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Abstract

We introduce a new digital signature model, called conditionally verifiable signature (CVS), al-
lowing a signer to specify and convince a recipient under what conditions his signature would become
valid or verifiable; the resulting signature is not publiclyverifiable immediately but can be converted
back into an ordinary one (verifiable by anyone) after the recipient has obtained proofs, in the form
of signatures/endorsements from a number of third party witnesses, that all the specified conditions
have been fulfilled. A fairly wide set of conditions could be specified in CVS. Besides, the only job of
the witnesses is to certify the fulfillment of a condition andnone of them need to be actively involved
in the actual signature conversion, thus protecting user privacy. We formalize the concept of CVS
and define the related security notions. We also derive the relations between these notions. Besides,
we give a generic CVS construction based on any identity based encryption (IBE) scheme show that
the existence of IBE with semantic security against a chosenplaintext attack (a weaker notion than
the standard one) is necessary and sufficient for secure CVS.Finally, we give a number of practical
CVS constructions based on bilinear pairings for standard signature schemes like Elgamal and RSA.

Keywords: digital signatures, privacy, accountability, identity based encryption, bilinear pairings.

1 Introduction

Balancing between the accountability and the privacy of thesigner is an important but largely unanswered
issue of digital signatures. A digital signature scheme usually consists of two parties, a signer and a
recipient, with the former giving his signature on a message/document to the latter as his commitment
or endorsement on the message. To ensure that the signer is held accountable for his commitment, his
signature needs to be publicly verifiable (by anyone) or, at least, verifiable by a mutually trusted third
party; otherwise, the signer could deny having signed the document as nobody can prove he really did,
and the non-repudiation property (which binds a signer, perhaps legally, to a statement he signs) cannot
be achieved. However, public verifiability of a digital signature would put the signer’s privacy at risk as a
digital signature could be replicated and spread so easily,compared to its handwritten counterpart. More
importantly, if the message presents valuable informationabout the signer, then the signed message itself
is a certified piece of that information. Hence, the interests of the signer and the recipient are in conflict.

Of course, ensuring signer privacy and non-repudiation simultaneously seems to be impossible for
any signature scheme. But, fortunately, in most real world scenarios, we usually wish to maintain privacy
of a digital signature up to a certain instant after it is issued and restore non-repudiation afterwards. This
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could be better illustrated by the example of future/optiontrading. In a future trade, the seller signs a
contract with the buyer specifying the price and quantity hehas agreed with the buyer but the contract is
not effective before a future execution date. For reasons like preventing other sellers from manipulating
the price or avoiding any adverse effects on further negotiation with other buyers, ideally, before the
execution date, the seller does not want anyone able to associate him with the contract, at least ensuring
that the buyer is unable to convince others of the validity oftheir agreement. That is, limited verifiability
is desired before the execution date. Whereas, on or after the execution date, an honest seller usually does
not worry about his signature being publicly verifiable. In fact, to protect the interest of the recipient, the
seller’s signature has to be verifiable by others. Hence, we could view reaching the execution date as a
certain condition to be fulfilled before the signature of thesigner (seller) could be revealed to the recipient
(the buyer, who could convince others of the validity of the signer’s signature afterwards), and before
such fulfillment, we wish to achieve signer privacy. We notice that many business activities involving
digital signatures have similar situations. The essence ishow the signer could ensure non-verifiability
of his signature before certain conditions are fulfilled (inthe future trading case, the condition is the
execution date has passed) but still can convince the recipient that he will be obligated to exercise his
commitment; in other words, he needs to give the recipient some guarantee about his commitment or his
signature will become effective or publicly verifiable onceall the conditions are fulfilled.

On the other hand, the non-repudiation property of a digitalsignature could also have a serious
repercussion to the signer if there is no way to allow him to control when and how a recipient could
obtain his signature when sending it out. In the online world, the lack of physical proximity could render
a careful signer hesitant in giving his signature (say for a payment authorization) to another party because
he is not given any guarantee that he will obtain what he is supposed to as an exchange of his signature.
From the recipient’s perspective, if the signer does not send out his signature, the recipient will not give
what the signer needs. For instance, if the signer makes an online purchase, he may not receive any
guarantee that his order will be delivered but the seller (recipient) will not send it out unless the signer
gives out his signature on a payment authorization. This kind of deadlock due to mistrusting parties
is not easily solved. In the worst scenario, a careless signer may fall into a fraud trap to give out his
signature unwisely. Nevertheless, the deadlock could be partially solved if the signer could ensure that
the recipient can never obtain a valid signature of his unless some conditions (specified by the signer) are
fulfilled, namely, the recipient sends out the signer’s order in the online purchase example.

To provide a flexible solution to this problem of controllably passing signatures from one party to
another without actively involving a trusted third party, we introduce a new signature concept called
conditionally verifiable signatures (CVS). In a CVS scheme,the signer gives the recipient some seem-
ingly random number, what we call apartial signature, and specifies a set of conditions the fulfillment
of which will allow the recipient to extract the signer’s signature from the partial signature. The partial
signature is not immediately verifiable; fulfilling the specified conditions is necessary to retrieve a valid
ordinary signature from it. To convince the recipient that his ordinary signature could be extracted form
a partial signature, the signer runs a confirmation protocolwith the recipient to prove that his signature
could be retrieved once all the specified conditions are fulfilled. Before the ordinary signature becomes
effective (that is, extracted), the partial signature is nomore convincing than any random number, namely,
nobody could link the partial signature to its alleged signer. We formulate this property by the notion of
simulatability in this paper, that is, anyone could use just public information of the signer to simulate a
given partial signature while others cannot judge whether it is genuine. In other words, nobody could
distinguish between a genuine partial signature and a simulated one. In fact, in our model, even given the
signer’s private key, nobody could tell the validity of a given partial signature if the random coins used
to generate it are not available. In order to enforce the verification of condition fulfillment, we need a
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number of third party witnesses mutually trusted by both thesigner and recipient. In our model, the only
job of these witnesses is to verify whether the given conditions are fulfilled and they are unaware of the
conversion or even the existence of the partial signature. That is, the witnesses do not participate in the
actual signature conversion. Details of the model are givenin the next section.

1.1 Conditionally Verifiable Signature

In the CVS model, a signer is allowed to embed a set of verifiability conditionsC into his ordinary
signatureσ to create a partial signatureδ that is solely verifiable by the recipient (possibly throughthe
collaboration with the signer), who cannot immediately convince others of the validity ofδ but can con-
vert it back to the universally verifiable oneσ (i.e. verifiable by everyone) after obtaining from a number
of witnesses (appointed by the signer) the proofs that all the specified verifiability conditions have been
fulfilled.1 These proofs are in the form of signatures on condition statements, signed by the witnesses,
about how the specified conditions are considered as fulfilled. In order to convince the recipient to ac-
cept a given partial signatureδ on a messageM (whose validity could not be verified), the signer runs a
proof/confirmation protocol, which could be interactive ornon-interactive, with the recipient to convince
the latter thatδ is indeed his partial signature onM , from which the corresponding ordinary signature
could be recovered using the specified witnesses’ signatures on the specified verifiability condition state-
ments inC.

Given thatW is the set of all possible witnesses, an instance set of verifiability conditionsC is of
the form{(ci,Wi) : ci ∈ {0, 1}

∗,Wi ∈ W} where each condition statementci is a string of alphabets
of arbitrary length describing a condition to be fulfilled. Examples ofci include “A reservation has been
made for Alice on flight CX829, 14 Jul 2005.”, “A parcel of XXX has been received for delivery to
Bob.”, “It is now 02:00AM 18 Jan 2003 GMT.”, “An emergency hashappened.” and so on. The recipient
needs to request each one of the specified witnesses, sayWi, to verify whether the condition stated inci
is fulfilled and in case it is, to sign onci to give him a witness signatureσi. These witness signatures
σi’s would allow the recipient to recover the publicly verifiable, ordinary signatureσ from the partial
signatureδ.

Besides, it is not necessary for a recipient to present the partial signature or the message itself to
the witnesses in order to get their endorsements on the statement about the fulfillment of a condition.
Even so, the witness signatures could still recover the ordinary signature from the collected witness
signatures. The only trust we place on the witnesses is that they only give out their signatures on a
condition statement when the specified conditions are indeed fulfilled. In fact, it is not difficult to imagine
that the existence of such witnesses is abundant in any business transaction; in most cases, any party
involved in processing an order would inherently be trustedby both the signer and recipient, a good
candidate as a witness. A typical example is the postal officewhich is involved in delivering the order
the signer placed on the recipient of a signature for his payment authorization. In addition, we could
achieve a fairly high level of privacy in that the witnesses are unaware of the message or the partial
signature when verifying the fulfillment of a given condition, namely, he does not learn the deal between
the signer and the recipient. But this would not hinder the recipient from obtaining a witness signature
as it is so common in business processes to request a receipt.

We could view the partial signature as a blinded version of the ordinary signature, that is, nobody
could verify its validity. In our CVS formulation, this non-verifiability property is expressed by the
notion of simulatability — there exists a polynomial time simulator which is computable using only

1Throughout the rest of this paper, we will denote the ordinary (universally verifiable) signature and the CVS partial signa-
ture byσ andδ respectively, unless otherwise specified.
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public information of the signer and outputs a fake signature computationally indistinguishable from the
partial signature; that is, even given a genuine partial signature, nobody with bounded computation power
could assure that it is not a fake one generated by the simulator. As a result, when the recipient presents
a partial signature to others to convince them of its validity, nobody could tell whether the signer has
really created it or the recipient has generated it himself using the simulator. Of course, it is natural to
worry about whether the confirmation protocol would leak outuseful information to help distinguishing
between a genuine and a fake partial signature. We show in Section 3 that if the confirmation protocol
is zero knowledge, then it would leak no useful information for such a purpose and the CVS scheme is
said to benon-transferable.

Beside the notion ofsimulatability, there are other possible formulations of the non-verifiability
property of a signature, namely,anonymityand invisibility.2 Numerous similar notions have stemmed
from these two notions in the literature on undeniable signatures [4, 8, 10, 11, 14, 23, 19, 31, 33] and
designated confirmer signatures [9, 6, 18, 28, 34, 37]. Anonymity in essence means that given a message,
two signers and a valid signature belonging to one of them, nobody could tell which one of the signers
has created the given signature. Whereas, invisibility means that given a signer, two messages and a
valid signature of the signer for one of messages, nobody could tell which message the given signature
is for. These various nations represent different understanding about the security requirement of the
non-verifiability of a signature, as well as different modeling. But we think that simulatability is a
more natural and comprehensive notion to represent the non-verifiability property of a partial signature.
In Section 3.3 we give a detailed treatment on deriving the relationships between these notions and
simulatability. In particular, we show that anonymity and invisibility are indeed implicitly implied by
simulatability if an appropriate simulator (with more restrictions on its requirement) exists despite that
they are not completely compatible and covered by the notionof simulatability.

As usual, unforegeability is a basic requirement for a secure CVS scheme. More specifically, we
require that even colluding with all the witnesses and allowed to query ordinary and partial signatures of
his choice, nobody could present a message signature pair not previously queried such that the signature
is valid for the message. This is often called existentiallyunforgeability against a chosen message attack.

As mentioned earlier, beside protecting the signer’s privacy, CVS is also aimed to protect the signer
from fraud trap. It offers the signer the guarantee that the recipient would not get his signature on
a document if he could not get what the recipient are committed to. In other words, if the specified
conditions are not fulfilled, that is, the corresponding witness signatures are not available, the ordinary
signature could never be retrieved from a given partial signature. This is thecheat-immunityproperty of a
CVS scheme. We could show that this property is implicitly achieved in an unforgeable and simulatable
CVS scheme if its confirmation protocol is also zero knowledge.

1.2 Our Contributions

The main contribution of this paper is the new model of conditionally verifiable signatures through which
the signer can incorporate a wide range of verifiability conditions into an ordinary signature scheme to
control its verifiability and validity while minimizing therequirement or trust on third-parties. To the
best of our knowledge, it is the first scheme of its kind in the literature. Before this work, it is fair to say
that the problem of seamlessly incorporating verifiabilityconditions into a signature scheme to control
its validity and allowing spontaneous signature recovery upon the fulfillment of the specified conditions
remains largely open. Closely related work includes undeniable signatures [4, 8, 10, 11, 14, 23, 19, 31,

2When talking about signatures in this context, we are referring to some blinded version of an ordinary signature in undeni-
able signatures or designated confirmer signatures.
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33], designated confirmer signatures [9, 6, 18, 28, 34, 37], fair exchange [1], and timed release of digital
signatures [20, 21]. In fact, we could possibly view CVS as a more general, unified concept incorporating
all these, but provides more effective and flexible solutions to the scenarios these existing schemes could
not solve satisfactorily, particularly those in digital business or electronic commerce. A typical example
of these would be the deadlock scenario mentioned earlier about the online purchase between mistrusting
parties; using the post office as a witness, CVS would reasonably solve this problem.

Besides, we give a detailed treatment on modeling the security goals and the adversary capabilities
of CVS. We show the relationship between these notions and distill them down into a much smaller
set of core notions necessary for a CVS construction to fulfill all of them. In particular, we show that
the notions of invisibility and anonymity, usually considered separately in undeniable signatures and
designated confirmer signatures, are in essence directly implied in the notion of simulatability (a notion
commonly found in commitment schemes and proof-of-knowledge protocols) if an appropriate simulator
could be found. Moreover, we give the conditions under whichthe design of a CVS scheme and its
confirmation protocol could be separated for considerationwhile preserving the needed security.

Furthermore, we demonstrate the feasibility of CVS by giving a generic construction based on any ex-
istentially unforgeable signature scheme and any semantically secure identity based encryption scheme.
Based on this, we show that a secure CVS scheme is equivalent to an IBE scheme with indistinguisha-
bility security against a chosen plaintext attack (IND-ID-CPA) in terms of existence. As (IND-ID-CPA)
security is a weaker notion than the commonly accepted security notion against an adaptive chosen ci-
phertext attack (IND-ID-CCA) in IBE, we believe that CVS could be constructed based on a weaker
assumption than IBE.

Finally, we present a number of practical instantiations ofCVS based on bilinear pairings. We give
efficient CVS constructions for standard signature schemeslike ElGamal [16] and RSA [38]. With slight
modifications, these techniques could be applied to other signature schemes like Schnorr [40] and GHR
[22] signatures.

1.3 Organization of the Paper

The rest of this paper is organized as follows. We discuss related work in the next section. Then,
we give the definition of a conditionally verifiable signature scheme and its notions of security and
derive relationships between these notions in Section 3. After that, we present the preliminary materials
needed in our construction in Section 4. In Section 5, we givea generic CVS construction and show the
equivalent between CVS and IBE. In Section 6, we give a numberof efficient CVS constructions based
on bilinear pairings. Finally, we conclude in Section 8 witha number of future problems.

2 Related Work

Related work on controlling the verifiability of a digital signature includes designated verifier signatures
[30, 42], undeniable signatures [4, 8, 10, 11, 14, 23, 19, 31,33], designated confirmer signatures [9, 6,
18, 28, 34, 37], fair exchanges [1], timed release of signatures [20, 21], and verifiable signature sharing
[17]. Despite the considerable amount of work in limiting the verifiability of a digital signature, the
conditions that could be incorporated into a digital signature scheme are still very restrictive; the existing
protocols merely ensure that only a designated recipient can verify but cannot convince anybody else
of the validity of a signature (in designated verifier signatures) and/or collaboration of the signer (in
undeniable signatures) or a third party designated by the signer (in designated confirmer signatures, fair
exchange) is needed in verifying the signature. Implementing more complex policies or specifying more
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varied conditions in these schemes has to resort to appending the condition/policy description inside
the message and rely on a third party to enforce them in signature verification and conversion. Hence,
there is almost no protection of the privacy of the signer andthe recipient with respect to any third party
which, if present, is involved in the actual signature conversion and sees the message. In contrast, the
only information a third party needs to know in CVS is the condition to be fulfilled.

In a designated verifier signature scheme [30, 42], the validity of a signature could only be verified
by those specified by the signer and nobody else. However, there is no means to convert a signature back
into an ordinary, publicly verifiable one, thus giving no guarantee to the recipient.

Undeniable signatures, introduced by Chaum [10, 8], are digital signatures which cannot be verified
without interacting with the signer. Obviously, an undeniable signature offers almost no guarantee to
the recipient as the signer could intentionally become unavailable. Chaum [9] also proposed designated
confirmer signatures (as a remedy to undeniable signatures)which, in addition to the signer, can also
be verified by interacting with a third party called confirmerwho has been designated by the signer.
This could in essence be viewed as a signature with limited verifiability. In the original versions of both
undeniable and designated confirmer signatures, conversion into ordinary signatures is not possible but
subsequent proposals [4, 33, 14, 37, 34] provide this capability. However, the only way to incorporate
convertibility conditions is to embed them in the message itself, which is undesirable in the sense of
recipient privacy. In many of these schemes, selective conversion is not even allowed; all the issued
signatures are converted even though the signer just wants to convert one of them. Although CVS may
not yield efficient schemes, roughly speaking, undeniable signatures and designated confirmer signatures
could be considered as instantiations of CVS.3

Out of the existing schemes, fair exchange of digital signatures [1] has drawn much attention mainly
due to its potential application in electronic commerce. Inessence, it is an instantiation of a designated
confirmer signature which uses the designated confirmer as anarbitrator. However, beside contract
signing, the applications of fair exchange are still limited to trading regenerable (digital) goods. When
asking the arbitrator to convert a signature, a party needs to show a considerable amount of evidence
about the deal or give the digital goods under the custody of the arbitrator. In the latter case, such a
requirement may not be achievable in trading non-regenerable items. In the former case, privacy breach
(to the arbitrator) is inevitable. Unlike fair exchange, the witnesses in CVS do not act as arbitrators but
to verify the fulfillment of a condition. They do not need to know what the deal is or what the signed
message is in order to verify the fulfillment of a condition. In fact, the availability of such witnesses is
so pervasive in any trading activity and requesting endorsements in the form of a receipt is so natural
in the usual workflow.4 Concurrent signatures [12] are another similar proposal for solving the contract
signing problem but CVS cannot give a construction for concurrent signatures.

While covering an important type of verifiability conditions related to time, timed release of sig-
natures are, however, usually implemented by the time-lockpuzzle [20, 21] requiring the recipient to
go through a series of computation tasks in order to control when he could recover the signature; the
main advantage is no third party is needed but it requires intensive computation resources and the only
condition specifiable is relative time. More importantly, resuming verifiability of a signature has a rough
timing and may not be spontaneous; the guarantee that a signature becomes verifiable after the release
time hinges on that the recipient starts the conversion immediately upon receipt of the signature. In fact,
CVS could provide a seemingly better solution for this problem, consuming less computation resources
and allowing a precise release time specification at the expense of using a passive time server which

3Depending on the assumptions on the adversary capabilities, modifications on the security definitions of CVS may be nec-
essary in some cases to give a construction of undeniable/designated confirmer signatures fulfilling its own security definitions.

4For example, when sending a parcel, requesting a receipt from the post office is very natural and reasonable.
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periodically broadcasts a single signature/endorsement (for all users) on the current time. Spontaneous
signature conversion could hence be achieved.

In verifiable signature sharing [17], a signature is dividedin such a way that a certain minimum
number of parties, each holding a share of the signature, need to pool out their shares in order to recover
the signature. When receiving a share, each party could verify its validity. However, it is not trivial to
incorporate verifiability conditions in such a scheme and finding such a number of trusted parties in a
trading activity is not easy either. Besides, the verifiability of a share also implies that one could link a
signature share to its alleged signer even though it is not a complete signature with binding power. As
a result, the privacy of the signer as required in scenarios like the future trading example could not be
achieved. Although elegant, verifiable signature sharing may not be suitable for the scenarios considered
in this paper.

3 Definitions and Security Notions

This section provides a formal definition of conditionally verifiable signatures. After defining the security
notions, we discuss the relationships between them.

Notation Convention. For the sake of clarity, we useσ to denote an ordinary signature andδ to denote a
CVS partial signature. For example, the ordinary signatureof a signerS on a messagem would be
denoted byσS(m) and its corresponding partial signature byδS(m). When there is no ambiguity,
we might drop the parenthesis and its content. For instance,we may simply write the CVS partial
signature asδ or δS instead ofδS(m).

SupposeA(PKS , x) is an algorithm with the public key ofS andx as input. Provided there
is no ambiguity, we may denote it asAS(x) for short, similarly for the private key case. When
comparing the output of two algorithms, we may drop the common input for simpler notations. For
example, when comparingA(w, x, y, z) andB(w, x′, y), we may simply writeA(x) andB(x′).

We denote the message space byM, the condition statement space byC, and the set of all possible
witness byW = {Wl} and|W| = N . Unless otherwise specified, we assumeM = C = {0, 1}∗.
We further denote the partial signature and ordinary signature spaces bySδ andSσ respectively.

An instance set of verifiability conditions is of the formC = {(ci,Wi) : ci ∈ C,Wi ∈ W} ⊆
C ×W. Given an instance set of verifiability conditionsC, we usually denote the corresponding
sets of witness public and private keys byPKC andskC respectively. We also denote the set of
witness signatures/endorsements specified inC by σC .

Usually, we use{Wi} to denote the set containing allWi’s. But by {A(x)} we also denote the
set of all possible output values of a probabilistic algorithm A when inputx, according to its
probability distribution.

As usual, we use PPT to denote probabilistic polynomial timealgorithm.

As usual, we have the following definition of negligible functions.

Definition 1 [Negligible Functions] A functionε : N → R is negligible inλ if and only if ε(λ) <
1

poly(λ) for some polynomialpoly() in λ.

The players in a conditionally verifiable signature scheme include a signerS, a recipient or verifier
V , and a number of witnesses{Wi} ⊆ W (assuming|{Wi}| = L). A CVS scheme consists of the
following algorithms and a confirmation protocol.
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Key Generation (CVKGS, CVKGW). Given a security parameterλ, let CVKGS(1λ) → (PKS , skS)
andCVKGW(1λ) → (PKW , skW ) be two probabilistic algorithms. Then,(PKS , skS) is the
public/private key pair for a signerS and(PKW , skW ) is the public/private key pair for a witness
W .5

Signing and Verification (Ordinary Signatures) (SigS,VerS)/(SigW,VerW). SigS(m, skS)→ σS

is a probabilistic algorithm generating an ordinary (universally verifiable) signatureσS of the
signerS for a messagem ∈ M. VerS(m,σS , PKS) → {0, 1} is the corresponding signature
verification algorithm, which outputs1 if σS is a true signature ofS on messagem and outputs0
otherwise. As usual, for all(PKS , skS) ∈ CVKGS(1λ) and allm ∈M, we require the following:

VerS(m,SigS(m, skS), PKS) = 1

Similarly, SigW(m, skW ) → σW andVerW(m,σW , PKW ) → {0, 1} are the signature genera-
tion and verification algorithms of the witnessW . Sometimes, we may writeSigW asCVEndW
to reflect it is actually an endorsement ofW .

The signatures generated by these algorithms are publicly verifiable. Note that we use pairing
based signatures [3] as witness signatures in our efficient CVS constructions.

Partial Signature Generation (CVSig). Given a set of verifiability conditionsC ⊆ C × W and the
corresponding set of witness public keysPKC , CVSig(m,C, skS , PKS , PKC) → δ is a prob-
abilistic algorithm for generating the partial signatureδ on messagem ∈ M under the set of
verifiability conditionsC.

Note that unlikeσ, this partial signatureδ is not universally verifiable.

Ordinary Signature Extraction ( CVExtract). CVExtract(m,C, δ, PKS , σC) → σ/ ⊥ is an algo-
rithm which extracts the corresponding ordinary signatureσ from a partial signatureδ for a mes-
sagem under the verifiability condition specified byC and a signing public keyPKS when given
the set of witness signatures or endorsementsσC . The extracted signatureσ is a universally ver-
ifiable one. In case the extraction fails, it outputs⊥. Extraction failure could happen when the
witness endorsements/signatures used do not match what is required (i.e. a different witness or a
different condition statement).Note thatσC = {SigW(skWi

, ci) : (ci,Wi) ∈ C}.

CVS Confirmation/Verification. CVCon(S,V ) = 〈CVConS,CVConV〉 is the signature confirmation
protocol between the signer and recipient, which could be interactive or non-interactive:

CVCon(S,V )(m,C, δ) = 〈CVConS(σ, skS , r),CVConV()〉(m,C, δ, PKS , PKC)→ v =

{

0
1

The common input consists of the messagem, the set of verifiability conditionsC, the partial sig-
natureδ, and the public keys of the signerPKS and the involved witnesses public keysPKC .
The private input of the signerS is σ, skS , andr whereσ is the corresponding ordinary signa-
ture (on the messagem) embedded inδ, andr represents the random coinsS used in generating
δ. The output is either1 (“true”) or 0 (“false”). In essence, this protocol allows the signerS to
prove to the recipientV that δ is indeed his partial signature onm, which can be converted back
into a publicly verifiable signatureσ (i.e. VerS(m,σ, PKS) = 1, onceV has obtained all the
witness signatures/endorsements on the condition statements as specified inC. Ideally, we want
this protocol to be zero-knowledge. Besides, the interactive version is considered in this paper.

5In this paper, we may use(PKi, ski) and(PKWi
, skWi

) interchangeably to denote the public/private key pair of a witness
Wi. Provided there is no ambiguity, we prefer to use the former for simpler notations.
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The partial signature generationCVSig could be a 1-step or 2-step process. In the latter, an ordinary
signature universally verifiable is first generated and a blinding process is then applied to create the CVS
partial signatureδ. In caseCVSig is a 1-step process, the signer should be able to determine the ordinary
signature embedded inδ based on his private key and the random coins he used in generating δ.

Ideally, a signature of the witness on the condition statement should be used to retrieve an ordinary
signature from its partial signature. But such a requirement is not strict; it should be fine as long as
a trapdoor for each condition statement known only to the witness is needed to recover an ordinary
signature and finding such a trapdoor without the witness’ private information is hard.

3.1 Security Properties of Conditionally Verifiable Signatures

In general, a CVS scheme should satisfy both completeness and perfect convertibility property described
below. Completeness ensure that a valid ordinary signaturecan be retrieved from a valid partial signature.
A CVS scheme is perfectly convertible if nobody could distinguish whether a given ordinary signature is
extracted from a partial signature or generated directly.

Definition 2 A CVS scheme is complete6 if for all λ, all (PKS , skS) ∈ {CVKGS(1λ)}, all (PKW , skW ) ∈
{CVKGW(1λ)}, all m ∈M, all C ⊆ C ×W, and for allδ ∈ {CVSigS(m,C)}, the following holds:

VerSS(CVExtractS(m,C, δ)) = 1

Definition 3 A CVS scheme is said to be perfectly convertible if the following ensembles of random
variables are computationally indistinguishable (according to Definition 4 discussed later).

{(PKS , skS)← {CVKGS(1λ)};m←M : SigSS(m)},














(PKS , skS)← {CVKGS(1λ)};
(PKWl

, skWl
)← {CVKGW(1λ)},∀Wl ∈ W;

m←M;C ← 2C×W ;
σC ← {{SigW(ci,Wi) : (ci,Wi) ∈ C}}

: CVExtractS(m,C,CVSigS(m,C), σC)















Regarding security, a secure CVS scheme should also satisfyunforgeability, simulatability, cheat-
immunity, and zero knowledge confirmation protocol. There are other notions analogous to simulata-
bility, namely, anonymity and invisibility. Before formally defining these security notions, we need to
give a basic definition about the indistinguishability between two probability distributions, describe the
adversary capability allowed in our security model, and describe the signature and transcript simulators
needed for the definitions related to the non-verifiability of a partial signature.

Definition of Indistinguishability

We need the following definition of computational indistinguishability for the discussions in this section.

Definition 4 [Indistinguishability between Random Distributions] LetX = {Xλ} andY = {Yλ} be
two ensembles of random variables over the same sample spacefor all λ. X andY are computationally

6Note the short form of notations we use here, for example, we use CVSigS(m, C) to denote
CVSig(m,C, skS , PKS, PKC) as PKC could be uniquely determined byC. But keep in mind, the dropped parame-
ters are still needed in running the algorithm.
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indistinguishable (denoted byX ∼= Y) if the following is negligible inλ for all probabilistic polynomial
time (PPT) algorithmA:

|Pr[x← Xλ : A(x) = 1]− Pr[y ← Yλ : A(y) = 1]| ≤ ǫXY (λ)

We callǫXY the indistinguishability coefficient betweenX andY. This definition in essence means
we can transformXλ intoYλ and vice-versa by moving a negligible mass of probability distribution. The
following lemma would often be useful in showing indistinguishability between distributions.

Lemma 1 Given three ensembles of random variables,X = {Xλ}, Y = {Yλ} andZ = {Zλ},

X ∼= Y andY ∼= Z ⇒ X ∼= Z

The indistinguishability coefficients are related as follows: ǫXZ ≤ ǫXY + ǫY Z

Proof For any given algorithmA, let a = Pr[x← Xλ : A(x) = 1], b = Pr[y ← Yλ : A(y) = 1] and
c = Pr[z ← Zλ : A(z) = 1]. Using the well-known triangular inequality, that is,|a−c| ≤ |a−b|+|b−c|,
the relationship between the indistinguishability coefficients follows directly. Given the fact that the sum
of two negligible functions is still a negligible function,we can conclude thatX ∼= Z.

Corollary 2 Given polynomially many ensembles,X1,X2, . . . ,XN ,

X1
∼= X2,X2

∼= X3, . . . ,XN−1
∼= XN ⇒ X1

∼= XN

Oracle Queries — Allowed Adversary Interaction

In our security model, two types of adversary interaction are allowed:

1. Signing OracleOS(m,C). For fixed keysPKS , skS , {PKWl
}, {skWl

}, on input a signing query
〈m,C〉 (wherem ∈M andC = {(ci,Wi) : ci ∈ C,Wi ∈ W} is a set of verifiability conditions),
OS responds by runningCVSig to generate the corresponding partial signatureδ. After sendingδ
to the querying party,OS runs the confirmation protocolCVCon(S,V ) with the querying party to
confirm the validity ofδ. Note that a malicious querying party is allowed to put in any random
number in place ofδ when running the confirmation protocol.

2. Endorsement OracleOE(c,W ). For fixed keys{PKWl
}, {skWl

}, on input an endorsement
query 〈c,W 〉, QE responds by retrieving the needed witness private keyskW and then running
the witness endorsement/signing algorithmSigW (or CVEndW) to create a witness endorse-
ment/signatureσW (c) on the condition statementc.

As we consider adaptive attacks in our model, these oracle queries may be asked adaptively, that is, each
query may depend on the replies of the previous queries.

Partial Signature and Confirmation Transcript Simulators

As mentioned earlier, the simulatability property of a CVS scheme is formulated by means of the exis-
tence of a publicly known PPT partial signature simulator. Similarly, the zero knowledge property of the
confirmation protocol is formulated with a transcript simulator. The simulators used in this paper are as
follows.
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1. Partial Signature Simulator: Fake(m,C,PKS , PKC)→ δ′

2. Confirmation Protocol Transcript Simulator: FakeT(m,C, δ, PKS , PKC)→ π′

On input a set of verifiability conditionsC = {(ci,Wi) : ci ∈ C,Wi ∈ W}, FakeS(m,C) outputs a
“fake” partial signature ofS for a messagem under a set of verifiability conditionsC. FakeS(m,C) is
to simulate the output ofCVSigS(m,C). Similarly, FakeTS(m,C, δ) is to simulate the communication
transcript produced by the confirmation protocolCVCon(S,V )(m,C, δ) betweenS andV on input a
messagem, a set of verifiability conditionsC, and a partial signatureδ.

3.1.1 Unforgeability

Unforgeability ensures that even all the witnesses poolingout their private keys and given signatures
of a signer on messages of their choice should not be able to forge a valid signature on a message
not previously queried. The details of unforgeability would be better described by the following game
between a challenger and an adversary.

Definition 5 A CVS scheme is unforgeable against an adaptive chosen message attack if the probability
of winning the following game is negligible in the security parameterλ for all PPT adversariesA.

Setup. The challenger takes a security parameterλ, runs the key generation algorithms for the signer
and all witnesses, that is,(PKS , skS)← {CVKGS(1λ)} and(PKWl

, skWl
)← {CVKGW(1λ)}.

The challenger gives the adversary all the public keys,PKS and{PKWl
} and all the witness

private keys{skWl
}. The challenger keeps the signer’s private keyskS.

Query. The adversary is allowed to make queries toOS to request a partial signatureδj for 〈mj , Cj〉.
Note that the adversary has the witness private keys so noOE query is necessary.

Guess. The adversary halts and outputs a message-signature pair(m,σ) wherem 6= mj for all j.

Result. The adversary is said to win this game ifVerSS(m,σ) = 1.

The winning probabilitypUF
A

is taken over the coin tosses of the key generators, the signer, and the
adversary.Note that the adversary can extract ordinary signatures from any partial signatures as it is
given all the witness private keys.

3.1.2 Simulatability

Simulatability guarantees that nobody, allowed to query other ordinary and partial signatures, can tell
whether a given partial signature is genuine or fake. We formulate the simulatability property by means
of the existence of a publicly known PPT partial signature simulatorFake which generates a fake partial
signatureδf such that nobody (with bounded computational power) could tell (better than a wild guess)
whetherδ ∈ {CVSig(m,C, skS , PKS , PKC)} or δ ∈ {Fake(m,C,PKS , PKC)} for a givenδ. This
signature is fake as there is negligibly small probability that one could extract a valid ordinary signature
from it. The indistinguishability between these two distributions essentially implies that a valid partial
signature alone is no more convincing than any random number, namely, nobody could infer who has
signed it — the claimed signer (usingCVSig) or a forger (usingFake). Detailed formulation of the
simulatability property is described by the following game.

11



Definition 6 A CVS scheme is simulatable if there exists a PPT simulatorFake(m,C,PKS , PKC)
(with the same output space as that ofCVSig for all λ) which uses only public information of the signer
to simulate a partial signature on any arbitrary message andany set of verifiability conditions such
that the advantage of winning the following game is negligible in the security parameterλ for all PPT
distinguishers/adversariesD.

Setup. The challenger takes a security parameterλ, runs the key generation algorithms for the signer
and all witnesses, that is,(PKS , skS)← {CVKGS(1λ)} and(PKWl

, skWl
)← {CVKGW(1λ)}.

The challenger gives the adversary all the public keys,PKS and{PKWl
}. The challenger keeps

the witness private keys{skWl
} but gives the adversary the signer private keyskS .7

Query 1. The adversary makes queries to obtain the signer’s partial signatures and witness endorsement
signatures of messages of its choice until it is ready to receive a challenged partial signature. It can
make two types of oracle queries:

• Signing Query〈mj , Cj〉 toOS .

• Endorsement Query〈cj ,Wj〉 toOE .

As the simulatorFake is publicly known, the adversary could freely get a simulator output on
any message and conditions of his choice. Since the adversary is given the signer’s private key, in
addition toOS queries, it can also generate partial signatures of arbitrary messages and conditions
on its own. But even on identical input, these signatures maynot be the same as those from the
challenger since the random coins used are likely to be different.

Challenge. Once the adversary decides that Query 1 is over, it outputs a messagem ∈ M and a set
of conditionsC ⊂ C × W on which it wishes to be challenged. LetC1

E denote the set of all
endorsement queries sent toOE in Query 1. The only constraint is thatC\C1

E 6= φ (the empty
set).

The challenger flips a coinb ∈ {0, 1} and outputs the following challenge to the adversary:

δb =

{

CVSig(m,C, skS , PKS , PKC), b = 0
Fake(m,C,PKS , PKC), b = 1

Query 2. The adversary is allowed to run until it outputs a guess. LetC2
E be the set of queries that

have been made toOE so far in Query 2. The adversary can issue more (but polynomially many)
queries, both signing and endorsement queries, as in Query 1. But for endorsement queries, say
with input (cj ,Wj) , the following must hold:C\(C1

E ∪ C
2
E ∪ {(cj ,Wj)}) 6= φ.

Guess. The adversary halts and outputs a guessb′ for the hidden coinb.

Result. The adversary is said to win this game ifb′ = b. The advantage of the adversary is defined as:

AdvSim
D (λ) =

∣

∣

∣

∣

Pr[b′ = b]−
1

2

∣

∣

∣

∣

7We actually consider the strongest notion of security
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The probability is taken over all the random coins tossed by the key generators, the signer, the witnesses,
and the adversary.

Note that after fixing a challenge, the adversary is still allowed to query partial signatures of the
challenge in question becauseCVSig is a probabilistic procedure which would output different partial
signatures even when input with the same signing keys, the same message, and the same set of verifia-
bility conditions. Of course, we could only allow polynomially many of these queries. In fact, we are
already adopting the strongest notion of security with respect to the privacy of the signer.

In this definition of simulatability, the communication transcript of the confirmation protocol is not
given to the adversary. It is a natural question to ask whether the confirmation transcript would help in
distinguishing a genuine partial signature from the simulator output. If the indistinguishability property
still holds given with the transcript, the CVS scheme in question is said to be non-transferable. We will
show in Section 3.1.6, when discussing the security property of the confirmation protocol, that if the
confirmation protocol is zero knowledge, simulatability directly implies non-transferability.

The number of input arguments needed for the simulatorFake could lead to different tastes of sim-
ulatability, as summarized below. A CVS scheme is:

a. message-independent-simulatable, ifFake does not need the signed messagem as input.

b. signer-independent-simulatable, ifFake does not need the identity of the signerPKS as input.

c. condition-independent-simulatable, ifFake does not need the condition setC or PKC as input.

d. independently simulatable ifFake just randomly picks an element from the CVS signature space
without referencing to the message, the signer’s identity or the condition set.

3.1.3 Cheat-immunity

Cheat-immunity guarantees that the recipient of a partial signature cannot retrieve the ordinary signa-
ture without collecting all the needed witness signatures.We show later that cheat-immunity could be
achieved if a CVS scheme is simulatable and unforgeable and its confirmation protocol is zero knowl-
edge.

Definition 7 A CVS scheme is cheat-immune (against a chosen message and chosen verifiability condi-
tion attack) if the probability of winning the following game is negligible in the security parameterλ for
all PPT adversaryA.

Setup. The challenger takes a security parameterλ, runs the key generation algorithms for the signer
and all witnesses, that is,(PKS , skS)← {CVKGS(1λ)} and(PKWl

, skWl
)← {CVKGW(1λ)}.

The challenger gives the adversary all the public keys,PKS and{PKWl
}. The challenger keeps

all the private keysskS and{skWl
}.

Query 1. The adversary makes queries to obtain the signer’s partial signatures and witness endorsement
signatures on messages of its choice until it is ready to receive a challenged partial signature. It
can make two types of queries:

• Signing Query〈mj , Cj〉 toOS .

• Endorsement Query〈cj ,Wj〉 toOE .
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With these two types of queries, the adversary can obtain anyordinary signatures of the signer on
messages of his choice.

Challenge. Once the adversary decides that Query 1 is over, it outputs a messagem ∈ M and a set
of conditionsC ⊂ C × W on which it wishes to be challenged. LetC1

E denote the set of all
endorsement queries sent toOE in Query 1. The only constraint is thatC\C1

E 6= φ (the empty set)
andm 6= mj ,∀j.

The challenger usesCVSig to generate a partial signatureδ on messagem under conditionC. It
sendsδ as the challenge to the adversary and runs the confirmation protocolCVCon(S,V ) with it.

Query 2. The adversary is allowed to run until it outputs a guess. LetC2
E be the set of queries that

have been made toOE so far in Query 2. The adversary can issue more queries, both signing
and endorsement queries, as in Query 1. But for signing queries,mj 6= m, and for endorsement
queries, say with input(cj ,Wj), the following must hold:C\(C1

E ∪ C
2
E ∪ {(cj ,Wj)}) 6= φ.

Guess. The adversary halts and outputs an ordinary signatureσ for messagem.

Result. The adversary is said to win this game ifVerSS(m,σ) = 1.

The winning probabilitypCI
A

is taken over the coin tosses of the key generators, the signer, the witnesses,
and the adversary.

Note that a less restrictive adversary model could also be considered. In that model, the adversary is
allowed to pose a challenge message which has been previously queried but no ordinary signature on it
has been extracted so far using the results of all the endorsement queries made previously. However, a
tight reduction between unforgeability and cheat-immunity in this model with relaxed adversary restric-
tion would not be possible. Consequently, a slightly more restrictive model is considered in this paper
for the sake of tight reduction. In the real case, this restriction simply means that a signer should not
issue signatures to the same party on exactly the same message but with different verifiability conditions.
This could easily be achieved by padding a message with data like serial number and, in fact, we believe
this is a reasonable assumption in real practice. Besides, we also believe that a CVS scheme achiev-
ing the cheat-immunity property in the model considered in this paper would enjoy the same property
in a slightly relaxed model in which the signer could issue polynomially many signatures on the same
message but with different verifiability conditions to the same party.

3.1.4 Message Invisibility

As mentioned earlier, beside simulatability, there are twoother possible formulations of the non-verifiability
property of a partial signature — invisibility and anonymity. These definitions are variants of those in
[34, 6, 18]. In general, the notions of invisibility and anonymity are not exactly equivalent to simulata-
bility even though they are implied by simulatability in many cases.

Message invisibility ensures that given two messages and the partial signature of one of them, to-
gether with the associated verifiability conditions, nobody could tell which one of the messages the
partial signature belongs to. The rationale behind this notion is that, in the worst case, even though
the recipient can show to others who has signed a partial signature and under what conditions it would
become verifiable, nevertheless, there is doubt about whether it is valid for the alleged message as the
invisibility property guarantees that nobody (with bounded computational power) could link a message
to its partial signature. In other words, although everyoneknows the alleged signer has really signed a
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given partial signature, nobody could assure that it is not an old one on a different message being abused
by somebody. As a result, the signer is not bound to the alleged message and his privacy is protected.
The details of the invisibility property are as follows.

Definition 8 A CVS scheme is invisible (or message-invisible) if the advantage of winning the following
game is negligible in the security parameterλ for all PPT distinguishers/adversariesD.

Setup. The challenger takes a security parameterλ, runs the key generation algorithms for the signer
and all witnesses, that is,(PKS , skS)← {CVKGS(1λ)} and(PKWl

, skWl
)← {CVKGW(1λ)}.

The challenger gives the adversary all the public keys,PKS and{PKWl
}. The challenger keeps

the witness private keys{skWl
} but gives the adversary the signer private keyskS .

Query 1. The adversary makes queries to obtain the signer’s partial signatures and witness signatures of
messages of his choice until it is ready to receive a challenged partial signature. It can make two
types of queries:

• Signing Query〈mj , Cj〉 toOS .

• Endorsement Query〈cj ,Wj〉 toOE .

Challenge. Once the adversary decides that Query 1 is over, it outputs two equal length messages
M0,M1 ∈ M and a set of conditionsC ⊂ C × W on which it wishes to be challenged. Let
C1

E denote the set of all endorsement queries sent toOE in Query 1. The only constraint is that
C\C1

E 6= φ (the empty set).

The challenger flips a coinb ∈ {0, 1} and outputs the following challenge to the adversary:

δb = CVSig(Mb, C, skS , PKS , PKC)

Query 2. The adversary is allowed to run until it outputs a guess. LetC2
E be the set of queries that

have been made toOE so far in Query 2. The adversary can issue more (but polynomially many)
queries, both signing and endorsement queries, as in Query 1. But for endorsement queries, say
with input (cj ,Wj) , the following must hold:C\(C1

E ∪ C
2
E ∪ {(cj ,Wj)}) 6= φ.

Guess. The adversary halts and outputs a guessb′ for the hidden coinb.

Result. The adversary is said to win this game ifb′ = b. The advantage of the adversary is defined as:

AdvInv
D (λ) =

∣

∣

∣

∣

Pr[b′ = b]−
1

2

∣

∣

∣

∣

The probability is taken over all the random coins tossed by the key generators, the signer, the witnesses,
and the adversary.

3.1.5 Signer Anonymity

Anonymity ensures that given two possible signers, a message, and a set of verifiability conditions,
together with a partial signature on the message and conditions from one of the signers, nobody could
tell which one of the signers has actually created the partial signature. That is, nobody could link a
partial signature to its signer. Similar to invisibility, the rationale behind the notion of anonymity is that,
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in the worst case, even the recipient can show to others whichmessage a partial signature is signed for
and under what conditions it would become verifiable, nobodycould tell whether the partial signature
in question was created by the alleged signer or the recipient himself. Hence, the signer’s privacy is
protected. In general, anonymity could provide seemingly better privacy protection than invisibility.

Definition 9 A CVS scheme is anonymous (or signer-anonymous) if the advantage of winning the fol-
lowing game is negligible in the security parameterλ for all PPT distinguishers/adversariesD.

Setup. The challenger takes a security parameterλ, runs the key generation algorithms for two sign-
ers (S0 andS1) and all witnesses, that is,(PKS0, skS0) ← {CVKGS(1λ)}, (PKS1, skS1) ←
{CVKGS(1λ)}, and(PKWl

, skWl
) ← {CVKGW(1λ)}. The challenger gives the adversary all

the public keys,PKS0, PKS1, and{PKWl
}. The challenger keeps the witness private keys

{skWl
} but gives the adversary the two signer private keysskS0 andskS1.

Query 1. The adversary makes queries to obtain the signer’s partial signatures and witness signatures of
messages of his choice until it is ready to receive a challenged partial signature. It can make two
types of queries:

• Signing Query〈sj,mj , Cj〉 (with sj ∈ {0, 1}) toOS wheresj = 0/1 represents requesting
a partial signature fromS0/S1.

• Endorsement Query〈cj ,Wj〉 toOE .

Challenge. Once the adversary decides that Query 1 is over it outputs a messagem ∈ M and a set
of conditionsC ⊂ C × W on which it wishes to be challenged. LetC1

E denote the set of all
endorsement queries sent toOE in Query 1. The only constraint is thatC\C1

E 6= φ (the empty
set).

The challenger flips a coinb ∈ {0, 1} and outputs the following challenge to the adversary:

δb = CVSig(m,C, skSb, PKSb, PKC)

Query 2. The adversary is allowed to run until it outputs a guess. LetC2
E be the set of queries that

have been made toOE so far in Query 2. The adversary can issue more (but polynomially many)
queries, both signing and endorsement queries, as in Query 1. But for endorsement queries, say
with input (cj ,Wj) , the following must hold:C\(C1

E ∪ C
2
E ∪ {(cj ,Wj)}) 6= φ.

Guess. The adversary halts and outputs a guessb′ for the hidden coinb.

Result. The adversary is said to win this game ifb′ = b. The advantage of the adversary is defined as:

AdvAno
D (λ) =

∣

∣

∣

∣

Pr[b′ = b]−
1

2

∣

∣

∣

∣

The probability is taken over all the random coins tossed by the key generators, the signers, the witnesses,
and the adversary.

As mentioned before, both invisibility and anonymity couldlimit the accountability of the signer of a
partial signature to a more or less degree, thus protecting his privacy. Overall, we believe simulatability
and anonymity provide seemingly better protection of signer privacy. The reason is if a CVS scheme
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is invisible, one may be able to link a genuine partial signature to its signer (but could not assure if it
is for the alleged message), whereas, if a CVS scheme is simulatable or anonymous, a genuine partial
signature is indistinguishable from a fake one (possibly generated by the signature holder). Similar
to simulatability, provided that the confirmation protocolis zero-knowledge, the transcript would not
provide any additional information useful for breaking theinvisibility and anonymity properties. This
will be discussed in Section 3.1.6.

Note that we do not formulate any security notion related to protecting the indistinguishability of the
verifiability conditions alone as there seems to have no point to make such a formulation if someone can
determine who has signed on which message given a partial signature. Even though the partial signature
looks different from an ordinary signature (and possibly have no legal binding power), if the identity of
the signer and his signed message are revealed, it is meaningless to ensure the privacy of the verifiability
conditions. We think this is hardly better than embedding ina signed message the verifiability conditions
and signing it with an ordinary signature. Certainly, we need to distinguish between this case of just
hiding the verifiability conditions (but leaving the signeridentity and the message disclosed) and the
case of hiding all information including the signer identity, the message and the verifiability conditions.
The latter is the most desired property of a partial signature which provides the highest possible level of
signer privacy but could be difficult to achieve.

3.1.6 Properties of the Confirmation Protocol

In the definition of the confirmation protocol, we do not impose any restriction on whether it should be
interactive or non-interactive. But the interactive version is discussed in the paper. Like any protocol
of zero-knowledge proof, completeness, soundness and zeroknowledge are the required properties of
the confirmation protocolCVCon(S,V ). Recall that if a given partial signature is valid for the given
message and verifiability conditions,CVCon(S,V ) returns 1 and, otherwise, 0. The definitions are stated
as follows.

Definition 10 Completeness.For all (PKS , skS) ∈ {CVKGS(1λ)}, all (PKW , skW ) ∈ {CVKGW(1λ)},
all m ∈M, all C ⊆ C ×W, all σC ∈ {{CVEndW(ci,Wi) : (ci,Wi) ∈ C}}, and allδ ∈ {0, 1}∗,
if VerSS(m,CVExtractS(m,C, δ, σC )) = 1 (i.e. the extracted ordinary signature is valid), then

Pr[CVCon(S,V )(m,C, δ) = 0] < ε(λ)

whereε(λ) is a negligible function in the security parameterλ.

Definition 11 Soundness.Using the same random experiment as in the definition of completeness,
if VerSS(m,CVExtractS(m,C, δ, σC )) = 0 (i.e. the extracted ordinary signature is invalid), then

Pr[CVCon(S,V )(m,C, δ) = 1] < ε(λ)

whereε(λ) is a negligible function in the security parameterλ.

Definition 12 Zero-knowledge.Suppose the same random experiment as in the definition of complete-
ness has been set up. For a given input instancex = 〈m,C, δ, PKS , PKC〉 to the confirmation protocol
VCCon(S,V )(x) = 〈CVConS(rS),CVConV∗()〉(x), let πVCCon

(S,V ) (x) denote the resulting communica-
tion transcript produced by the confirmation protocol run between the proverS (with private inputrS)
and the verifierV (which may deviate from the specified protocol).VCCon(S,V ) is zero-knowledge if
there exists a PPT simulatorSimT(x) which could produce a simulated transcriptπSimT(x) without us-
ing the private input of the proverS in such a way that the distributions{πVCCon

(S,V ) (x)} and{πSimT(x)}
are computationally indistinguishable in terms of the security parameterλ.
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Note here we use the alternative definition of zero knowledgeinstead of the standard one which states
that anything computable by a malicious verifier through interaction with the prover can be computed on
his own without interacting with the prover. As mentioned earlier, the need of the zero knowledge prop-
erty is to ensure the non-transferability of a partial signature along with the transcript of its confirmation
protocol run, which is stated below.

Definition 13 Non-transferability. Given a CVS scheme simulatable with respect to a PPT fake partial
signature simulatorFake (according to Definition 6), letδt = CVSigS(m,C) andδf = FakeS(m,C)
be the true and fake partial signatures of a signerS on a messagem with a verifiability condition
setC. Let πCVCon

(S,V ) (m,C, δt) denote the communication transcript of the confirmation protocol run on
δt. Suppose there exists a PPT transcript simulatorFakeT taking δf as input to generate a simulated
transcriptπFakeT(m,C, δf ) as if δf is a valid partial signature. The CVS scheme is non-transferable if
the following distributions are computationally indistinguishable in terms of the security parameterλ:

{CVSigS(m,C), πCVCon
S,V (m,C,CVSigS(m,C))}, {FakeS(m,C), πFakeT(m,C,FakeS(m,C))}

As mentioned earlier, the non-transferability property isto ensure that the communication transcript
of carrying the confirmation protocol on a genuine partial signature would not provide information
non-negligibly help to determine the validity of the partial signature. The idea of formulating non-
transferability using the transcript simulator is if anyone could use public information of the signer to
generate a fake partial signature (fromFake) and a fake transcript for it (fromFakeT) so that they are
indistinguishable from a genuine partial signature and itsgenuine transcript, then a genuine partial sig-
nature along with its transcript is unlinkable to its signer. Such indistinguishability is possible because
no interaction between the prover and the verifier is needed,and only a simulated transcript is produced.

We do not incorporate the adaptive attack model in the non-transferability definition as in the defi-
nition of simulatability, but the modification should be straightforward, which could be done by simply
adding a genuine/simulated transcript to a genuine/fake partial signature in the challenge phase of the
simulatability game in Definition 6. In fact, we could show that ensuring a CVS scheme satisfying simu-
latability in an adaptive attack model together with a zero-knowledge confirmation protocol for it would
guarantee its non-transferability in the same adaptive attack model.

Just like the simulatability property whose fulfillment hinges on the existence of a PPT simulator
Fake, the fulfillment of the non-transferability property depends on the existence of a PPT transcript
simulatorFakeT. If we recall that in the zero knowledge definition (Definition 12), a zero knowledge
confirmation protocol implies the existence of a PPT transcript simulatorSimT which, on input a partial
signatureδt, outputs a transcript indistinguishable from a true one recorded during a run of the confirma-
tion protocol onδt, one may be tempted to useSimT as an implementation forFakeT. At first glance,
it looks fine. However, the indistinguishability between the real transcript and the simulated transcript
in any zero-knowledge proof is based on the assumption that they come up from the same input and the
claim to prove is true. If we useSimT to implementFakeT, the input to the simulator is no longer a
genuine partial signature, thus violating this basic assumption. A detailed explanation is as follows.

The transcript simulatorSimT of any zero knowledge proof is usually implemented by emulating
the conversation between a prover and a verifier. In each round of iteration, even though a claim to prove
is false, a malicious prover (without any knowledge of the needed private information) could always
answer a fraction of all possible challenge questions; the correctness of a claim in any (interactive)
zero knowledge proof is assured through actual interactionbetween the prover and the signer. Hence,
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the “rewinding” technique8 is commonly adopted to simulate a transcript. By replacing the input to
SimT with a fake signature, one could still produce a transcript that appears to be valid and passes the
verification test ofCVCon(S,V ) in all iterations. That looks fine at first glance, but the distributions of
the two transcripts{πCVCon

(S,V ) (m,C, δt)} and{πSimT(m,C, δf )} (whereδt = CVSigS(m,C) andδf =

FakeS(m,C)) are not necessarily indistinguishable even though the confirmation protocol is perfectly
zero knowledge with respect toSimT. In fact, to pass the verification test, the output space ofSimT fed
with an invalid partial signature is likely to be different than that fed with a valid partial signature, that
is, the following two distributions could differ considerably: {πSimT(m,C, δt)} and{πSimT(m,C, δf )}.

Although the zero knowledge property of the confirmation protocol CVCon(S,V ) with respect to
SimT alone is not sufficient to ensure non-transferability, we can still show that, for any CVS scheme,
if {CVSigS(m,C)} ∼= {FakeS(m,C)}, then the zero-knowledge property of the confirmation protocol
CVCon(S,V ) implies the non-transferability property (not in an adaptive attack model) and we could use
SimT asFakeT. Before we prove the theorem, we need the following lemma.

Lemma 3 Given two ensembles of distribution{Xλ} and{Yλ}, which have the same sample space for
all λ, and a PPT algorithmTλ (a transcript simulator) whose input space is the same as that ofXλ and
Yλ, letπ(x) denote the output ofTλ on inputx.9 If {Xλ} ∼= {Yλ} in the security parameterλ, then

{x← Xλ;π(x)← {Tλ(x)} : (x, π(x))} ∼= {y ← Yλ;π(y)← {Tλ(y)} : (y, π(y))}

Proof The reduction is straightforward. For completeness, a proof is given in Appendix A.

Theorem 4 For any CVS scheme, if there exists a fake partial signature simulator Fake such that
{CVSigS(m,C)} ∼= {FakeS(m,C)} for all S,m,C and its confirmation protocol is zero knowledge
with respect to a transcript simulatorSimT, thenSimT could be used as a transcript simulatorFakeT
for the fake partial signatureFake so that the following two distributions are indistinguishable for all
S,m,C (i.e. non-transferable not in an adaptive attack model):

{CVSigS(m,C), πCVCon
S,V (m,C,CVSigS(m,C))}, {FakeS(m,C), πFakeT(m,C,FakeS(m,C))}

whereπCVCon
S,V (·) andπFakeT(·) are the transcript outputs of a real confirmation protocol run andFakeT

respectively.

Proof Let δt = CVSigS(m,C) andδf = FakeS(m,C),10 then the following two distributions are
indistinguishable:{δt} and{δf}. Let πCVCon

S,V , πSimT, andπFakeT denote the transcript outputs of a real
confirmation protocol run,SimT, andFakeT respectively. Then using Lemma 3,

{(δt, π
SimT(δt))} ∼= {(δf , π

SimT(δf ))} ⇔ {(δt, π
SimT(δt))} ∼= {(δf , π

FakeT(δf ))} ∀S,m,C

The zero-knowledge property ofCVCon(S,V ) with respect toSimT ensures the following:

{(δt, π
CVCon
S,V (δt))} ∼= {(δt, π

SimT(δt))}, ∀S,m,C

8In the rewinding technique, the simulator emulates a version of the zero-knowledge protocol between a prover and a
verifier. In each round of iteration, it prepares the answer to a randomly picked challenge question beforehand, and runsthe
verifier algorithm to generate a challenge. When the challenge turns out to be what it has prepared, it just returns the prepared
answer, whereas, if asked of a different challenge, it resets the verifier to go back to the start of the current iteration and prepares
for another challenge.

9Note thatTλ is probabilistic, so even for the same inputx, Tλ(x) may be different between two evaluations.
10SinceCVSig andFake are probabilistic, bothδt andδf are random variables.
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By Lemma 1, the following two distributions are indistinguishable:

{(δt, π
CVCon
S,V (δt))} ∼= {(δf , π

FakeT(δf ))}, ∀S,m,C

Note the above theorem does not incorporate an adaptive attack model which is considered in the
following theorem.

Theorem 5 Given that a CVS scheme is simulatable with respect to a PPT fake partial signature simu-
lator Fake, if its confirmation protocolCVCon(S,V ) is zero knowledge with respect to a PPT transcript
simulatorSimT, then it is non-transferable in the same adaptive attack model as in the simulatability
definition andSimT could be used as the transcript simulatorFakeT for the fake partial signatureFake.
In other words, the following two distributions are indistinguishable for allS,m,C in an adaptive attack
model:

{CVSigS(m,C), πCVCon
S,V (m,C,CVSigS(m,C))}, {FakeS(m,C), πFakeT(m,C,FakeS(m,C))}

whereπCVCon
S,V (·) and πFakeT(·) are transcript outputs of a real confirmation protocol run and FakeT

respectively.

Proof We prove by contradiction. We assume that the CVS scheme is simulatable with respect to a
PPT simulatorFake, that is, the advantageAdvSim

D
for breaking the simulatability with respect toFake is

negligible for all PPT adversariesD. Assume we use the transcript simulatorSimT of the zero knowledge
proof for the confirmation protocol as the transcript simulator FakeT for the fake signature. Suppose
there is a PPT distinguisherD which could break the non-transferability property with respect toFake
andFakeT with non-negligible advantageAdvNT

D , then we can constructD′ to break the simulatability
property as follows:

D′(δb) whereδb is a genuine/fake partial signature whenb = 0/1

Setup.
Ask its challenger for the public keys of the signer and the witnesses
RunD on the same set of public keys.
Get the signer’s private key from its challenger and pass it toD.
Query.
Answer all the signing queries itself.
Pass all the endorsement queries fromD to its oracle and relay the results back toD.
Challenge.
D outputs(m,C) it wish to be challenged.
Output(m,C) as its challenge request and receive a challengeδb.
ComputeπSimT(δb) and pass(δb, πSimT(δb)) as a challenge toD.
Guess.
D outputsb′ as a guess forb. Outputb′.

The query responses are perfectly simulated; the view ofD in the simulated environment is identical
to its view in a real attack. Letδt = CVSigS(m,C) andδf = FakeS(m,C). Whenb = 1, the chal-
lenge is a fake partial signatureδf andπSimT(δb) = πFakeT(δf ), and the input toD is (δf , π

FakeT(δf )).
Whereas, whenb = 0, the challenge is a true partial signatureδt andπSimT(δb) = πSimT(δt), and
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the input toD is (δt, π
SimT(δt)). Due to the zero knowledge property of the confirmation protocol,

(δt, π
SimT(δt)) could perfectly simulate(δt, πCVCon

S,V (δt)), a valid challenge toD. As a result, the chal-

lenge toD is perfectly simulated no matterb = 0 or b = 1. It could be seen thatAdvSim
D′ = AdvNT

D

which is non-negligible ifD can break the non-transferability property. This concludes the reduction.
Instead of stating the zero knowledge property informally as above, a more rigorous treatment is

possible by evaluating the probability of success ofD andD′ respectively.

The probability of success ofD′ with respect to the simulatability game is given by:

PrSim
D′ [Success] = 1

2 (Pr[D′(δt) = 0] + Pr[D′(δf ) = 1])

= 1
2(Pr[D(δt, π

SimT(δt)) = 0] + Pr[D(δf , π
FakeT(δf )) = 1])

The probability of success ofD with respect to the non-transferability game is given by:

PrNT
D [Success] = 1

2(Pr[D(δt, π
CVCon
S,V (δt)) = 0] + Pr[D(δf , π

FakeT(δf )) = 1])

= 1
2(Pr[D(δt, π

CVCon
S,V (δt)) = 0]− Pr[D(δt, π

SimT(δt)) = 0]

+Pr[D(δt, π
SimT(δt)) = 0] + Pr[D(δf , π

FakeT(δf )) = 1])

= PrSim
D′ [Success] + 1

2 (Pr[D(δt, π
CVCon
S,V (δt)) = 0]− Pr[D(δt, π

SimT(δt)) = 0])

Taking absolute values on both sides,

AdvNT
D ≤ AdvSim

D′ + 1
2 |Pr[D(δt, π

CVCon
S,V (δt)) = 0]− Pr[D(δt, π

SimT(δt)) = 0]|

= AdvSim
D′ + 1

2 |Pr[D(πCVCon
S,V (δt)) = 1]− Pr[D(πSimT(δt)) = 1]|

Due to the zero knowledge property, that is,{πCVCon
S,V (δt)} ∼= {π

SimT(δt)}, which actually means

that |Pr[D(πCVCon
S,V (δt)) = 1] − Pr[D(πSimT(δt)) = 1]| is negligible in the security parameterλ for all

PPTD. As a result,AdvNT
D ≤ AdvSim

D′ up to a negligible term (inλ). If AdvNT
D is non-negligible, then

AdvSim
D′ must also be non-negligible, which is a contradiction as we assumeAdvSim

D
is negligible inλ

for all PPTD (the simulatability property). In other words, simulatability implies non-transferability if
the confirmation protocol is zero knowledge.

Using similar argument, we could arrive at the following twotheorems about invisibility and anonymity.

Theorem 6 Given that a CVS scheme is invisible, if its confirmation protocolCVCon(S,V ) is zero knowl-
edge with respect to a PPT transcript simulatorSimT, then the confirmation transcriptπCVCon

S,V does not
leak out information for breaking the invisibility property and the CVS scheme remains invisible in the
following sense in the same adaptive attack model:

{CVSigS(m0, C), πVCCon
S,V (CVSigS(m0, C))} ∼= {CVSigS(m1, C), πVCCon

S,V (CVSigS(m1, C))}

for all signerS, messagesm0,m1 and conditionC.

Theorem 7 Given that a CVS scheme is anonymous, if its confirmation protocol CVCon(S,V ) is zero
knowledge with respect to a PPT transcript simulatorSimT, then the confirmation transcriptπCVCon

S,V

does not leak out information for breaking the anonymity property and the CVS scheme remains anony-
moys in the following sense in the same adaptive attack model:

{CVSigS0(m,C), πVCCon
(S,V ) (CVSigS0(m,C))} ∼= {CVSigS1(m,C), πVCCon

(S,V ) (CVSigS1(m,C))}

for all signersS0, S1, messagem and conditionC.
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The practical significance of Theorems 5 - 7 is that we could separate the designs of the CVS signing
algorithm from that of the confirmation protocol, thus breaking down a more complex problem into two
simpler ones. It also set out the sufficient conditions underwhich the transcript of a given confirmation
protocol would not leak out knowledge to help in breaking theunderlying security properties, be it
simulatability, invisibility or anonymity. In fact, in ourefficient constructions in Section 6, we separate
the design into two parts — a blinding mechanism to hide an ordinary signature and a confirmation
protocol.

3.2 Required Properties of a Secure CVS Scheme

As discussed before, a CVS scheme must balance the protection between the interests of the signer
and the recipient. To protect the signer’s privacy, the verifiability of his partial signatures must be limited
before all his specified conditions are fulfilled. Hence, a secure CVS scheme should be unforgeable, non-
transferable, and cheat-immune. On the other hand, to protect the interest of the recipient, a CVS scheme
should provide an assurance that the signer’s partial signature could be validated after all the conditions
are fulfilled, which is guaranteed by the completeness of theCVS scheme and the soundness of its
confirmation protocol. Besides, a good CVS scheme should also protect the privacy of the recipient in the
sense that nobody would be able to see from a recovered ordinary signature what the recipient has done
to validate the signature. This could be achieved by the perfect convertibility property. If a CVS scheme
is perfectly convertible, an ordinary signature extractedfrom a partial signature is indistinguishable from
a usual ordinary signature generated by the signer directly.

To summarize, a desired CVS scheme should be unforgeable, non-transferable, cheat-immune, com-
plete, and perfectly convertible, and its confirmation protocol should be sound. As shown previously,
the non-transferability property of a CVS scheme could be achieved if it is simulatable and its con-
firmation protocol is zero knowledge. Since working with thelatter two properties has the advantage
of design separability, we would prefer to use the followingset of equivalent requirements on a CVS
scheme: unforgeability, simulatability, cheat-immunity, completeness, and perfectly convertibility, and a
zero knowledge confirmation protocol.

To further distill down this set of required properties intoa smaller set, we will discuss the im-
plications between some of these security notions in the next section. One of the main results is that
cheat-immunity is implied by the unforgeability and simulatability properties. Regarding the simulata-
bility property, there are two other similar but not exactlyequivalent notions, namely, invisibility and
anonymity. Although we believe simulatability is more pertinent in modeling the desired non-verifiability
property, it is nice to see under what conditions simulatability implies invisibility and anonymity. We
show in the next section that simulatability implies invisibility if the simulator is message-independent
and anonymity if the simulator is signer-independent.

To prove that a CVS scheme satisfies all the desired properties, we only need to prove that it is
unforgeable and simulatable with respect to a PPT simulator, and its confirmation protocol is zero-
knowledge. This also leads to a natural paradigm for designing secure CVS schemes. More concretely,
we could first choose an unforgeable ordinary signature scheme, and then construct a blinding mecha-
nism which could make an ordinary signature covert in a partial signature in such a way that there exists
a public, PPT fake signature simulator whose output is indistinguishable from the partial signature. (Of
course, we may need to move back reconsidering the hiding mechanism while searching for an efficient
simulator but this paradigm already provides a systematic way for designing CVS schemes). Finally,
we only need to search for a zero-knowledge proof for the confirmation protocol, which could be triv-
ial regardless of its efficiency. Additional property like invisibility (anonymity) could be achieved by
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searching for a message (signer)-independent signature simulator.

3.3 Relations between Security Notions

In this section, we discuss the relations between the security notions of a CVS scheme, the purpose of
which is to find out whether one notion is implicitly implied in the other or they are exclusive, and under
what conditions such an implication exists. With this knowledge, one could simply focus on a smaller set
of security properties when designing a CVS scheme or analyzing its security. Before doing so, we first
consider the difference between the notions of indistinguishability with and without adaptive queries.

In general, we could possibly view the definitions of simulatability, invisibility and anonymity as a
formulation of indistinguishability between two random distributions, that is, between a partial signature
and the corresponding simulator output in simulatability,between signatures on the same message and
condition set but using two different signing keys in anonymity, and between signatures of the same
signer on the same condition set but for two different messages in invisibility. These notions of in-
distinguishability are computational in the sense that there is some kind of trapdoor, for each setC of
verifiability conditions, without the knowledge of which the distributions in question are indistinguish-
able. However, if the trapdoor is known, then anyone could distinguish which distribution a give entity
belongs to. In CVS, this trapdoor is the needed witness signatures or endorsements specified inC. If one
knows all the witness signatures needed for a given partial signature, he could extract the ordinary signa-
ture from it to check whether the extracted signature is valid to distinguish between the two distributions:
{CVSigS(m,C)} and{FakeS(m,C)}.

In our definitions, we adopt a strong type of adversary which is allowed to query the trapdoors (wit-
ness signatures) for other verifiability conditions but notexactly the same set of conditions in question.
It can be seen that two indistinguishable distributions maynot remain indistinguishable to an adversary
not given the needed trapdoor but allowed to query other trapdoors. Whereas, the indistinguishability
between two distributions in the adaptive trapdoor query model guarantees indistinguishability to any
adversary without the knowledge of the needed trapdoor.

3.3.1 Ensuring Cheat-immunity

The following theorem allows one to ignore the cheat-immunity requirement when designing a CVS
scheme as long as he could ensure the scheme is unforgeable and simulatable and its confirmation pro-
tocol is zero-knowledge.

Theorem 8 An unforgeable and simulatable CVS scheme is also cheat-immune given its confirmation
protocol is zero knowledge.

Proof See Appendix A.

3.3.2 Equivalence between the Notions of Simulatability, Invisibility and Anonymity

The definitions of invisibility and anonymity in this paper are adopted from the work on undeniable sig-
natures and designated confirmer signatures in the literature including [4, 37, 23, 34, 6, 18, 1]. Learning
from the experience of this line of work, whether to considerinvisibility or anonymity as the design goal
could be perplexing sometimes. As a result, we attempt to sort out whether one notion is implicitly im-
plied by the other in the context of CVS and under what assumptions or conditions such an implication
exists. The following theorems show the implication and separation between the notions of simulatability
and anonymity and invisibility.
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Theorem 9 Given a simulatable CVS scheme in an adaptive query model with respect to a PPT fake
signature simulatorFakeS(m,C), it is message-invisible in the same adaptive query model ifand only
if {FakeS(m0, C)} ∼= {FakeS(m1, C)} in the same adaptive query model for allS,m0,m1, andC.

Proof See Appendix A.

Theorem 10 Given a simulatable CVS scheme in an adaptive query model with respect to a PPT fake
signature simulatorFakeS(m,C), it is signer-anonymous in the same adaptive query model if and only
if {FakeS0(m,C)} ∼= {FakeS1(m,C)} in the same adaptive query model for allS0, S1,m, andC.

Proof See Appendix A.

Corollary 11 (1) A message-independent simulatable CVS scheme is also message-invisible. (2) A
signer-independent simulatable CVS scheme is also signer-anonymous. (3) An independently simulat-
able CVS scheme is both message-invisible and signer-anonymous.

Proof Proof follows directly from Theorems 9 and 10.

Theorem 12 Message invisibility of a CVS scheme does not implies its simulatability.

Proof We show that the condition necessary for a message-invisible CVS scheme to be simulatable
is there exists a fake signature simulatorFakeS(m,C) for all S,m,C such that{FakeS(m,C)} ∼=
{CVSigS(m,C)} in the same adaptive query model. This condition itself is already sufficient to guar-
antee the simulatability of the CVS scheme. Hence, we could conclude that invisibility does not imply
simulatability in any sense.
For details, please see Appendix A.

Theorem 13 Signer anonymity of a CVS scheme does not implies its simulatability.

Proof We show that the condition necessary for a signer-anonymousCVS scheme to be simulatable
is there exists a fake signature simulatorFakeS(m,C) for all S,m,C such that{FakeS(m,C)} ∼=
{CVSigS(m,C)} in the same adaptive query model. This condition itself is already sufficient to guar-
antee the simulatability of the CVS scheme. Hence, we could conclude that anonymity does not imply
simulatability in any sense.
For details, please see Appendix A.

Theorem 14 Assuming the partial signatures of a CVS scheme generated from two distinct and indepen-
dently picked public/private key pairs (i.e. from two different signers) are independent, an anonymous
CVS scheme is also invisible.

Proof See Appendix A.

We believe that the condition for Theorem 14 to hold is usually fulfilled in practice. Hence, anonymity
should imply invisibility.

It should be noted that the reduction used in proving these theorems or showing the implications bases
on no additional computational assumption, and effectively no extra computation is needed in achieving
such reduction. Therefore, these results could be applied to a fairly board and general scenarios. Besides,
we use the weakest possible assumptions or conditions sufficient for such implications to hold.
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4 Preliminaries

In Section 4.1, we present a number of cryptographic primitives necessary for the generic CVS construc-
tion to be discussed in Section 5. Besides, we review bilinear pairings in Section 4.2 which is needed for
the efficient CVS construction in Section 6.

4.1 Basic Primitives

We consider four types of cryptographic primitives mainly used for the generic construction of CVS
in Section 5. They are: identity based encryption (IBE), signatures (SIG), multi-bit commitments
(COM ), and pseudorandom generators (PRG).

4.1.1 Identity Based Encryption

We use similar notations as in [2] for identity based encryption. A standard IBE schemeIBE =
{Setup,Extract,Enc,Dec} consists of a private key generator (PKG) and a number of users, and
is made up of four algorithms:

Setup(1λ)→ (PKG, skG): the key setup algorithm which outputs a public/private key pair (PKG, skG)
for the PKG.

Extract(ID, skG)→ dID: the private key extraction algorithm run by PKG which outputs a private
keydID for the identityID.

Enc(PKG, ID,M)→ C: the encryption algorithm taking an identityID and a messagem to output
the ciphertextC.

Dec(PKG, C, dID)→M : the decryption algorithm taking a ciphertextC and a private keydID to
output the plaintextM .

Note that, unlike the description in [2], we incorporate allthe public parameters in the PKG public key
PKG, and this public key is needed in all encryption and decryption.

Security of IBE.
In [2], Boneh and Franklin considered the strongest security notion for IBE, namely semantic security

or indistinguishability against an adaptive chosen ciphertext attack (IND-ID-CCA). Although chosen-
ciphertext security is the standard acceptable notion for encryption schemes, we only consider a weaker
notion — semantic security against a chosen plaintext attack (IND-ID-CPA) or semantic security for
short — which is sufficient for our generic construction of CVS. An IBE is semantically secure if no
PPT adversaryA could win the following game with a non-negligible advantage:

Setup. The challenger runsSetup to generate a PKG public/private key pair(PKG, skG), and gives the
public keyPKG to the adversary but keeps the private/master keyskG.

Query 1. The adversary could issue to the challenger one type of queries:

• Extraction Query〈IDj〉. The challenger responds by runningExtract on IDj to generate
the corresponding private keydj = dIDj

and gives it to the adversary.
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Challenge. Once the adversary decides that the first query phase is over it outputs two plaintextsM0,M1

and an identityID to be challenged. The only constraint is thatID did not appear in any of the
previous extraction queries, that is,ID 6= IDj , ∀j. The challenger flips a coinb ∈ {0, 1}, set
C = Enc(PKG, ID,Mb) and sendsC to the adversary.

Query 2. The adversary is allowed to make more queries as previously done but no query can be made
on the challengedID.

Guess. Finally, the adversary outputs a guessb′ ∈ {0, 1} for b.

Result. The adversary wins the game ifb′ = b. The advantage of the adversary is defined as:

AdvIBE
A =

∣

∣

∣

∣

Pr[b′ = b]−
1

2

∣

∣

∣

∣

4.1.2 Signatures

A signature schemeSIG = {SKG,Sig, V er} consists of three algorithms:

SKG(1λ)→ (PKS , skS): the key generator which generates the public/private key pair (PKS , skS)
for a signerS.

Sig(m, skS)→ σ: the signing algorithm taking a messagem and a private keyskS to output a signature
σ onm.

V er(m,σ, PKS)→ v ∈ {0, 1}: the signature verification algorithm taking a messagem a signatureσ
and a public keyPKS to check whetherσ is a valid signature ofS onm. If it is, V er outputs 1,
otherwise, 0.

Security of SIG.
A signature scheme is considered secure if the probability of successful existential forgery is negligi-

ble even under chosen message attacks. In details, this means the following: An adversaryA is allowed
to make oracle access adaptively to obtain signatures of a targeted signerS on any messagemj of his
choice; he could make a query based on the results of the previous queries. Finally,A has to output
a message-signature pair(m,σ). The probability that the signature is a valid one for the message (i.e.
V er(m,σ, PKS) = 1) and the message has not be queried before (i.em 6= mj, ∀j) should be negligible
for all PPTA.

4.1.3 Pseudorandom Generators

Assumel(n) > n. Let x ← X denote thatx is uniformly sampled fromX. h : {0, 1}n → {0, 1}l(n) is
a pseudorandom generator [24] if the following is negligible inn for all PPT distinguisherD:

∣

∣

∣
Pr[y ← {0, 1}l(n) : D(y) = 1]− Pr[s← {0, 1}n : D(h(s)) = 1]

∣

∣

∣

This in essence means thath take a seeds to generate a stringh(s) of longer lengthl(n) and nobody
could distinguishh(s) from a uniformly sampled string from{0, 1}l(n).
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4.1.4 Commitments

We adopt the multi-bit commitment definitions [35, 15] instead of the common single-bit commitment
[35]. The core of a cryptographic commitment scheme is the committing algorithmCom(s,m) → c
on input a messagem and a randomly chosen salts outputting a commitmentc. By revealings andm,
one can check whether a commitmentc is properly formed. A commitment scheme should satisfy the
following properties:

Binding. Let λ be the security parameter, then the following is negligible(computationally binding) or
zero (perfectly binding) for all PPT algorithmA:

Pr[(s,m, s′,m′)← {A(1λ)} : Com(s,m) = Com(s′,m′)]

Hiding. For allm,m′ ∈ {0, 1}∗,m 6= m′, the following is negligible (computationally hiding) or zero
(perfectly hiding) for all PPT distinguisherD:
∣

∣Pr[s← {0, 1}∗; c← Com(s,m) : D(c) = 1]− Pr[s′ ← {0, 1}∗; c← Com(s′,m′) : D(c′) = 1]
∣

∣

The binding property essentially means that, once a messagem is committed inc, nobody could
change its value without being detected. In perfectly hiding schemes, the distribution of the commit-
ments for different messages should be identical. Note thatwe use a different definition for the hiding
property than that of the multi-bit scheme in [35] which states that, for a messagem = b1b2 . . . bn (bi ∈
{0, 1}, 1 ≤ i ≤ n), given a commitment onm, nobody could guess any bitbi correctly with a probability
greater than12+ε(λ) (whereǫ(λ) is a negligible function inλ), even when toldb1, b2, . . . , bi−1, bi+1, . . . , bn.
However, it could be shown that the two definitions are equivalent.

4.2 Bilinear Pairings

In this section, we briefly review the basic concepts of bilinear pairings and the related computational
problems. LetG1 be a cyclic additive group generated byG, whose order is a primeq, andG2 be a
cyclic multiplicative group with the same orderq. A bilinear pairing is a map̂e : G1 × G1 → G2 with
the following properties:

1. Bilinearity: ê(aP, bQ) = ê(P,Q)ab whereP,Q ∈ G1, a, b ∈ Z
∗
q.

2. Non-degeneracy:ê(P,P ) 6= 1. Therefore, it is a generator ofG2

3. Computability: There is an efficient algorithm to computeê(P,Q) for all P,Q ∈ G1.

In this paper, we will writeG1 with an additive notation andG2 with a multiplicative notation as
implementations ofG1 are usually groups of points on an elliptic curve. The discussion of this paper is
based on choosing groups in which the following computational problems are assumed to be hard or any
PPT solution to them is negligibly better than a wide guess.

Definition 14 Computational Bilinear Diffie-Hellman (CBDH) Problem: GivenP ∈ G1, aP , bP
andcP for some unknownsa, b, c ∈ Z

∗
q, find ê(P,P )abc.

Definition 15 Decisional Bilinear Diffie-Hellman (DBDH) Problem: GivenP ∈ G1, aP , bP andcP

for some unknownsa, b, c ∈ Z
∗
q, decide whether a giveny ∈ G2 satisfies thaty

?
= ê(P,P )abc.
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5 The Existence of a Secure CVS Scheme

In this section, we give a generic CVS construction from IBE and show the equivalence between CVS
and IBE in terms of existence.

5.1 A Generic Construction of CVS from IBE

We show how to construct a secure CVS scheme based on the following components:

• A secure signatureSIG = (SKG,Sig, V er) which is existentially unforgeable under an adaptive
chosen message attack [27].

• An identity base encryption schemeIBE = (Setup,Extract,Enc,Dec) with semantic security,
that is,IND-ID-CPA [2].

• A computationally hiding commitment schemeCOM = (Com) [35, 15].

• A pseudorandom generator [24, 29].

Let the plaintext and ciphertext spaces ofIBE bePIBE andCIBE respectively.
Let the message and signature spaces ofSIG beM (same as the message space of CVS) andSσ (same
as the ordinary signature space of CVS) respectively.
Let h : {0, 1}lp → {0, 1}ls be a pseudonrandom generator wherelp and ls are the length of anIBE
plaintext and aSIG signature respectively.
Let CCOM be the output space of the commitment schemeCOM andCom : PIBE × Sσ → CCOM be
its committing function.

Denote the signer byS, and the witnesses byWi. Depending on the number of witnesses, the IBE
scheme is used multiple times with each witnessWi being a private key generator for its IBE scheme
(IBEi). Assume there areN witnesses, then the partial signatureδ ∈ Sσ ×C

N
IBE ×CCOM . The generic

CVS construction is as follows.

Key Generation. CVKGS def
= SKG for generating(PkS , skS) for the signerS.

CVKGW def
= Setup for generating(PKWi

, skWi
) for the witnessesWi.

Partial Signature Generation. Given an input messagem ∈ M, a condition setC = {(ci,Wi) :
1 ≤ i ≤ N}, a signing keyskS, a signer’s public keyPKS and the set of witness public keys
PKC = {PKWi

: 1 ≤ i ≤ N}, do the following:

1. Generate an ordinary signature using the signing algorithm ofSIG:

σ = Sig(m, skS)

2. For each(ci,Wi) ∈ C, pick a randomai ∈ PIBE , 1 ≤ i ≤ N .

3. The CVS signature is as follows:

δ =

〈

σ ⊕ h

(

N
⊕

i

ai

)

, {Enc(PKWi
, ci, ai) : 1 ≤ i ≤ N} , Com

(

σ, h

(

N
⊕

i

ai

))〉

whereEnc(PKWi
, ci, ai) is the IBE ciphertext on messageai usingWi (witness) as the

PKG andci (condition statement) as the identity.
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Note: for short, we may denoteEnc(PKWi
, ci, ai) asEncWi

(ci, ai) in the following discussion.

Witness Signature Generation.SigW(c, skW )
def
= Extract(c, skW ).

Taking the condition statementc as an identity, the witnessW (run as an PKG of the IBE scheme)
could extract the private keydW

c corresponding toc. The private keydW
c could be considered as

a kind of trapdoor on the condition statementc which could be generated by the witnessW only.
Roughly, it could also be considered as a kind of signature asin [3].

Signature Extraction. Given a partial signatureδ = 〈α, {βi : 1 ≤ i ≤ N}, γ〉 and all the witness sig-
natures{σi} = {dWi

ci
} (with eachσi being a signature or endorsement on the condition(ci,Wi)),

do the following:

1. For1 ≤ i ≤ N , geta′i = Dec(PKWi
, βi, σi).

2. Recoverσ′ = α⊕ h(
⊕N

i a′i).

3. Check ifCom(σ′, h(
⊕N

i a′i))
?
= γ. If not, output “extraction-fail”, otherwise,σ′ is the

ordinary signature.

Note that the partial signature is slightly over-designed as it uses a commitment scheme to guard
against adversaries tampering with a partial signature.

Signature Verification. VerS def
= V er.

Confirmation Protocol. Using general interactive zero-knowledge proofs [25] or concurrent zero-knowledge
proofs [13], the signer with private inputa1, a2, . . . , ai, . . . , aN andσ and all the random coins
used to generateβi could convince the verifier that there exists(σ, a1, a2, . . . , ai, . . . aN ) satisfy-
ing the following equations:

δ = 〈α, {β1, β2, . . . , βi, . . . , βN}, γ〉

α = σ ⊕ h
(

⊕N
i ai

)

βi = Enc(PKWi
, ci, ai), 1 ≤ i ≤ N

γ = Com
(

σ, h
(

⊕N
i ai

))

V er(m,σ, PKS) = 1

The common input to the confirmation protocol isPKS , PKWi
(1 ≤ i ≤ N),m,C = {(ci,Wi) :

1 ≤ i ≤ N} andδ. Since verifying whether a given tuple(σ, a1, a2, . . . , ai, . . . aN ) satisfies the
above equations is a poly-time predicate, a general zero-knowledge proof for it should exist. The
construction is straightforward but inefficient and varying depending on the signature and IBE
schemes in use. The simulated transcript generator for thiszero-knowledge proof is used as the
transcript simulatorFakeT for the following fake partial signature simulatorFake.

Fake Signature Simulator

The fake signature simulator for this CVS construction is the following:

Fake(C) : C = {(ci,Wi) : 1 ≤ i ≤ N}

1. Randomly (uniformly) pickσf ∈ Sσ.
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2. Randomly pickbi ∈ PIBE , for 1 ≤ i ≤ N .

3. Output the fake partial signature:

δf =
〈

σf ⊕ h
(

⊕N
i bi

)

, {Enc(PKWi
, ci, bi) : 1 ≤ i ≤ N} , Com

(

σf , h
(

⊕N
i bi

))〉

Obviously, this simulator is PPT.

5.1.1 Security of the Generic CVS Construction

The completeness of the above CVS construction is guaranteed by the correctness of the underlying
IBE scheme. Besides, it is also perfectly convertible. The security of this CVS construction is best
summarized with the following lemmas and theorem.

Lemma 15 If SIG is existentially unforgeable under an adaptive chosen message attack, then the
generic CVS construction is unforgeable.

Proof See Appendix B.

Lemma 16 If IBE is IND-ID-CPA secure,COM is a computationally hiding commitment scheme,
andh is a pseudorandom generator, then the generic CVS construction is simulatable with respect to the
simulatorFake.

Proof See Appendix B.

Theorem 17 Given any semantically secure IBE scheme (under a chosen plaintext attack) and any exis-
tentially unforgeable signature scheme, together with a pseudorandom generator and a computationally
hiding commitment scheme, a secure CVS scheme can be constructed.

Proof We could use the generic paradigm described in this section to construct a CVS scheme and the
corresponding fake partial signature simulatorFake satisfying the following properties: unforgeability
(according to Lemma 15), simulatability with respect toFake (according to Lemma 16). As mentioned
before, a zero knowledge proof exists for the given construction and could be used as the confirmation
protocol. Together with the simulatability property, the construction is non-transferable. The complete-
ness and soundness of the confirmation protocol is guaranteed by the zero knowledge proof. Besides, it
could be seen that this construction is perfectly convertible. In conclusion, this generic CVS construction
is secure. In addition to its security, this construction enjoys additional properties of message-invisibility
and signer-anonymity since the partial signature simulator Fake does not take the message or the signer’s
identity as input.
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5.2 A Generic Construction of IBE from CVS

We show how to construct a 1-bit IBE scheme with semantic security (i.e. IND-ID-CPA) using a CVS
scheme. We assume the CVS scheme is simulatable with respectto a fake partial signature simulator
Fake. Our construction is similar to that in the seminal work of probabilistic encryption by Gold-
wasser and Micali [26]. While they used the indistinguishability between the quadratic residues and
non-residues inZn∗ for some compositen (Quadratic Residuosity Problem) to encrypt a single bit, we
leverage the indistinguishability between a true and a simulated (fake) partial signature of CVS to create
a ciphertext for a 1-bit plaintext.

By repeating the operation of the 1-bit schemek times, we could construct an IBE scheme fork-bit
long messages. This repetition technique is the same as in [26] and, using the same hybrid argument, we
could prove that the security property of the underlying 1-bit scheme is preserved in thek-bit one.

Now, we just need to focus on a 1-bit IBE scheme. We consider a CVS scheme with just a single
witnessG ∈ W which is used as the PKG for the IBE scheme. SupposeFake is a PPT simulator for the
CVS scheme. The IBE scheme works as follows.

Key Setup. The public and private keys of the witnessG in the CVS scheme are used as the public

and private keys of the PRG in the IBE scheme. We setSetup
def
= CVKGW to generate the

public/private key pair of the PRG:CVKGW(1λ)→ (PKG, skG).

Private Key Extraction. The identityIDi of any user could be treated as a condition statement in the

CVS scheme as they are both a bit string of arbitrary length. We setExtract
def
= SigW/CVEndW,

then extracting the private keydi for IDi is the same as requesting an endorsement or signature
on the statementIDi: SigW(IDi, skG)→ di.

Encryption. The identity of a useri is the bit stringIDi (treated as a condition statement in the under-
lying CVS scheme) and its private key is the witness endorsementdi obtained fromG.

We consider a 1-bit plaintextb ∈ {0, 1}. To encrypt,

• randomly pick a messagem ∈M

• run CVKGS(1λ) to generate the public/private key pair(PKS , skS) of the signer

• the encryption function is then:Enc(PKG, IDi, b)→ (m, δb, PKS), where

δb =

{

CVSig(m, IDi, skS , PKS , PKG), b = 0
Fake(m, IDi, PKS , PKG), b = 1

That is, whenb = 0, δb is a valid partial signature onm, whereas, whenb = 1, δb is a fake one.

Decryption. Given an identityIDi, a PKG public keyPKG and the user private keydi, to decrypt a
given ciphertextC = (m′, δ′, PK ′

S), the decryption functionDec(PKG, C, di) → b is imple-
mented as follows:

• extract the ordinary signature fromδ′: CVExtract(m′, IDi, δ
′, PK ′

S , di)→ σ′

• check ifVerS(m′, σ′, PK ′
S)

?
= 1, the plaintextb′ is given by the following11:

b′ =

{

0, if VerS(m′, σ′, PK ′
S) = 1

1, otherwise

11The case in whichCVExtract returns⊥ is covered by the “otherwise” part.
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5.2.1 Correctness of the CVS-based IBE

If all the algorithms used in the CVS scheme are polynomial time, then so are those used in the above
IBE construction. The completeness of the CVS scheme guarantees the correctness of decryption in the
above IBE scheme. The completeness property of the CVS scheme ensures that,
if δ = CVSig(m, IDi, skS , PKS , PKG) anddi = CVEndW(IDi, skG), then the verification must
return 1, that is,VerS(m,CVExtract(m, IDi, δ, PKS , di), PKS) = 1. Besides, the CVS scheme also
guarantees that with negligible probability a valid ordinary signature on messagem could be extracted
form Fake(m, IDi, PKS , PKG), otherwise, the CVS scheme would be forgeable. These together en-
sure thatDec(PKG, Enc(PKG, IDi, b), di) = b with probability almost1 up to a negligible deviation.

5.2.2 Security of the CVS-based IBE

The security of above IBE construction is stated by the following theorem.

Theorem 18 The above IBE construction from CVS is semantic secure against a chosen plaintext attack
(IND-ID-CPA).

Proof See Appendix C.

5.3 The Equivalence between CVS and IBE

A secure CVS scheme is equivalent to a secure IBE scheme, in terms of existence, which is summarized
by the following theorem.

Theorem 19 A secure conditionally verifiable signature (CVS) scheme (unforgeable, simulatable, with
zero knowledge confirmation protocol) exists if and only if an IND-ID-CPA secure identity based encryp-
tion (IBE) scheme exists.

Proof

Only if Part
Follow directly from the CVS-based IBE construction in the last section.

If Part
We assume the existence of a secure identity based encryption scheme with security in theIND-ID-CPA

sense. Then it is straightforward to see why a one-way function exists (We could useSetup of the IBE
scheme to construct a one-way function.).

First, an ordinary signature scheme which is not existentially forgeable under an adaptive chosen
message attack [27] exists since such a secure signature scheme exists if and only if one-way function
exists [39, 36].

Second, a pseudorandom generator exists as Impagliazzo et.al. [29] showed that given any one-way
function, a pseudorandom generator can be constructed.

Third, a computationally hiding bit commitment function exists if a pseudorandom generator exists
[35]. In the same work, Naor show how to construct a multi-bitcommitment scheme from any pseudo-
random generator. That is, along the chain from IBE to one-way functions to pseudorandom generators
and finally to commitment schemes, the existence of IBE implies the existence of a computationally
hiding commitment scheme.
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Finally, the existence of a one-way function also implies the existence of zero-knowledge proofs.
Based on a secure IBE scheme, an existentially unforgeable signature scheme, a pseudorandom gen-

erator, and a computationally hiding commitment scheme, from Theorem 17, we could use the generic
construction in this section to build a secure CVS scheme which is unforgeable and simulatable and a
zero knowledge for its confirmation protocol exists. Hence,the existence of a secure IBE scheme implies
the existence of a secure CVS scheme.

We should mention that we show in Theorem 19 that a weaker notion of IBE, namely, one with
IND-ID-CPA security, is necessary and sufficient for the construction of a secure CVS scheme. It is
thus fair to say that CVS could be constructed based on weakerassumptions than IBE with the standard
IND-ID-CCA security [2].

6 Efficient CVS Constructions from Bilinear Pairings

Although we do not make the restriction that the CVS partial signature generation has to start with
an ordinary signature (i.e. a 2-step generation), it is moreconvenient and efficient to proceed in this
way in practice. A typical design of the CVS partial signature generation would then consists of three
components:

1. An ordinary signature scheme is chosen. The only criteriafor such a choice is that the signature
scheme is existentially unforgeable under a chosen messageattack.

2. A blinding mechanism is designed to transform an ordinarysignature into a partial signature,
making it covert inside the partial signature. The main design criteria of the blinding mechanism
is the simulatability property; that means we also need to find a simulator for the chosen blinding
mechanism. We show in Section 5 that identity based encryption (IBE) could in general be used
as a blinding mechanism.

3. A zero knowledge confirmation protocol is designed to provide the signer a means to give the
recipient some guarantee that a real signature could be retrieved from a given partial signature.

The following theorem would be useful for designs based on this paradigm.

Theorem 20 Given an ordinary signature schemeSIG existentially unforgeable under a chosen mes-
sage attack12, a CVS scheme constructed fromSIG using any PPT blinding mechanismB is unforgeable.

Proof See Appendix F.

We could use the general verifiable encryption (VE) approach[5, 1] to construct a CVS scheme
(Details could be found in the Appendix D), but the resultingconstruction would have a large partial
signature (which is inconvenient for storage), for instance, an online trader may receive a huge num-
ber of partial signatures daily for payment authorization.In some cases, a zero knowledge proof is not
achievable from the VE approach [28]. A well adjusted balance between the performance of the blinding
mechanism and the confirmation protocol is necessary to achieve efficient schemes. In practice, to con-
struct efficient schemes with a practical confirmation protocol, we need to fix the underlying signature
scheme and blinding mechanism and pose restrictions on their parameter dependency. In this section, we
show how to use bilinear pairings to construct efficient CVS schemes for Elgamal and RSA signatures.

12In a chosen message attack, the adversary is given the signatures of messages of his choice.
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SupposeG1 andG2 are additive and multiplicative cyclic groups of orderq (prime) respectively and
ê : G1×G1 → G2 is a computable, non-degenerate bilinear map. Assume thatG2 is a subgroup of some
extension field ofFp, sayFpl , similar to those in Weil or Tate pairings. Depending on the underlying
ordinary signature scheme used, we have different restrictions onp. A sufficiently largep matched with
the parameters in the signature scheme should be enough to cover most restrictions. We also need the
following cryptographic hash function in our constructions which is modeled as a random oracle:

H : {0, 1}∗ → G1.

Witness Key and Signature Generation

With possibly slight variations, these algorithms are in essence the same for different ordinary signature
schemes, both Elgamal and RSA.

Witness Key Generation (CVKGW). Each witnessWi picks a generator ofG1, sayPi, and its private
keyxi ∈ Z

∗
q and publishes the corresponding public key(Pi, Yi) whereYi = xiPi.

Witness Signature Generation (SigW/CVEndW). The witnesses use a pairing based signature scheme
[3] to generate its signatureσWi

or endorsement on a condition statementci as follows: σWi
=

xiH(ci)

Witness Signature Verification. Given a witness public key(Pi, Yi), a condition statementci and a

witness signatureσWi
, the verification is done by checking whetherê(Yi,H(ci))

?
= ê(Pi, σWi

).
The correctness is ensured asê(Yi,H(ci)) = ê(xiPi,H(ci)) = ê(Pi, xiH(ci)) = ê(Pi, σWi

).

Important Notation Conventions. As we would frequently use the pairing values in the following dis-
cussion, we should clarify some notations before we move on.Given a witness public key(Pi, Yi) and a
condition statementci, and a random coinr ∈ Z

∗
q with Ui = rPi, we often have the following notations

for the following pairing values:

• ei = ê(Pi,H(ci)) ∈ G2

• yi = ê(Yi,H(ci)) = ê(Pi,H(ci))
xi = exi

i ∈ G2

• wi = ê(Ui,H(ci)) = ê(Pi,H(ci))
r = eri ∈ G2

6.1 A Pairing-based CVS Construction for Generalized ElGamal Signatures

We describe the construction for the ElGamal signature scheme but the techniques should apply to other
DL based schemes like DSA and Schnorr signatures [40]. In fact, we use a general cyclic groupG
of order q′ (whereq′ is a large safe prime13) for the sake of generality. In order to give an efficient
confirmation protocol, we requireq′ = p wherep is the characteristic of the extension field of whichG2

of the bilinear pairing is a subgroup (i.e.G2 is a multiplicative subgroup ofFpl for some integerl).

13That is,q′ − 1 is a multiple of another large prime.
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6.1.1 Ordinary Signature

Let h : {0, 1}∗ → Zq′ (which is modeled as a random oracle). The message space is{0, 1}∗ and the
signature space isG× Zq′ .

Key Generation (CVKGS). The signer picks a generator ofG, sayg, picks its private keyxs ∈ Z
∗
q′ and

publishes the corresponding public key(g, ys) whereys = gxs .

SigningSigS. For a messagem ∈ {0, 1}∗, the signature generation is as follows:

1. Pick a randomk ∈ Z
∗
q′ , and computeγ = gk.

2. Computea = k−1[h(m) + xsγ] modq′.

3. The ordinary signature is:σ = (γ, a).

Verification (VerS). Given a signatureσ′ = (γ′, a′), to verify whether it is a valid signature of message

m, check the following:γ′a
′ ?
= gh(m)yγ′

s

Note that we do not take the repaired version of the ElGamal signature scheme, but the discussions
in this paper apply directly to the repaired version which replacesh(m) by h(m,γ).

6.1.2 Partial Signature

Given an ElGamal signatureσ = (γ, a), we could use the generic IBE-based approach described in
Section 5 to simply multiplya with a number of pairing values to make the signature convertand non-
verifiable, and use the technique in [41] to run the confirmation protocol. However,a does not fit into
G2 which the pairing values belong to. Hence, the double deckertechniques in [41] is not applicable.
To glue the pairing-based blinding mechanism with the prooftechnique in [41], we need to introduce an
invertible group homomorphism, a mappingf : Zq′ → Fpl with an inverse mappingf−1. For such a
mapping to exist, we setq′ = p, that is, the mapping becomesf : Zp → Fpl. We require that

• f−1(f(a)) = a,∀a ∈ Zp,

• f(a1a2) = f(a1)f(a2),∀a1, a2 ∈ Zp, and

• f−1(e1e2) = f−1(e1)f
−1(e2), ∀e1, e2 ∈ Fpl.

Such a mapping could be constructed using the norm ofFpl (See Appendix E).
If there areN (< L) witnesses specified in a partial signatureδ, thenδ ∈ G × Fpl × G

N
1 . Now we

can describe the blinding mechanism and the signature retrieval process.

Blinding (CVSig). Given a signer private keyxs, a messagem, a verifiability condition setC =
{(ci,Wi) : 1 ≤ i ≤ N} and the witness public keys{(Pi, Yi) : 1 ≤ i ≤ N}, we create a
partial signatureδ as follows:

1. RunSigS onm to generate an ordinary signatureσ = (γ, a).

2. Randomly pickr ∈ Z
∗
q, and computeUi = rGi, 1 ≤ i ≤ N .

3. Computez = f(a)
∏N

i=1 ê(Yi,H(ci))
r = f(a)

∏N
i=1 y

r
i = f(a)

∏N
i=1 e

xir
i .

4. The partial signature is then given by:δ = (γ, z, U1, U2, . . . , UN ).
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Signature Retrieval (Extract). Given a partial signatureδ′ = (γ′, z′, U ′
1, U

′
2, . . . , U

′
N ), and a set of

witness signaturesσi = xiH(ci), 1 ≤ i ≤ N , with each being a short signature ofWi on a
condition statementci, the signature retrieval process is as follows.

1. Compute the following:a′ = f−1

(

z′QN
i=1

ê(U ′
i ,σi)

)

2. The recovered ordinary signature is then given by:σ′ = (γ′, a′).

Correctness of the Extraction. If the partial signature is properly formed, that is, the following set of
equations holds for unknownr ∈ Z

∗
q andk ∈ Z

∗
k:

z′ = f(a)
∏N

i=1 y
r
i = f(a)

∏N
i=1 e

xir
i ;

U ′
i = rGi, ∀i;

γ′ = gk;
a = k−1[h(m) + xsγ

′].

(1)

Then the correctness of the ordinary signature retrieval isguaranteed as:

ê(U ′
i , σi) = ê(rGi, xiH(ci)) = ê(Gi,H(ci))

xir = exir
i , ∀i

a′ = f−1

(

f(a)
QN

i=1
e
xir

iQN
i=1

ê(U ′
i ,σi)

)

= f−1

(

f(a)
QN

i=1
e
xir

iQN
i=1

e
xir

i

)

= f−1(f(a)) = a

γ′a
′

= gka = gkk−1[h(m)+xsγ′] = gh(m)gxsγ′

= gh(m)yγ′

s .

Hence,VerS(m, (γ′, a′), (g, ys)) = 1.

6.1.3 Partial Signature Simulator

A possible partial signature simulatorFake is as follows:

Fake(C)

Input:C = {(ci,Wi) : 1 ≤ i ≤ N}, {(Pi, Yi) : 1 ≤ i ≤ N}, g
Output:δf = (γf , zf , V1, V2, . . . , VN )

1. Randomly pickkf ∈ Z
∗
p and computeγf = gkf .

2. Randomly pickrf ∈ Z
∗
q and computeVi = rfGi, 1 ≤ i ≤ N .

3. Randomly pickd ∈ Zp and computezf = f(d)
∏N

i=1 ê(Yi,H(ci))
rf = f(d)

∏N
i=1 y

rf

i =

f(d)
∏N

i=1 e
xirf

i .

4. Output(γf , zf , V1, V2, . . . , VN ).

This simulator only uses the verifiability condition setC as input and neither the message nor the
signer’s information is needed. Hence, the ElGamal CVS construction enjoys the message-invisibility
and signer-anonymity properties.

Claim 21 The ElGamal based CVS construction given above is simulatable with respect to the simulator
Fake if decisional bilinear Diffie-Hellmen problem is hard assumingH is a random oracle.

Proof See Appendix F.
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6.1.4 Confirmation Protocol

Let m be a message,C = {(ci,Wi) : 1 ≤ i ≤ N} be a verifiability condition set,PKS = (g, ys)
be a signer public key, andPKi = (Gi, Yi), for 1 ≤ i ≤ N , be the witness public key ofWi. Let
also the partial signature beδ = (γ, z, U1, U2, . . . , UN ). As can be seen above, if the set of equations
in Equation 1 holds, anyone could be sure that a proper and correct ordinary signature can be retrieved
from the given partial signature. Hence, in order to convince a recipient that a given partial signature
is properly formed and a valid ordinary signature on the messagem could be extracted if he obtains all
the needed witness signatures specified inC, the signer just needs to prove that Equation 1 holds for the
tuple (m,C,PKS , {PKi : 1 ≤ i ≤ N}, δ) using his private input(r, a). The confirmation protocol
CVCon(S,V ) is then as follows.

〈CVConS(r, a),CVConV()〉(m,C,PKS , {PKi : 1 ≤ i ≤ N}, δ)

Common Input:m;C = {(ci,Wi) : 1 ≤ i ≤ N};PKS = (g, ys);PKi = (Gi, Yi), 1 ≤ i ≤ N ; δ =
(γ, z, U1, U2, . . . , UN )

Signer Private Input:r, a

Protocol: Shown below is just one round of iteration, which should be run multiple rounds sayk in the
actual protocol. Recall thatei = ê(Pi,H(ci)), yi = ê(Yi,H(ci)) = exi

i , andwi = ê(Ui,H(ci)) =
eri . Letψ = gh(m)yγ

s = γa which is used in the ElGamal signature verification.

1. Commit. The signer randomly picksu ∈ Z
∗
q, computes and sends the following to the

verifier:
ti = eui , 1 ≤ i ≤ N, ; t = γf−1(z

QN
i=1

yu
i )

2. Challenge.The verifier uniformly picksb ∈R {0, 1} and sends it to the signer.

3. Response.The signer sends backθ = u+ br.

4. Verify. The verifier then checks the validity of the following and accepts only if:

ti
?
= eθiw

−b
i ; t

?
= γ(1−b)f−1(z

QN
i=1

yθ
i )ψbf−1(

QN
i=1

yθ
i ).

Claim 22 The above confirmation protocol for the ElGamal based CVS construction is a zero-knowledge
proof.

Proof This protocol satisfies the completeness, soundness, and zero-knowledge properties. See Ap-
pendix F.

6.1.5 Security of the ElGamal based CVS Construction

Putting the pieces together, we could conclude that the ElGamal based CVS scheme is secure satisfy-
ing the properties of unforgeability (Theorem 20) and simulatability (Claim 21), which in turn imply
the cheat-immunity property. Besides, its confirmation protocol is zero knowledge (Claim 22) which,
together with the simulatability property, further implies the ElGamal based CVS construction is non-
transferable.
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6.2 A Pairing-based CVS Construction for RSA-based Signatures

We describe the construction for the basic hash-and-sign RSA signature scheme but the techniques should
apply to other RSA variants like the GHR [22] signature scheme.

Supposen = p′q′ wherep′, q′ are large primes. We require thatn2 < p wherep is the characteristic
of the extension field of whichG2 is a subgroup (that is,G2 is a multiplicative subgroup ofFpl).

6.2.1 Ordinary Signature

Let h : {0, 1}∗ → Z
∗
n (which is modeled as a random oracle). The message space is{0, 1}∗ and the

signature space isZ∗
n.

Key Generation (CVKGS). The signer picks a randomn and keeps the factorization secret. Then the
signer picks a random public exponente ∈ φ(n) such thatgcd(e, φ(n)) = 1 (whereφ(n) is the
Euler totient function), and computes the secret exponentd such thated ≡ 1 modφ(n). The public
key is then(n, e) and the private key isd.

Signing (SigS). For a messagem ∈ {0, 1}∗, the signature is:σ = h(m)d modn.

Verification (VerS). Given a signatureσ′, to verify whether it is a valid signature of messagem, check

the following:σ′e modn
?
= h(m).

6.2.2 Partial Signature

Given an RSA signatureσ, we blind it by multiplying it with a randoma ∈ Z
∗
n and then use bilinear

pairings to hidea. Again, a does not fit intoG2. We need to use the same homomorphic mapping
f as in the construction for ElGamal. Here we need an additional invertible mappingf1 : Z

∗
n →

Zp. The implementation off1 is simple, which is:f1(x) = x modp,∀x ∈ Z
∗
n and the inverse is:

f−1
1 (y) = y modn,∀y ∈ Zp. These mappings satisfy the following properties we need:∀x1, x2 ∈ Z

∗
n,

f1(x1x2) = f1(x1)f1(x2) andf−1
1 (f1(x1)f1(x2)) = x1x2. These hold becausen2 < p.

If there areN witnesses specified in a partial signatureδ, thenδ ∈ {0, 1}k × Fpl × G
N
1 . To avoid

possible distinction due to different modulus size, padding is used to extend each computed signature to
some arbitrary lengthk by adding a random multiple ofn and padding zero’s to the left.

Blinding (CVSig). Given a signing exponentd, a messagem, a verifiability condition setC = {(ci,Wi) :
1 ≤ i ≤ N} and the witness public keys{(Pi, Yi) : 1 ≤ i ≤ N}, we create a partial signatureδ as
follows:

1. RunSigS onm to generate an ordinary signatureσ ∈ Z
∗
n.

2. Flip a coinb ∈ {0, 1}. Randomly picka ∈ Z
∗
n such that: ifb = 0, the Jacobi symbol

(

a
n

)

must be 1, otherwise
(

a
n

)

= −1.14

3. Computeλ = aσ modn. The resultingλ could have a Jacobi symbol of1 or −1, thus
avoiding the distinction based on the Jacobi symbol. Extendλ to lengthk by adding a

random multiple ofn, that is,γ = λ+ xn wherex ∈R

[

0, ⌊2
k−λ
n ⌋

]

.

4. Randomly pickr ∈ Z
∗
q, and computeUi = rGi, 1 ≤ i ≤ N .

14This could be easy as half of the elements inZ
∗
n have Jacobi symbol 1 and the other half have Jacobi symbol -1.
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5. Computez = f(a modp)
∏N

i=1 ê(Yi,H(ci))
r = f(a modp)

∏N
i=1 y

r
i = f(a modp)

∏N
i=1 e

xir
i .

6. The partial signature is then given by:δ = (γ, z, U1, U2, . . . , UN ).

Signature Retrieval (Extract) . Given a partial signatureδ′ = (γ′, z′, U ′
1, U

′
2, . . . , U

′
N ), and a set of

witness signaturesσi = xiH(ci), 1 ≤ i ≤ N , with each being a short signature ofWi on a
condition statementci, the signature retrieval process is as follows:

1. Compute the following:a′ = f−1

(

z′QN
i=1 ê(U ′

i ,σi)

)

modn

2. Use the extended Euclidean algorithm to finda′−1 modn.

3. The recovered ordinary signature is then given by:σ′ = γ′a′−1 modn.

Correctness of the Extraction. If the partial signature is properly formed, that is, the following set of
equations holds for some unknowna ∈ Z

∗
n andr ∈ Z

∗
q:

z′ = f(a modp)
∏N

i=1 y
r
i = f(a modp)

∏N
i=1 e

xir
i ;

U ′
i = rGi, ∀i;

γ′ = aσ + xn;
σ = h(m)d modn.

(2)

Then the correctness of the ordinary signature retrieval isguaranteed as:

ê(U ′
i , σi) = ê(rGi, xiH(ci)) = ê(Gi,H(ci))

xir = exir
i , ∀i

a′ = f−1

(

f(a modp)
QN

i=1
e
xir

iQN
i=1

ê(U ′
i
,σi)

)

modn = f−1

(

f(a modp)
QN

i=1
e
xir

iQN
i=1

e
xir

i

)

modn = f−1(f(a modp)) modn

= a modp modn = a
σ′ = γ′a′−1 modn = (aσ + xn)a−1 modn = σ ∈ Zn

σ′e modn = σe modn = h(m).

Hence,VerS(m,σ′, (n, e)) = 1.

6.2.3 Partial Signature Simulator

A possible partial signature simulatorFake is as follows:

Fake(C)

Input:C = {(ci,Wi) : 1 ≤ i ≤ N}, {(Pi, Yi) : 1 ≤ i ≤ N}, n
Output:δf = (γf , zf , V1, V2, . . . , VN )

1. Randomly pickλf ∈ Z
∗
n and computeγf = λf + xn wherex ∈R

[

0, ⌊
2k−λf

n ⌋
]

.

2. Randomly pickrf ∈ Zq and computeVi = rfGi, 1 ≤ i ≤ N .

3. Randomly pickd ∈ Z
∗
n and computezf = f(d modp)

∏N
i=1 ê(Yi,H(ci))

rf = f(d modp)
∏N

i=1 y
rf

i =

f(d modp)
∏N

i=1 e
xirf

i .

4. Output(γf , zf , V1, V2, . . . , VN ).
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This simulator only uses the verifiability condition set as input and the message. As the modulus of
the signer is needed, it is difficult to tell if it is signer-anonymous.

Claim 23 The RSA based CVS construction given above is simulatable with respect to the simulator
Fake if the decisional bilinear Diffe-Hellmen problem is hard assumingH is a random oracle.

Proof See Appendix F.

6.2.4 Confirmation Protocol

Letm be a message,C = {(ci,Wi) : 1 ≤ i ≤ N} be a verifiability condition set,PKS = (n, e) be a
signer public key, andPKi = (Gi, Yi), for 1 ≤ i ≤ N , be the witness public key ofWi. Let also the
partial signature beδ = (γ, z, U1, U2, . . . , UN ).

Similar to the case for the ElGamal signature scheme, in the confirmation protocol, the signer just
needs to convince the recipient that Equation 2 holds for a given tuple(m,C,PKS , PKi, δ) using his
private input(r, a). The confirmation protocolCVCon(S,V ) is then as follows.

〈CVConS(r, a),CVConV()〉(m,C,PKS , PKi, δ)

Common Input:m;C = {(ci,Wi) : 1 ≤ i ≤ N};PKS = (n, e);PKi = (Gi, Yi), 1 ≤ i ≤ N ; δ =
(γ, z, U1, U2, . . . , UN )

Signer Private Input:r, a

Protocol: The recipient first checks whether
( γ

n

) ?
= 0 and proceeds if and only if it is not zero. This

is necessary to ensure thata−1 exists to recoverσ. Shown below is just one round of iteration,
which should be run multiple rounds sayk in the actual protocol. Recall thatei = ê(Pi,H(ci)),
yi = ê(Yi,H(ci)) = exi

i , wi = ê(Ui,H(ci)) = eri

1. Commit. The signer randomly picksu ∈ Z
∗
q andv ∈ Z

∗
n, computes and sends the following

to the verifier:

s = ve modn; ti = eui , 1 ≤ i ≤ N ; t = f(v modp)
∏N

i=1 y
u
i

2. Challenge.The verifier uniformly picksb ∈R {0, 1} and sends it to the signer.

3. Response.The signer sends backθ = u+ br, ψ = (a modn)b(v modn) modp. Note that
ψ modn = abv modn.

4. Verify. The verifier then checks the validity of the following and accepts only if:

s(γe)b
?
≡ h(m)b(ψ modn)e (modn); ti

?
= eθiw

−b
i ; f(ψ)

∏N
i=1 y

θ
i

?
= zbt.

Claim 24 The above confirmation protocol for the RSA based CVS construction is a zero-knowledge
proof.

Proof The above protocol satisfies the completeness, soundness and zero-knowledge properties. See
Appendix F.

The above construction for RSA applies to GHR [22] signatures.
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6.2.5 Security of the RSA based CVS Construction

Putting the pieces together, we could conclude that the RSA based CVS scheme is secure satisfying the
properties of unforgeability (Theorem 20) and simulatability (Claim 23), which in turn imply the cheat-
immunity property. Besides, its confirmation protocol is zero knowledge (Claim 24) which, together with
the simulatability property, further implies that the RSA based CVS constrcution is non-transferable.

7 Real World Applications of CVS

In this section, we give details about some possible application scenarios of CVS, including post-dated
cheques, electronic commerce and policy-based access control.

7.1 Post-dated Cheques

Based on the CVS model, it is fairly straightforward to give an implementation like post-dated cheques,
which incorporate time into a digital signature to control when its validity could be verified and when
a document becomes effective. A distinctive difference between a real world post-dated cheque and the
CVS implementation is that anyone could see the instructions put down by the signer and verify the
validity of the cheque in the real world whereas nobody couldassure or convince others that a given
CVS-based post-dated cheque is valid or that the instructions shown are really what the signer endorsed.
Hence, the CVS post-dated cheque has the additional advantage of protecting the privacy of the signer
and his anonymity in some cases (depending on the CVS construction). This is one of the most desired
properties in the commercial world, bespoken by the future/option trading scenario mentioned earlier.

In the post-dated cheque application, the partial signature generation is no different from that in a
usual CVS scheme, except there is only one verifiability condition of the form(T,Wtime) whereT is a
string specifying the release time andWtime is the trusted time server (a witness of time) specified by
the signer.T could simply be the statement “It is now 2:00PM GMT Dec 23, 2000”. All other processes
are the same as in CVS but the delivery of the witness signatures is different. Instead of requiring the
recipient of a partial signature to request the time server for its witness signature, the time server is set up
to periodically broadcast its signature on a condition statement about the current time, and this statement
could be “It is now 2:00PM GMT Dec 23, 2000”, etc.. The broadcast period could be tuned down
to whatever granularity appropriate for the desired applications. The advantages of this model include
scalability, anonymity of both the signer and recipient, and the privacy of the message with respect to the
time server. It is highly scalable because no matter how manyusers are supported, a single broadcast at
each time instant is sufficient.

7.2 Electronic Commerce

It is a natural problem in electronic commerce to ask how a customer can ensure that an online trader can
get his payment, possibly a signature for payment authorization, only when the trader has delivered his
order or completed the services in the deal. Looking from thetrader’s perspective, he also wants to have
some guarantee that he can receive the customer’s payment before delivering the order. As mentioned
before, CVS could partially solve the deadlock by using witnesses which are the parties involved in
the workflow of processing the order. We could view CVS as filling the trust gap between traders and
customers without physical proximity. In details, the customer could just pick a number of third parties
that he trusts and will be involved in processing his order aswitnesses to create a CVS partial signature
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with conditions specifying that the parts of order processing involving these witnesses are completed
by the trader. Due to the non-verifiability of the partial signature, nobody could verify the validity of
payment authorization, thus preventing the trader from getting any payment unless he has obtained all the
endorsements from the specified witnesses, which in turn requires him to somehow complete processing
the order.

A typical example about how CVS helps in trading between mistrusting parties is as follows: A
customer wishes to buy a durable item from an online trader but the price is so low that he is concerned
about possible fraud. As usual, the trader needs the customer to pay before delivering the order. Some
cautious customers may just walk away, unnecessarily ruining a deal he wants. In this scenario, the CVS
could possibly help to narrow this trust gap. The customer could give the trader a CVS partial signature
on his payment authorization and require him to get a signed (digital) receipt from the post office or
courier company detailing about what they receive from the trader for delivering to the customer in order
to retrieve his ordinary signature. Note that the trader would only be able to obtain the receipt if he has
sent out the order; of course, the post office or the courier company needs to be trusted in checking the
order, which we believe should be a reasonable assumption. If the trader has not sent out the order, the
partial signature will not grant him any payment.

Although fair exchange can be useful in exchanging digital goods, it could not solve the above sce-
nario satisfactorily. In the fair exchange solution, the customer signs his payment authorization to create
some number which cannot be verified but can be converted intoan ordinary signature by a designated
trusted third party, acting as an arbitrator. The customer then convinces the trader that this partial signa-
ture can allow the trader to obtain his signature from the arbitrator even though he does not collaborate
later on. If the trader has delivered the order, the customerwill give him his signature. In case the
customer does not give out his signature after the order has been delivered, the trader could access the
arbitrator with all the evidences of order delivery, askinghim to convert/retrieve the customer’s signa-
ture. This approach still has the drawback of compromising the trader’s privacy when a dispute arises
in trading non-regenerable goods. In order to make a fair arbitration when the customer repudiates, the
arbitrator usually requests the trader to submit evidencesrevealing much more than information about
the deal; in some cases, this may hinder the trader to initiate the arbitration process and the fairness may
not be achieved as stated.

When used for trading regenerable goods, CVS still has the advantage that an ordinary signature
could be retrieved from a partial signature spontaneously without the help of the signer (customer) once
all the specified conditions are fulfilled. In some cases, when there is a time lag between when an
order is placed and when it is completed, this advantage of CVS would manifest itself. Airline or hotel
reservations are just some examples.

Despite the need of trusted third parties in the CVS model, they are not special for arbitration but
inevitable in processing the order. Although they already know some information about the order, they
learn no information about the deal. The customer could assign witnesses without needing to notify
them. Besides, the trader does not need to leak out any information about the payment in order to get
these witnesses to help him retrieve the signature, and requesting a witness to sign on a condition, in
the form of a receipt, seems to be natural in the business world. However, there are still a number of
problems that cannot be solved using the CVS model such as fairly exchanging signed contracts.

7.3 Policy-Based Access Control

The CVS model could also be used for monitored controls of accessing resources. Suppose the president
of a certain nation wishes to grant one of his aides access to acertain highly confidential resources or files
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for which that aide is not entitled unless it is an emergency as certified by a certain number of cabinet
members. Note that there is an implicit implication that thepresident would be absent for some reasons
when such a certificate becomes effective. Obviously, this can be done using the CVS model with the
president creating a partial signature on the access control certificate. Very complex access policies could
also be implemented using the CVS model.

The advantage of using the CVS-based approach for access control is two-fold. First, it could avoid
the abuse of the signed access control certificate by the holder. Second, the non-verifiability of the
certificate could minimize the potential risk of coercion onits holder. For example, in the scenario
mentioned above, a curious aide would not be able to abuse thecertificate to access the resource in
question unless he colludes with all the cabinet members specified as witnesses. On the other hand, if
the aide is kidnapped, the enemies would still not be able to determine whether the aide holds a valid
certificate.

8 Conclusions

In this paper, we introduce a new signature concept called CVS which could provide effective solutions
in many digital business scenarios, in particular, those involving mutually distrusting parties. Through
CVS, one could limit and control the verifiability of his digital signatures subject to the fulfilled of
a number of conditions he specifies. We also give two efficientCVS constructions based on bilinear
pairings for the standard signature schemes of ElGamal and RSA.

In future work, we plan to add the function of traceability tothe CVS scheme. In details, in the current
schemes, once the ordinary signature is extracted, nobody could tell whether it is generated directly or
extracted from a partial signature. This is the perfect convertibility property, which is basically good. But
in some scenarios in which the recipient may be able to corrupt all the witnesses, the signer may want
to have a certain trapdoor to allow him to prove to others, saya court judge, whether a given signature
is signed directly or recovered from partial signature using the signatures of the witnesses on a number
of condition statements. That is, a recovered signature is normally indistinguishable from an ordinary
signature signed directly, but when the signer release a trapdoor, everyone would be convinced that a
recovered signature is one extracted from a partial signature by the witness endorsements. Consequently
the witnesses are held accountable.
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Appendix A: Proofs — Relations between Security Notions

Proof related to the Confirmation Protocol

Lemma 3. Given two ensembles of distribution{Xλ} and{Yλ}, which have the same sample space for
all λ, and a PPT algorithmTλ (a transcript simulator) whose input space is the same as that of Xλ and
Yλ, letπ(x) denote the output ofTλ on inputx.15 If {Xλ} ∼= {Yλ} in the security parameterλ, then

{x← Xλ;π(x)← {Tλ(x)} : (x, π(x))} ∼= {y ← Yλ;π(y)← {Tλ(y)} : (y, π(y))}

Proof of Lemma 3.
We prove this lemma by contradiction. Suppose{Xλ} and{Yλ} are indistinguishable with negligible

indistinguishability coefficientǫX,Y , that is, for all PPTA,

|Pr[x← Xλ : A(x) = 1]− Pr[y ← Yλ : A(y) = 1]| ≤ ǫX,Y (λ) <
1

poly(λ)
.

Assume there is a PPT distinguisherD which can tell apart the two distributions:{x ← Xλ :
(x, π(x))} and{y ← Yλ : (y, π(y))}. That is, the following is non-negligible.

ǫD(λ) =

∣

∣

∣

∣

Pr[x← Xλ;π(x)← {Tλ(x)} : D(x, π(x)) = 1]
−Pr[y ← Yλ;π(y)← {Tλ(y)} : D(y, π(y)) = 1]

∣

∣

∣

∣

We show how to useD to constructD′ to tell whether a givenδ belongs toXλ orYλ. The construction
is as follows:

D′(δ) whereδ ← Xλ whenb = 0 andδ ← Yλ whenb = 1

RunTλ to generate the transcriptπ(δ) for δ.
RunD on (δ, π(δ)).
OutputD’s guessb′ for b.

If D andTλ are PPT, then so isD′. Obviously,

Pr[x← Xλ : D′(x) = 1] = Pr[x← Xλ;π(x)← {Tλ(x)} : D(x, π(x)) = 1], and
Pr[y ← Yλ : D′(y) = 1] = Pr[y ← Yλ;π(y)← {Tλ(y)} : D(y, π(y)) = 1].

Substituting these two equations into the expression ofǫD(λ), then,

ǫD(λ) = |Pr[x← Xλ : D′(x) = 1]− Pr[y ← Yλ : D′(y) = 1]| ≤ ǫX,Y (λ)

This concludes the reduction:ǫD(λ) must be negligible, otherwiseǫX,Y (λ) is non-negligible (a contra-
diction). That is,

{Xλ} ∼= {Yλ} ⇒ {x← Xλ;π(x)← {Tλ(x)} : (x, π(x))} ∼= {y ← Yλ;π(y)← {Tλ(y)} : (y, π(y))}.

15Note thatTλ is probabilistic, so even for the same inputx, Tλ(x) may be different between two evaluations.
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Proof: Simulatability and Unforgeability imply Cheat-imm unity

Theorem 8. An unforgeable and simulatable CVS scheme is also cheat-immune given its confirmation
protocol is zero knowledge.

Proof of Theorem 8.
Assume the given CVS scheme is unforgeable and simulatable with respect to a PPT simulator

FakeS(m,C). Let SimT(δ) be the transcript simulator of the zero knowledge proof usedfor the confir-
mation protocol whereδ is a partial signature.

In the cheat-immunity game defined in the paper, an adversaryis always given a valid partial signa-
ture as a challenge. In the following proof, we force an adversary, capable to win the cheat-immunity
game with non-negligible probability, to run on a challengewhich is not a valid partial signature but a
fake one from the simulatorFake. Since the adversary is just an algorithm, it is thus definitely possible
to run it on a deviated input. Of course, it is likely that the adversary would not output the desired result
on the deviated input, but this is what we want to show.

In order to run the adversary on a deviated input, we modify the definition of the cheat-immunity
game slightly, namely, in the challenge phase, no confirmation protocol would be run between the chal-
lenger and the adversary, but instead the adversary is givena challenged partial signature and a transcript
of a confirmation protocol run on that partial signature. Note that a run of the interactive confirmation
protocol is replaced by a transcript without any interaction. We argue that the proof obtained in this
amended model also applies to the original model of cheat-immunity if the confirmation protocol is zero
knowledge. The justification is as follows:

If the confirmation protocol of a CVS scheme is zero-knowledge, the only information obtainable
from running the confirmation protocol is whether a given partial signature is true/valid. Hence, the
only difference between the information obtainable from a given partial signature and the transcript
recorded during the confirmation protocol run on it and the information obtainable from a given
partial signature and a simulated transcript of the confirmation protocol is the validity of the given
partial signature and nothing else. In other words, if an adversary can extract the ordinary signature
from a valid partial signature after running the confirmation protocol on it, it should also be able to
do so with almost the same computational effort even withoutrunning the confirmation protocol.
Consequently, we would neglect running the confirmation protocol in the challenge phase to force
as adversary to run on an invalid partial signature. In fact,if we insist on running the confirmation
protocol between the adversary and the challenger in the challenge phase, it is still possible (even
though inefficient) using the rewinding technique commonlyfound in the transcript simulator of
any zero knowledge proof, as it is used in [28]. In order to make an adversary accept a partial
signature input and run on it, in each round of iteration of the confirmation protocol, we prepare
the answer of some of all the possible challenged questions.If the challenge question comes out
to be what has been prepared, then this round is successful; otherwise, we reset the adversary
to the start of the current iteration round and restart this round again. As mentioned before, this
rewinding is possible because the adversary is just anotheralgorithm or Turing machine we use as
a subroutine. Of course, we have to take more computations tocomplete an iteration round now
but in most zero knowledge proofs, the overall computation would still remain polynomial time.

Now we can describe the proof. Suppose there exists a PPT adversaryA which can win the cheat-
immunity game with non-negligible probabilitypCI

A . We show how to construct a distinguisherD from
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A for the simulatability game, which can distinguish a true partial signature (CVSig) from a fake one
generated byFake.

D(δb): δb is a true/fake partial signature whenb = 0/1

Setup.
Get from its challenger the public keys of the signer and witnesses, and pass them toA.
RunA on the same set of public keys.
Keep the signer private key if given one.
Query.
Pass all signing and endorsement queries fromA to its oracles and return the results toA.
For signing queries, run the confirmation protocol as an agent in betweenA and the challenger.
Challenge.
A outputs(m,C),m ∈M, C ⊂ C ×W, to be challenged.
Pass(m,C) to its challenger and receive the challengeδb.
Compute the confirmation transcriptπ(δb) = SimT(δb) for δb.
Pass(δb, π(δb)) as a challenge toA.
Guess.
A outputsσ. Output guessb′ where:

b′ =

{

0, VerS(m,σ) = 1
1, otherwise

First, it can be seen thatD is PPT ifA andVerS are both PPT.

The probability of success ofD with respect to the simulatability game is:16

PrSim
D [success] = Pr[b′ = b|δb]

= 1
2Pr[b

′ = 0|δ0] +
1
2Pr[b

′ = 1|δ1]
= 1

2Pr[δ0 ← {CVSigS(m,C)};σ ← {A(δ0)} : VerS(m,σ) = 1]
+1

2Pr[δ1 ← {FakeS(m,C)};σ ← {A(δ1)} : VerS(m,σ) = 0]
= 1

2p
CI
A + 1

2 −
1
2Pr[δ1 ← {FakeS(m,C)};σ ← {A(δ1)} : VerS(m,σ) = 1].

Note we use the fact:pCI
A = Pr[δ0 ← {CVSigS(m,C)};σ ← {A(δ0)} : VerS(m,σ) = 1]. Rearrang-

ing terms, we have:

1
2p

CI
A =

(

PrSim
D [success]− 1

2

)

+ 1
2Pr[δ1 ← {FakeS(m,C)};σ ← {A(δ1)} : VerS(m,σ) = 1]

16For the sake of simple notations, we tend to use short notations for the probability in question. For example, we just write
Pr[b′ = b|δb] to denote the probability that the guess ofD, that is,b′ is the same as the challenged bitb givenδb which could
be generated fromCVSig (if b = 0) or Fake (if b = 1). We also neglect the preamble like public key generation. Formally,
this probability should be written as:

Pr

2664 (PKS, skS)← {CV KGS(1λ)}; (PKW , skW )← {CV KGW (1λ), ∀W ;

m←M; C ← 2C×W ; b← {0, 1}; δb ←

�
{CVSigS(m,C)}, b = 0
{FakeS(m, C)}, b = 1

;

σ ← {A(δb)}; b
′ = ¬(VerS(m, σ) = 1})

: b′ = b

3775
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Taking absolute values on both sides and denotingPr[δ1 ← {FakeS(m,C)};σ ← {A(δ1)} : VerS(m,σ) =
1] by εf , we have:

1
2p

CI
A ≤

∣

∣PrSim
D [success]− 1

2

∣

∣+
∣

∣

1
2Pr[δ1 ← {FakeS(m,C)};σ ← {A(δ1)} : VerS(m,σ) = 1]

∣

∣

= AdvSim
D + 1

2Pr[δ1 ← {FakeS(m,C)};σ ← {A(δ1)} : VerS(m,σ) = 1]

pCI
A ≤ 2AdvSim

D + εf . (3)

If pCI
A is non-negligible, then eitherAdvSim

D or εf is non-negligible. We consider the following two
cases:

Case 1 —AdvSim
D is non-negligible. Obviously, the existence of such a PPT algorithmD would break

the simulatability property, which is a contradiction as weassume the CVS scheme is simulatable.

Case 2 —εf is non-negligible. We argue that ifεf is non-negligible, then we could useA to create an
existential forgery as follows.

F

Setup.
Get all the public keys of the signer and witnesses.
RunA on the same set of public keys.
Keep the witness private keys.17

Query.
Pass all signing queries to its oracle and relay the results back toA.
Run the confirmation protocol as an agent in betweenA and the challenger.
Answer all endorsement queries itself using the witness private keys.
Challenge.
A outputs(m,C),m ∈M, C ⊂ C ×W, to be challenged.
Createδ = FakeS(m,C), and compute the confirmation transcriptπ(δ) = SimT(δ) for δ.
Pass(δb, π(δb)) as a challenge toA.
Guess.
Output the final outputσ of A as a forgery output.

Obviously, ifA is PPT, thenF is also PPT asFake is PPT. Asm is chosen to be not queried before,
the probability of successful existential forgery byF is then given by:

pUF
F = Pr[δ ← {FakeS(m,C)};σ ← {A(δ)} : VerS(m,σ) = 1]

Note thatpUF
F should be equal toεf which is non-negligible. This concludes that the given CVS scheme

is existentially forgeable ifεf is non-negligible, which is a contradiction as we assume theCVS scheme
is unforgeable.

In conclusion, if the given CVS scheme is simulatable (i.e.AdvSim
D

is negligible for all PPTD) and
unforgeable (i.e.pUF

F
is negligible for all PPTF), then it is also cheat-immune with negligiblepCI

A
for

all PPTA.
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Equivalence between Simulatability, Invisibility and Anonymity

Theorem 9 (Simulatability implies Invisibility). Given a simulatable CVS scheme in an adaptive query
model with respect to a PPT fake signature simulatorFakeS(m,C), it is message-invisible in the same
adaptive query model if and only if{FakeS(m0, C)} ∼= {FakeS(m1, C)} in the same adaptive query
model for allS,m0,m1, andC.

Proof of Theorem 9.
Assume the given CVS scheme is simulatable with respect to a PPT simulatorFake, that is, the

correspondingAdvSim
D is negligible for all PPTD.

If Part
Suppose there exists a PPT distinguisherD which can break the invisibility property, that is, able to

distinguish which one of the two given messagesm0 andm1 a given partial signatureδ is for. We show
how to construct another distinguisherD′ to tell whether a givenδb is genuine fromCVSig (b = 0) or
fake fromFake (b = 1). In the following discussion, we denote the negation ofb by b.

D′(δb): δb is a true/fake partial signature whenb = 0/1

Setup.
Ask its challenger for the public keys of the signer and the witnesses
RunD on the same set of public keys.
Get the signer’s private key from its challenger and pass it toD.
Query.
Pass all signing and endorsement queries fromD to its oracle.
Relay the results back toD.
Run the confirmation protocol as an agent betweenD and the challenger.
Challenge.
D outputs(m0,m1, C) to be challenged.
Flip a coinc← {0, 1}. Output(mc, C) to its challenger.
Pass the challengeδb toD.
Guess.
D outputs a guessb′. Output the final guessb′′ for b:

b′′ =

{

b′, c = 0

b′, c = 1

Obviously, ifD is PPT, so isD′.

Then the probability of success ofD′ with respect to simulatability is given by:

PrSim
D′ [Success] = Pr[b′′ = b|δb]

= 1
2Pr[b

′ = b|δb, c = 0] + 1
2Pr[b

′ = b|δb, c = 1]
= 1

4Pr[b
′ = 0|δ0, c = 0] + 1

4Pr[b
′ = 1|δ1, c = 0]

+1
4Pr[b

′ = 1|δ0, c = 1] + 1
4Pr[b

′ = 0|δ1, c = 1]
= 1

4Pr[δ ← {CVSigS(m0, C)} : D(δ) = 0] + 1
4Pr[δ ← {FakeS(m0, C)} : D(δ) = 1]

+1
4Pr[δ ← {CVSigS(m1, C)} : D(δ) = 1] + 1

4Pr[δ ← {FakeS(m1, C)} : D(δ) = 0]
= 1

4Pr[δ ← {CVSigS(m0, C)} : D(δ) = 0] + 1
4Pr[δ ← {CVSigS(m1, C)} : D(δ) = 1]

+1
4Pr[δ ← {FakeS(m0, C)} : D(δ) = 1]− 1

4Pr[δ ← {FakeS(m1, C)} : D(δ) = 1]
+1

4 .
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Note we use in the above expression the fact:

Pr[δ ← {FakeS(m1, C)} : D(δ) = 1] + Pr[δ ← {FakeS(m1, C)} : D(δ) = 0] = 1

Note also that the probability of success ofD with respect to invisibility is given by:

PrInv
D [Success] =

1

2
Pr[δ ← {CVSigS(m0, C)} : D(δ) = 0]+

1

2
Pr[δ ← {CVSigS(m1, C)} : D(δ) = 1].

Hence,

1
2Pr

Inv
D

[Success] + 1
4 = PrSim

D′ [Success] + 1
4Pr[δ ← {FakeS(m1, C)} : D(δ) = 1]

−1
4Pr[δ ← {FakeS(m0, C)} : D(δ) = 1]

1
2

(

PrInv
D

[Success]− 1
2

)

=
(

PrSim
D′ [Success]− 1

2

)

+ 1
4 (Pr[δ ← {FakeS(m1, C)} : D(δ) = 1]

−Pr[δ ← {FakeS(m0, C)} : D(δ) = 1]

AdvInv
D

≤ 2AdvSim
D′ + 1

2ǫ
Fake
m0,m1

whereǫFake
m0,m1

= |Pr[δ ← {FakeS(m1, C)} : D(δ) = 1]− Pr[δ ← {FakeS(m0, C)} : D(δ) = 1]|.
Therefore, ifAdvInv

D
is non-negligible, then eitherAdvSim

D′ or ǫFake
m0,m1

is non-negligible. The former
condition implies the given CVS scheme is not simulatable (acontradiction) whereas the latter implies
{FakeS(m0, C)} 6∼= {FakeS(m1, C)} (again a contradiction). Hence,AdvInv

D
must be negligible if the

given CVS scheme is simulatable with respect toFake and{FakeS(m0, C)} ∼= {FakeS(m1, C)} in the
same attack model.

Only if Part
The given CVS scheme is simulatable with respect toFake implies indistinguishability between the

following: {CVSigS(m,C)} ∼= {FakeS(m,C)}, ∀S,m,C, that is, the following is negligible for all
PPTD.

ǫSim
D: m = |Pr[δ ← {CVSigS(m,C)} : D(δ) = 1]− Pr[δ ← {FakeS(m,C)} : D(δ) = 1]|

If the CVS scheme is also invisible, then for any two messagesm0 andm1, {CVSigS(m0, C)} ∼=
{CVSigS(m1, C)}, ∀S,C, that is, the following is negligible for all PPTD.

ǫInv
D: (m0,m1)

= |Pr[δ ← {CVSigS(m0, C)} : D(δ) = 1]− Pr[δ ← {CVSigS(m1, C)} : D(δ) = 1]|

For allS, C and any two messagesm0 andm1, and for any PPT distinguisherD,

Pr[δ ← {FakeS(m0, C)} : D(δ) = 1]− Pr[δ ← {FakeS(m1, C)} : D(δ) = 1]
= Pr[δ ← {FakeS(m0, C)} : D(δ) = 1]− Pr[δ ← {CVSigS(m0, C)} : D(δ) = 1]

+Pr[δ ← {CVSigS(m1, C)} : D(δ) = 1]− Pr[δ ← {FakeS(m1, C)} : D(δ) = 1]
+Pr[δ ← {CVSigS(m0, C)} : D(δ) = 1]− Pr[δ ← {CVSigS(m1, C)} : D(δ) = 1]

If we denote|Pr[δ ← {FakeS(m0, C)} : D(δ) = 1]− Pr[δ ← {FakeS(m1, C)} : D(δ) = 1]| by ǫFake
D: (m0,m1)

and take absolute values on both sides, then we have:

ǫFake
D: (m0,m1)

≤ |Pr[δ ← {CVSigS(m0, C)} : D(δ) = 1]− Pr[δ ← {FakeS(m0, C)} : D(δ) = 1]|

+ |Pr[δ ← {CVSigS(m1, C)} : D(δ) = 1]− Pr[δ ← {FakeS(m1, C)} : D(δ) = 1]|
+ |Pr[δ ← {CVSigS(m0, C)} : D(δ) = 1]− Pr[δ ← {CVSigS(m1, C)} : D(δ) = 1]|

= ǫSim
D: m0

+ ǫSim
D: m1

+ ǫInv
D: (m0,m1)
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If ǫFake
D: (m0,m1) is non-negligible, either one of the following is non-negligible: ǫSim

D: m0
, ǫSim

D: m1
, ǫInv

D: (m0,m1)
,

which is a contradiction to either the simulatability or invisibility assumption. As a result, given a simu-
latable CVS scheme (with respect toFake), if it is also invisible, then the following must be true forall
S,m0,m1, C:

{FakeS(m0, C)} ∼= {FakeS(m1, C)}

Theorem 10 (Simulatability implies Anonymity). Given a simulatable CVS scheme in an adaptive
query model with respect to a PPT fake signature simulatorFakeS(m,C), it is signer-anonymous in the
same adaptive query model if and only if{FakeS0(m,C)} ∼= {FakeS1(m,C)} in the same adaptive
query model for allS0, S1,m, andC.

Proof of Theorem 10.
Assume the given CVS scheme is simulatable with respect to a PPT simulatorFake, that is, the

correspondingAdvSim
D is negligible for all PPTD.

If Part
Suppose there exists a PPT distinguisherD which can break the anonymity property, that is, able to

distinguish which one of the two given signersS0 andS1 has signed a given partial signatureδ. We
show how to construct another distinguisherDc (c ∈ {0, 1}) to tell whether a givenδb is genuine from
CVSig (that is,b = 0) or fake fromFake (that is,b = 1). We give two constructions; in the following
discussion, we usec = 0 andc = 1 to denote the difference between the two implementations ofDc. In
the following, we useb′ andc to denote the negations ofb′ andc respectively (whereb′, c ∈ {0, 1}).

Dc(δb): δb is a true/fake partial signature whenb = 0/1

Setup.
Ask its challenger for the public keys of the witnesses.
Ask its challenger for the public and private keys of one signer, saySc.
RunCVKGS(1λ) to generate the public and private keys of the other signerSc.
RunD on the public keys ofSc andSc.
Pass all the witness public keys and the two signer private keys toD.
Query.
Pass allSc signing queries fromD to its oracle. Relay the results back toD.
Answer allSc signing queries fromD by runningCVSigSc.
Pass all endorsement queries fromD to its oracle and relay the results back toD.
Challenge.
D outputs(m,C) to be challenged.
Output(m,C) to its challenger.
Pass the challengeδb toD.
Guess.
D outputs a guessb′. Output the final guessb′′ for b:

b′′ =

{

b′, c = 0

b′, c = 1

Obviously, ifD is PPT, so isDc for bothc = 0 andc = 1.
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The probability of success ofD0 with respect to simulatability is given by:

PrSim
D0

[Success] = Pr[b′′ = b|δb]

= 1
2Pr[b

′ = 0|δ0] +
1
2Pr[b

′ = 1|δ1]
= 1

2Pr[δ ← {CVSigS0(m,C)} : D(δ) = 0] + 1
2Pr[δ ← {FakeS0(m,C)} : D(δ) = 1].

The probability of success ofD1 with respect to simulatability is given by:

PrSim
D1

[Success] = Pr[b′′ = b|δb]

= 1
2Pr[b

′ = 1|δ0] +
1
2Pr[b

′ = 0|δ1]
= 1

2Pr[δ ← {CVSigS1(m,C)} : D(δ) = 1] + 1
2Pr[δ ← {FakeS1(m,C)} : D(δ) = 0].

Note the probability of success ofD with respect to anonymity is given by:

PrAno
D

[Success] = 1
2Pr[δ ← {CVSigS0(m,C)} : D(δ) = 0] + 1

2Pr[δ ← {CVSigS1(m,C)} : D(δ) = 1]
= 1

2Pr[δ ← {CVSigS0(m,C)} : D(δ) = 0] + 1
2Pr[δ ← {FakeS0(m,C)} : D(δ) = 1]

1
2Pr[δ ← {CVSigS1(m,C)} : D(δ) = 1] + 1

2Pr[δ ← {FakeS1(m,C)} : D(δ) = 0]
−1

2Pr[δ ← {FakeS0(m,C)} : D(δ) = 1]− 1
2Pr[δ ← {FakeS1(m,C)} : D(δ) = 0]

= PrSim
D0

[Success] + PrSim
D1

[Success]− 1
2

−1
2Pr[δ ← {FakeS0(m,C)} : D(δ) = 1] + 1

2Pr[δ ← {FakeS1(m,C)} : D(δ) = 1].

Note we substitute the values ofPrSim
D0

[Success] andPrSim
D1

[Success] into the above equation and use
the fact:Pr[δ ← {FakeS1(m,C)} : D(δ) = 1] + Pr[δ ← {FakeS1(m,C)} : D(δ) = 0] = 1

Denote|Pr[δ ← {FakeS1(m,C)} : D(δ) = 1]− Pr[δ ← {FakeS0(m,C)} : D(δ) = 1]| by ǫFake
D:(S0,S1).

Note thatD is set to distinguish between the genuine signatures ofS0 andS1; nevertheless, if input with
Fake,D must give an output. Subtracting12 from both sides and taking absolute values, we have:

AdvAno
D

≤ AdvSim
D0

+AdvSim
D1

+ 1
2ǫ

Fake
D:(S0,S1)

Therefore, ifAdvAno
D

is non-negligible, then eitherAdvSim
D0

,AdvSim
D1

or ǫFake
m0,m1

is non-negligible. Either
AdvSim

D0
orAdvSim

D1
is non-negligible implies the given CVS scheme is not simulatable (a contradiction).

On the other hand,ǫFake
m0,m1

is non-negligible implies{FakeS0(m,C)} 6∼= {FakeS1(m,C)} (again a
contradiction with the given condition). Hence,AdvAno

D
must be negligible if the given CVS scheme is

simulatable with respect toFake and{FakeS0(m,C)} ∼= {FakeS1(m,C)}.

Only if Part
The given CVS scheme is simulatable with respect toFake implies indistinguishability between the

following: {CVSigS(m,C)} ∼= {FakeS(m,C)}, ∀S,m,C, that is, the following is negligible for all
PPTD.

ǫSim
D: S = |Pr[δ ← {CVSigS(m,C)} : D(δ) = 1}] − Pr[δ ← {FakeS(m,C)} : D(δ) = 1]|

If the CVS scheme is also anonymous, then for any two signersS0 andS1, {CVSigS0(m,C)} ∼=
{CVSigS1(m,C)}, ∀m,C, that is, the following is negligible for all PPTD.

ǫAno
D: (S0,S1) = |Pr[δ ← {CVSigS0(m,C)} : D(δ) = 1}]− Pr[δ ← {CVSigS1(m,C)} : D(δ) = 1]|
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For allm, C and any two signersS0 andS1, and for any PPT distinguisherD,

Pr[δ ← {FakeS0(m,C)} : D(δ) = 1]− Pr[δ ← {FakeS1(m,C)} : D(δ) = 1]
= Pr[δ ← {FakeS0(m,C)} : D(δ) = 1]− Pr[δ ← {CVSigS0(m,C)} : D(δ) = 1]

+Pr[δ ← {CVSigS1(m,C)} : D(δ) = 1]− Pr[δ ← {FakeS1(m,C)} : D(δ) = 1]
+Pr[δ ← {CVSigS0(m,C)} : D(δ) = 1]− Pr[δ ← {CVSigS1(m,C)} : D(δ) = 1]

If we denote|Pr[δ ← {FakeS(m0, C)} : D(δ) = 1]− Pr[δ ← {FakeS(m1, C)} : D(δ) = 1]| by ǫFake
D: (m0,m1)

and take absolute values on both sides, then we have:

ǫFake
D: (S0,S1) ≤ |Pr[δ ← {CVSigS0(m,C)} : D(δ) = 1]− Pr[δ ← {FakeS0(m,C)} : D(δ) = 1]|

+ |Pr[δ ← {CVSigS1(m,C)} : D(δ) = 1]− Pr[δ ← {FakeS1(m,C)} : D(δ) = 1]|
+ |Pr[δ ← {CVSigS0(m,C)} : D(δ) = 1]− Pr[δ ← {CVSigS1(m,C)} : D(δ) = 1]|

= ǫSim
D: S0 + ǫSim

D: S1 + ǫAno
D: (S0,S1)

If ǫFake
D: (S0,S1) is non-negligible, either one of the following is non-negligible: ǫSim

D: S0, ǫSim
D: S1, ǫAno

D: (S0,S1),
which is a contradiction to either the simulatability or anonymity assumption. As a result, given a simu-
latable CVS scheme (with respect toFake), if it is also anonymous, then the following must be true for
all S0, S1,m, C:

{FakeS0(m,C)} ∼= {FakeS1(m,C)}

Theorem 12.Invisibility does not imply Simulatability.

Proof of Theorem 12.
In the following, we will show the necessary requirement fora given invisible CVS scheme to be

simulatable.
If the given CVS scheme is invisible, then the following musthold: {CVSigS(m,C)} ∼= {CVSigS(m′, C)}

for all m 6= m′S,C. That is, the following is negligible for all PPTD.

ǫInv
D: (m,m′) =

∣

∣Pr[δ ← {CVSigS(m,C)} : D(δ) = 1]− Pr[δ ← {CVSigS(m′, C)} : D(δ) = 1]
∣

∣

For all possible simulatorsFake, the following must hold for all PPT distinguishersD for S,C,m 6= m′:

ǫFake
D

= Pr[m,m′ ←M; δ ← {CVSigS(m′, C)} : D(δ) = 1]
−Pr[m,m′ ←M; δ ← {FakeS(m,C)} : D(δ) = 1]

= Pr[m,m′ ←M; δ ← {CVSigS(m′, C)} : D(δ) = 1]
−Pr[m,m′ ←M; δ ← {CVSigS(m,C)} : D(δ) = 1]
+Pr[m,m′ ←M; δ ← {CVSigS(m,C)} : D(δ) = 1]
−Pr[m,m′ ←M; δ ← {FakeS(m,C)} : D(δ) = 1]
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Taking absolute values on both sides, we get:

|Pr[m,m′ ←M; δ ← {CVSigS(m′, C)} : D(δ) = 1]− Pr[m,m′ ←M; δ ← {FakeS(m,C)} : D(δ) = 1]|
≤ |Pr[m,m′ ←M; δ ← {CVSigS(m′, C)} : D(δ) = 1]
−Pr[m,m′ ←M; δ ← {CVSigS(m,C)} : D(δ) = 1]|
+|Pr[m,m′ ←M; δ ← {CVSigS(m,C)} : D(δ) = 1]
−Pr[m,m′ ←M; δ ← {FakeS(m,C)} : D(δ) = 1]|

= |Pr[δ ← {CVSigS(m′, C)} : D(δ) = 1]− Pr[δ ← {CVSigS(m,C)} : D(δ) = 1]|
+ |Pr[m←M; δ ← {CVSigS(m,C)} : D(δ) = 1]− Pr[m←M; δ ← {FakeS(m,C)} : D(δ) = 1]|

= ǫInv
D: (m,m′) + ǫSim−Fake

D: m

Note thatǫInv
D: (m,m′) is the advantage ofD to break the invisibility property when the challenge messages

arem andm′, andǫSim−Fake
D: m is the advantage ofD to break the simulatability property with respect to

the simulatorFake when the challenge message ism. Since the given scheme is invisible, thenǫInv
D: (m,m′)

is negligible for all PPTD.
If the given CVS scheme is simulatable, then there has to exist a PPT simulatorFake′ so that the

following distributions are indistinguishable:{CVSigS(m,C)} and {FakeS(m,C)} for all S,m,C.
That is, the following is negligible for all PPTD.

ǫSim−Fake′

D: m =
∣

∣Pr[δ ← {CVSigS(m,C)} : D(δ) = 1]− Pr[δ ← {Fake′
S(m,C)} : D(δ) = 1]

∣

∣

As the condition thatǫFake′

D ≤ ǫInv
D: (m,m′) + ǫSim−Fake′

D: m applies for allFake including Fake′ and

ǫInv
D: (m,m′) is negligible in the security parameter since the scheme is invisible. For the scheme to be sim-

ulatable with respect toFake′, ǫSim−Fake′

D: m is negligible. These together implyǫFake′

D must be negligible.
In other words, then the following value must be negligible:

∣

∣Pr[m,m′ ←M; δ ← {CVSigS(m′, C)} : D(δ) = 1]− Pr[m,m′ ←M; δ ← {Fake′
S(m,C)} : D(δ) = 1]

∣

∣

which in essence implies{CVSigS(m′, C)} ∼= {Fake′
S(m,C)} for all S, m andC, and allm′ 6=

m. In fact, this necessary condition implies that there exists another PPT simulatorFake′′ such that
{CVSigS(m,C)} ∼= {Fake′′

S(m,C)} for all S,m,C, which is the sufficient condition for the scheme to
be simulatable.

In conclusion, invisibility does not imply simulatability.

Theorem 13.Anonymity does not imply Simulatability.

Proof of Theorem 13.

In the following, we show the necessary requirement for an anonymous CVS scheme to be simulat-
able.

If the given CVS scheme is anonymous, then for any two signersS0 andS1, {CVSigS0(m,C)} ∼=
{CVSigS1(m,C)}, ∀m,C, that is, the following is negligible for all PPTD.

ǫAno
D: (S0,S1) = |Pr[δ ← {CVSigS0(m,C)} : D(δ) = 1]− Pr[δ ← {CVSigS1(m,C)} : D(δ) = 1]|
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For all possible simulatorsFake the following must hold for all PPT distinguisherD for all m, C and
signersS0 6= S1:

ǫFake
D = Pr[δ ← {CVSigS1(m,C)} : D(δ) = 1]− Pr[δ ← {FakeS0(m,C)} : D(δ) = 1]

= Pr[δ ← {CVSigS1(m,C)} : D(δ) = 1]− Pr[δ ← {CVSigS0(m,C)} : D(δ) = 1]
+Pr[δ ← {CVSigS0(m,C)} : D(δ) = 1]− Pr[δ ← {FakeS0(m,C)} : D(δ) = 1]

Taking absolute values on both sides, we get:

|Pr[δ ← {CVSigS1(m,C)} : D(δ) = 1]− Pr[δ ← {FakeS0(m,C)} : D(δ) = 1]|
≤ |Pr[δ ← {CVSigS1(m,C)} : D(δ) = 1]− Pr[δ ← {CVSigS0(m,C)} : D(δ) = 1]|

+|Pr[δ ← {CVSigS0(m,C)} : D(δ) = 1]− Pr[δ ← {FakeS0(m,C)} : D(δ) = 1]|
= |Pr[δ ← {CVSigS1(m,C)} : D(δ) = 1]− Pr[δ ← {CVSigS0(m,C)} : D(δ) = 1]|

+ |Pr[δ ← {CVSigS0(m,C)} : D(δ) = 1]− Pr[δ ← {FakeS0(m,C)} : D(δ) = 1]|

= ǫAno
D: (S0,S1) + ǫSim−Fake

D: S0

Note thatǫAno
D: (S0,S1) is the advantage ofD to break the anonymity property for signersS0 andS1, and

ǫSim−Fake
D: m is the advantage ofD to break the simulatability property with respect to the simulatorFake

when the challenge message ism. Since the given scheme is anonymous, thenǫAno
D: (S0,S1) is negligible

for all PPTD.
If the given CVS scheme is simulatable, then there has to exist a PPT simulatorFake′ so that the

following distributions are indistinguishable:{CVSigS(m,C)} and {FakeS(m,C)} for all S,m,C.
That is, the following is negligible for all PPTD.

ǫSim−Fake′

D: m =
∣

∣Pr[δ ← {CVSigS(m,C)} : D(δ) = 1]− Pr[δ ← {Fake′
S(m,C)} : D(δ) = 1]

∣

∣

As the condition thatǫFake′
D ≤ ǫAno

D: (S0,S1) + ǫSim−Fake′

D: m applies for allFake including Fake′ and

ǫAno
D: (S0,S1) is negligible in the security parameter since the scheme is anonymous. For the scheme to

be simulatable with respect toFake′, ǫSim−Fake′

D: m is negligible. These together implyǫFake′

D must be
negligible. In other words, then the following value must benegligible:

ǫSim
D: m = |Pr[δ ← {CVSigS(m,C)} : D(δ) = 1]− Pr[δ ← {FakeS(m,C)} : D(δ) = 1]|

which in essence implies{CVSigS1(m,C)} ∼= {FakeS0(m,C)} for all S0, m andC, and allS1 6=
S0. In fact, this necessary condition implies that there exists another PPT simulatorFake′′ such that
{CVSigS(m,C)} ∼= {Fake′′

S(m,C)} for all S,m,C, which is the sufficient condition for the scheme to
be simulatable.

In conclusion, invisibility does not imply simulatability.

Theorem 14 (Anonymity implies Invisibility).Assuming the partial signatures of a CVS scheme gener-
ated from two distinct and independently picked public/private key pairs (i.e. from two different signers)
are independent, an anonymous CVS scheme is also invisible.

Proof of Theorem 14.
Assume the given CVS scheme is anonymous with negligibleAdvAno

D for all PPTD.
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Suppose there exists a PPT distinguisherD which can break the invisibility property, that is, able to
distinguish which one of the two given messagesm0 andm1 a given partial signatureδ is for. We show
how to construct another distinguisherD′ to tell whether a givenδb is signed by signerS0 or S1.

For the sake of clarity, we add an index to the distinguisher in such a way thatDS0 denote an
invisibility distinguisher which tells whether a given signature ofS0 is on messagem0 orm1.

D′(δb): b = S0/S1

Setup.
Get the witness public keys and the two signer public keys (for S0 andS1) from its challenger.
RunD on the public key ofS0 and all witness public keys.
Get the private key of the signers from its challenger and pass the one forS0 toD.
Query.
Pass all signing and endorsement queries fromD to its oracle.
Relay the results back toD.
Challenge.
D outputs(m0,m1, C) to be challenged.
Flip a coinc← {0, 1}. Output(mc, C) to its challenger.
Pass the challengeδb toD.
Guess.
D outputs a guessb′. Output the final guessb′′ for b:

b′′ =

{

b′, c = 0

b′, c = 1

Obviously, ifD is PPT, so isD′. Then the probability of success ofD′ with respect to anonymity is given
by:

PrAno
D′ [Success] = Pr[b′′ = b|δb]

= 1
2Pr[b

′ = b|δb, c = 0] + 1
2Pr[b

′ = b|δb, c = 1]
= 1

4Pr[b
′ = 0|δ0, c = 0] + 1

4Pr[b
′ = 1|δ1, c = 0]

+1
4Pr[b

′ = 1|δ0, c = 1] + 1
4Pr[b

′ = 0|δ1, c = 1]
= 1

4Pr[δ ← {CVSigS0(m0, C)} : DS0(δ) = 0]
+1

4Pr[δ ← {CVSigS1(m0, C)} : DS0(δ) = 1]
+1

4Pr[δ ← {CVSigS0(m1, C)} : DS0(δ) = 1]
+1

4Pr[δ ← {CVSigS1(m1, C)} : DS0(δ) = 0]
= 1

4Pr[δ ← {CVSigS0(m0, C)} : DS0(δ) = 0]
+1

4Pr[δ ← {CVSigS0(m1, C)} : DS0(δ) = 1]
+1

4Pr[δ ← {CVSigS1(m0, C)} : DS0(δ) = 1]
−1

4Pr[δ ← {CVSigS1(m1, C)} : DS0(δ) = 1]
+1

4

Note we use in the above expression the fact:

Pr[δ ← {CVSigS1(m1, C)} : DS0(δ) = 0] + Pr[δ ← {CVSigS1(m1, C)} : DS0(δ) = 1] = 1

Note also that the probability of success ofDS0 with respect to invisibility is given by:

PrInv
D [Success] =

1

2
Pr[δ ← {CVSigS0(m0, C)} : DS0(δ) = 0]+

1

2
Pr[δ ← {CVSigS0(m1, C)} : DS0(δ) = 1]
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Hence,

1
2Pr

Inv
D

[Success] + 1
4 = PrAno

D′ [Success] + 1
4Pr[δ ← {CVSigS1(m0, C)} : DS0(δ) = 1]

−1
4Pr[δ ← {CVSigS1(m1, C)} : DS0(δ) = 1]

1
2

(

PrInv
D

[Success]− 1
2

)

=
(

PrAno
D′ [Success]− 1

2

)

+ 1
4Pr[δ ← {CVSigS1(m0, C)} : DS0(δ) = 1]

−1
4Pr[δ ← {CVSigS1(m1, C)} : DS0(δ) = 1]

AdvInv
D

≤ 2AdvAno
D′ + 1

2ǫ
S1
S0:m0,m1

where
ǫS1
S0:m0,m1

= |Pr[δ ← {CVSigS1(m0, C)} : DS0(δ) = 1]− Pr[δ ← {CVSigS1(m1, C)} : DS0(δ) = 1]|

Provided signatures from distinct, independent signing keys are independent, the signatures fromS1,
namely,CVSigS1(m0, C) andCVSigS1(m1, C), should be independent of the view ofDS0 initialized
for S0’s signatures. As a result,DS0 should not make a guess better than a random one. Hence,Pr[δ ←
{CVSigS1(m0, C)} : DS0(δ) = 1] ≈ Pr[δ ← {CVSigS1(m1, C)} : DS0(δ) = 1] ≈ 1

2 and the term
ǫS1
S0:m0,m1

should be negligible.

As a result, ifAdvInv
D

is non-negligible, thenAdvAno
D′ should also be non-negligible (a contradic-

tion). In conclusion, if partial signatures generated fromdifferent signing keys are independent (which
is usually true), then anonymity of a CVS scheme implies its invisibility.
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Appendix B: Proofs — The Security of the Generic CVS Construction

Security of the Generic CVS Construction from IBE

Lemma 15. If the underlying ordinary signature schemeSIG is existentially unforgeable under a chosen
message attack, then the generic CVS construction is unforgeable.

Proof of Lemma 15.
We prove the unforgeability property of the generic construction by contradiction. AssumeSIG is

existentially unforgeable under chosen message attacks. Suppose there is a PPT forging algorithmF
which can forge a CVS partial signature with probability of successpCV S

F
. We show how to construct

another forging algorithmF ′ fromF to forge a signature forSIG.

F ′

Setup.
Ask its challenger for the signer public keyPKS .
RunSetup to get all the witness public/private key pairs(PKWi

, skWi
), 1 ≤ i ≤ N .

RunF onPKS and(PKWi
, skWi

).
Query.
WhenF issues aOS query for〈mj, Cj〉 whereCj = {(cji,Wji) : 1 ≤ i ≤ N},

ask its signing orale for an ordinary signatureσj = Sig(sks,mj).
Randomly chooseaji (1 ≤ i ≤ N ) to create a partial signature:

δj =
〈

σj ⊕ h
(

⊕N
i aji

)

,
{

Enc(PKWji
, cji, aji)

}

, Com
(

σj , h
(

⊕N
i aji

))〉

With aji’s, σj, and all random coins used, run the confirmation protocol withF .
Guess.
F outputs a guess(m,σ). Output(m,σ).

Obviously, ifF is PPT, thenF ′ is also PPT (asEnc andCom are also PPT). Note thatF should
outputm 6= mj, ∀j The probability of success ofF ′ is:

pSIG
F ′ = Pr[V er(m,σ, PKS) = 1] = pCV S

F

If the CVS scheme is forgeable, that is,pCV S
F

is non-negligible, thenpSIG
F ′ is also non-negligible (a

contradiction). Hence, ifSIG is unforgeable in the sense thatpSIG
A is negligible for all PPTA, then so

is the CVS scheme given by the generic construction.

Lemma 16. Given a pseudorandom generator and a computationally hiding commitment scheme, if the
underlying IBE scheme is semantic secure, then the generic CVS construction is simulatable with respect
to the given simulatorFake.

Proof of Lemma 16.
It is easy to show that the given CVS scheme with one witness issecure, then a CVS scheme with

many witnesses is also secure. Hence, we will consider a single witness case.
AssumeIBE is IND-ID-CPA secure,h is a pseudorandom generator, andCOM is computationally

hiding. SupposeD is a PPT distinguisher which has non-negligible advantageAdvSim
D

in winning the
simulatability game defined in Definition 6. We can base onD to construct another distinguisherD′ to
break the semantic security ofIBE.

To avoid confusion, we should clarify that in the following discussion, we denote the challenge ci-
phertext of the IBE game byCb, b ∈ {0, 1} and the queried verifiability condition set byCj.
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D′(Cb), b ∈ {0, 1}

Setup.
Ask its challenger for the public keyPKG of the PKG. Use it as the witness public key forW .
RunCVKGS to generate the signer public/private key pair(PKS , skS).
RunD onPKG and(PKS , skS).
Query.
Signing Queries (OS) on 〈mj , Cj〉 whereCj == (cj ,W ).

- Generateσj = Sig(mj , skS)
- Randomly pickaj and encrypts itself to generate the partial signature:
δj = 〈σj ⊕ h(aj), Enc(PKG, cj , aj), Com(σj, h(aj))〉

- Based on all the random coins used, run the confirmation protocol withD.
Endorsement Queries (OE) on (cj ,W ).

- Pass all endorsement queries(cj ,W ) fromD as extraction queries oncj to its oracle to getdj .
- dj is equivalent toσW (cj).

Challenge.
D outputsm and(c,W ) to ask for a challenge.
Create a signatureσt on a messagem usingSig.
Randomly pickσf ∈ Sσ.
Randomly pickat, af ∈ PIBE . Outputat andaf to ask for a challengeCb where

Cb =

{

Enc(PKG, c, at), b = 0
Enc(PKG, c, af ), b = 1.

Flip a coine ∈ {0, 1} and send the following challenge toD:

δe =

{

〈σt ⊕ h(at), Cb, Com(σt, h(at))〉, e = 0
〈σf ⊕ h(af ), Cb, Com(σf , h(af ))〉, e = 1

Guess.D outputs a guessb′. Outputb′ as a guess forb.

Note: 〈σt ⊕ h(at), Enc(PKG, c, at), Com(σt, h(at))〉 is equivalent toCVSigS(m,C) and
〈σf ⊕ h(af ), Enc(PKG, c, af ), Com(σf , h(af ))〉 is equivalent toFake(C).

Obviously, ifD is PPT, so isD′ (assumingEnc, h andCom are all PPT). In the following discus-
sion, we abuse the notation — we writeD(δ) instead the full notationD(δ,m,C). Hence,(m,C) is
always part of the input toD and the associated algorithms. Again, we abuse the notationby writing
Enc(PKG, c, a) asEnc(a).
The probability of success ofD′ is given by:

PrIBE
D′ [Success] = Pr[b′ = b|Cb]

= 1
2Pr[D(δe) = 0|b = 0] + 1

2Pr[D(δe) = 1|b = 1]
= 1

4Pr[D(δe) = 0|δe = 〈σt ⊕ h(at), Enc(at), Com(σt, h(at))〉]
+1

4Pr[D(δe) = 0|δe = 〈σf ⊕ h(af ), Enc(at), Com(σf , h(af ))〉]
+1

4Pr[D(δe) = 1|δe = 〈σt ⊕ h(at), Enc(af ), Com(σt, h(at))〉]
+1

4Pr[D(δe) = 1|δe = 〈σf ⊕ h(af ), Enc(af ), Com(σf , h(af ))〉].

Note that

PrSim
D

[Success] = 1
2Pr[D(δe) = 0|δe = 〈σt ⊕ h(at), Enc(at), Com(σt, h(at))〉]
+1

2Pr[D(δe) = 1|δe = 〈σf ⊕ h(af ), Enc(af ), Com(σf , h(af ))〉].
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SubstitutingPrIBE
D′ [Success] into PrSim

D
[Success], we have

1
2Pr

Sim
D

[Success] = PrIBE
D′ [Success]

−1
4Pr[D(δe) = 0|δe = 〈σf ⊕ h(af ), Enc(at), Com(σf , h(af ))〉]
−1

4Pr[D(δe) = 1|δe = 〈σt ⊕ h(at), Enc(af ), Com(σt, h(at))〉]
= PrIBE

D′ [Success]− 1
4

+1
4Pr[D(δe) = 1|δe = 〈σf ⊕ h(af ), Enc(at), Com(σf , h(af ))〉]
−1

4Pr[D(δe) = 1|δe = 〈σt ⊕ h(at), Enc(af ), Com(σt, h(at))〉].

Subtracting1
4 and then taking absolute values on both sides, we have

1
2Adv

Sim
D

≤ AdvIBE
D′ + 1

4 |Pr[D(δe) = 1|δe = 〈σf ⊕ h(af ), Enc(at), Com(σf , h(af ))〉]
−Pr[D(δe) = 1|δe = 〈σt ⊕ h(at), Enc(af ), Com(σt, h(at))〉]|.

Let εD denote|Pr[D(δe) = 1|δe = 〈σf ⊕h(af ), Enc(at), Com(σf , h(af ))〉]−Pr[D(δe) = 1|δe =
〈σt⊕h(at), Enc(af ), Com(σt, h(at))〉]|. Then we could viewεD as the advantage ofD in distinguishing
the following two distributions:

∆f = {m←M; c← C;σf ← Sσ; a, a′ ← PIBE : (σf ⊕ h(a), EncW (c, a′), Com(σf , h(a)))},
∆t = {m←M; c← C;σt ← {SigS(m)}; a, a′ ← PIBE : (σt ⊕ h(a), EncW (c, a′), Com(σt, h(a)))}

We argue thatEncW (c, a′) would not have useful information to helpD in distinguishing the above
two distributions asa anda′ are picked independently; even if one know how to decryptEncW (c, a′) to
obtaina′, a′ has no useful information abouta which is needed to tell whether a givenδ comes from∆f

or ∆t. If εD is non-negligible, then it is straightforward to constructfromD another algorithmD′′ with
an advantageεD′′ = εD to distinguish the following two distributions:

Πf = {m←M;σf ← Sσ; a← PIBE : (σf ⊕ h(a), Com(σf , h(a)))},
Πt = {m←M;σt ← {SigS(m)}; a← PIBE : (σt ⊕ h(a), Com(σt, h(a)))}

The idea of the construction ofD′′ is when a challenge(σ ⊕ h(a), Com(σ, h(a))) (whereσ could be
equal toσt or σf ) is received,D′′ randomly picksa′ ∈ PIBE , createsEncW (c, a′), and add it to the
challenge to create a new challenge(σ ⊕ h(a), EncW (c, a′), Com(σ, h(a))) for D.

The advantage of reducing the problem of distinguishingΠf /Πt to that of distinguishing∆f /∆t is the
adaptive queries, more specifically, the endorsement queries, in the simulatability game would not help
in any way in distinguishingΠf andΠf . In other words, we do not need to take into account of adaptive
queries while showing the indistinguishability betweenΠf and Πt. Besides, the indistinguishability
betweenΠf andΠt implies that of∆f and∆t in the simulatability game.

Let ǫh and ǫCOM be the indistinguishability coefficients of the pesudorandom generator and the
commitment scheme. Recall thatǫh denotes the advantage of the best PPT distinguisher in distinguishing
between the output distribution of a pseudorandom generator h : {0, 1}lp → {0, 1}ls and a uniform
distribution over the output space ofh, that is, between{x ← {0, 1}lp : h(x)} and{y ← {0, 1}ls : y}.
Whereas,ǫCOM denotes the advantage of the best PPT distinguisher in distinguishing between the output
distributions of the commitments of two different input values, sayσf andσt, that is, between{r ←
{0, 1}∗ : Com(σf , r)} and{r ← {0, 1}∗ : Com(σt, r)}. Now, we can show the indistinguishability
betweenΠf andΠt. In the following discussion, ifX andY are computationally indistinguishable, we
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denoteX ∼= Y . The proof below is based on the standard hybrid argument andLemma 1.

Πt = {m←M;σt ← {SigS(m)}; a← PIBE : (σt ⊕ h(a), Com(σt, h(a)))}
∼= {m←M;σt ← {SigS(m)}; r ← {0, 1}ls : (σt ⊕ r, Com(σt, r))} (with ǫh)
∼= {m←M;σt ← {SigS(m)}; r, r′ ← {0, 1}ls : (r′, Com(σt, r))}
∼= {m←M;σf ← Sσ; r, r′ ← {0, 1}ls : (r′, Com(σf , r))} (with ǫCOM )
∼= {m←M;σf ← Sσ; r ← {0, 1}ls : (σf ⊕ r, Com(σf , r))}
∼= {m←M;σf ← Sσ; a← PIBE : (σf ⊕ h(a), Com(σf , h(a)))} (with ǫh)
= Πf

As a result,εD = εD′′ < 2ǫh + ǫCOM . Substituting back, we have

1
2Adv

Sim
D

< AdvIBE
D′ + 1

2ǫh + 1
4ǫCOM

AdvSim
D

< 2AdvIBE
D′ + ǫh + 1

2ǫCOM .

If we assumeCOM is computationally hiding andh is a pseudorandom generator, then bothǫh and
ǫCOM should be negligible in their security parameters. Consequently, if AdvSim

D
is non-negligible, the

only possibility is eitherAdvIBE
D′ is non-negligible, meaningD′ could break the semantic security of

the IBE scheme (a contradiction). In other words, the semantic security of the IBE scheme implies the
simulatability of the CVS construction with respect to the given construction ofFake. SinceFake is
PPT, we could conclude that the given generic CVS construction is simulatable.
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Appendix C: Proof — Semantic Security of the IBE Construction from
CVS

Proof of Theorem 18.
Now, we show that the above construction satisfies the conditions for IND-ID-CPA secure IBE. We

assume the CVS scheme is simulatable with respect toFake. Suppose the above constructed IBE scheme
is not IND-ID-CPA secure, that is, there exists an adversaryD which can win theIND-ID-CPA game
with a non-negligible advantageAdvIBE

D
. In other words, given a ciphertext(m, δb, PKS) whereδb is

a valid/fake partial signature whenb = 0/1, D could tell whether the plaintext bitb = 0 or b = 1 with
a non-negligible advantage. Up to this point, it is clear that D could be used to break the simulatability
property of the underlying CVS scheme with respect toFake. However, for completeness, we show
how to construct another adversaryD′ fromD to tell whether a given partial signatureδb originates from
CVSig or Fake.

D′(δb)

Setup.
Get the public keyPKG of the witness from its challenger. RunD onPKG.
Get the signer’s public/private key pair(PKS , skS).
Query.
Extraction Query〈IDj〉. Pass all extraction queries fromD to its endorsement oracle.
Challenge.
D outputsID to be challenged. (Note the plaintext could only be0 or 1.)
Randomly select a messagem ∈M.
Passm, ID to its challenger and receive the challengeδb.
PassCb = (m, δb, PKS) as a challenged ciphertext toD.
Guess.
D outputs a guessb′. Outputb′ as a guess forb.

It obvious that the advantage ofD′ with respect to CVS simulatability is the same as the advantage
of D on breaking the semantic security of the IBE scheme. Hence, if the latter is non-negligible, so is
the former, a contradiction as we assume the given CVS schemeis simulatable with respect toFake. In
conclusion, the constructed IBE scheme is semantically secure as long as the CVS scheme is simulatable.
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Appendix D: A CVS Construction based on Verifiable Encryption (VE)

In [1, 5], a fairly general technique called verifiable encryption (VE) which encrypts and runs a proof
protocol simultaneously is proposed. This technique has been used for constructing designated confirmer
signature schemes by Goldwasser et. al [28]. For any binary relationR on which aΣ-protocol for proof
of knowledge exists, the VE technique could be used to encrypt the witnessw for a certainx (such that
(x,w) ∈ R) while at the same time prove to the recipient that he is really receiving an encryption ofw.
In VE, the resulting communication transcript is used as theencryption ofw. As this technique is fairly
general, we could use it to construct a CVS scheme with any IBEschemes if there is no design restriction
forbidding the merge of the blinding mechanism and the confirmation protocol into one entity. To use
VE for efficient CVS construction, the only restriction is that the verification function of the underlying
signature scheme is a certain homomorphic one-way functionon some encoding of the message. In fact,
most standard signature schemes like RSA and ElGamal belongto this type as illustrated in the following
example.

Example 1

RSA We consider the simple hash-and-sign RSA signature. The public key is (n, e) wheren = pq
for some large primesp and q, anded ≡ 1 (modφ(n)). The signature of a messagem is σ =

h(m)d modn. To verify, check ifσe ?
= h(m) modn.

Let f(x) = xe modn. Given two signaturesσ0 andσ1 for two messagesm0 andm1, it is easy to
see thatf(σ0σ1) = (σ0σ1)

e = σe
0σ

e
1 = f(σ0)f(σ1) = h(m0)h(m1). That is, a signature is the

homomorphic pre-image off on the hashed message.

For simplicity, we show how to construct a CVS scheme with a single witness out of VE; a straight-
forward extension with multiple witness is possible.

Suppose the verification equation of a certain existentially unforgeable signature schemeSIG for

a message signature pair(m,σ) is: f(σ)
?
= m̂ and f is homomorphic in the sense thatf(σ0σ1) =

f(σ0)f(σ1) wherem̂ denotes some encoding onm. Denote the signer and the recipient byS andV
respectively, and letEnc(r, ID, x) be the encryption function of a semantically secure IBE on a message
x for an identityID with a random coinr.

Given a messagem, a condition statementc and its ordinary signatureσ, the partial signature gener-
ation and confirmation protocol constructed based on VE is asfollows (Depicted below is just a single
round of iteration):

1. Commit: S randomly picksγ ∈ S from the signature space ofσ, encryptsγ andγσ respectively to
gete0 = Enc(r0, c, γ) ande1 = Enc(r1, c, γσ) wherer0, r1 are just random coins for encryption.
S computesβ = f(γ). S givesV the following:β, e0, e1. Note thatf is the signature verification
equation.

2. Challenge: V flips a coinb ∈ {0, 1} and sendsb as a challenge forS.

3. Response: S repliesV with the following:

(ub, vb) =

{

(r0, γ), b = 0
(r1, γσ), b = 1

4. Verify : V checks the following:

If b = 0, checkβ
?
= f(v0); e0

?
= Enc(u0, v0)

If b = 1, checkβm̂
?
= f(v1); e1

?
= Enc(u1, v1)
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Supposebi is the negation ofbi with definition as follows:

bi =

{

0, bi = 1
1, bi = 0

In each round, the probability that the signerS could cheat successfully is12 , the successful cheat-
ing probability for all k rounds becomes1

2k . Besides,b cannot be all zero in all thek rounds. If
the verification test is passed for allk rounds, the resulting partial signature would be thek-tuple
{(bi, vbi

, ebi
) : 1 ≤ i ≤ k}. In each round, the responses to all (two) possible challenges b = 0 or

b = 1 are computed (resulting inγ andγσ) and encrypted (to givee0 ande1) by S which in response to
the challengeb would reveal one of themeb. Once the remaining encryptioneb is decrypted, the recipient
could recoverσ using the previously reveled response and the challenge. For example, if the challenge
b = 0 in a particular round,(0, γ, e1) would be the partial signature output for that round; oncee1 is
decrypted using the witness signatures,γσ for that round is recovered, from whichσ could be recovered
dividing γσ (obtainable frome1) with γ. In order to ensure a reasonably high probability to recoverσ,
all k tuples need to be stored by the recipient although one of themis sufficient for recoveringσ if the
signer is honest.

As can be seen, the partial signature size could be considerably large in some cases.

66



Appendix E: A Possible Construction for the Homomorphic Mapping

The normN(e) for the extension fieldFpl is defined as follows.

Definition 16 For anye ∈ Fpl,N(e) ∈ Fp is defined by:

N(e) = e× ep . . .× ep
l−1

= e(p
l−1)/(p−1)

The norm satisfies the following properties:

1. N(e1e2) = N(e1)N(e2), ∀e1, e2 ∈ Fpl ;

2. N mapsFpl ontoFp andF
∗

pl ontoF
∗
p;

3. N(a) = al, ∀a ∈ Fp;

A Example Construction

Let s ≡ 1/l mod(p− 1). We construct the invertible group homomorphism: Fp → Fpl as follows:

f(a) = a, ∀a ∈ Fp

f−1(e) = N(e)s, ∀e ∈ Fpl

We could check the correctness of the inverse as follows.
For alla ∈ Fp,

f−1(f(a)) = f−1(a) = N(a)s = (al)s = a

We could check the homomorphic property as follows:
For anya1, a2 ∈ Fp,

f(a1a2) = a1a2 = f(a1)f(a2)

For anye1, e2 ∈ Fpl ,

f−1(e1e2) = N(e1e2)
s = N(e1)

sN(e2)
s = f−1(e1)f

−1(e2)

Sincep is a safe prime,p − 1 = 2n wheren is a composite of large primes. In most cases,l should
be much smaller that any prime inn. As a result, ifl is odd,l is prime top− 1 and we could easily find
s asl−1 mod(p − 1) using the extended Euclidean algorithm. Ifl is even, we need to find the image of
the inverse mapping as thel − th root in Z

∗
p. To find s, we could break downl as2l′ so thatl′ is odd

and should be prime to(p− 1). The inverse ofl′ in Zp−1 can be computed using the extended Euclidean
algorithm, from which we could find thel′ − th root in Z

∗
p. To find thel − th root, we can take square

root modp on thel′ − th root, which has an efficient algorithm [32].
To ensure that such computation is possible for the recipient while running the confirmation protocol,

we need to restrict to using evenr in computing the pairings.
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Appendix F: Security Analyses of the Pairing-based CVS Constructions

Proof of the CVS Unforgeability Theorem

We are going to prove that given a signature scheme existentially unforgeable against a chosen message
attack, a CVS scheme constructed from it using a PPT blindingmechanism is also unforgeable. When
we say a given signature schemeSIG is existentially unforgeable against a chosen message attack,
we mean that any PPT adversary, allowed access to a signing oracle which returns valid signatures on
messages chosen by the adversary, cannot create a valid signature on a message not previously queried
to the signing oracle except with negligible probability interms of the security parameter.

Proof of Theorem 20.
Assume thatSIG is existentially unforgeable under a chosen message attackandB is a PPT blinding

mechanism inCV S for creating partial signatures from an ordinary signatureof SIG. Suppose there
exists a PPT forgerF which can break the unforgeability ofCV S. Note thatB would only take an
ordinary signature ofSIG, witness public keys and condition statements as input, otherwise, it is inap-
plicable for generating partial signatures. Then, we coulduseF to construct a forgerF ′ to create an
existential forgery forSIG. The forging algorithmF ′ runs as follows:
F ′ gets the signer public keyPKS from its SIG challenger and runsCVKGW to generate a set

of witness public/private key pairs{(PKi, ski)} and runF on the keysPKS , {(PKi, ski)}. WhenF
makes a signing query on a messagemj and a set of verifiability conditionsCj, F ′ passesmj to its
own signing oracle to query an ordinary signatureσj , and then runsB onσj to create a partial signature
δj . F ′ returnsδj to F and uses the knowledge ofσj and all the random coins used byB to carry out a
confirmation protocol withF , and this completes the reply to the query made byF . Finally, F has to
output a message signature pair(m,σ); F ′ passes this as its output to theSIG challenger.

Obviously, ifF , B and the key generation algorithms are all PPT, so isF ′. Besides,F ′ perfectly
simulates the adversary environment forF , andF should return, with a probability of successpUF−CV S

F
,

a valid message signature pair(m,σ) with m 6= mj, ∀j. Note thatσ is a valid ordinary signature
of SIG for m. Then the probability of successpUF−SIG

F ′ of F ′ in creating an existential forgery for
SIG is pUF−CV S

F
. If pUF−CV S

F
is non-negligible in the security parameterλ, so ispUF−SIG

F ′ , which is
contradictory to the assumption thatSIG is existentially unforgeable. Hence, the resulting CVS scheme
built onSIG andB must be unforgeable ifSIG is unforgeable.

Security Analysis for the Pairing-based CVS Construction for Elgamal Signatures

Proof of the Simulatability Property (Claim 21)

Given a signer public key pair(g, ys), witness public keys(Pi, Yi), 1 ≤ i ≤ N , and a set of condition
statementsci, breaking the simulatability property of the Elgamal basedCVS scheme is in essence to
distinguish which of the following two distributions a given tupleδ = (γ, z, U1, U2, . . . , UN ) belongs to:

• CVS(N) =
{

(γ, z, U1, U2, . . . , UN ) : γ ← G; a = Dlogγ(gh(m)yγ
s ); r ← Z

∗
q;Ui = rPi; z = f(a)

∏N
i=1 y

r
i

}

• FAKE(N) =
{

(γ, z, U1, U2, . . . , UN ) : γ ← G; a← Z
∗
p; r ← Z

∗
q;Ui = rPi; z = f(a)

∏N
i=1 y

r
i

}

whereyi = ê(Yi,H(ci)). The first one is the distribution of a partial signatureCVSig whereas the
second one is that of the output of a simulatorFake. Of course, an adversary is allowed to make queries
on other partial signatures and simulator outputs before receiving such a problem as a challenge.
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Proof We first show that simulatability could be achieved by the Elgamal CVS construction for the
single-witness case in the random oracle model if the decisional bilinear Diffie Hellman problem is hard.
Then we give a security analysis to discuss why the simulatability property for the single-witness case
implies that of the multiple-witness case.

Security Analysis for the Single-Witness Case
To prove the simulatability property, we need to show that there is no PPT algorithm which can

distinguish the following two distributions with a probability of success significantly better than a wild
guess (even allowed to make CVS signing queriesOS and endorsement queriesOE):

• CVS(1) =
{

(γ, z, U) : γ ← G; a = Dlogγ(gh(m)yγ
s ); r ← Z

∗
q;U = rP1; z = f(a)yr

1

}

• FAKE(1) =
{

(γ, z, U) : γ ← G; a← Z
∗
p; r ← Z

∗
q ;U = rP1; z = f(a)yr

1

}

where(P1, Y1) is the public key of the witness andy1 = ê(Y1,H(c)) for a condition statementc.
Instead of proving the simulatability game, we prove another simpler one. We replacea in the

first distributionCVS(1) by a random number picked by the adversary instead of a part ofthe Elgamal
signature of a message picked by the adversary. That is, we donot restricta to be part of the Elgamal
signature but a random number picked by the adversary. Details of the new game is as follows:

GameA
The challenger runsCVKGW(1λ) to generate the witness private keyx1 and public key(P1, Y1) where
Y1 = x1P1, but no signer key is generated as before. In fact, the part ofthe signer is absent in this new
game. The adversary is allowed to make endorsement queries on any condition statementcj of his choice
as before to obtain a witness signatureσj = x1H(cj). When the adversary is ready for a challenge, it
outputs a random numbera and a condition statementc. The challenger flips a coinb ∈ {0, 1} and
outputsδb = (zb, U) as the challenge, wherezb = f(ab)ê(P1,H(c))rx1 andU = rP1 for some random
r picked by the challenger but unknown to the adversary. Whenb = 0, the challenger setsab = a; when
b = 1, the challenger randomly picksa′ and setsab = a′. The adversaryA has to output a guessb′ for
b and its advantage is defined asAdvGameA

A
=
∣

∣Pr[b′ = b]− 1
2

∣

∣. The adversaryA wins if AdvGameA
A

is
non-negligible in the security parameterλ.

We could prove that the CVS construction for Elgamal signatures is simulatable with respect toFake
if the probability of winningGameA is negligible for all PPT adversaries. The argument is as follows:
We could show by contradiction. SupposeGameA is hard but there is a PPT distinguisherD which
could break the simulatability property of the CVS construction, we could constructD′ based onD to
winGameA. First,D′ generates the needed signer public/private keys and pass them toD together with
the witness public key it gets from its challenger. When there is a signing query fromD, D′ creates
a partial signature itself. When there is an endorsement query, D′ queries its challenger and relays the
reply back toD. Finally,D outputs a messagem and a condition statementc to be challenged.D′ creates
an Elgamal signature(γ, a) onm and outputsa andc as its own challenge request. WhenD′ gets its
challengeδb = (zb, U), it passes(γ, z, U) as a challenge toD. Note that there is only one possible value
for a in Z

∗
p (the one picked byD′) that would fitγ to satisfy the verification equation of the Elgamal

scheme; hence, for anya′ picked by the challenger, it will not satisfy the Elgamal verification equation.
In other words, whenb = 0, the challengeδb is a CVS partial signature for messagem and condition
statementc, otherwise,δb is indistinguishable from a simulator output forc. This thus perfectly simulate
a challenge forD. Finally,D outputs its guessb′ of b; D′ outputsb′ as its guess. Obviously, ifD can
break the simulatability property with non-negligible advantageAdvSim

D , thenD′ can winGameA with
the same advantage, that is,AdvGameA

D′ = AdvSim
D . This concludes the reduction.
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We could show that ifH is a random oracle, making polynomially many endorsement queries of
cj 6= c (wherec is the challenged condition statement) would not help in winningGameA. The steps are
similar to those in Boneh and Franklin’s IBE [2]. In details,we define a new gameGameB and show
that the difficulty of winningGameB implies the difficulty of winningGameA. A detailed description
of GameB is as follows:

GameB
The challenger picks a witness public key(P, Y ) whereY = xP for some randomly pickedx ∈ Z

∗
q.

Then the challenger picks a randomQ ∈ G1, and gives(P, Y ) andQ to the adversary. The adversary
outputs a numbera ∈ Zp to be challenged. The challenger flips a coinb ∈ {0, 1} and outputsϕb =
(f(ab)ê(P,Q)xr, rP ) for a randomly pickedr ∈ Z

∗
q. Whenb = 0, ab = a; whenb = 1, the challenger

randomly picksa′ ∈ Zp and setsab = a′. Finally, the adversary has to output a guessb′ for b. The
adversary wins the game ifb′ = b and its advantage is defined asAdvGameB

A
=
∣

∣Pr[b′ = b]− 1
2

∣

∣.
GameB is said to be hard ifAdvGameB

A
is negligible in the security parameterλ for all PPT adversaries.

We now show how an adversaryD with a non-negligible advantage of winningGameA could be
used to construct another adversaryD′ forGameB if H is a random oracle and why other (polynomially
many) endorsement queries would help considerably in help in solvingGameA for a particularc.

D′ gets from its challengerQ and the witness public key(P, Y ) whereY = xP for some unknown
x ∈ Z

∗
q and givesD the public key(P, Y ) as well as the random oracle hash functionH. Note that in

the random oracle model,D is forced to query an oracle under full control ofD′ in order to evaluate
H. HereH is controlled byD′ as described below; how the endorsement queries are handledis also
described.

H Queries: D can query the random oracleH at any time. To respond to these queries,D′ maintains
a listH − list of tuples〈cj , Qj , tj, coinj〉 whose details are as follows. Note thatcj ∈ {0, 1}

∗ is
the condition statement,Qj is the responseH(cj), tj ∈ Z

∗
q, andcoinj ∈ 0, 1. Initially, H − list is

empty. WhenD queries the oracleH with a condition statementcj ,D′ responds as follows:

1. All the previous queries are kept inH − list; if the current querycj is in the list, return the
previous responseH(cj) = Qj .

2. If not, it generates a new one as follows: it first picks a random numbertj ∈ Z
∗
q and then

flips a coincoinj so thatPr[coinj = 0] = α. If coinj = 0, it computesQj = tjQ returning
H(cj) = tjQ; otherwise, it computesQj = tjP returningH(cj) = tjP . The new entry
(cj , Qj , tj , coinj) is added toH− list. It is clear thatD′ cannot distinguish the query output
from a random one.

Endorsement Queries: WhenD′ is asked for an endorsement querycj , it responds as follows: Ifcj is
in theH − list, it retrieves the corresponding tuple, otherwise generates a new one and adds the
tuple back to theH − list. Note that ifcoinj = 1,D′ could answer the query, otherwise, this run
fails. The response ofD′ to endorsement queries is described below.

1. If H(cj) = Qj = tjQ, this run ofD′ fails.

2. Otherwise,H(cj) = tjP andD′ returns the query resultxH(cj) = tjY . Note thattjY =
tjxP = xtjP = xH(cj).

Then,D outputs a numbera ∈ Z
∗
p and a condition statementc for challenge. D′ looks up the

H − list for c; if the random coin in the tuple is1, thenH(c) = tP (for somet ∈ Z
∗
q) andD would
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not help in solvingGameB and this runs ofD′ fails. Otherwise,H(c) = tQ, andD′ sends outa as
a challenge request to its challenger which return the challengeϕb = (zb, U) = (f(ab)ê(P,Q)xr, rP )
whereab = a whenb = 0 andab = a′ whenb = 1 for some unknown random numbera′. D′ computes
V = t−1U sends outδb = (zb, V ) as a challenge toD. It could be seen thatV = t−1U = t−1rP and
ê(P,H(c))t

−1rx = ê(P, tQ)t
−1rx = ê(P,Q)rx = zb; hence,δb is a valid challenge toD. D′ continues

answer queries as before. Finally,D outputs its guessb′ for b and returnsb′ as its own guess.
If D′ does not abort during the simulation, the adversary environment viewed byD is identical to its

view in the real attack, and theAdvGameB
D′ = AdvGameA

D . What remains is to calculate the probability
thatD′ aborts during the simulation. SupposeD′ makes at mostqE endorsement queries. The probabil-

ity thatD′ does not terminate equals topsucc = α(1 − α)qE . Note thatpsucc ≤
(

1
1+qE

)(

1− 1
1+qE

)

=
1

e(1+qE) (where e is the base of natural logarithm), and by choosingδ properly, we could achieve

this maximum probability of successfully runningD′. Taking the optimalδ, we haveAdvGameB
D′ =

1
e(1+qE)Adv

GameA
D .

We now can show thatGameB is hard based on the decisional bilinear Diffie Hellman (DBDH)
assumption. We show how an adversaryD which have a non-negligible advantage of winningGameB
could be used to solve the DBDH problem in the following construction ofD′: Given a problem instance
(P, xP, yP, zP, e) for the DBDH problem,D′ sets(P, Y ) = (P, xP ) andQ = yP and sends them to
D. D outputs a numbera for challenge. In return,D′ setsψb = (f(a)e, zP ) as a challenge forD.
Finally,D outputs its guessb′. If b′ = 0,D′ outputs that(P, xP, yP, zP, e) is a BDH tuple, otherwise, it
outputs not. Note that, ife = ê(P,P )xyz, thenf(a)e = f(a)êxyz andψb = ϕ0 in GameB. Whereas,
if e 6= ê(P,P )xyz , f(a)e could be re-written asf(a)e = f(a′)ê(P,P )xyz for some unknowna′ where
f(a′) = f(a)e

ê(P,P )xyz andψb = ϕ1 in GameB. This is perfectly simulated adversary environment the

same as that inGameB. The advantageAdvDBDH
D′ of D′ in solving the DBDH problem is the same as

AdvGameB
D .

Putting the pieces together, the hardness of theDBDH problem implies the hardness ofGameB
which in turn implies the hardness ofGameA if qE is polynomial. Finally, the hardness ofGameA
implies the hardness of breaking the simulatability property of the Elgamal CVS construction. Overall,
if D could break the simulatability property of the CVS construction with a non-negligible advantage
AdvSim

D , then there exists an algorithmD′ (constructed based onD) which could solve the decisional
bilinear Diffie Hellman problem with an advantageAdvDBDH

D′ = 1
e(1+qE)Adv

Sim
D .

Security Analysis for the Multiple-Witness Case
We prove by contradiction. We assume the simulatability property is achieved in the single witness

case. Suppose there is a PPT distinguisherDN which can break the simulatability property forN > 1
whereN is the number of witnesses. We show how to construct another distinguisherD1, based on
DN , which could break the simulatability of the single-witness case, that is, distinguishing which of the
following two distributions a given tuple(γ, z, U) belongs to:

• CVS(1) =
{

(γ, z, U) : γ ← G; a = Dlogγ(gh(m)yγ
s ); r ← Z

∗
q;U = rP1; z = f(a)yr

1

}

• FAKE(1) =
{

(γ, z, U) : γ ← G; a← Z
∗
p; r ← Z

∗
q ;U = rP1; z = f(a)yr

1

}

where(P1, Y1) is the public key of the witness andy1 = ê(Y1,H(c)) for a condition statementc.

The construction ofD1 (based onDN ) is as follows:
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In the setup,D1 asks its challenger for the signer’s private and public keysskS = xs andPKS = ys

respectively, and the witness public keyPK1 = (P1, Y1) whereY1 = x1P1 for some unknownx1 ∈ Z
∗
q.

Without loss of generality, we set this asW1 for the multiple-witness case. Then,D1 creates the public
and private keys for other witnessesWi, 2 ≤ i ≤ N as follows: Uniformly pick randomxi, ti ∈ Z

∗
q and

computePi = tiP1 andYi = xiPi. The public key for witnessWi is (Pi, Yi) = (tiP1, xitiP1). Sinceti
andxi are randomly picked, the resulting distribution of the public/private keys of each one of the last
N − 1 witnesses are the same as that generated byCVKGW.

D1 answer queries fromDN in the following way: WhenDN makes a signing query,D1 creates a
partial signature itself as it knows the signer’s private key xs. To answer any endorsement queries on
a condition statement for witnessW1, D1 makes an endorsement query to its challenger on the same
condition statement and passes the result back toDN . For the endorsement queries for other witnesses
Wi, 2 ≤ i ≤ N ,D1 answers them itself using the private keyxi.

WhenDN outputs a messagem and a condition setC = {(ci,Wi) : 1 ≤ i ≤ N} asking for a
challenge,D1 outputsm and (c1,W1) as its challenge request. It is possible that(c1,W1) has been
queried before as there is no restriction in our definition ofsimulatability that(c1,W1) has to be a
new one; at least one of(ci,Wi) not previously queried would constitute a valid challenge request.
We will discuss later about abortion probability of this. Let us continue assuming(c1,W1) is a new
condition.D1 receives its challengeδb = (γ, z, U1) whereδb ∈ CVS(1) whenb = 0 andδb ∈ FAKE(1)
whenb = 1. Note thatU1 = rP1 for some unknownr ∈ Z

∗
q andz = f(ab)y

r
1 = f(ab)e

x1r
1 (where

y1 = ê(Y1,H(c1)) ande1 = ê(P1,H(c1))) with a0 being part of a Elgamal signature anda1 some
randomly picked number.D1 computes the following for2 ≤ i ≤ N : Ui = tiU1 (Note thetiU1 =
tirP1 = rPi.), yi = ê(Ui,H(ci))

xi = ê(Pi,H(ci))
rxi (using the secret keysxi, 2 ≤ i ≤ N ) and

z′ = z
∏N

i=2 y
r
i = f(ab)y

r
1

∏N
i=2 y

r
i = f(ab)

∏N
i=1 y

r
i . D1 passes the following as a challenge forDN :

δ′b = (γ, z′, U1, U2, . . . , UN ). It could be seen thatδ′b ∈ CVS(N) if δb ∈ CVS(1) (b = 0), whereas
δ′b ∈ FAKE(N) if δb ∈ FAKE(1) (b = 1).

DN could continue making signing and endorsement queries. If(c1,W1) is in the query, then this
run fails. Otherwise, whenDN outputs its guessb′ for b, D1 outputsb′ as its guess forb. Obviously, if
DN is PPT, so isD1 and the advantage ofD1 is the same as that ofDN , that is,AdvSim

D1
= AdvSim

DN
,

providedD1 does not abort in the simulation. Now, it remains to find out the probability of success of
D1. Note that no matter how many queries out of the requested challenge condition set{(ci,Wi) : 1 ≤
i ≤ N} are made byDN , DN must answer at least one of them directly according to the definition.
In that case, if(c1,W1) is in the remaining subset,D1 makes a successful run, and the probability of
that ispsucc = 1

N . Overall, the advantage ofD1 is AdvSim
D1

= 1
NAdv

Sim
DN

. Taking the results of the
single witness case here, if there exists a PPT distinguisher makingqE endorsement queries in breaking
the simulatability of the Elgamal CVS construction withN witnesses with a non-negligible advantage
AdvSim

D (N), then there existsD′ which could solve the DBDH problem with an advantageAdvDBDH
D′ =

1
Ne(1+qE)Adv

Sim
D (N). As a result, ifAdvDBDH

D is negligible in the security parameterλ for all PPT

algorithmD, so isAdvSim
D (N) provided bothN andqE are polynomially many. In fact, in the real

cases,N would usually be a very small integer, usually< 10, so the restriction would be fulfilled
without mentioning.

Proof of the Zero Knowledge Property of the Confirmation Protocol (Claim 22)

The confirmation protocol for the Elgamal based CVS construction satisfies the property of complete-
ness, soundness, and zero knowledge as follows.
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• Completeness.Since the signer knowsr anda, he could always computes (in response to the
challengeb) θ in step 3 which passes the verification in step 4 provided he follows all the steps.
Consideringb = 0, θ = u, then

eθiw
−b
i = eθi = eui = ti;

γ(1−b)f−1(z
QN

i=1 yθ
i )ψbf−1(

QN
i=1 yθ

i ) = γf−1(z
QN

i=1 yu
i ) = t.

Consideringb = 1, θ = u+ r, then

eθiw
−b
i = eθi = eu+r

i w−1
i = eui e

r
i e

−r
i = ti;

γ(1−b)f−1(z
QN

i=1
yθ

i )ψbf−1(
QN

i=1
yθ

i ) = ψf−1(
QN

i=1
yu+r

i );

t = γf−1(z
QN

i=1
yu

i ) = γf−1(f(a)
QN

i=1
yr

i

QN
i=1

yu
i ) = γf−1(f(a))f−1(

QN
i=1

yu+r
i ) = (γa)f−1(

QN
i=1

yu+r
i ) .

Note for the caseb = 1, we use the homomorphic property thatf−1(f(a)e) = af−1(e), ∀a ∈
Zp, e ∈ F

l
p. If a valid signature onm could be recovered fromδ, thenγa should be equal to

gh(m)yγ
s which is equal toψ. Hence,t = ψf−1(

QN
i=1

yu+r
i ) which concludes for the caseb = 1.

• Soundness.Suppose the set of equations does not hold, in particular,f−1( zQN
i=1

yr
i

) 6= a (where

γa = ψ) or ∃i, Ui 6= rGi. By following the protocol procedures, the signer could always give
a correct responseθ when the challenge is 0. However, when the challenge is 1, to pass the
test in step 4, the signer needs to find a solutionθ for either eθi = tiwi or f−1(z

∏N
i=1 y

u
i ) =

af−1(
∏N

i=1 y
θ
i ). Either one is equivalent to the DL problem inG2.

On the other hand, suppose now the signer bet that the challenge will be 1, he tries to deviate
from the protocol. He could randomly pick aθ and computeti andt which satisfy the verification
equation in step 4, and give theseti andt to the verifier in step 2. However, if the challenge is 0,
he could not findu satisfying the equationseui = ti = eθiw

−1
i which is the DL problem again.

Hence, the signer could cheat successfully in each round with a probability of success equal to12 .

• Zero-Knowledge. We need to find a PPT simulator which can simulate the output transcript
without any interaction with the signer. As in the soundnesspart, the simulator even having no
knowledge abouta andr could always give a correct response to a prepared challenge(out of the
two possible challenges) in each round. Using this strategywith the standard rewinding technique,
the simulator could generate a transcript indistinguishable from the true transcript recorded during
a confirmation protocol run. The operation is as follows: Thesimulator runs the signer and verifier
algorithms of the confirmation protocol to emulate a proof carried out. In each round, if the
challenge is the same as the prepared one, the simulator goeson to the next round, otherwise, it
rewinds the protocol back to the start of the current round and starts with a new prepared challenge.
On average, 2 iterations would enable the simulator to complete the generation of one round of
transcript. Hence, the transcript simulator is PPT.

Security Analysis for the Pairing-based CVS Construction for RSA Signatures

Proof of the Simulatability Property (Claim 23)

The steps of proving that the RSA CVS construction is simulatable is almost the same as that in the
Elgamal CVS construction. What we need to show is the hardness ofGameA implies simulatability in
the single witness case described below.
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Proof
Security Analysis for the Single-Witness Case

We could prove that the CVS construction for RSA signatures is simulatable with respect toFake if
the probability of winningGameA is negligible for all PPT adversaries. The argument is as follows: We
could show by contradiction. SupposeGameA is hard but there is a PPT distinguisherD which could
break the simulatability property of the CVS construction,we could constructD′ based onD to win
GameA. First,D′ generates the needed signer public/private keys and pass them toD together with the
witness public key it gets from its challenger. When there isa signing query fromD,D′ creates a partial
signature itself. When there is an endorsement query,D′ queries its challenger and relays the reply back
toD. Finally,D outputs a messagem and a condition statementc to be challenged.D′ creates an RSA
signatureσ onm and randomly picks a numberα ∈ Z

∗
n to createγ = ασ. D′ outputsa = f1(α) andc

as its own challenge request. WhenD′ gets its challengeδb = (zb, U), it passes(γ, z, U) as a challenge
to D. Note that there is only one possible value fora in Z

∗
p (the one picked byD′) that would have

f−1(a) = α able to retrieveσ from γ; hence, for anya′ picked by the challenger, it will not recover an
RSA signature satisfying the RSA verification equation. In other words, whenb = 0, the challengeδb is
a CVS partial signature for messagem and condition statementc, otherwise,δb is indistinguishable from
a simulator output forc. This thus perfectly simulate a challenge forD. Finally,D outputs its guessb′ of
b; D′ outputsb′ as its guess. Obviously, ifD can break the simulatability property with non-negligible
advantageAdvSim

D , thenD′ can winGameA with the same advantage, that is,AdvGameA
D′ = AdvSim

D .
This concludes the reduction.

Security Analysis for the Multiple-Witness Case
The reduction is the same as that in the Elgamal CVS construction by replacingf by f ◦ f1.

Proof of the Zero Knowledge Property of the Confirmation Protocol (Claim 24)

The confirmation protocol satisfies the completeness, soundness and zero knowledge properties as fol-
lows:

• Completeness.Since the signer knowsr anda, he could always computes (in response to the
challengeb) θ in step 3 which passes the verification in step 4 provided he follows all the steps.
Consideringb = 0, thenθ = u andψ = v modp, then

s(γe)b = s = ve modn = (ψ modn)e modn,
eθiw

−b
i = eθi = eui = ti and

f(ψ)
∏N

i=1 y
θ
i = f(v modp)

∏N
i=1 y

u
i = t.

Consideringb = 1, thenθ = u+ r andψ = (a modn)(v modn) modp, then

s(γe)b modn = sγe modn = ve(aσ)e modn = veaeσe modn = (av)eσe modn
= (ψ modn)eh(m) modn,

eθiw
−b
i = eθi = eu+r

i w−1
i = eui e

r
i e

−r
i = ti,

f(ψ)
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i=1 y
θ
i = f(av modp)
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i=1 y
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i = f(a modp)f(v modp)
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i=1 y
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i

∏N
i=1 y

r
i

=
(

f(a modp)
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i=1 y
r
i

)(

f(v modp)
∏N

i=1 y
u
i

)

= zt.

Note here we use the homomorphic property thatf(a1a2) = f(a1)f(a2), ∀a1, a2 ∈ Zp.
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• Soundness.Suppose the set of equations does not hold. By following the protocol procedures,
the signer could always give a correct responseθ when the challenge is 0. However, when the
challenge is 1, to pass the test in step 4,there is only a single ψ which could satisfy the first
equation. To find a value ofθ which could satisfy the last two equation with a fixedψ, the signer
needs to solve the DL problem. Unlike the ElGamal case discussed previously, there is only a
singleθ which is the right answer and finding it is equivalent to the DLproblem.

On the other hand, suppose now the signer bet that the challenge will be 1, he tries to deviate from
the protocol. He could randomly pickθ andψ to compute a set of values fors, ti andt satisfying
the verification equation in step 4, and give these s,ti andt to the verifier in step 2. Since there are
three constraint equation for two variables, there is a single set which works for a particular choice
of (θ, ψ). If the challenge is 0, to satisfying the first equation for signature verification, he needs
to findu to make the last two equations hold, which is equivalent to the DL problem again.

As a result, the signer could cheat successfully in each round with a probability of success equal
to 1

2 .

• Zero-Knowledge. As in the soundness part, the verifier could always give a correct response of a
prepared challenge (out of the two possible challenges) in each round. Using this strategy with the
standard rewinding technique, the signer could simulate a transcript that is indistinguishable from
the true transcript recorded during a real confirmation protocol run. The construction is similar to
that in the ElGamal based CVS construction.
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