
Tamper-Evident Digital Signatures:

Protecting Certification Authorities Against Malware

Jong Youl Choi1, Philippe Golle2, and Markus Jakobsson3

1 Computer Science Department, Indiana University at Bloomington, IN 47405
2 Palo Alto Research Center, 3333 Coyote Hill Rd, Palo Alto, CA 94304

3 School of Informatics, Indiana University at Bloomington, IN 47406

Abstract. We introduce the notion of tamper-evidence for digital signature generation in order to
defend against attacks aimed at covertly leaking secret information held by corrupted network nodes.
This is achieved by letting observers (which need not be trusted) verify the absence of covert channels
by means of techniques we introduce herein. We call our signature schemes tamper-evident since any
deviation from the protocol is immediately detectable. We demonstrate our technique for RSA-PSS and
DSA signature schemes and how the same technique can be applied to Feige-Fiat-Shamir (FFS) and
Schnorr signature schemes. Our technique does not modify the distribution of the generated signature
transcripts, and has only a minimal overhead in terms of computation, communication, and storage.
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1 Introduction

Malware and insider attacks pose an increasing threat to our infrastructure. Remedies are com-
plicated by the intrinsic difficulties to quickly detect such attacks after they have been mounted.
Since current protection mechanisms against malware rely on the collection of detected code in the
wild, these measures are not meaningful against carefully targeted attacks, e.g., on crucial nodes
in the infrastructure. An example of such a target is a certification authority. The consequences
would be severe if an attacker could corrupt a certification authority and cause it to leak its secret
key material; the mere possibility of such an attack (as opposed to its actual occurrence) may in
fact weaken the trustworthiness of our infrastructure. The severity of the situation is aggravated
by the fact that the leak may be performed using a covert channel.

The threat of covert channels (also called subliminal channels) was first studied by Simmons [16,
17] and later by, among others, Young and Yung [21, 22]. These authors expose the risk of an
attacker causing the leak of bits of the private key in covert channels present in the randomized
key generation or signing algorithm. For sake of concreteness, let us consider the example of how
to leak secret information in the RSA-PSS signature scheme [7]. The message encoding scheme
of RSA-PSS specifies that the hash of the message be concatenated with a random octet string
known as a “salt”. A malicious implementation of RSA-PSS may choose bits of the private key
for the salt, instead of a value produced by the pseudo-random number generator. One may argue
that this type of leakage is detectable: a third party could verify (for each signature) whether the
randomness equals the secret key corresponding to the known public key of the signer. Upon the
detection of such an event, the signer would be isolated and decommissioned. However, an attacker
might just as well leak an encryption of the secret key of the signer, where the attacker’s public key
is used to generate the ciphertext. For a semantically secure encryption scheme, and appropriate
parameter choices, such a leakage could be made in a truly covert manner.

It is not only RSA-PSS that is vulnerable to attacks employing covert channels. Discrete-log
based signatures schemes, such as Schnorr signatures [15] and DSA [18], can be seen to be just



as vulnerable as RSA-PSS, given their use of randomness in the generation of each and every
signature. To various extents, however, all signature schemes are vulnerable to these attacks, since
they all make use of randomness for key generation. Still, the ongoing use of randomness to generate
signatures is arguably a much greater security concern than the one-time use of randomness in the
initial key-generation step.

In this paper, we raise and address the issue of how to detect (potentially covert) actions
caused by the corruption of certification authorities and other generators of digital signatures. In
particular, we describe how to implement tamper-evident digital signatures; while we do not propose
any universal technique to prevent corruption, we do show how any corruption can be detected as
soon as it causes any modification of transcripts. We note that our technique is meaningful not only
in the context of malware, but also in the context of insider attacks. One such attack (as described
in [14]) could be performed by the implementors of a cryptographic application, and could involve
code that detects when it is being tested versus when it is being deployed, and switches from an
honest to a corrupted mode of operation once the latter situation occurs. The complexity of even
the smallest piece of software (and hardware) makes it difficult to detect the presence of such
malicious code components, in turn making software (and hardware) audits relatively meaningless.
Such attacks, obviously, are going to be very difficult to defend against.

Thus, while most current security models for digital signatures consider the signer as an oracle,
we take a large step towards a more realistic threat model by allowing – in addition – attackers
to corrupt signers and attempt to make them leak their secret information to the attacker. When
corruption takes place, the victim node replaces its program by one provided by the attacker. Given
that the attacker cannot create any new communication channels (whether wired or wireless), the
only meaningful thing for him to do is to either modify the operation of the victim in order to
(covertly) leak secret information, or to modify its operation purely for the sake of causing the
victim node to generate incorrectly derived transcripts. We assume the existence of an observer;
this is an external node whose task is to detect any modification of how transcripts are generated.
This is not a trivial task given that we do not wish to place any trust with observers (as we would
if we provided them with a complete copy of the state of the network nodes they are to observe.)
Instead, the observers need to detect the presence of a covert channel given only publicly available
information. Once a covert channel is detected, the observer alerts the public of this fact (and
proves the existence of the covert channel, to avoid false alarms.) This allows corrupted nodes to
be manually disconnected and reconfigured, and minimizes the effects of the attack.

Our focus is on eliminating the possible existence of covert channels from the signature algo-
rithms of discrete-log based schemes (DSA and Schnorr) and the Feige-Fiat-Shamir (FFS) signature
scheme. We believe that our techniques can be extended to any type of signature schemes, and that
they can be combined with previously proposed techniques in [9] that instead consider only the key
generation phase.

To illustrate our techniques, we return to the example of RSA-PSS. A small change to the
signing algorithm makes RSA-PSS tamper-evident. Let us replace a sequence of random salt used
in the message encoding scheme with successive pre-images of a fixed value by a one-way hash
function. More precisely, let (s0, s1, . . . , sn) be the values of a hash chain such that si = h(si+1)
(0 ≤ i ≤ n − 1), for some secret seed sn which is known only to the signer. The value s0 is made
public by the signer during a setup phase. Afterward, the signer uses the value si as a salt for
signature i = 1, . . . , n. An observer can check the correctness of the salt used in the ith signature
with the equation si−1 = h(si). If this verification fails, then the observer raises an alarm.
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It is meaningful to distinguish between observers that require interaction to verify the absence
of covert channels, and those that do not. The latter type – which we name undercover observers
– provide a greater degree of protection, as these do not need to expose their existence until they
raise an alarm. This is better, given that “visible” observers constitute desirable targets of coercion
attacks. In our RSA-PSS example, it is easy to see that the observer is undercover. Onwards, we
only consider undercover observers, but note that there may exist computational problems that can
be made tamper-evident, but for which an undercover observer is impractical or even unattainable.

An important distinction to make is whether the introduction of our techniques modifies the dis-
tribution of transcripts (given an initial state of a pseudo-random generator), and if so, whether the
modified transcripts are polynomial-time distinguishable from unmodified transcripts. For these dis-
tinctions to be meaningful, we must first remove the proofs constituting evidence of tamper-freeness,
and only consider the resulting “raw” signatures. Whereas the distribution of the transcripts gener-
ated by our modified version of RSA-PSS are distinguishable from that of the standard signatures
(given the relation of salts), this can easily be avoided. We show how to make signature schemes
tamper-proof using undercover observers, and without altering the distribution of signature tran-
scripts.

It is worth mentioning that our techniques do not protect against timing attacks. However, by
imposing strict requirements on synchronization, one can protect against these as well, at the cost
of a reduced (but predictable) throughput.

Organization of the paper. We describe related work in section 2. Our definition of tamper-
evident signatures follows in section 3. In section 4 we present a tamper-evident version of the
DSA signature scheme, followed in section 5 by a description of how to make some other signature
schemes tamper-evident.

2 Related Work

The study of covert channels is rooted in military history. In the 1970’s, the problem of “message
authentication without secrecy” arose in the context of the comprehensive nuclear test ban treaty.
The goal was to allow the US and Russia to monitor each other’s compliance with the treaty, while
ensuring that the monitoring equipment was not also used for spying. In 1983, Simmons [16, 17]
introduced the concept of covert channels in cryptographic protocols and specifically demonstrated
the use of the Digital Signature Standard (DSS) signature scheme for covert communication. This
showed that a secrete message could be hidden inside the authenticator.

A few years later, Desmedt [2] presented a practical subliminal-free authentication scheme, in
which an observer (named “active warden”) handles all messages sent between two prisoners, and
verifies that these are free from covert information before passing them on. The observer in this
scheme is not undercover. Undercover observers are more desirable since they operate stealthily and
are thus less vulnerable to attacks aimed at suppressing their activity. Consider that an interactive
observer (whose interaction with the signer is evident to all), could well be the first target of an
attacker, a virus or a Trojan horse. Once the observer is eliminated or compromised, the adversary
can take over the signer without triggering an alarm. In contrast, the activity of undercover observers
is undetectable to the adversary, at least until the point when an undercover observer raises an
alarm. It is also possible to set up several undercover observers, further complicating the task of
an adversary intent on finding and compromising them.
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Young and Yung [21, 22] showed the existence of covert channels in the key establishment
algorithms of signature schemes (an attack not considered in the previous work by Desmedt);
Juels and Guajardo [9] proposed a zero-knowledge key validation scheme for a user to prove secure
generation of his private keys to avoid such attacks. In this paper, we focus our attention on
corruption that occurs after the key generation phase has concluded, and thus, like Desmedt, only
consider how to detect covert channels during the signature generation phase.

In the context of our paper, we consider covert channels harmful. However, there is work in
which covert channels are used to achieve a desirable security goal. For example, so-called funkspiel
schemes [5] use a covert channel to signal alerts by devices that have been corrupted by an attacker.
Namely, when such a scheme detects an intrusion attempt, it changes its state, causing future
transcripts to signal an alarm to an authority via a covert channel, but preventing the attacker to
detect that this is taking place. In contrast, we develop methods to eradicate covert channels.

We use the word tamper-evidence to describe a property of an algorithm. Traditionally, it is
instead used to describe a property of hardware. Smart cards, SIM cards, and satellite decoders
all implement varying degrees of physical tamper-evidence, as do funkspiel schemes by means of
signaling alerts via the covert channel. While we use the same term – tamper-evidence – to describe
the defense mechanism we introduce, we emphasize that any comparison beyond the truly superficial
makes it clear that these two types of tamper-evidence are not closely related in any technical sense.

3 Definition of Tamper-Evident Signature Schemes

Recall that a signature scheme is a triplet of algorithms (Gen, Sign, Verify), where:

– The key generation algorithm Gen, on input 1k outputs a public/private key pair Kpub, Kpriv.
– The signing algorithm, on input M , outputs a signature σ = Sign(M, Kpriv).
– The verification algorithm outputs Verify(M, σ, Kpub) ∈ {valid, invalid}.

Intuitively, a signature scheme is tamper-evident if a signer cannot leak Kpriv without generat-
ing at least one “bad” signature that triggers an alarm. We call such “bad” signatures covert-invalid
(denoted invalid∗) and their complement covert-valid (valid∗). Note that covert-validity is different
from validity as defined by the verification algorithm Verify. Indeed, randomized signature algo-
rithms (such as Schnorr or DSA) permit leakage of the private key via valid signatures.

To define a tamper-evident signature scheme, we augment a regular signature scheme (Gen, Sign, Verify)
with a new key-generation algorithm (denoted Gen∗), a new signing algorithm (denoted Sign∗) and a
new algorithm to verify the covert-validity of signatures (denoted Verify∗). In practice, the tamper-
evident signature schemes we propose require only a minuscule augmentation, and incur very small
overhead. Only observers would have to take note of the augmentation, and other nodes would
simply truncate the transcript to obtain the expected signature.

In what follows, we let T denote a transcript that consists of all the signatures that have ever
been output by the signer. The transcript T is one of the inputs to the algorithms Sign∗ and Verify∗.
(This is for reasons of generality alone, and only a tiny fraction of this information needs to be
carried as state.) The augmented signature scheme is defined as follows:

– Gen∗, on input 1k computes Gen(1k) = (Kpub, Kpriv) then outputs (K∗

pub, K
∗

priv), where K∗

pub =
(Kpub, β) and K∗

priv = (Kpriv, α). As we shall see, the strings α and β are used to ensure
tamper-evidence.
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– Sign∗, on input a message M , the private key K∗

priv = (Kpriv, β) and the transcript T , computes
σ = Sign(M, Kpriv) then outputs Sign∗(M, K∗

priv, T ) = (σ, τ). As we shall see, the additional
string τ allows an observer to verify that the signature is covert-valid.

– Verify∗, on input a message M , the public key K∗

pub, a signature (σ, τ) and the transcript T ,

outputs Verify∗(M, K∗

pub, (σ, τ), T ) ∈ {valid∗, invalid∗}4.

We can now give a formal definition of a tamper-evident signature scheme. Let (Gen∗, Sign∗, Verify∗)
be an augmented signature scheme based on a regular signature scheme (Gen, Sign, Verify). We con-
sider the following game between a challenger C and an adversary A.

Game TE:

1. C computes Gen∗(1k) = (K∗

pub, K
∗

priv) and outputs K∗

pub.
2. A requests tamper-evident signatures on adaptively chosen messages. When A requests a signa-

ture on a message mi, C outputs (σi, τi) = Sign∗(mi, K
∗

priv, Ti−1) and defines Ti = Ti−1∪ (σi, τi).
3. A outputs a transcript T , a message M and a tamper-evident signature (σ, τ), and wins if

Verify∗(M, K∗

pub, (σ, τ), T ) = valid∗ and (σ, τ) 6= Sign∗(M, K∗

priv, T ).

Definition 1 (Tamper-Evidence). A signature scheme is tamper-evident if no polynomial-time
algorithm A wins Game TE with non-negligible advantage.

Intuitively, a signature scheme is tamper-evident if there is only a single valid signature for any
given message and any given transcript. Note that in practice a verifier (whom we call observer)
must check the validity and covert-validity of all the signatures output by the signer. If the signer
refuses to engage in the Verify∗ protocol with the observer, or (in the non-interactive case which we
focus on), if it does not output a proof of covert-validity, the observer announces that the signer
failed the test of covert-validity and is thus untrustworthy.

Designing tamper-evident signature schemes. In what follows, we give an overview of our
technique for designing tamper-evident signature schemes. We start by defining consistency with
respect to a pair of deterministic functions.

Definition 2 (Consistent system). We consider a pseudo-random generator R that given a seed
s produces a sequence of outputs, each of some uniform size κ corresponding to an external security
parameter. Let the value ki be the ith output string generated by R, and let ri = f(ki) for some
one-way function f , where 1 ≤ i ≤ n for some system parameter n. Finally, consider a sequence of
witnesses wi, 0 ≤ i ≤ n, where the (committed) witness w0 is made public at setup time. We say that
two witnesses wi−1 and wi imply that the value ri is consistent if and only if wi−1 = h(wi, ri), where
h is a publicly available hash function, and where wn is a κ-bit random value selected uniformly at
random. A value ri is consistent with the seed s if and only if there is a set of witnesses that imply
that all values rj, 1 ≤ j ≤ i, are consistent.

We note that the above definition only considers the case where the observer is undercover; in the
more general case we have to replace witnesses by executions of interactive proof protocols.

4 As described here, Verify∗ is a non-interactive protocol, as we focus our attention on undercover observers. A more
general definition that allows for interaction can easily be formulated.
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Fig. 1. A model of consistent system: Let the value ki be the ith output string generated by a pseudo-random
generator R that given a seed s and let ri = f(ki) for some one-way function f , where 1 ≤ i ≤ n for some system
parameter n. Two witnesses wi−1 and wi imply that the value ri is consistent if and only if wi−1 = h(wi, ri), where
h is a publicly available hash function and wn is a κ-bit random value selected uniformly at random.

Tamper-evident signatures. We base our constructions of tamper-evident signature schemes on
a consistent system. Here, we give only the intuition of our general approach. Precise definitions are
found in Sections 4 and 5. Let (ki, ri, wi) be values produced by a consistent system. We define an
augmented signature scheme (Gen∗, Sign∗, Verify∗) for which (using the denotation of Definition 2):

1. The generation of the ith signature relies on no random number other than ki;
2. The values ri, wi are part of the corresponding augmented signature transcript;
3. The seed to the pseudo-random generator R employed for signature generation is s and the

committed witness is w0.

Proposition 1. The augmented signature scheme (Gen∗, Sign∗, Verify∗) is tamper-evident according
to Definition 1 if the function h is collision-free.

The proof is immediate: in order to win Game TE, the adversary must output a covert-valid
signature which is different from that produced by Sign∗, thus producing a collision for the function
h.

A Remark on Timing Channels. In the above, we have ignored the threat of timing channels,
and only considered covert channels in the data that is being transmitted. A party can use a timing
channel to communicate information by encoding the covert message in the delay before a response
to a request is produced. This type of threat can be addressed by (a) partitioning the time into
intervals of a length sufficient to always generate the response to one request in one time interval,
and (b) prescribing that the signer would output a signature on a message at the very end of
the time interval after the interval during which the request to sign the message was received. In
a system in which signers are observed and always remain perfectly synchronized, this approach
eliminates the timing channel. Realistically speaking, though, such a measure does not entirely
eliminate the channel, but drastically reduces its bandwidth. Good practical measures to further
reduce the bandwidth5 constitute an open research problem.

5 For example, one could offset the output time by a small delay of pseudo-randomly determined length, where the
seed to this pseudo-random generator is known to the observers. Note that while such observers do know some
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A Remark on Generation Costs. The random values ki are used for signatures in order of
consecutive increments of the index i, starting at i = 1. They are generated from the pseudo-
random generator R, as they would have been for regular DSA signatures. In our augmented
scheme, the same sequence of values ki is generated during the setup phase, in order to allow the
correct generation of the sequence of witnesses wi, where w0 will be made part of the public key of
the signer.

In order to avoid having to store all the witnesses until they are output one by one, one may
employ a simple extension on the fractal hash traversal methods of Coppersmith and Jakobsson
[1] to limit the computational costs per round and the storage requirements to maintain the set of
witnesses wi to O(log n), where n is the number of signatures that can be generated. This can be
done if the values ki can be computed from the seed given the index i alone, and without having
to compute other such values first.

4 Tamper-Evident DSA Signatures

We start with a review of the DSA signature scheme [12]. Let p, q be large primes such that q|(p−1),
and let g ∈ Z

∗

p be an element of order q. Let h : {0, 1}∗ → Zq denote a hash function.

Gen algorithm. The secret key is an element x ∈ Z
∗

q and the corresponding public key is y = gx

mod p.

Sign algorithm. To sign a message m, the signer chooses uniformly at random k ∈ Z
∗

q and computes

r = (gk mod p) mod q and s = k−1(h(m) + xr) mod q. The pair (s, r) ∈ Z
2
q is a DSA signature

on m.

Verify algorithm. Given a signature (s, r) on a message m, compute w = s−1 mod q, u1 = h(m)w
mod q, and u2 = rw mod q. Output valid if r = (gu1yu2 mod p) mod q; otherwise output invalid.

The DSA signature scheme described above contains an obvious covert channel. Indeed, every
DSA signature reveals a value r = (gk mod p) mod q, where k ∈ Z

∗

q is a random value chosen by

the signer. At a cost of 2λ−1 modular exponentiations on average, the signer can find a value k such
that λ bits of r = gk are as chosen by the signer. The signer can thus leak at least a few bits of
information in every DSA signature it generates. Furthermore, the existence of this covert channel
is undetectable to an observer.

Tamper-evident variant with undercover observer. We propose a tamper-evident DSA sig-
nature scheme in which the signer pre-generates the sequence of random numbers later to be used,
and computes witnesses to the elements of this sequence. If any member of the sequence is modified,
then the corresponding witness is invalidated. Witnesses are generated in a manner that ensures
that it is infeasible to modify these without invalidating the same.

secret information, they do not have to be trusted with any secret information necessary to generate the signature.
We may call such an observer semi-trusted.
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A formal description of our tamper-evident DSA signature scheme follows:

Gen∗ algorithm. Let (x, y = gx) be a private/public key pair for DSA output by Gen. After
executing Gen, the algorithm Gen∗ pre-generates the sequence of random values {ki} (1 ≤ i ≤ n)
that are later to be used in the generation of signatures. This is possible given access to the seed
to the pseudo-random generator employed. Then, the witnesses {wi} (0 ≤ i ≤ n) are generated
as follows: First, wn is chosen uniformly at random from {0, 1}κ, for some security parameter κ

associated with the choice of hash function h used for witness generation. Consecutive witnesses
are generates as follows:

wi−1 = h(ri ||wi) (1 ≤ i ≤ n) (1)

where ri = (gki mod p) mod q.

Finally, the algorithm outputs K∗

priv = (x, {ki} , {wi}) and K∗

pub = (y, w0).

Sign∗ algorithm. To sign the ith message mi for i ≥ 1, the signer computes

si = ki
−1(h(mi) + xri) mod q (2)

The signer outputs the standard DSA signature (mi, ri, si) along with the previously computed6

witness wi.

Verify algorithm. Let (mi, ri, si, wi) be the ith transcript output by the signer. Any verifier can
check that (mi, ri, si) is a valid DSA signature with respect to the signer’s public key y. This is
done exactly as for regular DSA signatures by computing wi = s−1

i mod q, u1 = h(mi)wi mod q,
and u2 = riwi mod q. The output is valid if ri = (gu1yu2 mod p) mod q; otherwise the output is
invalid.

Verify∗ algorithm. To verify the covert-validity for the ith transcript (mi, ri, si, wi), and given the
previous witness wi−1, the observer performs the following computation:

1. The observer runs Verify(mi, ri, si); if this output is invalid then output invalid∗ and halt.

2. The observer checks whether the following equation holds:

wi−1 = h(ri ||wi) (3)

for the publicly known hash function h. If the equivalence holds, then Verify∗ outputs valid∗ and
halts; otherwise, it outputs invalid∗ and halts.

Note that the observer does not need to communicate with the signer in order to verify the
consistency of the random numbers employed. Thus, it can avoid revealing its whereabouts until it
detects an inconsistency, at which time it draws attention to the corruption by outputting invalid∗.

6 For simplicity, we may assume that all witnesses are stored by the signer after being generated; however, and as
previously noted, one can employ fractal traversal techniques in order to reduce the required amount of storage,
while maintaining low computational requirements on the scheme.
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Soundness. An honest signer always succeeds in generating a valid witness as specified by rela-
tion (3). Given the assumption of collision-freeness, we see that an adversary cannot have the signer
generate and output a pair ri, wi satisfying wi−1 = h(ri ||wi) = h(ri ||wi). Thus, it is not feasible
to modify any signature transcript without invalidating at least one witness.

Proposition 2. If the hash function h is collision-free then our variant DSA scheme is tamper-
evident.

This proposition is an immediate corollary of Proposition 1.

Proposition 3. If the DSA signature scheme is secure against an adaptive chosen message attack,
then our variant DSA scheme is also secure against an adaptive chosen message attack.

Proof. Let A be an adversary who mounts an existential forgery attack against our tamper-evident
variant of DSA. We define an algorithm B that uses A to mount an existential forgery attack
against the regular DSA signature scheme. We model the hash function h as a random oracle and
let algorithm B answer A’s queries to the hash function h.

The algorithm B receives a public key for DSA and passes it on to A. When A requests a
tamper-evident DSA signature on a message mi, B requests a normal DSA signature on mi and
obtains (mi, ri, si) = Sign(mi, Kpriv). B then chooses a random witness wi and outputs the tamper-
evident signature (mi, ri, si, wi) for A. When A queries the hash function h on ri ||wi, A answers
with wi−1 = h(ri ||wi). On all other values, A answers B’s queries with consistent random values,
as is standard. ut

5 Making Other Signature Schemes Tamper-Evident

Schnorr signatures. The techniques we have used to design a tamper-evident variant of the DSA
signature scheme can also be used to design a tamper-evident variant of the Schnorr signature
scheme [15]. The Schnorr and DSA signatures schemes are both based on the discrete logarithm
problem and share a lot of common features. Let (Gen, Sign, Verify) denote the Schnorr signature
scheme:

– As in DSA, the algorithm Gen outputs a private/public key pair (x, y = gx), where the secret
key is an element x ∈ Z

∗

q and the corresponding public key is y = gx mod p.

– To sign a message m, the signer chooses uniformly at random k ∈ Z
∗

q and computes r = gk

mod p. Let c = h(m||r) and s = xc + k mod q. The pair (s, c) ∈ Z
2
q is the Schnorr signature on

m.
– Given a Schnorr signature (s, c) on a message m, Verify computes v = gsy−c and outputs valid

if c = h(m||v); otherwise outputs invalid.

We design a tamper-evident variant (Gen∗, Sign∗, Verify∗) of Schnorr signatures as follows. After
executing Gen, the algorithm Gen∗ pre-generates the sequence of random values {ki} (1 ≤ i ≤ n)
and the corresponding witnesses {wi} (0 ≤ i ≤ n) almost as in tamper-evident DSA:

ri = gki mod p (4)

wi−1 = h(ri ||wi) (5)

As in tamper-evident DSA, we define K∗

priv = (x, {ki} , {wi}) and K∗

pub = (y, w0). The ith tamper-
evident Schnorr signature on message mi is a triplet (si, ci, wi) where ci = h(mi||ri) and si = xci+ki
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mod q. The tamper-evident verification algorithm Verify∗ is defined in exactly the same way as for
DSA in section 4.

Feige-Fiat-Shamir signatures. Another application of our techniques it to build a tamper-
evident variant of the Feige-Fiat-Shamir (FFS) signature scheme – described in both [10] and [6]–
which is based on the earlier signature scheme of Fiat and Shamir [3]. The algorithm Gen in FFS
is defined as follows. For two large prime p,q and some system parameter l, the private/public key
pair is ({uj} , {yj}), 1 ≤ j ≤ l, for uj ∈ Z

∗

pq and yi = uj
−2.

In the tamper-evident variant, the algorithm Gen∗ generates a set of random numbers ri (1 ≤
i ≤ n) and then computes the corresponding public values {zi} and a hash chain of witnesses {wi}
as follows:

zi = ri
2 mod pq (6)

wi−1 = h(zi ||wi) (1 ≤ i ≤ n) (7)

by choosing hash chain root wn randomly in Z
∗

pq.
The ith signature on a message mi is (ei, si), where ei denotes the bits of h(mi || zi), si =

ri

∏l
j=1

uj
ej and ej is the jth bit of ei. The Verify∗ algorithm combined with the verification algorithm

of [10] and [6] is the same as in the tamper-evident variants of DSA and Schnorr.

6 Conclusion

We have presented attacks on Certificate Authorities based on covert channels that exploit the
randomness used to generate signatures in the RSA-PSS, DSA, Schnorr and FFS signature schemes.
To detect such attacks, we defined tamper-evident variants of these signature schemes, in which
every signature is accompanied by a proof of validity. These proofs are verified by non-interactive
observers, whom we call under-cover observers. Under-cover observers can operate stealthily and
are thus less vulnerable to attacks aimed at suppressing their activity.
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