
of GCM decryption

8

the hash computation is performed on the ciphertext that is from the input
directly in the GCM decryption, the hash computation can continues when the
key stream is in computing. This saves 10 clock cycles. The hash value T ′ is
generated before the last plaintext Pn is generated.

4 High Speed Architectures for GCM
Based on the above analysis of data dependencies in GCM encryption, a fully
pipelined GCM hardware architecture with 11 clock cycle computation latency
can be developed as shown in Figure 5. The shaded components are registers
or are register bounded. All the buses are 128-bit wide. The control signals
for multiplexors enable signals for registers are not shown. They are generated
by the control unit and their timing can be determined according to the data
dependency.

An iterative AES core is used to compute H from user secret key K. Comput-
ing H for future packets can be overlapped with the current GCM encryption
operation and hence is not in the critical path of design. As we discussed in
section 3.2, in the first m clock cycles, the input to register AC Reg is the
additional authenticated data word (Ai). In the next n clock cycles, input to
register AC Reg is the ciphertext word (Ci). Finally in clock cycle m + n + 1
length(A)||length(P) is the input. A 3-to-1 multiplexor MUX2 is used before
ACReg to select among these three inputs. A pipelined AES core is used to
generate key stream for the integer counter mode encryption. The initial value
of the counter is either from input directly (when IV is 96 bits) or the output
of GHASH. The multiplexor MUX1 is used to select between XReg (output of
GHASH) and Input Reg. The first 128-bit word in the key stream is stored in
E(K,Y0) Reg. This is then used to compute the authentication tag as described
by the last step of Equation 2. The CReg register is used to delay outputting
the ciphertext by one clock cycle so as to remove the one clock cycle bubble
between when the last ciphertext word C∗n is computed and when the authenti-
cation tag is computed as shown in Figure 4.

Since the computation latency is 11 clock cycles (10 clock cycles to fill the AES
pipeline+ 1 clock cycle to perform stream encryption) and there is a one clock
cycle bubble between the receipt of the ciphertext and the authentication tag,
a 12 × 128-bit FIFO has to be used to store the incoming packet. In the first
12 clock cycles, only the write enabled of the FIFO is valid. Subsequently, both
write enable and read enable of the FIFO are valid. The output of FIFO ei-
ther goes to output directly (for packet header (A) and sequence number (IV)
as shown in Figure 3) or is exclusive-ored with the key stream generated by
the pipelined AES core (for payload data (P) as shown in Figure 3). A 3-to-1
multiplexor MUX3 is used before Output Reg to select among (i) the packet
header and sequence number (from Input Reg), (ii) encrypted payload data
(from C Reg) and (iii) authentication tag (from the exclusive-or of X Reg and

9

Iterative AESKH Reg GHASHInput Reg + X Reg
FIFO ...Pipelined AES+

0128
Counter

+ E(K, Y0)RegMUX2Len RegControl... ...
C Reg

MUX3Output RegMUX1
... Auxiliary input signals

AC Reg
Figure 5: GCM encryption architecture

E(K,Y0) Reg).

If bubbles are allowed between (packet header, sequence) and encrypted pay-
load, the FIFO can be removed. The packet header and sequence can be forward
to output directly and the output is invalid for 11 clock cycles until encrypted
payload data is generated. However, work has to be done in the following chip
to remove the bubble.

The critical path of this design is determined by the GF(2128) multiplier, the
delay through which is approximately a delay of 1 AND gate + 7 XOR gates.
The delay of all other paths in this design is smaller than this as shown in Figure
5.

The GCM decryption architecture is similar to the GCM encryption architec-
ture. The third input to MUX2 will not be used and hence will not be selected.
This is because the authentication tag T ′ is computed directly from the (cipher-
text) input. Similarly, the first input to MUX3 is never used and hence will
not be selected. A comparator is used to generate the FAIL signal. The delay
of a 128-bit comparator is approximately 1 XOR gate+7 AND gates which is
still smaller than the delay of GF(2128) multiplier. The CReg register can be
removed as there is no bubble between the last ciphertext word and authenti-
cation tag in the GCM decryption. This is because we do not need to output
the authentication tag in GCM decryption.

10

Table 1: area, maximum clock rate, throughput,latency of the iterative AES
core, pipelined AES core, GHASH, GCM encryption architecture, GCM de-
cryption, GCM encryption/decryption architecture

Designs Area clock rate Throughput Latency
(gates) (MHz) (Gbps) (cycles)

Iterative AES 29,436 276 3.53 10

Pipelined AES 287,184 282 36.09 1(steady status)

GHASH 78,974 271 34.69 1

GCM encryption 463,328 271 34.69 12

GCM decryption 446,108 271 34.69 11

GCM en/decryption 498,658 271 34.69 12

An architecture that combines GCM encryption with GCM decryption can also
be designed taking into account the above discussion.

5 Experimental Results
The proposed GCM authenticated encryption architecture was modeled in Ver-
ilog HDL and simulated using Modelsim. The Verilog models were synthesized
using Synopsys Design Compiler targeting a TSMC 0.18µm CMOS standard cell
library. The area and clock rate were reported after the netlist generated by
Synopsys Design Compiler was placed and routed by Cadence Silicon Ensemble.

The Look-up Table structure was used for S-box design in AES cores [6]. Mastro-
vito parallel GF multiplier architecture was used for GHASH component design
[23]. A Mastrovito parallel GF(2n) multiplier use n2 two-input AND gates and
O(n2) two-input XOR gates, with the constant factor of n2 dependent upon the
sparsity of the modulus polynomial. It is pure combinational logic and each out-
put bit is a function of several input bits that is determined by the polynomial.
An automatic Mastrovito parallel GF multiplier core generator was developed
using C++. The core generator takes the polynomial as the input and output
Verilog description. For GHASH, the input polynomial is 1+α+α2 +α7 +α128.
Table 1 summarizes area, maximum clock rate, throughput,latency of the iter-
ative AES core, pipelined AES core, GHASH, GCM encryption architecture,
GCM decryption, GCM encryption/decryption architecture.

The critical path of the GCM architecture is from GHASH. After the first 11
or 12 cycles, the GCM architecture is fully pipelined and reach the maximum
throughput of 34.69 Gbps (=271MHz× 128bit). If the interval between two

11

Table 2: Performance in bits per clock cycle of GCM and CWC

Bytes 16 20 40 44 64 128 256 552 576 1024 1500 8192 Avg.

GCM 9.85 11.4 21.3 23.5 32.0 51.2 73.1 94.0 96.0 108 113 125 90.0
CWC 10.7 12.3 22.9 25.1 34.1 53.9 75.9 96.0 98.0 109 114 125 92.2

Table 3: Throughputs of GCM vs. those for CWC

Bytes 16 20 40 44 64 128 256 552 576 1024 1500 8192 Avg.

GCM 2.74 3.18 5.93 6.52 8.90 14.2 20.3 26.1 26.7 30.0 31.5 34.8 25.0
CWC 0.832 0.960 1.78 1.96 2.66 4.20 5.92 7.49 7.65 8.52 8.91 9.77 7.19

consecutive packets is larger than 11 or 12 cycles, such an 11 or 12 clock cy-
cle cold start occurs for every packet. The throughput increases with the size
of packets. For example, for a 2K-byte packet, the throughput degrades to
91%((2048×8)÷128

(2048×8)÷128+12) that is 31 Gbps.

Using results from [26], the number of cycles required to process an s-byte packet
using CWC is C(s) = ds/16e+ 11 CWC also is presumed to run at a clock rate
of 78 MHz.

In Table 3, we obtain the expected throughputs corresponding to the Internet
Performance Index (IPI), assuming a packet distribution of 60552 bytes and 44
bytes, respectively. If the probability of a packet having size s bytes is P [S = s],
the proportion of bytes falling within packets of size s is f(s), and the proportion
of cycles spent to process such packets is fC(s),then:

f(s) =
sP [S = s]∑
r rP [S = r]

fC(s) =
C(s)P [S = s]∑
r C(r)P [S = r]

P [S = s] =
f(s)/s∑
r f(r)/r

E[bits/cycle] =
∑

s
bpcsfC(s) =

∑
s

(8s/C(s))fC(s)

6 Discussion
The initial value of counter is determined by the sequence number of a packet
which is just before the payload data. The payload data has to be buffered
when computing the keystream. If the packet structure can be modified by

12

putting sequence number before some part of header, the 10 cycle cold start
of AES can be overlapped with receiving packet header and the FIFO can be
removed. When payload data arrives, the keystream is already ready. When
both the sender and receiver’s equipments are provided by the same vendor,
such a modification may be appropriate.

The bubble between the last ciphertext word and authentication tag in GCM
encryption can be removed by modifying GHASH algorithm a little. Since the
length of additional authentication data (A) and payload data (P) are normally
available after the packet header, we apply the 128-bit length(A)||length(P)
after the additional authentication data instead of at the very end of hash com-
putation. The one cycle computation time is overlapped with cold start of AES
cores. The modified GHASH algorithm is defined as:

Xi =

0 for i=0
(Xi−1 ⊕Ai) ·H for i=1,...m
(Xm+1 ⊕ (len(A)||len(C))) ·H for i=m+1
(Xi−2 ⊕ Ci−m−1) ·H for i=m+2,...m+n+1

(3)

7 Conclusions
In this paper, we designed a 34 Gbps GCM encryption and GCM decryption
architectures by analyzing the data dependencies of the GCM algorithm at the
architecture level. We show that GCM is suitable for hardware implementations
because the encryption circuit and authentication circuit in GCM have similar
critical path delays resulting in well balanced pipeline stages. Some suggested
modifications to GCM to further reduce computation latency are also presented.

CWC also uses AES in ICM for encryption, but uses a 127-bit integer multi-
plication based universal hash function for authentication [17]. Based on our
understanding, a similar architecture can be designed for CWC. When targeted
on the same 0.18µm CMOS standard cell library, a 127-bit parallel Wallace tree
multiplier can only achieve approximately 78 MHz clock rate compared to the
271 MHz clock rate achieved by GCM. This becomes the bottleneck in the de-
sign, resulting in unbalanced pipeline stages and preventing efficient hardware
architectures for CWC. In section 3.2 we showed that pipelining the multiplier
in universal hash functions used in CWC and GCM do not improve the through-
put of authentication because of the inherent feedback.

References
[1] J. Daemen and V. Rijmen, “AES proposal: Rijndael,"

http://www.esat.kuleuven.ac.be/ rijmen/rijndael/rijndaeldocV2.zip

13

[2] R. Rivest, “The MD5 Message-Digest Algorithm," IETF RFC1321,1992.
http://www.ietf.org/rfc/rfc1321.txt

[3] D. Eastlake and P. Jones, “US Secure Hash Algorithm 1," IETF RFC3174,
1992. http://www.ietf.org/rfc/rfc3174.txt

[4] A. Hodjat, I. Verbauwhede, “Minimum Area Cost for a 30 to 70 Gbits/s
AES Processor," IEEE computer Society Annual Symposium on VLSI,
pp. 83-88, Feb. 2004.

[5] S. Mangard, M. Aigner and S. Dominikus, “A Highly Regular and Scal-
able AES Hardware Architecture," IEEE Transactions on Computer, Vol.
52(4), pp. 483-491, April 2004.

[6] S. Morioka and A. Satoh, “A 10 Gbps Full-AES Crypto Design with a
Twisted-BDD S-Box Architecture," pp. 98-103, International Conference
of Computer Design, 2002.

[7] A. Hodjat, D. Hwang, B.C. Lai, K. Tiri, I. Verbauwhed, “A 3.84 Gbits/s
AES Crypto Coprocessor with Modes of Operation in a 0.18um CMOS
Technology," ACM Great Lake Symposium on VLSI, April 2005

[8] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA-Based Perfor-
mance Evaluation of the AES Block Cipher Candidate Algorithm Final-
ists," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 9(4), pp. 545-557, Aug. 2001.

[9] X. Zhang and K. K. Parhi, “High-speed VLSI Architectures for the AES
Algorithm," IEEE Transanctions on Very Large Scale Integration (VLSI)
Systems, vol. 12(9), pp. 957-967, Sep. 2004.

[10] “Datasheet-High Performance SHA1 Hash Core for ASIC," 2003.
http://www.heliontech.com/downloads/sha1_asic_helioncore.pdf

[11] “Datasheet-High Performance MD5 Hash Core for ASIC," 2003.
http://www.heliontech.com/downloads/md5_asic_helioncore.pdf

[12] B. Schneier, “Applied Cryptography," Second Edition, John Wiley & Sons,
Inc. New York, 1996

[13] “Modes of Operation for Symmetric Key Block Ciphers,"
http://csrc.nist.gov/CryptoToolkit/modes/

[14] D. Whiting, R. Housley, and N. Ferguson, “Counter with CBC-
MAC: AES Mode of Operation," Proposal submitted to NIST for
Authenticated Encryption Modes, Work in Progress, June, 2003.
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/ccm/ccm.pdf

[15] M. Bellare, P. Rogaway, and D. Wagner, “A Conventional
Authenticated-Encryption Mode," Proposal submitted to NIST for
Authenticated Encryption Modes, Work in Progress, April, 2003.
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/eax/eax-
spec.pdf

[16] D. A. McGrew and J. Viega, “The Use of Galois/Counter Mode
(GCM) in IPsec ESP," Proposal submitted to NIST for Au-
thenticated Encryption Modes, Work in Progress, October, 2004.
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-
spec.pdf

14

[17] T. Kohno, J. Viega, and D. Whiting, ”The CWC Authenticated
Encryption (Associated Data) Mode",Proposal submitted to NIST
for Authenticated Encryption Modes, Work in Progress, May, 2003.
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/cwc/cwc-
spec.pdf

[18] R. Lidl and H. Niederreiter, “Introduction to Finite Fields and Their Ap-
plications," Cambridge University Press, New York, 1994.

[19] C. Paar, “Efficient VLSI Architectures for Bit-Parallel Computation in
Galois Field," PhD Thesis, Institutes for Experimental Mathematics, Uni-
versity of Essen, Essen, Germany, June, 1994.

[20] L. Song and K.K. Parhi, “Efficient Finite Field Serial/Parallel Multipli-
cation," International Conference on Application-Specific Systems, Archi-
tectures, and Processors, pp. 72-82, August, 1996.

[21] M.A. Hasan and V.K. Bhargava, “Bit-Serial Systolic Divider and Multi-
plier for Finite Fields GF(2m)," IEEE Transactions on Computer, Vol. 41,
No. 8, pp. 972-980, August, 1992.

[22] C. Paar, P. Fleischmann and P. Roelse, “Efficient Multiplier Architectures
for Galois Fields GF(24n)," IEEE Transactions on Computers, vol. 47, no.
2, pp. 162-170, February 1998.

[23] E. D. Mastrovito,“ VLSI architectures for multiplication over finite field
GF(2m). In Lecture Notes in Computer Science, No. 357, pp. 297ĺC309,
Springer-Verlag, Berlin, March 1989.

[24] I.S. Hsu, T.K. Truong, L.J. Deutsch, and I.S. Reed, “A comparison of
VLSI architecture of finite field multipliers using dual- normal- or standard
bases," IEEE Transactions on Computers, Vol. 37, No. 6, pp. 735-739,
June, 1988.

[25] G. Ahlquist, B. Nelson, and M. Rice, “Optimal Finite Field Multipliers
for FPGAs," International Workshop on Field Programmable Logic and
Applications, pp. 51-60, August, 1999.

[26] D. A. McGrew and J. Viega, “The Security and Performance of the Ga-
lois/Counter Mode (GCM) of Operation," Cryptology ePrint Archive, Re-
port 2004/193, October, 2004.

15

