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Abstract

We introduce a new digital signature model, called conddity verifiable signature (CVS), al-
lowing a signer to specify and convince a recipient undertwbaditions his signature would become
valid or verifiable; the resulting signature is not publierifiable immediately but can be converted
back into an ordinary one (verifiable by anyone) after thépient has obtained proofs, in the form
of signatures/endorsements from a number of third partyessges, that all the specified conditions
have been fulfilled. A fairly wide set of conditions could Ipesified in CVS. Besides, the only job of
the witnesses is to certify the fulfillment of a condition armhe of them need to be actively involved
in the actual signature conversion, thus protecting useaqy. We formalize the concept of CVS
and define the related security notions. We also derive taéions between these notions. Besides,
we give a generic CVS construction based on any identitydeseryption (IBE) scheme show that
the existence of IBE with semantic security against a chpsntext attack (a weaker notion than
the standard one) is necessary and sufficient for secure EX&lly, we give a number of practical
CVS constructions based on bilinear pairings for standigimbsure schemes like Elgamal and RSA.

Keywords: digital signatures, privacy, accountabilitiemtity based encryption, bilinear pairings.

1 Introduction

Balancing between the accountability and the privacy ostgeer is an important but largely unanswered
issue of digital signatures. A digital signature schemeallgiconsists of two parties, a signer and a
recipient, with the former giving his signature on a messémgiment to the latter as his commitment
or endorsement on the message. To ensure that the signéd isdoeuntable for his commitment, his
signature needs to be publicly verifiable (by anyone) oreast, verifiable by a mutually trusted third
party; otherwise, the signer could deny having signed tlreisent as nobody can prove he really did,
and the non-repudiation property (which binds a signehayes legally, to a statement he signs) cannot
be achieved. However, public verifiability of a digital sagnre would put the signer’s privacy at risk as a
digital signature could be replicated and spread so easitgpared to its handwritten counterpart. More
importantly, if the message presents valuable informadtoout the signer, then the signed message itself
is a certified piece of that information. Hence, the inter@dtthe signer and the recipient are in conflict.
Of course, ensuring signer privacy and non-repudiatiorubaneously seems to be impossible for
any signature scheme. But, fortunately, in most real warésharios, we usually wish to maintain privacy
of a digital signature up to a certain instant after it is e&and restore non-repudiation afterwards. This
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could be better illustrated by the example of future/opti@ding. In a future trade, the seller signs a
contract with the buyer specifying the price and quantityhas agreed with the buyer but the contract is
not effective before a future execution date. For reasdespieventing other sellers from manipulating
the price or avoiding any adverse effects on further negotiawvith other buyers, ideally, before the
execution date, the seller does not want anyone able toiatsdém with the contract, at least ensuring
that the buyer is unable to convince others of the validitthefr agreement. That is, limited verifiability
is desired before the execution date. Whereas, on or aéiexicution date, an honest seller usually does
not worry about his signature being publicly verifiable. &ctf to protect the interest of the recipient, the
seller’s signature has to be verifiable by others. Hence,omirloview reaching the execution date as a
certain condition to be fulfilled before the signature ofsigner (seller) could be revealed to the recipient
(the buyer, who could convince others of the validity of tigner’s signature afterwards), and before
such fulfillment, we wish to achieve signer privacy. We netihat many business activities involving
digital signatures have similar situations. The essent®uisthe signer could ensure non-verifiability
of his signature before certain conditions are fulfilled tfie future trading case, the condition is the
execution date has passed) but still can convince the estifiat he will be obligated to exercise his
commitment; in other words, he needs to give the recipiemtesguarantee about his commitment or his
signature will become effective or publicly verifiable oralethe conditions are fulfilled.

On the other hand, the non-repudiation property of a digitghature could also have a serious
repercussion to the signer if there is no way to allow him tota when and how a recipient could
obtain his signature when sending it out. In the online wdhée lack of physical proximity could render
a careful signer hesitant in giving his signature (say foaynpent authorization) to another party because
he is not given any guarantee that he will obtain what he ipasgd to as an exchange of his signature.
From the recipient’s perspective, if the signer does not st his signature, the recipient will not give
what the signer needs. For instance, if the signer makes lameqrurchase, he may not receive any
guarantee that his order will be delivered but the sellegifient) will not send it out unless the signer
gives out his signature on a payment authorization. Thid kihdeadlock due to mistrusting parties
is not easily solved. In the worst scenario, a careless sigy fall into a fraud trap to give out his
signature unwisely. Nevertheless, the deadlock could hgafha solved if the signer could ensure that
the recipient can never obtain a valid signature of his @wdesne conditions (specified by the signer) are
fulfilled, namely, the recipient sends out the signer’s oidéhe online purchase example.

To provide a flexible solution to this problem of controllalgassing signatures from one party to
another without actively involving a trusted third partygwntroduce a new signature concept called
conditionally verifiable signatures (CVS). In a CVS schethe, signer gives the recipient some seem-
ingly random number, what we callgartial signature and specifies a set of conditions the fulfillment
of which will allow the recipient to extract the signer’s sgjure from the partial signature. The partial
signature is not immediately verifiable; fulfilling the sifed conditions is necessary to retrieve a valid
ordinary signature from it. To convince the recipient thigtdrdinary signature could be extracted form
a partial signature, the signer runs a confirmation protadthi the recipient to prove that his signature
could be retrieved once all the specified conditions arelledii Before the ordinary signature becomes
effective (that is, extracted), the partial signature ismowe convincing than any random number, namely,
nobody could link the partial signature to its alleged sigiée formulate this property by the notion of
simulatabilityin this paper, that is, anyone could use just public inforomabf the signer to simulate a
given partial signature while others cannot judge whether genuine. In other words, nobody could
distinguish between a genuine partial signature and a abedibne. In fact, in our model, even given the
signer’s private key, nobody could tell the validity of a giivpartial signature if the random coins used
to generate it are not available. In order to enforce theigation of condition fulfillment, we need a



number of third party witnesses mutually trusted by bothsigeer and recipient. In our model, the only
job of these witnesses is to verify whether the given coodgiare fulfilled and they are unaware of the
conversion or even the existence of the partial signatuhat 1§, the withesses do not participate in the
actual signature conversion. Details of the model are givéine next section.

1.1 Conditionally Verifiable Signature

In the CVS model, a signer is allowed to embed a set of verifiplionditions C' into his ordinary
sighatures to create a partial signatutethat is solely verifiable by the recipient (possibly throubk
collaboration with the signer), who cannot immediatelywsonce others of the validity of but can con-
vert it back to the universally verifiable ome(i.e. verifiable by everyone) after obtaining from a number
of witnesses (appointed by the signer) the proofs that alkgiecified verifiability conditions have been
fulfilled.> These proofs are in the form of signatures on condition states, signed by the witnesses,
about how the specified conditions are considered as fdlfille order to convince the recipient to ac-
cept a given partial signatuseon a messagé/ (whose validity could not be verified), the signer runs a
proof/confirmation protocol, which could be interactivenmn-interactive, with the recipient to convince
the latter thaty is indeed his partial signature @, from which the corresponding ordinary signature
could be recovered using the specified witnesses’ sigreatur¢he specified verifiability condition state-
ments inC.

Given that)V is the set of all possible witnesses, an instance set of afeitifiy conditionsC' is of
the form{(c;, W;) : ¢; € {0,1}*,W; € W} where each condition statementis a string of alphabets
of arbitrary length describing a condition to be fulfilledxdnples ofc; include “A reservation has been
made for Alice on flight CX829, 14 Jul 2005.", “A parcel of XXXaB been received for delivery to
Bob.”, “It is now 02:00AM 18 Jan 2003 GMT.”, “An emergency haappened.” and so on. The recipient
needs to request each one of the specified withesse8l sag verify whether the condition stated ép
is fulfilled and in case it is, to sign of} to give him a witness signaturg. These witness signatures
o;'s would allow the recipient to recover the publicly verifiepordinary signature from the partial
signaturey.

Besides, it is not necessary for a recipient to present thigapaignature or the message itself to
the witnesses in order to get their endorsements on therstateabout the fulfillment of a condition.
Even so, the witness signatures could still recover thenargli signature from the collected witness
signatures. The only trust we place on the witnesses is liegt anly give out their signatures on a
condition statement when the specified conditions are ohéléglled. In fact, it is not difficult to imagine
that the existence of such witnesses is abundant in anydsssinansaction; in most cases, any party
involved in processing an order would inherently be trudigdoth the signer and recipient, a good
candidate as a witness. A typical example is the postal offtdeh is involved in delivering the order
the signer placed on the recipient of a signature for his geyrauthorization. In addition, we could
achieve a fairly high level of privacy in that the withessee anaware of the message or the partial
signature when verifying the fulfillment of a given conditjcnamely, he does not learn the deal between
the signer and the recipient. But this would not hinder ttoépient from obtaining a witness signature
as it is so common in business processes to request a receipt.

We could view the partial signature as a blinded version efdfdinary signature, that is, nobody
could verify its validity. In our CVS formulation, this noverifiability property is expressed by the
notion of simulatability — there exists a polynomial time simulator which is compldalsing only

Throughout the rest of this paper, we will denote the ordirfaniversally verifiable) signature and the CVS partiahsig
ture byo andd respectively, unless otherwise specified.



public information of the signer and outputs a fake sigrettomputationally indistinguishable from the
partial signature; that is, even given a genuine partialatigre, nobody with bounded computation power
could assure that it is not a fake one generated by the sionukas a result, when the recipient presents
a partial signature to others to convince them of its validiiobody could tell whether the signer has
really created it or the recipient has generated it himsalaithe simulator. Of course, it is natural to
worry about whether the confirmation protocol would leak wsgful information to help distinguishing
between a genuine and a fake partial signature. We show tin8&tthat if the confirmation protocol

is zero knowledge, then it would leak no useful informationguch a purpose and the CVS scheme is
said to benon-transferable

Beside the notion ofimulatability, there are other possible formulations of the non-verifiigtbi
property of a signature, namelgnonymityand invisibility.?2 Numerous similar notions have stemmed
from these two notions in the literature on undeniable diges [4, 8, 10, 11, 14, 23, 19, 31, 33] and
designated confirmer signatures [9, 6, 18, 28, 34, 37]. Amutyyin essence means that given a message,
two signers and a valid signature belonging to one of therhpdy could tell which one of the signers
has created the given signature. Whereas, invisibility madhat given a signer, two messages and a
valid signature of the signer for one of messages, nobodigdell which message the given signature
is for. These various nations represent different undedsatg about the security requirement of the
non-verifiability of a signature, as well as different madg! But we think that simulatability is a
more natural and comprehensive notion to represent thevewtiability property of a partial signature.

In Section 3.3 we give a detailed treatment on deriving thatiomships between these notions and
simulatability. In particular, we show that anonymity amgisibility are indeed implicitly implied by
simulatability if an appropriate simulator (with more msions on its requirement) exists despite that
they are not completely compatible and covered by the nati@mulatability.

As usual, unforegeability is a basic requirement for a s2e€@WS scheme. More specifically, we
require that even colluding with all the withesses and adldwo query ordinary and partial signatures of
his choice, nobody could present a message signature gagrevdously queried such that the signature
is valid for the message. This is often called existentiafijorgeability against a chosen message attack.

As mentioned earlier, beside protecting the signer’s pyive&VS is also aimed to protect the signer
from fraud trap. It offers the signer the guarantee that #wpient would not get his signature on
a document if he could not get what the recipient are comchiibe In other words, if the specified
conditions are not fulfilled, that is, the correspondingnefts signatures are not available, the ordinary
signature could never be retrieved from a given partialatigre. This is theheat-immunityroperty of a
CVS scheme. We could show that this property is implicitlziaged in an unforgeable and simulatable
CVS scheme if its confirmation protocol is also zero knowkedg

1.2 Our Contributions

The main contribution of this paper is the new model of caaddlly verifiable signatures through which
the signer can incorporate a wide range of verifiability ¢bods into an ordinary signature scheme to
control its verifiability and validity while minimizing theequirement or trust on third-parties. To the
best of our knowledge, it is the first scheme of its kind in fkerdture. Before this work, it is fair to say
that the problem of seamlessly incorporating verifiabitignditions into a signature scheme to control
its validity and allowing spontaneous signature recovgyruthe fulfillment of the specified conditions
remains largely open. Closely related work includes uret@aisignatures [4, 8, 10, 11, 14, 23, 19, 31,

2When talking about signatures in this context, we are rigfgio some blinded version of an ordinary signature in uiden
able signatures or designated confirmer signatures.



33], designated confirmer signatures [9, 6, 18, 28, 34, aif|jekchange [1], and timed release of digital
signatures [20, 21]. In fact, we could possibly view CVS asomegeneral, unified concept incorporating
all these, but provides more effective and flexible solgitimthe scenarios these existing schemes could
not solve satisfactorily, particularly those in digitaldmess or electronic commerce. A typical example
of these would be the deadlock scenario mentioned earlirtdbe online purchase between mistrusting
parties; using the post office as a witness, CVS would red&dpsalve this problem.

Besides, we give a detailed treatment on modeling the sg@oals and the adversary capabilities
of CVS. We show the relationship between these notions astdl dhem down into a much smaller
set of core notions necessary for a CVS construction to [falfilof them. In particular, we show that
the notions of invisibility and anonymity, usually congidd separately in undeniable signatures and
designated confirmer signatures, are in essence diregljeidnin the notion of simulatability (a notion
commonly found in commitment schemes and proof-of-knoggeprotocols) if an appropriate simulator
could be found. Moreover, we give the conditions under whiah design of a CVS scheme and its
confirmation protocol could be separated for consideratibile preserving the needed security.

Furthermore, we demonstrate the feasibility of CVS by gi\argeneric construction based on any ex-
istentially unforgeable signature scheme and any senadigtgecure identity based encryption scheme.
Based on this, we show that a secure CVS scheme is equivalantiBE scheme with indistinguisha-
bility security against a chosen plaintext attatik[@-ID-CPA) in terms of existence. ASND-ID-CPA)
security is a weaker notion than the commonly accepted ggawtion against an adaptive chosen ci-
phertext attackIND-ID-CCA) in IBE, we believe that CVS could be constructed based on akere
assumption than IBE.

Finally, we present a number of practical instantiation€W9fS based on bilinear pairings. We give
efficient CVS constructions for standard signature schdikeglGamal [16] and RSA [38]. With slight
modifications, these techniques could be applied to otigaatire schemes like Schnorr [40] and GHR
[22] signatures.

1.3 Organization of the Paper

The rest of this paper is organized as follows. We discusste@lwork in the next section. Then,

we give the definition of a conditionally verifiable signauscheme and its notions of security and
derive relationships between these notions in Section terAfiat, we present the preliminary materials
needed in our construction in Section 4. In Section 5, we gigeneric CVS construction and show the
equivalent between CVS and IBE. In Section 6, we give a nurabefficient CVS constructions based

on bilinear pairings. Finally, we conclude in Section 8 wathumber of future problems.

2 Related Work

Related work on controlling the verifiability of a digitalgsiature includes designated verifier signatures
[30, 42], undeniable signatures [4, 8, 10, 11, 14, 23, 1933},,designated confirmer signatures [9, 6,
18, 28, 34, 37], fair exchanges [1], timed release of sigeat{R0, 21], and verifiable signature sharing
[17]. Despite the considerable amount of work in limitingg therifiability of a digital signature, the
conditions that could be incorporated into a digital signatscheme are still very restrictive; the existing
protocols merely ensure that only a designated recipiemtveafy but cannot convince anybody else
of the validity of a signature (in designated verifier sigmas) and/or collaboration of the signer (in
undeniable signatures) or a third party designated by tireesi(in designated confirmer signatures, fair
exchange) is needed in verifying the signature. Implemgntiore complex policies or specifying more



varied conditions in these schemes has to resort to appgetidgéncondition/policy description inside
the message and rely on a third party to enforce them in signaerification and conversion. Hence,
there is almost no protection of the privacy of the signer tliedrecipient with respect to any third party
which, if present, is involved in the actual signature cosvm and sees the message. In contrast, the
only information a third party needs to know in CVS is the dtind to be fulfilled.

In a designated verifier signature scheme [30, 42], theitsakid a signature could only be verified
by those specified by the signer and nobody else. Howevee thao means to convert a signature back
into an ordinary, publicly verifiable one, thus giving no garstee to the recipient.

Undeniable signatures, introduced by Chaum [10, 8], argadligignatures which cannot be verified
without interacting with the signer. Obviously, an undétgasignature offers almost no guarantee to
the recipient as the signer could intentionally become aitelvle. Chaum [9] also proposed designated
confirmer signatures (as a remedy to undeniable signatwigsh, in addition to the signer, can also
be verified by interacting with a third party called confirnveno has been designated by the signer.
This could in essence be viewed as a signature with limiteifiataility. In the original versions of both
undeniable and designated confirmer signatures, convergio ordinary signatures is not possible but
subsequent proposals [4, 33, 14, 37, 34] provide this chfyabilowever, the only way to incorporate
convertibility conditions is to embed them in the messagelfit which is undesirable in the sense of
recipient privacy. In many of these schemes, selective ergion is not even allowed; all the issued
signatures are converted even though the signer just wactantzert one of them. Although CVS may
not yield efficient schemes, roughly speaking, undeniableesures and designated confirmer signatures
could be considered as instantiations of CVS.

Out of the existing schemes, fair exchange of digital sigreest [1] has drawn much attention mainly
due to its potential application in electronic commerceessence, it is an instantiation of a designated
confirmer signature which uses the designated confirmer agtamator. However, beside contract
signing, the applications of fair exchange are still lirdite trading regenerable (digital) goods. When
asking the arbitrator to convert a signature, a party needhow a considerable amount of evidence
about the deal or give the digital goods under the custodyhefarbitrator. In the latter case, such a
requirement may not be achievable in trading non-regeterms. In the former case, privacy breach
(to the arbitrator) is inevitable. Unlike fair exchangeg thitnesses in CVS do not act as arbitrators but
to verify the fulfillment of a condition. They do not need todm what the deal is or what the signed
message is in order to verify the fulfillment of a condition.fact, the availability of such witnesses is
S0 pervasive in any trading activity and requesting encioeses in the form of a receipt is so natural
in the usual workflow. Concurrent signatures [12] are another similar propogasdtving the contract
signing problem but CVS cannot give a construction for coremu signatures.

While covering an important type of verifiability conditismmelated to time, timed release of sig-
natures are, however, usually implemented by the time-fncizle [20, 21] requiring the recipient to
go through a series of computation tasks in order to contf@mhe could recover the signature; the
main advantage is no third party is needed but it requirengite computation resources and the only
condition specifiable is relative time. More importantlysuming verifiability of a signature has a rough
timing and may not be spontaneous; the guarantee that awwigr@comes verifiable after the release
time hinges on that the recipient starts the conversion idiaely upon receipt of the signature. In fact,
CVS could provide a seemingly better solution for this peoin] consuming less computation resources
and allowing a precise release time specification at theresgef using a passive time server which

3Depending on the assumptions on the adversary capabititiedifications on the security definitions of CVS may be nec-
essary in some cases to give a construction of undeniablgfdged confirmer signatures fulfilling its own securitfinigons.
“For example, when sending a parcel, requesting a receipttfie post office is very natural and reasonable.



periodically broadcasts a single signature/endorsenfentll users) on the current time. Spontaneous
signature conversion could hence be achieved.

In verifiable signature sharing [17], a signature is dividedsuch a way that a certain minimum
number of parties, each holding a share of the signaturel, toggool out their shares in order to recover
the signature. When receiving a share, each party couléyvtsivalidity. However, it is not trivial to
incorporate verifiability conditions in such a scheme andifig such a number of trusted parties in a
trading activity is not easy either. Besides, the verifigbibf a share also implies that one could link a
signature share to its alleged signer even though it is nonhgplete signature with binding power. As
a result, the privacy of the signer as required in scenaifiasthe future trading example could not be
achieved. Although elegant, verifiable signature shariag not be suitable for the scenarios considered
in this paper.

3 Definitions and Security Notions

This section provides a formal definition of conditionallgrifiable signatures. After defining the security
notions, we discuss the relationships between them.

Notation Convention. For the sake of clarity, we ugeto denote an ordinary signature ahtb denote a
CVS partial signature. For example, the ordinary signadfigesignerS on a messaga: would be
denoted by ¢(m) and its corresponding partial signaturedy(m). When there is no ambiguity,
we might drop the parenthesis and its content. For instameenay simply write the CVS partial
signature as or dg instead obg(m).

SupposeA(PKg,z) is an algorithm with the public key of andz as input. Provided there
is no ambiguity, we may denote it aks(x) for short, similarly for the private key case. When
comparing the output of two algorithms, we may drop the commput for simpler notations. For
example, when comparind(w, =, y, z) and B(w, 2’, y), we may simply writed(z) and B(z').

We denote the message spaceMdythe condition statement space®yand the set of all possible
witness byW = {I¥;} and|WW| = N. Unless otherwise specified, we assuvte= C = {0, 1}*.
We further denote the partial signature and ordinary sigeagpaces bgs andS, respectively.

An instance set of verifiability conditions is of the forth = {(¢;, W;) : ¢; € C,W; € W} C

C x W. Given an instance set of verifiability condition we usually denote the corresponding
sets of witness public and private keys By andsk¢ respectively. We also denote the set of
witness signatures/endorsements specified by o¢.

Usually, we use{W;} to denote the set containing al;’s. But by { A(x)} we also denote the
set of all possible output values of a probabilistic aldoritA when inputx, according to its
probability distribution.

As usual, we use PPT to denote probabilistic polynomial @ahgerithm.
As usual, we have the following definition of negligible ftions.
Definition 1 [Negligible Functions] A functione : N — R is negligible in\ if and only ife()\) <

p—ol;()\) for some polynomigboly() in A.

The players in a conditionally verifiable signature schentdude a signef, a recipient or verifier
V, and a number of witness¢$V;} C W (assuming/{W;}| = L). A CVS scheme consists of the
following algorithms and a confirmation protocol.
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Key Generation (CVKGS, CVKGW). Given a security parametey, let CVKGS(1*) — (PKg, sks)
andCVKGW(1*) — (PKy, sky) be two probabilistic algorithms. ThelPKs, skg) is the
public/private key pair for a signef and (P Ky, sky ) is the public/private key pair for a witness
w.S

Signing and Verification (Ordinary Signatures) (SigS, VerS)/(SigW, VerW). SigS(m, skg) — og
is a probabilistic algorithm generating an ordinary (ureadly verifiable) signaturerg of the
signerS for a messagen € M. VerS(m,os, PKg) — {0,1} is the corresponding signature
verification algorithm, which outputsif og is a true signature o on message: and outputs)
otherwise. As usual, for allPKs, sks) € CVKGS(1*) and allm € M, we require the following:

VerS(m, SigS(m, sks), PKg) =1

Similarly, SigW(m, skw ) — ow andVerW(m,ow, PKyw) — {0, 1} are the signature genera-
tion and verification algorithms of the witneBg. Sometimes, we may writ8igW asCVEndW
to reflect it is actually an endorsementléf.

The signatures generated by these algorithms are publiefifiable. Note that we use pairing
based signatures [3] as witness signatures in our efficieviEConstructions.

Partial Signature Generation (CVSig). Given a set of verifiability condition§’ C C x W and the
corresponding set of witness public keld<(-, CVSig(m, C, sks, PKg, PKc) — 0 is a prob-
abilistic algorithm for generating the partial signatér®@n messagen € M under the set of
verifiability conditionsC'.

Note that unliker, this partial signature’ is not universally verifiable.

Ordinary Signature Extraction (CVExtract). CVExtract(m,C,é, PKgs,0c) — o/ L is an algo-
rithm which extracts the corresponding ordinary signatufeom a partial signaturé for a mes-
sagem under the verifiability condition specified ldy and a signing public key? K g when given
the set of witness signatures or endorsements The extracted signatukeis a universally ver-
ifiable one. In case the extraction fails, it outputs Extraction failure could happen when the
witness endorsements/signatures used do not match wiegjuised (i.e. a different witness or a
different condition statementNote thatoc = {SigW (skw,, ¢;) : (ci, W;) € C}.

CVS Confirmation/Verification. CVCong ) = (CVConS,CVConV) is the signature confirmation
protocol between the signer and recipient, which could texactive or non-interactive:
0

CVCon(sv)(m, C, 8) = (CVCONS(a, sks, r),CVConV())(m, C. 5, PKs, PKc) — v =1 |

The common input consists of the messagehe set of verifiability conditiong’, the partial sig-
natured, and the public keys of the signétK g and the involved withesses public keyd<c.
The private input of the signes is o, skg, andr whereo is the corresponding ordinary signa-
ture (on the message) embedded i, andr represents the random coifsused in generating
6. The output is eithet (“true”) or 0 (“false”). In essence, this protocol allows the sigiseto
prove to the recipient’ thaté is indeed his partial signature @m, which can be converted back
into a publicly verifiable signature (i.e. VerS(m,o, PKg) = 1, onceV has obtained all the
witness signatures/endorsements on the condition statsrae specified id'. Ideally, we want
this protocol to be zero-knowledge. Besides, the interactersion is considered in this paper.

®In this paper, we may use’ K, sk;) and(PKw, , skw, ) interchangeably to denote the public/private key pair oftaess
W;. Provided there is no ambiguity, we prefer to use the forraesiimpler notations.
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The partial signature generati@VSig could be a 1-step or 2-step process. In the latter, an ogdinar
signature universally verifiable is first generated andradiig process is then applied to create the CVS
partial signatur@. In caseCVSig is a 1-step process, the signer should be able to deterngradimary
signature embedded ihbased on his private key and the random coins he used in giegefa

Ideally, a signature of the witness on the condition statérebould be used to retrieve an ordinary
signature from its partial signature. But such a requirdniemot strict; it should be fine as long as
a trapdoor for each condition statement known only to theegs is needed to recover an ordinary
signature and finding such a trapdoor without the witnessape information is hard.

3.1 Security Properties of Conditionally Verifiable Signatires

In general, a CVS scheme should satisfy both completenelsgeafect convertibility property described
below. Completeness ensure that a valid ordinary signaande retrieved from a valid partial signature.
A CVS scheme is perfectly convertible if nobody could digtiish whether a given ordinary signature is
extracted from a partial signature or generated directly.

Definition 2 A CVS scheme is complétiéfor all A, all (PK, sks) € {CVKGS(1M)}, all (PKyy, sky) €
{CVKGW(1M}, all m € M, all C C C x W, and for all§ € {CVSigg(m,C)}, the following holds:

VerSg(CVExtractg(m, C,d)) =1

Definition 3 A CVS scheme is said to be perfectly convertible if the fatigvensembles of random
variables are computationally indistinguishable (acdagito Definition 4 discussed later).

{(PKs, sks) «— {CVKGS(1")};m « M : SigSg(m)},
(PKg, skg) — {CVKGS(1")};
(PKw,, skw,) «— {CVKGW(1M)},YIV; € W
m «— M;C « 20W;
oC “— {{SIgW(CZ,WZ) : (Ci7Wi) S C}}

CVExtractg(m, C,CVSigg(m,C),o¢)

Regarding security, a secure CVS scheme should also satiffygeability, simulatability, cheat-
immunity, and zero knowledge confirmation protocol. Theme ather notions analogous to simulata-
bility, namely, anonymity and invisibility. Before fornmigldefining these security notions, we need to
give a basic definition about the indistinguishability beem two probability distributions, describe the
adversary capability allowed in our security model, anccdbe the signature and transcript simulators
needed for the definitions related to the non-verifiability partial signature.

Definition of Indistinguishability
We need the following definition of computational indistighability for the discussions in this section.

Definition 4 [Indistinguishability between Random Distributions] LetX = {X,} and) = {Y,} be
two ensembles of random variables over the same sample paaée ). X and) are computationally

®Note the short form of notations we use here, for example, wee €VSigg(m,C) to denote
CVSig(m,C, sks, PKs, PKc) as PKc¢ could be uniquely determined by. But keep in mind, the dropped parame-
ters are still needed in running the algorithm.



indistinguishable (denoted by = ))) if the following is negligible in\ for all probabilistic polynomial
time (PPT) algorithmA:

|Priz « X : A(x) =1] — Prly < Y, : A(y) = 1]| < exy(N\)

We callexy the indistinguishability coefficient betweetiand)’. This definition in essence means
we can transfornX, into Y, and vice-versa by moving a negligible mass of probabilistriiution. The
following lemma would often be useful in showing indistinghability between distributions.

Lemma 1 Given three ensembles of random variabl€s= { X, }, Y = {Y)\} and Z = {Z,},
X2YadYXZ=X2Z
The indistinguishability coefficients are related as falfoex 7z < exy + €y z

Proof For any given algorithn#, leta = Pr{z «— X : A(x) =1],b= Pr[y < Y, : A(y) = 1] and
¢ = Prlz « Z : A(z) = 1]. Using the well-known triangular inequality, that jg—c| < |a—b|+|b—¢|,
the relationship between the indistinguishability coefiits follows directly. Given the fact that the sum
of two negligible functions is still a negligible functiome can conclude that’ = Z. [ |

Corollary 2 Given polynomially many ensemblég, Xs, ..., Xy,

X=X, X=X, AN AN = X = AN

Oracle Queries — Allowed Adversary Interaction
In our security model, two types of adversary interactianalowed:

1. Signing OracleOg(m, C). For fixed keysP Kg, sks, { PKw, }, {skw, }, on input a signing query
(m,C) (wherem € M andC = {(¢;, W;) : ¢; € C,W; € W} is a set of verifiability conditions),
Og responds by runnin@VSig to generate the corresponding partial signatur&fter sendingy
to the querying partyQs runs the confirmation protoc@VCon gy~ with the querying party to
confirm the validity ofé. Note that a malicious querying party is allowed to put in aapdom
number in place of when running the confirmation protocol.

2. Endorsement Oracle Og(c, W). For fixed keys{ PKy, }, {skw,}, on input an endorsement
query (¢, W), Qg responds by retrieving the needed witness privateskgy and then running
the witness endorsement/signing algoritt8igW (or CVEndW) to create a witness endorse-
ment/signatureryy (¢) on the condition statement

As we consider adaptive attacks in our model, these orageepumay be asked adaptively, that is, each
guery may depend on the replies of the previous queries.
Partial Signature and Confirmation Transcript Simulators

As mentioned earlier, the simulatability property of a C\¢Beame is formulated by means of the exis-
tence of a publicly known PPT partial signature simulatémitrly, the zero knowledge property of the
confirmation protocol is formulated with a transcript siator. The simulators used in this paper are as
follows.
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1. Partial Signature Simulator: Fake(m,C, PKg, PK¢) — ¢’

2. Confirmation Protocol Transcript Simulator: FakeT(m,C,d, PKs, PK¢) — 7’

On input a set of verifiability condition§' = {(c;, W;) : ¢; € C,W; € W}, Fakeg(m, C) outputs a
“fake” partial signature of5 for a messagen under a set of verifiability conditionS'. Fakeg(m, C) is
to simulate the output a€VSigg(m, C). Similarly, FakeTs(m, C, §) is to simulate the communication
transcript produced by the confirmation proto@VCon(g v (m, C,J) betweenS and V' on input a
messagen, a set of verifiability conditiong’, and a partial signatur@

3.1.1 Unforgeability

Unforgeability ensures that even all the witnesses poatiaigtheir private keys and given signatures
of a signer on messages of their choice should not be ablerge f@ valid signature on a message
not previously queried. The details of unforgeability wabble better described by the following game
between a challenger and an adversary.

Definition 5 A CVS scheme is unforgeable against an adaptive chosen geessack if the probability
of winning the following game is negligible in the securigrgmeter\ for all PPT adversariesA4.

Setup. The challenger takes a security parameteruns the key generation algorithms for the signer
and all witnesses, that i6P K, sks) «— {CVKGS(1*")} and(PKyy,, skw,) < {CVKGW(1})}.
The challenger gives the adversary all the public keys s and { PKyw,} and all the witness
private keys{ sk, }. The challenger keeps the signer’s private kgy.

Query. The adversary is allowed to make queriesxg to request a partial signatude for (m;, C;).
Note that the adversary has the witness private keys €dgquery is necessary.

Guess. The adversary halts and outputs a message-signaturénpair) wherem # m; for all j.

Result. The adversary is said to win this gam&/d#rSs(m, o) = 1.

The winning probabilitypf{‘F is taken over the coin tosses of the key generators, thersignd the
adversary.Note that the adversary can extract ordinary signaturesnfilany partial signatures as it is
given all the witness private keys.

3.1.2 Simulatability

Simulatability guarantees that nobody, allowed to quehepbrdinary and partial signatures, can tell
whether a given partial signature is genuine or fake. We fitate the simulatability property by means
of the existence of a publicly known PPT partial signatureudatorFake which generates a fake partial
signatured; such that nobody (with bounded computational power) cazllqlbetter than a wild guess)
whethers € {CVSig(m,C, sks, PKg, PKc)} or ¢ € {Fake(m,C, PKg, PK¢)} for a givend. This
signature is fake as there is negligibly small probabilitgttone could extract a valid ordinary signature
from it. The indistinguishability between these two distitions essentially implies that a valid partial
signature alone is no more convincing than any random nuymiaenely, nobody could infer who has
signed it — the claimed signer (usirgVSig) or a forger (using-ake). Detailed formulation of the
simulatability property is described by the following game

11



Definition 6 A CVS scheme is simulatable if there exists a PPT simuleage(m,C, PKs, PK¢)
(with the same output space as that@fSig for all \) which uses only public information of the signer
to simulate a partial signature on any arbitrary message amg set of verifiability conditions such
that the advantage of winning the following game is negl@ih the security parametex for all PPT
distinguishers/adversarieb.

Setup. The challenger takes a security parameteruns the key generation algorithms for the signer
and all witnesses, that i6P K5, sks) «— {CVKGS(1")} and(PKyy,, skw,) «— {CVKGW(1})}.
The challenger gives the adversary all the public kéy&,s and{PKyy, }. The challenger keeps
the witness private keySskyy, } but gives the adversary the signer private key.’

Query 1. The adversary makes queries to obtain the signer’s paigiztires and withess endorsement
signatures of messages of its choice until it is ready taveaechallenged partial signature. It can
make two types of oracle queries:

e Signing Query(m;, C;) to Og.
e Endorsement Querfe;, W;) to Op.

As the simulatorFake is publicly known, the adversary could freely get a simulaiotput on
any message and conditions of his choice. Since the adyeassgiven the signer’s private key, in
addition toOg queries, it can also generate partial signatures of arpitressages and conditions
on its own. But even on identical input, these signatures nmybe the same as those from the
challenger since the random coins used are likely to berdifte

Challenge. Once the adversary decides that Query 1 is over, it outputessagen € M and a set
of conditionsC' C C x W on which it wishes to be challenged. L€, denote the set of all
endorsement queries sent@y; in Query 1. The only constraint is that\CL # ¢ (the empty
set).

The challenger flips a coibve {0, 1} and outputs the following challenge to the adversary:

5 _ | CVsigm,C,sks, PKs, PKc), b=0
®~ \ Fake(m,C,PKg, PK¢), b=1

Query 2. The adversary is allowed to run until it outputs a guess. @gtbe the set of queries that
have been made 10 so far in Query 2. The adversary can issue more (but polyrtynmigany)
queries, both signing and endorsement queries, as in QueBytlifor endorsement queries, say
with input (c;, W;) , the following must holdC\(CL U C% U {(cj, W;)}) # ¢.

Guess. The adversary halts and outputs a guéger the hidden coirb.
Result. The adversary is said to win this gamé'if= b. The advantage of the adversary is defined as:

Advg™(\) = |Prit =b] — %'

"We actually consider the strongest notion of security
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The probability is taken over all the random coins tossechbykey generators, the signer, the witnesses,
and the adversary.

Note that after fixing a challenge, the adversary is stitha#td to query partial signatures of the
challenge in question becau€&/Sig is a probabilistic procedure which would output differeattal
signatures even when input with the same signing keys, tine saessage, and the same set of verifia-
bility conditions. Of course, we could only allow polynoriyamany of these queries. In fact, we are
already adopting the strongest notion of security with eesjo the privacy of the signer.

In this definition of simulatability, the communication miscript of the confirmation protocol is not
given to the adversary. It is a natural question to ask whetteeconfirmation transcript would help in
distinguishing a genuine partial signature from the simulautput. If the indistinguishability property
still holds given with the transcript, the CVS scheme in goesis said to be non-transferable. We will
show in Section 3.1.6, when discussing the security prgpefrthe confirmation protocol, that if the
confirmation protocol is zero knowledge, simulatabilityeditly implies non-transferability.

The number of input arguments needed for the simulgiie could lead to different tastes of sim-
ulatability, as summarized below. A CVS scheme is:

a. message-independent-simulatabl&aite does not need the signed messagas input.
b. signer-independent-simulatableFdke does not need the identity of the signek s as input.
c. condition-independent-simulatable Féike does not need the condition geétor P K as input.

d. independently simulatable Fake just randomly picks an element from the CVS signature space
without referencing to the message, the signer’s identithe condition set.

3.1.3 Cheat-immunity

Cheat-immunity guarantees that the recipient of a partigiatdure cannot retrieve the ordinary signa-
ture without collecting all the needed witness signatui&e. show later that cheat-immunity could be
achieved if a CVS scheme is simulatable and unforgeabletarabifirmation protocol is zero knowl-
edge.

Definition 7 A CVS scheme is cheat-immune (against a chosen messageomsead eferifiability condi-
tion attack) if the probability of winning the following ga&nms negligible in the security paramet&rfor
all PPT adversaryA.

Setup. The challenger takes a security parameteruns the key generation algorithms for the signer
and all witnesses, that i6P K, sks) «— {CVKGS(1*")} and(PKyy,, skw,) < {CVKGW(1})}.
The challenger gives the adversary all the public kéy&,s and{PKy, }. The challenger keeps
all the private keyskgs and{skw, }.

Query 1. The adversary makes queries to obtain the signer’s paigiztires and withess endorsement
signatures on messages of its choice until it is ready tawe@echallenged partial signature. It
can make two types of queries:

e Signing Query(m;, C;) to Og.
e Endorsement Querfe;, W;) to Og.
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With these two types of queries, the adversary can obtairoetigary signatures of the signer on
messages of his choice.

Challenge. Once the adversary decides that Query 1 is over, it outputessagen € M and a set
of conditionsC' € C x W on which it wishes to be challenged. L€t, denote the set of all
endorsement queries sent@g in Query 1. The only constraint is thét\(]}f % ¢ (the empty set)
andm # m;, Vj.

The challenger use8VSig to generate a partial signatufen message: under conditionC'. It
sends) as the challenge to the adversary and runs the confirmatataqui CVCong v with it.

Query 2. The adversary is allowed to run until it outputs a guess. (llgtbe the set of queries that
have been made t©f so far in Query 2. The adversary can issue more queries, lptng
and endorsement queries, as in Query 1. But for signing egien; # m, and for endorsement
queries, say with inputc;, W;), the following must holdC'\(CL U C% U {(cj, W;)}) # 6.

Guess. The adversary halts and outputs an ordinary signatice messagen.

Result. The adversary is said to win this gam&/d#rSs(m, o) = 1.

The winning probabilitwﬁf is taken over the coin tosses of the key generators, thersitpeavitnesses,
and the adversary.

Note that a less restrictive adversary model could also hsidered. In that model, the adversary is
allowed to pose a challenge message which has been pregvopuesiied but no ordinary signature on it
has been extracted so far using the results of all the endergequeries made previously. However, a
tight reduction between unforgeability and cheat-immumtthis model with relaxed adversary restric-
tion would not be possible. Consequently, a slightly mosdrigtive model is considered in this paper
for the sake of tight reduction. In the real case, this retsbm simply means that a signer should not
issue signatures to the same party on exactly the same redasgagith different verifiability conditions.
This could easily be achieved by padding a message with itatadrial number and, in fact, we believe
this is a reasonable assumption in real practice. Besideslso believe that a CVS scheme achiev-
ing the cheat-immunity property in the model considerechia paper would enjoy the same property
in a slightly relaxed model in which the signer could issué/pomially many signatures on the same
message but with different verifiability conditions to tlarse party.

3.1.4 Message Invisibility

As mentioned earlier, beside simulatability, there arediier possible formulations of the non-verifiability
property of a partial signature — invisibility and anonyifThese definitions are variants of those in
[34, 6, 18]. In general, the notions of invisibility and ayamity are not exactly equivalent to simulata-
bility even though they are implied by simulatability in nyacases.

Message invisibility ensures that given two messages amgditial signature of one of them, to-
gether with the associated verifiability conditions, nopamuld tell which one of the messages the
partial signature belongs to. The rationale behind thisonois that, in the worst case, even though
the recipient can show to others who has signed a partiagsigen and under what conditions it would
become verifiable, nevertheless, there is doubt about whétis valid for the alleged message as the
invisibility property guarantees that nobody (with boudd®mputational power) could link a message
to its partial signature. In other words, although everyknews the alleged signer has really signed a
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given partial signature, nobody could assure that it is naild one on a different message being abused
by somebody. As a result, the signer is not bound to the allegessage and his privacy is protected.
The details of the invisibility property are as follows.

Definition 8 A CVS scheme is invisible (or message-invisible) if the r@ighgge of winning the following
game is negligible in the security parametefor all PPT distinguishers/adversaries.

Setup. The challenger takes a security parameteruns the key generation algorithms for the signer
and all witnesses, that i6P K, sks) «— {CVKGS(1*)} and(PKy,, skw,) < {CVKGW(1})}.
The challenger gives the adversary all the public kéy&,s and{PKy, }. The challenger keeps
the witness private keySskyy, } but gives the adversary the signer private key.

Query 1. The adversary makes queries to obtain the signer’s paidiiires and witness signatures of
messages of his choice until it is ready to receive a chadldnmartial signature. It can make two
types of queries:

e Signing Query(m;, C;) to Og.
e Endorsement Querfe;, W;) to Og.

Challenge. Once the adversary decides that Query 1 is over, it outputsemual length messages
My, M; € M and a set of condition§' C C x W on which it wishes to be challenged. Let
0}3 denote the set of all endorsement queries selgdn Query 1. The only constraint is that
C\CL # ¢ (the empty set).

The challenger flips a coibve {0, 1} and outputs the following challenge to the adversary:

8, = CVSig(My, C, sks, PKg, PK¢)

Query 2. The adversary is allowed to run until it outputs a guess. @gtbe the set of queries that
have been made 10 so far in Query 2. The adversary can issue more (but polyrtynmigany)
queries, both signing and endorsement queries, as in QueBytlifor endorsement queries, say
with input (¢;, W;) , the following must holdC\(C} U C% U {(cj, W;)}) # ¢.

Guess. The adversary halts and outputs a guéder the hidden coirb.

Result. The adversary is said to win this gamé'if= b. The advantage of the adversary is defined as:

Advp™(\) = |Prt) = b] — 5

1
2

The probability is taken over all the random coins tossechbykey generators, the signer, the witnesses,
and the adversary.

3.1.5 Signer Anonymity

Anonymity ensures that given two possible signers, a messagd a set of verifiability conditions,

together with a partial signature on the message and congifrom one of the signers, nobody could
tell which one of the signers has actually created the pasiipnature. That is, nobody could link a
partial signature to its signer. Similar to invisibilithhe rationale behind the notion of anonymity is that,
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in the worst case, even the recipient can show to others whedsage a partial signature is signed for
and under what conditions it would become verifiable, noboaiyld tell whether the partial signature
in question was created by the alleged signer or the redipiemself. Hence, the signer’s privacy is
protected. In general, anonymity could provide seeminglydns privacy protection than invisibility.

Definition 9 A CVS scheme is anonymous (or signer-anonymous) if the tdyaonf winning the fol-
lowing game is negligible in the security parameiefor all PPT distinguishers/adversarieB.

Setup. The challenger takes a security parameteruns the key generation algorithms for two sign-
ers (50 and S1) and all witnesses, that i$P K so, skso) «— {CVKGS(1")}, (PKg1, sks1) «—
{CVKGS(1")}, and (PKw,, skw,) <+ {CVKGW(1*)}. The challenger gives the adversary all
the public keys,PKso, PKg1, and{PKy,}. The challenger keeps the witness private keys
{skw,} but gives the adversary the two signer private keys andskg;.

Query 1. The adversary makes queries to obtain the signer’'s paidiitires and witness signatures of
messages of his choice until it is ready to receive a chadlidnmartial signature. It can make two
types of queries:

e Signing Query(s;, m;, C;) (with s; € {0,1}) to Og wheres; = 0/1 represents requesting
a partial signature fron§0/51.
e Endorsement Querfz;, W;) to Og.

Challenge. Once the adversary decides that Query 1 is over it outputsssagen € M and a set
of conditionsC' C C x W on which it wishes to be challenged. L€f denote the set of all
endorsement queries sent@y; in Query 1. The only constraint is théI\C}E % ¢ (the empty
set).

The challenger flips a coibve {0, 1} and outputs the following challenge to the adversary:

o = CVSig(m, C, skgp, PKgsp, PKc)

Query 2. The adversary is allowed to run until it outputs a guess. @gtbe the set of queries that
have been made 10 so far in Query 2. The adversary can issue more (but polyrtynmigany)
queries, both signing and endorsement queries, as in QueBytlifor endorsement queries, say
with input (c;, W;) , the following must holdC\(CL U C% U {(cj, W;)}) # ¢.

Guess. The adversary halts and outputs a guéder the hidden coirb.

Result. The adversary is said to win this gamé'if= b. The advantage of the adversary is defined as:

Advp™(\) = |Pr[t) = b] —

2

|
The probability is taken over all the random coins tossedbykey generators, the signers, the witnesses,

and the adversary.

As mentioned before, both invisibility and anonymity colildit the accountability of the signer of a
partial signature to a more or less degree, thus protectigrivacy. Overall, we believe simulatability
and anonymity provide seemingly better protection of sigmé/acy. The reason is if a CVS scheme
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is invisible, one may be able to link a genuine partial sigrato its signer (but could not assure if it
is for the alleged message), whereas, if a CVS scheme isaiaig or anonymous, a genuine partial
signature is indistinguishable from a fake one (possiblgegated by the signature holder). Similar
to simulatability, provided that the confirmation proto¢elzero-knowledge, the transcript would not
provide any additional information useful for breaking theisibility and anonymity properties. This
will be discussed in Section 3.1.6.

Note that we do not formulate any security notion relatedréageting the indistinguishability of the
verifiability conditions alone as there seems to have notgoimake such a formulation if someone can
determine who has signed on which message given a partiedtsig. Even though the partial signature
looks different from an ordinary signature (and possiblyehao legal binding power), if the identity of
the signer and his signed message are revealed, it is méssng ensure the privacy of the verifiability
conditions. We think this is hardly better than embedding signed message the verifiability conditions
and signing it with an ordinary signature. Certainly, we chée distinguish between this case of just
hiding the verifiability conditions (but leaving the signidentity and the message disclosed) and the
case of hiding all information including the signer ideytihe message and the verifiability conditions.
The latter is the most desired property of a partial sigratuich provides the highest possible level of
signer privacy but could be difficult to achieve.

3.1.6 Properties of the Confirmation Protocol

In the definition of the confirmation protocol, we do not impasy restriction on whether it should be
interactive or non-interactive. But the interactive versis discussed in the paper. Like any protocol
of zero-knowledge proof, completeness, soundness andkremledge are the required properties of
the confirmation protocoCVCongy. Recall that if a given partial signature is valid for the egiv
message and verifiability conditior@,\/Con( s,v) returns 1 and, otherwise, 0. The definitions are stated
as follows.

Definition 10 CompletenessFor all (PKg, sks) € {CVKGS(1M)}, all (PKyw, skw) € {CVKGW(1M)},
alme M,al C CCxW,alloc € {{CVENdW(c;, W;) : (¢;, W;) € C}},and allo € {0,1}%,
if VerSg(m, CVExtracts(m, C,d,0¢c)) = 1 (i.e. the extracted ordinary signature is valid), then

PT’[CVCOﬂ(S’V) (m, C, (5) = 0] < E()\)
wheree(\) is a negligible function in the security parameter

Definition 11 SoundnessUsing the same random experiment as in the definition of caess,
if VerSg(m, CVExtracts(m, C, d,0¢c)) = 0 (i.e. the extracted ordinary signature is invalid), then

Pr[CVCon(g y)(m,C,d) = 1] < e(N)
wheree(\) is a negligible function in the security parameter

Definition 12 Zero-knowledge.Suppose the same random experiment as in the definition qgiewm
ness has been set up. For a given input instanee (m, C, §, PKg, PK¢) to the confirmation protocol
VCCon(g ) (z) = (CVConS(rg), CVConV*())(x), let w?’sc%’”(x) denote the resulting communica-
tion transcript produced by the confirmation protocol rurtveeen the provef (with private inputrg)
and the verifierV (which may deviate from the specified protocdl)CCong v is_zero—knowledge if
there exists a PPT simulat@imT () which could produce a simulated transcript™T () without us-
ing the private input of the prove§ in such a way that the distribution&}’sf‘c/‘))”(x)} and {7S™T(2)}
are computationally indistinguishable in terms of the ségyparameter\.
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Note here we use the alternative definition of zero knowledsgtead of the standard one which states
that anything computable by a malicious verifier througkriattion with the prover can be computed on
his own without interacting with the prover. As mentionedliea the need of the zero knowledge prop-
erty is to ensure the non-transferability of a partial stgrealong with the transcript of its confirmation
protocol run, which is stated below.

Definition 13 Non-transferability. Given a CVS scheme simulatable with respect to a PPT fakapart
signature simulatoFake (according to Definition 6), lef, = CVSigq(m,C) andé; = Fakeg(m,C)
be the true and fake partial signatures of a sigrteron a messagen with a verifiability condition
setC. Let W(CSY‘C,‘))”(m, C, é;) denote the communication transcript of the confirmatiortgmol run on
d;. Suppose there exists a PPT transcript simuldtakeT taking ¢, as input to generate a simulated
transcript 77T (m, C, 5;) as if §; is a valid partial signature. The CVS scheme is non-trasdfier if

the following distributions are computationally indiggimishable in terms of the security parameter

{CVSigy(m. C), 7§4E°"(m, C,CVSigs(m, C))}, {Fakes(m,C), 77T (m, C, Fakes(m. C))}

As mentioned earlier, the non-transferability propertioignsure that the communication transcript
of carrying the confirmation protocol on a genuine partiginaiure would not provide information
non-negligibly help to determine the validity of the part&gnature. The idea of formulating non-
transferability using the transcript simulator is if angotould use public information of the signer to
generate a fake partial signature (fréfake) and a fake transcript for it (frorrakeT) so that they are
indistinguishable from a genuine partial signature andeisuine transcript, then a genuine partial sig-
nature along with its transcript is unlinkable to its sign8uch indistinguishability is possible because
no interaction between the prover and the verifier is neegiedl pnly a simulated transcript is produced.

We do not incorporate the adaptive attack model in the namsferability definition as in the defi-
nition of simulatability, but the modification should beaghtforward, which could be done by simply
adding a genuine/simulated transcript to a genuine/fakéapaignature in the challenge phase of the
simulatability game in Definition 6. In fact, we could shovatlensuring a CVS scheme satisfying simu-
latability in an adaptive attack model together with a zZkemowledge confirmation protocol for it would
guarantee its non-transferability in the same adaptiektinodel.

Just like the simulatability property whose fulfillment pes on the existence of a PPT simulator
Fake, the fulfillment of the non-transferability property depsnon the existence of a PPT transcript
simulatorFakeT. If we recall that in the zero knowledge definition (Definiti@2), a zero knowledge
confirmation protocol implies the existence of a PPT trapssimulatorSimT which, on input a partial
signature);, outputs a transcript indistinguishable from a true onenged during a run of the confirma-
tion protocol ond;, one may be tempted to uS8mT as an implementation fdfakeT. At first glance,
it looks fine. However, the indistinguishability betweermr tieal transcript and the simulated transcript
in any zero-knowledge proof is based on the assumption llegtdcome up from the same input and the
claim to prove is true. If we us8imT to implementFakeT, the input to the simulator is no longer a
genuine partial signature, thus violating this basic aggion. A detailed explanation is as follows.

The transcript simulatoBimT of any zero knowledge proof is usually implemented by enmugat
the conversation between a prover and a verifier. In eachdrotiteration, even though a claim to prove
is false, a malicious prover (without any knowledge of thedexl private information) could always
answer a fraction of all possible challenge questions; tireectness of a claim in any (interactive)
zero knowledge proof is assured through actual interadigtween the prover and the signer. Hence,
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the “rewinding” techniquis commonly adopted to simulate a transcript. By replachmg ihput to
SimT with a fake signature, one could still produce a transchpt aippears to be valid and passes the
verification test ofCVCon gy in all iterations. That looks fine at first glance, but the rilisttions of
the two transcript{n (g3 (m., C, 8,)} and {zS™ (m, C, )} (wheres, = CVSigg(m,C) andd; =
Fakes(m, C)) are not necessarily indistinguishable even though théroastion protocol is perfectly
zero knowledge with respect 8imT. In fact, to pass the verification test, the output spac®imfT fed
with an invalid partial signature is likely to be differefiitain that fed with a valid partial signature, that
is, the following two distributions could differ considétg: {7S™T (m, C,&,)} and{7S™T (m, C, d;)}.

Although the zero knowledge property of the confirmationtpcol CVCon(g 1) with respect to
SimT alone is not sufficient to ensure non-transferability, we stll show that, for any CVS scheme,
if {CVSigg(m,C)} = {Fakeg(m,C)}, then the zero-knowledge property of the confirmation proito
CVCong,yy implies the non-transferability property (not in an adegttack model) and we could use
SimT asFakeT. Before we prove the theorem, we need the following lemma.

Lemma 3 Given two ensembles of distributigtk, } and{Y) }, which have the same sample space for
all A\, and a PPT algorithni’, (a transcript simulator) whose input space is the same asdhi , and
Yy, let(z) denote the output @fy on inputz.® If {X,} = {Y,} in the security parametex, then

{z — Xaim(e) —{Ta(2)} : (z,7(x)} = {y — Yxn(y) — {Ta®)} : (v, 7(y))}
Proof The reduction is straightforward. For completeness, afpsogiven in Appendix A. |
Theorem 4 For any CVS scheme, if there exists a fake partial signatimaulator Fake such that
{CVSigg(m,C)} = {Fakes(m,C)} for all S,m,C and its confirmation protocol is zero knowledge
with respect to a transcript simulat@imT, thenSimT could be used as a transcript simulatéakeT

for the fake partial signaturé-ake so that the following two distributions are indistinguiste for all
S, m,C (i.e. non-transferable not in an adaptive attack model):

{CVSigg(m,C), ng/con(m,c, CVSigg(m,C))}, {Fakes(m,C), 77T (m, C, Fakeg(m,C))}

wherer$Yeon(.) and7FakeT(.) are the transcript outputs of a real confirmation protocohrandFakeT
respectively.

Proof Letd; = CVSigg(m,C) andé; = Fakeg(m, C),%0 then the following two distributions are
indistinguishable:{d;} and{d,}. Let7SY<on, 7SIMT andrFakeT denote the transcript outputs of a real
confirmation protocol runSimT, andFakeT respectively. Then using Lemma 3,

{(8e, 7S (80))} 2= {(87, 7™ (85))} & {(8, 7S (8,))} = {(65, 7 €T (55))} VS, m,C
The zero-knowledge property GVCong 1) with respect t&SimT ensures the following:

{06, YN (0))} = { (0, 75T (01))},  VS,m,C

8In the rewinding technique, the simulator emulates a varsibthe zero-knowledge protocol between a prover and a
verifier. In each round of iteration, it prepares the answea tandomly picked challenge question beforehand, andthens
verifier algorithm to generate a challenge. When the chgdidarns out to be what it has prepared, it just returns thegpeel
answer, whereas, if asked of a different challenge, it sebetverifier to go back to the start of the current iteratioth prepares
for another challenge.

°Note thatT} is probabilistic, so even for the same inpytl (z) may be different between two evaluations.

19SinceCVSig andFake are probabilistic, botd; andd; are random variables.
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By Lemma 1, the following two distributions are indistingbable:
{(86, mSY"(60))} = {6y, 7 CT(Sp))}, VS, m, C

Note the above theorem does not incorporate an adaptivek atitadel which is considered in the
following theorem.

Theorem 5 Given that a CVS scheme is simulatable with respect to a PRIdartial signature simu-
lator Fake, if its confirmation protocoCVCong 1) is zero knowledge with respect to a PPT transcript
simulator SimT, then it is non-transferable in the same adaptive attackehad in the simulatability
definition andSimT could be used as the transcript simulateakeT for the fake partial signatur&ake.

In other words, the following two distributions are indigguishable for allS; m, C' in an adaptive attack
model:

{CVSigg(m. C), 7§4E°"(m, C,CVSigs(m, C))}, {Fakes(m,C), 77T (m, C, Fakes(m. C))}

where$YCO(-) and 7FakeT(.) are transcript outputs of a real confirmation protocol runcaRakeT
respectively.

Proof We prove by contradiction. We assume that the CVS schemenidatiable with respect to a
PPT simulatoFake, that is, the advantagedv%im for breaking the simulatability with respectfake is
negligible for all PPT adversari€®. Assume we use the transcript simulg®mT of the zero knowledge
proof for the confirmation protocol as the transcript sinmidakeT for the fake signature. Suppose
there is a PPT distinguishdp which could break the non-transferability property witpect toFake
andFakeT with non-negligible advantagﬂdng, then we can construd’ to break the simulatability
property as follows:

D'(é,) whered, is a genuine/fake partial signature whies: 0/1
Setup.

Ask its challenger for the public keys of the signer and thmesses
Run D on the same set of public keys.

Get the signer’s private key from its challenger and passid.t
Query.

Answer all the signing queries itself.

Pass all the endorsement queries frbno its oracle and relay the results backi?o
Challenge.

D outputs(m, C) it wish to be challenged.

Output(m, C) as its challenge request and receive a challépge
ComputerS™T(5,) and pasgd,, 75T (8,)) as a challenge t®.
Guess.

D outputst’ as a guess fdr. Outputd’.

The query responses are perfectly simulated; the viely of the simulated environment is identical
to its view in a real attack. Lef, = CVSigq(m,C) andé; = Fakeg(m,C). Whenb = 1, the chal-
lenge is a fake partial signatudg and=SmT(5,) = 7FakeT(5,), and the input tdD is (6;, 77T (54)).
Whereas, wheb = 0, the challenge is a true partial signatuieand #S™MT(5,) = 75MT(¢,), and
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the input toD is (J;, 7™>™T(5;)). Due to the zero knowledge property of the confirmation moito
(61, 75™T(8)) could perfectly simulatés;, 75Y~°"(6;)), a valid challenge td. As a result, the chal-
lenge toD is perfectly simulated no mattér= 0 or b = 1. It could be seen thatldvy™ = AdvNT
which is non-negligible ifD can break the non-transferability property. This concwme reduction.

Instead of stating the zero knowledge property informaflyahove, a more rigorous treatment is
possible by evaluating the probability of succesadind D’ respectively.

The probability of success @’ with respect to the simulatability game is given by:

Priim[Success] = % (Pr[D'(6;) = 0] + Pr[D'(07) = 1])
— L(Pr(D(3, 7T (5,)) = 0] + PrD(5y, 77T (5,)) = 1]

The probability of success db with respect to the non-transferability game is given by:

PrgT[Success] = %(Pr[D(ét,wg\{/CO”( ) = ]—l—Pr[ (0f, wFaKET(éf)) =1])
= %(PT[D(%?TEVVCO”( 8)) = 0] = Pr[D(8;, 75" (6,)) = 0]
+Pr[D(d, 7S (6,)) = 0] + Pr(D(87, 77KT(5;)) = 1)) _
Proim[Success] + %(Pr[D(ét,ﬂg\//CO”( ¢)) = 0] — Pr[D(6;, 75™T(5,)) = 0])

Taking absolute values on both sides,

AdodT < Adv§im + 1| PrD(8, 7$YCON(6,)) = 0] — Pr(D(3,, 75™(5,)) = 0]
= Advim + 4 PrD(r§{C(6) = 1] - Pr{D(xS™T(5,)) = 1]]

Due to the zero knowledge property, that {&:5Y°°"(6;)} = {75"™T(6,)}, which actually means
that| Pr[D(w5Y~°"(6;)) = 1] — Pr[D(xS™7(8;)) = 1]| is negligible in the security parametarfor all

PPTD. As a result,AvaT < Advi™ up to a negligible term (in\). If Adv}¥T is non-negligible, then
Advfﬁm must also be non- negl|g|ble which is a contradiction as mmeAdv%im is negligible in\
for all PPTD (the simulatability property). In other words, simulatdapiimplies non-transferability if
the confirmation protocol is zero knowledge. |

Using similar argument, we could arrive at the following ttheorems about invisibility and anonymity.

Theorem 6 Given that a CVS scheme is invisible, if its confirmationgeotCVCong v is zero knowl-
edge with respect to a PPT transcript simula®imT, then the confirmation transcrlpatCVCO” does not
leak out information for breaking the invisibility propgrand the CVS scheme remains invisible in the
following sense in the same adaptive attack model:

{CVSigg(mo, C), m457°" (CVSigg(mo, C))} = {CVSigg(m1, C), m§57°" (CVSigg(m1, C))}
for all signer.S, messages:y, m; and conditionC'.

Theorem 7 Given that a CVS scheme is anonymous, if its confirmatioropobCVCong v/ is zero

knowledge with respect to a PPT transcript simula®mT, then the confirmation transcriptg\{/c‘)”
does not leak out information for breaking the anonymityperty and the CVS scheme remains anony-
moys in the following sense in the same adaptive attack model

{CVSigg,(m, C), m(§p3" (CVSiggy(m, C))} = {CVSigg, (m, C), msy " (CVSigg, (m, C))}

for all signersS0, S1, messagen and conditionC'.
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The practical significance of Theorems 5 - 7 is that we coupdusete the designs of the CVS signing
algorithm from that of the confirmation protocol, thus briegkdown a more complex problem into two
simpler ones. It also set out the sufficient conditions undgch the transcript of a given confirmation
protocol would not leak out knowledge to help in breaking timelerlying security properties, be it
simulatability, invisibility or anonymity. In fact, in ouefficient constructions in Section 6, we separate
the design into two parts — a blinding mechanism to hide amnargl signature and a confirmation
protocol.

3.2 Required Properties of a Secure CVS Scheme

As discussed before, a CVS scheme must balance the protdsgtioveen the interests of the signer
and the recipient. To protect the signer’s privacy, thefiahility of his partial signatures must be limited
before all his specified conditions are fulfilled. Hence,@use CVS scheme should be unforgeable, non-
transferable, and cheat-immune. On the other hand, toghithi interest of the recipient, a CVS scheme
should provide an assurance that the signer’s partial gigmaould be validated after all the conditions
are fulfilled, which is guaranteed by the completeness ofGN& scheme and the soundness of its
confirmation protocol. Besides, a good CVS scheme shoubdoatgect the privacy of the recipient in the
sense that nobody would be able to see from a recovered oydiiggature what the recipient has done
to validate the signature. This could be achieved by theepedonvertibility property. If a CVS scheme
is perfectly convertible, an ordinary signature extradtech a partial signature is indistinguishable from
a usual ordinary signature generated by the signer directly

To summarize, a desired CVS scheme should be unforgeabldramsferable, cheat-immune, com-
plete, and perfectly convertible, and its confirmation pcot should be sound. As shown previously,
the non-transferability property of a CVS scheme could Hdeexed if it is simulatable and its con-
firmation protocol is zero knowledge. Since working with th#er two properties has the advantage
of design separability, we would prefer to use the followse of equivalent requirements on a CVS
scheme: unforgeability, simulatability, cheat-immunigmpleteness, and perfectly convertibility, and a
zero knowledge confirmation protocol.

To further distill down this set of required properties irdosmaller set, we will discuss the im-
plications between some of these security notions in thé sextion. One of the main results is that
cheat-immunity is implied by the unforgeability and sintalaility properties. Regarding the simulata-
bility property, there are two other similar but not exaaiguivalent notions, namely, invisibility and
anonymity. Although we believe simulatability is more peent in modeling the desired non-verifiability
property, it is nice to see under what conditions simulditsgimplies invisibility and anonymity. We
show in the next section that simulatability implies inki$ty if the simulator is message-independent
and anonymity if the simulator is signer-independent.

To prove that a CVS scheme satisfies all the desired propestie only need to prove that it is
unforgeable and simulatable with respect to a PPT simuylatod its confirmation protocol is zero-
knowledge. This also leads to a natural paradigm for desggeecure CVS schemes. More concretely,
we could first choose an unforgeable ordinary signaturemsehand then construct a blinding mecha-
nism which could make an ordinary signature covert in a glstgnature in such a way that there exists
a public, PPT fake signature simulator whose output is fimdjsishable from the partial signature. (Of
course, we may need to move back reconsidering the hidingpamézim while searching for an efficient
simulator but this paradigm already provides a systema#ig for designing CVS schemes). Finally,
we only need to search for a zero-knowledge proof for the ooafion protocol, which could be triv-
ial regardless of its efficiency. Additional property likavisibility (anonymity) could be achieved by
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searching for a message (signer)-independent signatardagor.

3.3 Relations between Security Notions

In this section, we discuss the relations between the sgaotions of a CVS scheme, the purpose of
which is to find out whether one notion is implicitly implied the other or they are exclusive, and under
what conditions such an implication exists. With this kneslde, one could simply focus on a smaller set
of security properties when designing a CVS scheme or aimgiyts security. Before doing so, we first
consider the difference between the notions of indistisigaility with and without adaptive queries.

In general, we could possibly view the definitions of simailtality, invisibility and anonymity as a
formulation of indistinguishability between two randonstiiibutions, that is, between a partial signature
and the corresponding simulator output in simulatabiligtween signatures on the same message and
condition set but using two different signing keys in anoitymand between signatures of the same
signer on the same condition set but for two different messag invisibility. These notions of in-
distinguishability are computational in the sense thatethe some kind of trapdoor, for each gétof
verifiability conditions, without the knowledge of whichalhistributions in question are indistinguish-
able. However, if the trapdoor is known, then anyone coultirtjuish which distribution a give entity
belongs to. In CVS, this trapdoor is the needed witness gigemor endorsements specifiedinlf one
knows all the witness signatures needed for a given parntjahture, he could extract the ordinary signa-
ture from it to check whether the extracted signature isialidistinguish between the two distributions:
{CVSigg(m,C)} and{Fakeg(m,C)}.

In our definitions, we adopt a strong type of adversary whichllowed to query the trapdoors (wit-
ness signatures) for other verifiability conditions but exéctly the same set of conditions in question.
It can be seen that two indistinguishable distributions matyremain indistinguishable to an adversary
not given the needed trapdoor but allowed to query othedbtays. Whereas, the indistinguishability
between two distributions in the adaptive trapdoor quergiehguarantees indistinguishability to any
adversary without the knowledge of the needed trapdoor.

3.3.1 Ensuring Cheat-immunity

The following theorem allows one to ignore the cheat-imrmyunequirement when designing a CVS
scheme as long as he could ensure the scheme is unforgedtderanatable and its confirmation pro-
tocol is zero-knowledge.

Theorem 8 An unforgeable and simulatable CVS scheme is also cheatti@miven its confirmation
protocol is zero knowledge.

Proof See Appendix A. |

3.3.2 Equivalence between the Notions of Simulatabilitynvisibility and Anonymity

The definitions of invisibility and anonymity in this papeeadopted from the work on undeniable sig-
natures and designated confirmer signatures in the literataluding [4, 37, 23, 34, 6, 18, 1]. Learning
from the experience of this line of work, whether to consideisibility or anonymity as the design goal
could be perplexing sometimes. As a result, we attempt toostrwhether one notion is implicitly im-
plied by the other in the context of CVS and under what assiamgbr conditions such an implication
exists. The following theorems show the implication andasapon between the notions of simulatability
and anonymity and invisibility.

23



Theorem 9 Given a simulatable CVS scheme in an adaptive query modelrespect to a PPT fake
signature simulatoFakeg(m, C), it is message-invisible in the same adaptive query modeldfonly
if {Fakeg(mg,C)} = {Fakeg(m1,C)} in the same adaptive query model for &llmg, m1, andC.

Proof See Appendix A. [ |

Theorem 10 Given a simulatable CVS scheme in an adaptive query modelr@spect to a PPT fake
signature simulatofFakegs(m, C), it is signer-anonymous in the same adaptive query modelfaaly
if {Fakego(m,C)} = {Fakegi(m,C)} in the same adaptive query model for &, S1, m, andC.

Proof See Appendix A. [ |

Corollary 11 (1) A message-independent simulatable CVS scheme is aksageeinvisible. (2) A
signer-independent simulatable CVS scheme is also smmarymous. (3) An independently simulat-
able CVS scheme is both message-invisible and signer-aroarsy

Proof  Proof follows directly from Theorems 9 and 10. |

Theorem 12 Message invisibility of a CVS scheme does not implies itslatability.

Proof We show that the condition necessary for a message-inwisiblS scheme to be simulatable
is there exists a fake signature simulakakeg(m,C) for all S,m,C such that{Fakeg(m,C)} =
{CVSigg(m, C)} in the same adaptive query model. This condition itselfieady sufficient to guar-
antee the simulatability of the CVS scheme. Hence, we contlade that invisibility does not imply
simulatability in any sense.

For details, please see Appendix A. [ |

Theorem 13 Signer anonymity of a CVS scheme does not implies its siahillat

Proof We show that the condition necessary for a signer-anonyr@Mfs scheme to be simulatable
is there exists a fake signature simulakakes(m,C) for all S,m,C such that{Fakes(m,C)} =
{CVSigg(m, )} in the same adaptive query model. This condition itselfisady sufficient to guar-
antee the simulatability of the CVS scheme. Hence, we coutdlode that anonymity does not imply
simulatability in any sense.

For details, please see Appendix A. [ |

Theorem 14 Assuming the partial signatures of a CVS scheme generaiatitivo distinct and indepen-
dently picked public/private key pairs (i.e. from two diffe signers) are independent, an anonymous
CVS scheme is also invisible.

Proof See Appendix A. [ |

We believe that the condition for Theorem 14 to hold is ustfalfilled in practice. Hence, anonymity
should imply invisibility.

It should be noted that the reduction used in proving thesgréms or showing the implications bases
on no additional computational assumption, and effegtinel extra computation is needed in achieving
such reduction. Therefore, these results could be apmiadairly board and general scenarios. Besides,
we use the weakest possible assumptions or conditionsisaofffor such implications to hold.
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4  Preliminaries

In Section 4.1, we present a number of cryptographic prdtnecessary for the generic CVS construc-
tion to be discussed in Section 5. Besides, we review bilipa&ings in Section 4.2 which is needed for
the efficient CVS construction in Section 6.

4.1 Basic Primitives

We consider four types of cryptographic primitives mainked for the generic construction of CVS
in Section 5. They are: identity based encryptidiB ), signatures £7G), multi-bit commitments
(COM), and pseudorandom generatoFsH(G).

4.1.1 Identity Based Encryption

We use similar notations as in [2] for identity based encoypt A standard IBE scheméBE =
{Setup, Extract, Enc, Dec} consists of a private key generator (PKG) and a number ofsuserd
is made up of four algorithms:

Setup(1*) — (PKgq, skg): the key setup algorithm which outputs a public/private kaly (P K¢, skg)
for the PKG.

Extract(ID, skg) — drp: the private key extraction algorithm run by PKG which ougpatprivate
key d;p for the identityl D.

Enc(PKq,ID, M) — C': the encryption algorithm taking an identifyD and a message: to output
the ciphertexC'.

Dec(PKg,C,drp) — M: the decryption algorithm taking a ciphertext and a private keyl;p to
output the plaintexti/.

Note that, unlike the description in [2], we incorporateth# public parameters in the PKG public key
P K¢, and this public key is needed in all encryption and decoypti

Security of IBE.

In [2], Boneh and Franklin considered the strongest sgcnation for IBE, namely semantic security
or indistinguishability against an adaptive chosen cifghe@rattack (ND-ID-CCA). Although chosen-
ciphertext security is the standard acceptable notionrforygtion schemes, we only consider a weaker
notion — semantic security against a chosen plaintext laftid¢D-ID-CPA) or semantic security for
short — which is sufficient for our generic construction of EVAn IBE is semantically secure if no
PPT adversary could win the following game with a non-negligible advargag

Setup. The challenger runSetup to generate a PKG public/private key palt K¢, sk ), and gives the
public key P K to the adversary but keeps the private/masterskey:

Query 1. The adversary could issue to the challenger one type ofegieri

e Extraction Query(ID;). The challenger responds by runnifgtract on 1D, to generate
the corresponding private kel = d;p, and gives it to the adversary.
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Challenge. Once the adversary decides that the first query phase istavgputs two plaintextd/q, M
and an identity/ D to be challenged. The only constraint is tid did not appear in any of the
previous extraction queries, that iBD # ID;, Vj. The challenger flips a coib € {0,1}, set
C = Enc(PKq,ID, M,) and sendg€’ to the adversary.

Query 2. The adversary is allowed to make more queries as previouslg dut no query can be made
on the challengedD.

Guess. Finally, the adversary outputs a guéss {0, 1} for b.
Result. The adversary wins the gamebif= b. The advantage of the adversary is defined as:

AdvPP = ‘Pr[b’ = b — %‘

4.1.2 Signatures
A signature schem81G = {SKG, Sig, Ver} consists of three algorithms:

SKG(1") — (PKg, skg): the key generator which generates the public/private kay(#aK s, sks)
for a signers.

Sig(m, sks) — o: the signing algorithm taking a messageand a private keykg to output a signature
oonm.

Ver(m,o, PKg) — v € {0,1}: the signature verification algorithm taking a message signaturer
and a public keyP K to check whethes is a valid signature of onm. If itis, Ver outputs 1,
otherwise, 0.

Security of SIG.

A signature scheme is considered secure if the probabifigyccessful existential forgery is negligi-
ble even under chosen message attacks. In details, thisrtteafollowing: An adversary is allowed
to make oracle access adaptively to obtain signatures afatém signeiS on any message:; of his
choice; he could make a query based on the results of theopiegjueries. FinallyA has to output
a message-signature péin, o). The probability that the signature is a valid one for the sage (i.e.
Ver(m,o, PKg) = 1) and the message has not be queried before«(iem;, V;) should be negligible
for all PPT A.

4.1.3 Pseudorandom Generators

Assumel(n) > n. Letz — X denote that: is uniformly sampled fromX. h : {0,1}" — {0,1}(") is
a pseudorandom generator [24] if the following is negligilsi n for all PPT distinguisheD:

Prly — {0,11™ . D(y) = 1] — Pr[s < {0,1}" : D(h(s)) = 1]

This in essence means thatake a seed to generate a stringj(s) of longer lengthl(n) and nobody
could distinguishi(s) from a uniformly sampled string frorf0, 1}").
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4.1.4 Commitments

We adopt the multi-bit commitment definitions [35, 15] iredeof the common single-bit commitment
[35]. The core of a cryptographic commitment scheme is tharoiting algorithmCom(s,m) — ¢

on input a message. and a randomly chosen salbutputting a commitment. By revealings andm,

one can check whether a commitmeris properly formed. A commitment scheme should satisfy the
following properties:

Binding. Let A be the security parameter, then the following is neglig{loemputationally binding) or
zero (perfectly binding) for all PPT algorithm:

Pr((s,m,s',m') — {AAM)} : Com(s,m) = Com(s',m’)]

Hiding. For allm,m’ € {0,1}*,m # m/, the following is negligible (computationally hiding) oem
(perfectly hiding) for all PPT distinguishdp:

|Pris — {0,1}*;c < Com(s,m) : D(c) = 1] — Pr[s’ < {0,1}*;¢ « Com(s',m’) : D(') = 1]|

The binding property essentially means that, once a messaigecommitted inc, nobody could
change its value without being detected. In perfectly lgdschemes, the distribution of the commit-
ments for different messages should be identical. Notevtieatise a different definition for the hiding
property than that of the multi-bit scheme in [35] which stathat, for a message = b1b5...b, (b; €
{0,1},1 < ¢ < n), given acommitment om, nobody could guess any bitcorrectly with a probability
greater thar% +e(\) (wheree(A) is a negligible function in\), even when told, , bo, ..., b;—1,bit1, ..., by.
However, it could be shown that the two definitions are edeiva

4.2 Bilinear Pairings

In this section, we briefly review the basic concepts of b#inpairings and the related computational
problems. LetG; be a cyclic additive group generated &6y whose order is a prime, andG, be a
cyclic multiplicative group with the same order A bilinear pairing is a mag : G; x G; — Go with
the following properties:

1. Bilinearity: é(aP,bQ) = é(P,Q)* whereP,Q € Gy, a,b € Z}.
2. Non-degeneracy:é(P, P) # 1. Therefore, it is a generator 6f,
3. Computability: There is an efficient algorithm to computeP, Q) for all P, Q € G;.

In this paper, we will writeG; with an additive notation an@- with a multiplicative notation as
implementations ofs; are usually groups of points on an elliptic curve. The distusof this paper is
based on choosing groups in which the following computatignoblems are assumed to be hard or any
PPT solution to them is negligibly better than a wide guess.

Definition 14 Computational Bilinear Diffie-Hellman (CBDH) Problem: Given P € Gy, aP, bP
andcP for some unknowns, b, ¢ € Z;, findé(P, P).

Definition 15 Decisional Bilinear Diffie-Hellman (DBDH) Problem: GivenP € G4, aP, bP andcP
for some unknowne, b, ¢ € Z;, decide whether a given € G, satisfies thay z é(P, P)abe,
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5 The Existence of a Secure CVS Scheme

In this section, we give a generic CVS construction from IBHE ahow the equivalence between CVS
and IBE in terms of existence.

5.1 A Generic Construction of CVS from IBE
We show how to construct a secure CVS scheme based on theifalcomponents:

e Asecure signatur81G = (SKG, Sig, Ver) which is existentially unforgeable under an adaptive
chosen message attack [27].

¢ Anidentity base encryption schemMi&E = (Setup, Extract, Enc, Dec) with semantic security,
that is,IND-ID-CPA [2].

e A computationally hiding commitment scher6® M = (Com) [35, 15].
e A pseudorandom generator [24, 29].

Let the plaintext and ciphertext spaces/®f ¥ be P;pr andC;p g respectively.

Let the message and signature spaces/a@f be M (same as the message space of CVS)&nsame
as the ordinary signature space of CVS) respectively.

Leth : {0,1}%» — {0,1}!s be a pseudonrandom generator whigrand/ are the length of ad BE
plaintext and &'IG signature respectively.

Let Ccoar be the output space of the commitment schénd&l/ andCom : Prpg X S; — Cocom be
its committing function.

Denote the signer by, and the withesses By;. Depending on the number of witnesses, the IBE
scheme is used multiple times with each witn8gsbeing a private key generator for its IBE scheme
(I BE;). Assume there ar® witnesses, then the partial signatdre S, x CHBE x Cconm- The generic
CVS construction is as follows.

Key Generation. CVKGS ' SKG for generating Pkg, skg) for the signers.

CVKGW & Setup for generating P Ky, , skw,) for the witnesse$V;.

Partial Signature Generation. Given an input message € M, a condition setC' = {(¢;, W;) :
1 < i < N}, asigning keyskg, a signer's public key? Kg and the set of witness public keys
PKo ={PKw, : 1 <i< N}, do the following:

1. Generate an ordinary signature using the signing algordf S1G:
o = Sig(m, skg)

2. For eachc;, W;) € C, pick arandonmu; € Pygp, 1 <i < N.
3. The CVS signature is as follows:

5—<0@h<@a2> {Enc(PKw,,ci,a;) : 1 <i< N}, Com(oh(@al>>>

7

where Enc(PKyw,, ¢;,a;) is the IBE ciphertext on messagg using W; (witness) as the
PKG andc; (condition statement) as the identity.
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Note: for short, we may denofénc(P Ky, ¢;, a;) as Encw, (¢, a;) in the following discussion.

Witness Signature Generation. SigW(c, skyy) def Extract(c, sky ).

Taking the condition statements an identity, the witnedd” (run as an PKG of the IBE scheme)
could extract the private key/" corresponding te. The private keyl" could be considered as
a kind of trapdoor on the condition statementhich could be generated by the witnégsonly.
Roughly, it could also be considered as a kind of signatuie B.

Signature Extraction. Given a partial signaturé = (o, {3; : 1 < i < N},) and all the witness sig-
natures{o;} = {d!'*} (with eacho; being a signature or endorsement on the conditioriv;)),
do the following:

1. Forl <i < N, geta; = Dec(PKw,, 5;, o).
2. Recovew’ = a @ h(@Y d).

7

3. Check ifC’om(J’,h(@ZN at)) < ~. If not, output “extraction-fail’, otherwiseg’ is the
ordinary signature.

Note that the partial signature is slightly over-designedt ases a commitment scheme to guard
against adversaries tampering with a partial signature.

Signature Verification. VerS ©yer,

Confirmation Protocol. Using general interactive zero-knowledge proofs [25] eratorent zero-knowledge
proofs [13], the signer with private input, ao, ..., a;,...,any ando and all the random coins
used to generatg; could convince the verifier that there exits ai, as, ..., a;, ...ay) satisfy-
ing the following equations:

6 =, {B1, 02, Bis-- -, BN}, 7)

a=0c®h (@fv ai>

Bi = Enc(PKw,,ci,a;),1 <i<N

v =Com (0, h (@ZN ai>

Ver(m,o, PKg) =1
The common input to the confirmation protocoAss, PKyy, (1 <i < N),m,C = {(¢;, W;) :
1 <i < N} andd. Since verifying whether a given tuple, aq, as, ..., a;, ... ay) satisfies the
above equations is a poly-time predicate, a general zevodedge proof for it should exist. The
construction is straightforward but inefficient and vagyidepending on the signature and IBE

schemes in use. The simulated transcript generator fozénsknowledge proof is used as the
transcript simulatoFakeT for the following fake partial signature simulatBake.

Fake Signature Simulator

The fake signature simulator for this CVS construction esftillowing:

Fake(C) . C= {(Ci,WZ‘) 1< < N}

1. Randomly (uniformly) pickr; € S, .
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2. Randomly pick; € Prpg,forl <i < N.

3. Output the fake partial signature:

5 = <af ®h (@fv bi) . {Enc(PKyw,,ci,bi): 1 <i< N}, Com (af,h (EBﬁV b))>

Obviously, this simulator is PPT.

5.1.1 Security of the Generic CVS Construction

The completeness of the above CVS construction is guaciitgdhe correctness of the underlying
IBE scheme. Besides, it is also perfectly convertible. Téeusdty of this CVS construction is best
summarized with the following lemmas and theorem.

Lemma 15 If SIG is existentially unforgeable under an adaptive chosen agessttack, then the
generic CVS construction is unforgeable.

Proof See Appendix B. [ |

Lemma 16 If IBE is IND-ID-CPA secure,COM is a computationally hiding commitment scheme,
andh is a pseudorandom generator, then the generic CVS construistsimulatable with respect to the
simulatorFake.

Proof See Appendix B. |

Theorem 17 Given any semantically secure IBE scheme (under a chosemnigdtattack) and any exis-
tentially unforgeable signature scheme, together witheugsrandom generator and a computationally
hiding commitment scheme, a secure CVS scheme can be ctewtru

Proof We could use the generic paradigm described in this seaioaristruct a CVS scheme and the
corresponding fake partial signature simuldtake satisfying the following properties: unforgeability
(according to Lemma 15), simulatability with respectake (according to Lemma 16). As mentioned
before, a zero knowledge proof exists for the given constrmand could be used as the confirmation
protocol. Together with the simulatability property, thenstruction is non-transferable. The complete-
ness and soundness of the confirmation protocol is guadhbiethe zero knowledge proof. Besides, it
could be seen that this construction is perfectly convextilm conclusion, this generic CVS construction
is secure. In addition to its security, this constructiojogs additional properties of message-invisibility
and signer-anonymity since the partial signature simuleadie does not take the message or the signer’s
identity as input. [ |
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5.2 A Generic Construction of IBE from CVS

We show how to construct a 1-bit IBE scheme with semanticrégaiie. IND-ID-CPA) using a CVS
scheme. We assume the CVS scheme is simulatable with raspadtke partial signature simulator
Fake. Our construction is similar to that in the seminal work oblpabilistic encryption by Gold-
wasser and Micali [26]. While they used the indistinguishgbbetween the quadratic residues and
non-residues iz, = for some composite (Quadratic Residuosity Problem) to encrypt a single bit, we
leverage the indistinguishability between a true and a lsited (fake) partial signature of CVS to create
a ciphertext for a 1-bit plaintext.

By repeating the operation of the 1-bit schefmémes, we could construct an IBE scheme febit
long messages. This repetition technique is the same a6liafi2l, using the same hybrid argument, we
could prove that the security property of the underlyingtisbheme is preserved in tiebit one.

Now, we just need to focus on a 1-bit IBE scheme. We considev¥ 8 §cheme with just a single
witnessG € W which is used as the PKG for the IBE scheme. Supjade is a PPT simulator for the
CVS scheme. The IBE scheme works as follows.

Key Setup. The public and private keys of the witne&sin the CVS scheme are used as the public

and private keys of the PRG in the IBE scheme. WeS%e&tp ' CVKGW to generate the

public/private key pair of the PR&VKGW(1*) — (PKg, skg).

Private Key Extraction. The identity/ D; of any user could be treated as a condition statement in the

CVS scheme as they are both a bit string of arbitrary lengis®E rtract def SigW/CVEndW,
then extracting the private kel for 1D, is the same as requesting an endorsement or signature
on the statememtD;: SigW(ID;, skg) — d;.

Encryption. The identity of a usef is the bit string/ D; (treated as a condition statement in the under-
lying CVS scheme) and its private key is the witness endoeseth obtained fromG.

We consider a 1-bit plaintexte {0,1}. To encrypt,

e randomly pick a message € M
e runCVKGS(1*) to generate the public/private key pai? K g, skg) of the signer
e the encryption function is thetnc(PKq, ID;,b) — (m, &, PKgs), where

5 _ | CVSig(m,ID; sks, PKs, PKg), b=0
®~\ Fake(m,ID;, PKg, PKg), b=1

That is, wherb = 0, d, is a valid partial signature omn, whereas, wheh = 1, §; is a fake one.

Decryption. Given an identityl D;, a PKG public keyP K and the user private key;, to decrypt a
given ciphertextC' = (m/,d’, PKy), the decryption functiomDec(PK¢,C,d;) — b is imple-
mented as follows:

e extract the ordinary signature froéft CVExtract(m’, ID;, ', PK§,d;) — o’
e check ifVerS(m’,o’, PKY}) ~ 1, the plaintext is given by the following:

Y — 0, if VerS(m/,o',PKg) =1
1, otherwise

1The case in whiclCVExtract returns_L is covered by the “otherwise” part.
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5.2.1 Correctness of the CVS-based IBE

If all the algorithms used in the CVS scheme are polynomragtithen so are those used in the above
IBE construction. The completeness of the CVS scheme gigmsithe correctness of decryption in the
above IBE scheme. The completeness property of the CVS schesures that,

if § = CVSig(m,ID;,sks, PKg,PKg) andd; = CVEndW(ID;, skg), then the verification must
return 1, that isVerS(m, CVExtract(m, I D;,d, PKg,d;), PKg) = 1. Besides, the CVS scheme also
guarantees that with negligible probability a valid orainaignature on message could be extracted
form Fake(m, ID;, PKg, PK), otherwise, the CVS scheme would be forgeable. These tegeth
sure thatDec(PK¢, Enc(PKg,1D;,b),d;) = b with probability almostl up to a negligible deviation.

5.2.2 Security of the CVS-based IBE

The security of above IBE construction is stated by the valhg theorem.

Theorem 18 The above IBE construction from CVS is semantic secure sgaichosen plaintext attack
(IND-ID-CPA).

Proof See Appendix C. |

5.3 The Equivalence between CVS and IBE

A secure CVS scheme is equivalent to a secure IBE schemems t& existence, which is summarized
by the following theorem.

Theorem 19 A secure conditionally verifiable signature (CVS) schenmdofgeable, simulatable, with
zero knowledge confirmation protocol) exists if and onlyifidD-1D-CPA secure identity based encryp-
tion (IBE) scheme exists.

Proof

Only if Part
Follow directly from the CVS-based IBE construction in thstlsection.

If Part

We assume the existence of a secure identity based energoti@eme with security in tH8ID-ID-CPA
sense. Then it is straightforward to see why a one-way fanakists (We could us&etup of the IBE
scheme to construct a one-way function.).

First, an ordinary signature scheme which is not existiytiargeable under an adaptive chosen
message attack [27] exists since such a secure signatiemedxists if and only if one-way function
exists [39, 36].

Second, a pseudorandom generator exists as Impagliazaio 9] showed that given any one-way
function, a pseudorandom generator can be constructed.

Third, a computationally hiding bit commitment functionigs if a pseudorandom generator exists
[35]. In the same work, Naor show how to construct a multigbinmitment scheme from any pseudo-
random generator. That is, along the chain from IBE to ong-fwactions to pseudorandom generators
and finally to commitment schemes, the existence of IBE iespthe existence of a computationally
hiding commitment scheme.
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Finally, the existence of a one-way function also implies éiistence of zero-knowledge proofs.

Based on a secure IBE scheme, an existentially unforgeggvlatare scheme, a pseudorandom gen-
erator, and a computationally hiding commitment schenmmfiheorem 17, we could use the generic
construction in this section to build a secure CVS schemelwis unforgeable and simulatable and a
zero knowledge for its confirmation protocol exists. Hertbe existence of a secure IBE scheme implies
the existence of a secure CVS scheme. |

We should mention that we show in Theorem 19 that a weakeomati IBE, namely, one with
IND-ID-CPA security, is necessary and sufficient for the constructiba secure CVS scheme. It is
thus fair to say that CVS could be constructed based on weaseimptions than IBE with the standard
IND-ID-CCA security [2].

6 Efficient CVS Constructions from Bilinear Pairings

Although we do not make the restriction that the CVS partighature generation has to start with
an ordinary signature (i.e. a 2-step generation), it is noomvenient and efficient to proceed in this
way in practice. A typical design of the CVS partial signatgeneration would then consists of three
components:

1. An ordinary signature scheme is chosen. The only criferigzuch a choice is that the signature
scheme is existentially unforgeable under a chosen messagé.

2. A blinding mechanism is designed to transform an ordiragyature into a partial signature,
making it covert inside the partial signature. The main giesiriteria of the blinding mechanism
is the simulatability property; that means we also need tdisimulator for the chosen blinding
mechanism. We show in Section 5 that identity based enonrygtBE) could in general be used
as a blinding mechanism.

3. A zero knowledge confirmation protocol is designed to gewhe signer a means to give the
recipient some guarantee that a real signature could bevedrfrom a given partial signature.

The following theorem would be useful for designs based @agaradigm.

Theorem 20 Given an ordinary signature schen$d G existentially unforgeable under a chosen mes-
sage attack’, a CVS scheme constructed frétG using any PPT blinding mechanishis unforgeable.

Proof See Appendix F. |

We could use the general verifiable encryption (VE) apprdac¢t] to construct a CVS scheme
(Details could be found in the Appendix D), but the resultoanstruction would have a large partial
signature (which is inconvenient for storage), for insegnen online trader may receive a huge num-
ber of partial signatures daily for payment authorizatithsome cases, a zero knowledge proof is not
achievable from the VE approach [28]. A well adjusted batdoetween the performance of the blinding
mechanism and the confirmation protocol is necessary te@eelfficient schemes. In practice, to con-
struct efficient schemes with a practical confirmation protowe need to fix the underlying signature
scheme and blinding mechanism and pose restrictions arpidugimeter dependency. In this section, we
show how to use bilinear pairings to construct efficient Cigesnes for Elgamal and RSA signatures.

2In a chosen message attack, the adversary is given thesigaaif messages of his choice.
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Supposes; andG, are additive and multiplicative cyclic groups of ordefprime) respectively and
é : G; x G; — Gy is acomputable, non-degenerate bilinear map. Assuméthiata subgroup of some
extension field off,,, sayF,,, similar to those in Weil or Tate pairings. Depending on thelerlying
ordinary signature scheme used, we have different rastrconp. A sufficiently largep matched with
the parameters in the signature scheme should be enouglkdoroost restrictions. We also need the
following cryptographic hash function in our construcsomhich is modeled as a random oracle:

H:{0,1}" — Gy.

Witness Key and Signature Generation

With possibly slight variations, these algorithms are isege the same for different ordinary signature
schemes, both Elgamal and RSA.

Witness Key Generation CVKGW). Each witnes3V; picks a generator di{, sayFP;, and its private
keyz; € Z; and publishes the corresponding public k&, Y;) whereY; = z; P;.

Witness Signature Generation §igW/CVEndW). The witnesses use a pairing based signature scheme
[3] to generate its signatureyy, or endorsement on a condition statemenas follows: oy, =
l’ZH(CZ)

Witness Signature Verification. Given a witness public keyP;,Y;), a condition statement; and a

witness signaturery,, the verification is done by checking whettigl;, H(c;)) L é(P;, ow;,).
The correctness is ensuredéy’;, H (c;)) = é(x; Py, H(¢;)) = é(P;, xiH(c;)) = é(P;, ow,).

Important Notation Conventions. As we would frequently use the pairing values in the follogvifis-
cussion, we should clarify some notations before we moveéSaven a witness public keyP;, ;) and a
condition statement;, and a random coin € Z; with U; = r P;, we often have the following notations
for the following pairing values:

é(P;, H(c;)) € Go

e ¢ “(
o yi =¢(Yi, H(c;)) = é(P, H(c:))™ = €' € Gy
® w; = é(UlaH(Cz)) = é(PZ,H(CZ))T = 6;-" c G2

6.1 A Pairing-based CVS Construction for Generalized EIGanal Signatures

We describe the construction for the ElIGamal signatureraehaut the techniques should apply to other
DL based schemes like DSA and Schnorr signatures [40]. I ¥ee use a general cyclic group

of order¢’ (where¢’ is a large safe primé) for the sake of generality. In order to give an efficient
confirmation protocol, we requirg = p wherep is the characteristic of the extension field of whigh

of the bilinear pairing is a subgroup (i.€2 is a multiplicative subgroup df , for some integet).

BThatis,q’ — 1 is a multiple of another large prime.
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6.1.1 Ordinary Signature

Leth : {0,1}* — Z, (which is modeled as a random oracle). The message sp40elis* and the
signature space 1§ x Zy.

Key Generation (CVKGS). The signer picks a generator Gf sayg, picks its private key; € Ly and
publishes the corresponding public kgy ys) whereys = g®s.

Signing SigS. For a message: € {0, 1}*, the signature generation is as follows:

1. Pick arandonk € Ly, and computey = g".
2. Computer = k~![h(m) + x4y] modq’.
3. The ordinary signature ig: = (v, a).

Verification (VerS). Given a signature’ = (v/, '), to verify whether it is a valid signature of message
m, check the followingn/® = gh(m)yY’

Note that we do not take the repaired version of the EIGangalsure scheme, but the discussions
in this paper apply directly to the repaired version whigblaeesh(m) by h(m, ).

6.1.2 Partial Signature

Given an ElGamal signature = (,a), we could use the generic IBE-based approach described in
Section 5 to simply multiply: with a number of pairing values to make the signature corasmdtnon-
verifiable, and use the technique in [41] to run the confiramapirotocol. Howeverg does not fit into

G- which the pairing values belong to. Hence, the double dea@miques in [41] is not applicable.
To glue the pairing-based blinding mechanism with the pteofinique in [41], we need to introduce an
invertible group homomorphism, a mappitig: Z,, — F, with an inverse mapping~!. For such a
mapping to exist, we segt = p, that is, the mapping becomg¢s Z, — F,,. We require that

e f~Y(f(a)) =a,Va € Z,,
o f(ara2) = f(a1)f(az), Va1, a2 € Zy, and
o [T (erea) = [T (er)f (e2), Ver,e2 € Fy.

Such a mapping could be constructed using the norif),ofSee Appendix E).
If there areV (< L) witnesses specified in a partial signatdrghend € G x F,i x G¥. Now we
can describe the blinding mechanism and the signaturevatgprocess.

Blinding (CVSig). Given a signer private keys, a messagen, a verifiability condition setC' =
{(c;,W;) : 1 < i < N} and the witness public key§ P;,Y;) : 1 < ¢ < N}, we create a
partial signature as follows:

1. RunSigS onm to generate an ordinary signature= (v, a).
2. Randomly pick- € Z}, and computé/; = rG;, 1 <i < N.

3. Computer = f(a) [IiL; (Y. H(e))" = f(a) [T, 9F = f(a) [T, "
4. The partial signature is then given by:= (v, z,U1,Us, ..., Un).
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Signature Retrieval (Extract). Given a partial signaturé’ = (v, 2/,U;,Us,...,Uy), and a set of
witness signatures; = z;H(¢;), 1 < i < N, with each being a short signature df; on a
condition statement;, the signature retrieval process is as follows.

1. Compute the followinga’ = f~1 (W)
i=1€\Y;0i
2. The recovered ordinary signature is then givenddy= (v, a’).

Correctness of the Extraction. If the partial signature is properly formed, that is, thddaling set of
equations holds for unknowne Z; andk € Z;;:

? = f@II v = F@) I, e
Uz/ = TGZ‘, VZ7

v =95

a =k~ [h(m) + zsY].

(1)

Then the correctness of the ordinary signature retrievglizssanteed as:
é(UZ-/,O'Z‘) = é(T’Gl,l’ZH(CZ)) = é(Gz,H(Cz))xLT = ef”, Vi
r o1 (F@QITL e en (f@TIT e e _
a=f <TU10)> =/ < N >—f (f(a)) =a

i=1"1
’)/a/ _ gka _ gkkfl[h(m)-q—xs'y’} — gh(m)gl’s.y’ — gh(m)yg/
HenceVerS(m, (v, d'), (g, ys)) = 1.

6.1.3 Partial Signature Simulator

A possible partial signature simulatBake is as follows:
Fake(C)
Input: C' = {(¢;, W;) : 1 <i < N}, {(P,Y:): 1<i< N}, g
Output:éf = (’Yf, Zf, Vl, Vg, ceey VN)

1. Randomly pick; € Z* and computey; = g*s.
2. Randomly pickr; € Z; and computd/; = ryG;, 1 <i < N.

3. Randomly pickd € Z, and computez; = f(d) [, é(Yi, H(c;))r = f()IX,v! =
f) Ty e
4. Output(fyf, Zf, Vi,Vo,..., VN).

This simulator only uses the verifiability condition sgtas input and neither the message nor the
signer’s information is needed. Hence, the ElGamal CVStcocison enjoys the message-invisibility
and signer-anonymity properties.

Claim 21 The ElGamal based CVS construction given above is simuéateith respect to the simulator
Fake if decisional bilinear Diffie-Hellmen problem is hard assamH is a random oracle.

Proof See Appendix F. [ |
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6.1.4 Confirmation Protocol

Let m be a message, = {(¢;,W;) : 1 < i < N} be a verifiability condition setPKs = (g,ys)

be a signer public key, anfK; = (G;,Y;), for1 < ¢ < N, be the witness public key d;. Let
also the partial signature be= (v, z,U;,Us,...,Ux). As can be seen above, if the set of equations
in Equation 1 holds, anyone could be sure that a proper amdatardinary signature can be retrieved
from the given partial signature. Hence, in order to corwiacrecipient that a given partial signature
is properly formed and a valid ordinary signature on the mgss: could be extracted if he obtains all
the needed witness signatures specified'jthe signer just needs to prove that Equation 1 holds for the
tuple (m,C, PKg,{PK; : 1 < i < N},0) using his private inputr,a). The confirmation protocol
CVCon(g v is then as follows.

(CvConS(r,a),CVConV())(m,C, PKg,{PK; : 1 <i < N}J)

Common Input:m; C' = {(¢;,W;) : 1 <i < N}; PKg = (9,ys); PK; = (G,Y;),1 <i < N;0 =
(’YaZaU17U27"-7UN)

Signer Private Inputr, a

Protocol: Shown below is just one round of iteration, whibbwd be run multiple rounds sayin the
actual protocol. Recall that = é(P;, H(¢;)), yi = é(Yi, H(ci)) = ¢, andw; = é(U;, H(¢;)) =
el. Lety) = ¢"™yl = v* which is used in the EIGamal signature verification.

1. Commit. The signer randomly picka € Z;, computes and sends the following to the
verifier:
ti—et, 1<i<N,;  t=o L)

2. Challenge.The verifier uniformly pick$ €z {0, 1} and sends it to the signer.
3. ResponseThe signer sends baék= u + br.
4. Verify. The verifier then checks the validity of the following and egts only if:

? _
t; = e(-’w b. t

?
(2R A -

A=D1 7H (EI w) b~ (1L o).
Claim 22 The above confirmation protocol for the EIGamal based CV Stcoction is a zero-knowledge

proof.

Proof This protocol satisfies the completeness, soundness, andkizewledge properties. See Ap-
pendix F. |

6.1.5 Security of the EIGamal based CVS Construction

Putting the pieces together, we could conclude that the falbdased CVS scheme is secure satisfy-
ing the properties of unforgeability (Theorem 20) and setmbility (Claim 21), which in turn imply
the cheat-immunity property. Besides, its confirmationt@rol is zero knowledge (Claim 22) which,
together with the simulatability property, further imgi¢he ElIGamal based CVS construction is non-
transferable.
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6.2 A Pairing-based CVS Construction for RSA-based Signates

We describe the construction for the basic hash-and-sighdRfiature scheme but the techniques should
apply to other RSA variants like the GHR [22] sighature schem

Supposer = p'q’ wherep', ¢ are large primes. We require that < p wherep is the characteristic
of the extension field of whicl is a subgroup (that i€ is a multiplicative subgroup df ;).

6.2.1 Ordinary Signature

Leth : {0,1}* — Z (which is modeled as a random oracle). The message spd0elis* and the
signature space i&.

Key Generation (CVKGS). The signer picks a random and keeps the factorization secret. Then the
signer picks a random public exponent ¢(n) such thatged(e, p(n)) = 1 (whereg(n) is the
Euler totient function), and computes the secret expofienth thatd = 1 mod¢(n). The public
key is then(n, e) and the private key ig.

Signing (SigS). For a message: € {0, 1}*, the signature isc = h(m)? modn.

Verification (VerS). Given a signature’, to verify whether it is a valid signature of messaggecheck
the following: o’ modn z h(m).

6.2.2 Partial Signature

Given an RSA signature, we blind it by multiplying it with a randomu: € Z;, and then use bilinear
pairings to hidea. Again, a does not fit intoG,. We need to use the same homomorphic mapping
f as in the construction for EIGamal. Here we need an additimvartible mappingf; : Z; —
Z,. The implementation of; is simple, which is: fi(x) = z modp,Vz € Z; and the inverse is:
fl_l(y) =y modn, Yy € Z,. These mappings satisfy the following properties we n&ed; x» € Z,
fi(ziza) = fi(z1) f1(z2) and f; ' (f1(21) fi(z2)) = z122. These hold becausé < p.

If there areN witnesses specified in a partial signatdrehens < {0,1}* x Fp x GY. To avoid
possible distinction due to different modulus size, paddsused to extend each computed signature to
some arbitrary lengtk by adding a random multiple of and padding zero's to the left.

Blinding (CVSig). Given asigning exponent a messagen, a verifiability condition se€ = {(¢;, W) :
1 <1 < N} and the witness public key$ P;, Y;) : 1 < i < N}, we create a partial signatufeas
follows:

1. RunSigS onm to generate an ordinary signatures Z.

2. Flip a coinb € {0,1}. Randomly picka € Z such that: ifb = 0, the Jacobi symbo(£)
must be 1, otherwisg2) = —1.14

3. Computeh = ac modn. The resultingh could have a Jacobi symbol @for —1, thus
avoiding the distinction based on the Jacobi symbol. Extend length k£ by adding a
random multiple ofr, that is,y = A + xn wherez ep [0, sz‘ﬂ} .

n

4. Randomly pick- € Z?, and computé/; = rG;, 1 <i < N.

This could be easy as half of the element&inhave Jacobi symbol 1 and the other half have Jacobi symbol -1.
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5. Computer = f(amodp) [T;L, &(Yi, H(ci))" = f(amodp) [T, v} = f(amodp) [T,L, e

6. The partial signature is then given by= (v, z,U1,Us, ..., Un).

Signature Retrieval (Extract) . Given a partial signatur& = (v, 2',U{,Uj,...,Uy), and a set of
witness signatures; = z;H(¢;), 1 < i < N, with each being a short signature Bf; on a
condition statement;, the signature retrieval process is as follows:

1. Compute the followinga’ = f~! (WM) modn

2. Use the extended Euclidean algorithm to fifid" modn.
3. The recovered ordinary signature is then givenddyz= +'a’~! modn.

Correctness of the Extraction. If the partial signature is properly formed, that is, thddaling set of
equations holds for some unknowre Z;, andr € Z;:

¢’ = f(amodp) [T, yf = f(amodp) [TL, "

Ul =rG;, i )
v =aoc + xn;

o = h(m)? modn.

Then the correctness of the ordinary signature retrievglizssanteed as:

é(UZI, UZ') = é(T‘Gz,:L'ZH(CZ)) = é(Gl, H(Ci))xir = efir, Vi
o= (f(aggdpégg;;;r> modn — -1 <f(a mﬁdjg) 1L, > modn = £-1(f(a modp)) modn
i=1 [RAdd =1 "%

=a modp modn = a
o' =+'a’~* modn = (ac + zn)a~! modn = o € Z,
o’ modn = ¢ modn = h(m).

HenceVerS(m, o', (n,e)) = 1.

6.2.3 Partial Signature Simulator

A possible partial signature simulatBake is as follows:
Fake(C)
Input: C = {(¢;, W;): 1 <i < N} {(P,Y;): 1<i< N},n
Output:éf = (’yf, Zf, Vi, Vo, .oy VN)

2’€—>\fj}.

n

1. Randomly pick\; € Zy, and computey; = Ay + xn wherex € [O, |
2. Randomly picky € Z, and computd/; = r;G;,1 <i < N.

3. Randomly pickl € Z: and compute; = f(d modp) [TX., é(Y;, H(c;))™* = f(d modp) [T, v’ =
f(dmodp) [T.Z, e
4. Output(yf, Zf, Vi,Va, ..., VN).
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This simulator only uses the verifiability condition set agut and the message. As the modulus of
the signer is needed, it is difficult to tell if it is signerearymous.

Claim 23 The RSA based CVS construction given above is simulatabiteregipect to the simulator
Fake if the decisional bilinear Diffe-Hellmen problem is hardsasningH is a random oracle.

Proof See Appendix F. |

6.2.4 Confirmation Protocol

Let m be a messagé&; = {(¢;, W;) : 1 < i < N} be a verifiability condition setPKg = (n,e) be a
signer public key, and’K; = (G;,Y;), for 1 < i < N, be the witness public key d¥;. Let also the
partial signature bé = (v, z, Uy, Us, ..., Un).

Similar to the case for the EIGamal signature scheme, inahnérmation protocol, the signer just
needs to convince the recipient that Equation 2 holds fovengiuple(m, C, PKg, PK;,d) using his
private input(r, a). The confirmation protocdlVCong 1 is then as follows.

(CvConS(r,a),CVConV())(m,C, PKgs, PK;,J)

Common Input:m; C = {(¢;,W;) : 1 <i < N}; PKg = (n,e); PK; = (G;,Y;),1 <i < N;6 =
(77Z7U17U27---7UN)

Signer Private Inputr, a

Protocol: The recipient first checks whetr(egr) ~ 0and proceeds if and only if it is not zero. This
is necessary to ensure that! exists to recover. Shown below is just one round of iteration,
which should be run multiple rounds sayin the actual protocol. Recall thaf = é(P;, H(c;)),
yi = e(Yi, H(c;)) = €', wi = é(Us, H(ci)) = €f

1. Commit. The signer randomly picks € Z; andv € Z;,, computes and sends the following
to the verifier:

s=v'modn;  t;=e¥, 1<i<N; t= f(vmodp) [,y

2. Challenge.The verifier uniformly pick$ € {0, 1} and sends it to the signer.

3. ResponseThe signer sends bagk= u + br, ¢» = (a modn)®(v modn) modp. Note that
© modn = a’v modn.

4. Verify. The verifier then checks the validity of the following and egts only if:

s(y%)® < h(m)® (1) modn)® (modn); ti = efw?; FOTIY, o = 2ht.

3 3

Claim 24 The above confirmation protocol for the RSA based CVS catistnuis a zero-knowledge
proof.

Proof The above protocol satisfies the completeness, soundnéseaiknowledge properties. See
Appendix F. [ |

The above construction for RSA applies to GHR [22] sighature
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6.2.5 Security of the RSA based CVS Construction

Putting the pieces together, we could conclude that the R&&dCVS scheme is secure satisfying the
properties of unforgeability (Theorem 20) and simulaigb{iClaim 23), which in turn imply the cheat-
immunity property. Besides, its confirmation protocol isizknowledge (Claim 24) which, together with
the simulatability property, further implies that the RS&skd CVS constrcution is non-transferable.

7 Real World Applications of CVS

In this section, we give details about some possible agmitacenarios of CVS, including post-dated
cheques, electronic commerce and policy-based accessicont

7.1 Post-dated Cheques

Based on the CVS model, it is fairly straightforward to giveimplementation like post-dated cheques,
which incorporate time into a digital signature to contrdiem its validity could be verified and when
a document becomes effective. A distinctive differencevieen a real world post-dated cheque and the
CVS implementation is that anyone could see the instrustjut down by the signer and verify the
validity of the cheque in the real world whereas nobody casddure or convince others that a given
CVS-based post-dated cheque is valid or that the instmeshown are really what the signer endorsed.
Hence, the CVS post-dated cheque has the additional adeaotgrotecting the privacy of the signer
and his anonymity in some cases (depending on the CVS cotistty This is one of the most desired
properties in the commercial world, bespoken by the futydn trading scenario mentioned earlier.

In the post-dated cheque application, the partial sigeagi@neration is no different from that in a
usual CVS scheme, except there is only one verifiability @@rof the form (7', Wy;,,,.) whereT is a
string specifying the release time akd;,.. is the trusted time server (a witness of time) specified by
the signerI” could simply be the statement “It is now 2:00PM GMT Dec 23,@0@\ll other processes
are the same as in CVS but the delivery of the witness sigestigrdifferent. Instead of requiring the
recipient of a partial signature to request the time semweit§ witness signature, the time server is set up
to periodically broadcast its signature on a conditionestegnt about the current time, and this statement
could be “It is now 2:00PM GMT Dec 23, 2000", etc.. The broalgaeriod could be tuned down
to whatever granularity appropriate for the desired appibmis. The advantages of this model include
scalability, anonymity of both the signer and recipient #re privacy of the message with respect to the
time server. It is highly scalable because no matter how niaeys are supported, a single broadcast at
each time instant is sufficient.

7.2 Electronic Commerce

Itis a natural problem in electronic commerce to ask how &aer can ensure that an online trader can
get his payment, possibly a signature for payment authsizaonly when the trader has delivered his
order or completed the services in the deal. Looking frontrtheer’'s perspective, he also wants to have
some guarantee that he can receive the customer’'s paynferg bielivering the order. As mentioned

before, CVS could partially solve the deadlock by using esses which are the parties involved in
the workflow of processing the order. We could view CVS agtfillthe trust gap between traders and
customers without physical proximity. In details, the omsér could just pick a number of third parties

that he trusts and will be involved in processing his ordewiisesses to create a CVS partial signature
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with conditions specifying that the parts of order procegdanvolving these witnesses are completed
by the trader. Due to the non-verifiability of the partialreature, nobody could verify the validity of
payment authorization, thus preventing the trader frortirgeainy payment unless he has obtained all the
endorsements from the specified witnesses, which in tunninesghim to somehow complete processing
the order.

A typical example about how CVS helps in trading between mnssing parties is as follows: A
customer wishes to buy a durable item from an online tradetheuprice is so low that he is concerned
about possible fraud. As usual, the trader needs the custonpay before delivering the order. Some
cautious customers may just walk away, unnecessarilymgiaideal he wants. In this scenario, the CVS
could possibly help to narrow this trust gap. The custometdgive the trader a CVS partial signature
on his payment authorization and require him to get a sigdagitdl) receipt from the post office or
courier company detailing about what they receive from taddr for delivering to the customer in order
to retrieve his ordinary signature. Note that the traderldionly be able to obtain the receipt if he has
sent out the order; of course, the post office or the couriempamy needs to be trusted in checking the
order, which we believe should be a reasonable assumpfitime trader has not sent out the order, the
partial signature will not grant him any payment.

Although fair exchange can be useful in exchanging digitalds, it could not solve the above sce-
nario satisfactorily. In the fair exchange solution, thetomer signs his payment authorization to create
some number which cannot be verified but can be convertecamtrdinary signature by a designated
trusted third party, acting as an arbitrator. The custofmen tonvinces the trader that this partial signa-
ture can allow the trader to obtain his signature from thératr even though he does not collaborate
later on. If the trader has delivered the order, the custorikigive him his signature. In case the
customer does not give out his signature after the order &éas btelivered, the trader could access the
arbitrator with all the evidences of order delivery, askiign to convert/retrieve the customer’s signa-
ture. This approach still has the drawback of compromisirgttader’s privacy when a dispute arises
in trading non-regenerable goods. In order to make a faitration when the customer repudiates, the
arbitrator usually requests the trader to submit evideneesaling much more than information about
the deal; in some cases, this may hinder the trader to mitiegt arbitration process and the fairness may
not be achieved as stated.

When used for trading regenerable goods, CVS still has tharddge that an ordinary signature
could be retrieved from a partial signature spontaneougtyowt the help of the signer (customer) once
all the specified conditions are fulfilled. In some cases, wtieere is a time lag between when an
order is placed and when it is completed, this advantage & @duld manifest itself. Airline or hotel
reservations are just some examples.

Despite the need of trusted third parties in the CVS modely tire not special for arbitration but
inevitable in processing the order. Although they alreadgvk some information about the order, they
learn no information about the deal. The customer couldyassitnesses without needing to notify
them. Besides, the trader does not need to leak out any infmmabout the payment in order to get
these witnesses to help him retrieve the signature, ancestigg a witness to sign on a condition, in
the form of a receipt, seems to be natural in the businessdwbtbwever, there are still a number of
problems that cannot be solved using the CVS model suchrsdachanging signed contracts.

7.3 Policy-Based Access Control

The CVS model could also be used for monitored controls aésging resources. Suppose the president
of a certain nation wishes to grant one of his aides accessddain highly confidential resources or files
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for which that aide is not entitled unless it is an emergersegeaxtified by a certain number of cabinet
members. Note that there is an implicit implication that piresident would be absent for some reasons
when such a certificate becomes effective. Obviously, taisle done using the CVS model with the
president creating a partial signature on the access t¢aettdicate. Very complex access policies could
also be implemented using the CVS model.

The advantage of using the CVS-based approach for accessldsriwo-fold. First, it could avoid
the abuse of the signed access control certificate by theshol8econd, the non-verifiability of the
certificate could minimize the potential risk of coercion it& holder. For example, in the scenario
mentioned above, a curious aide would not be able to abuseettificate to access the resource in
guestion unless he colludes with all the cabinet membersfsgaeas withesses. On the other hand, if
the aide is kidnapped, the enemies would still not be ableeterthine whether the aide holds a valid
certificate.

8 Conclusions

In this paper, we introduce a new signature concept calle8 @¥ich could provide effective solutions
in many digital business scenarios, in particular, thoseling mutually distrusting parties. Through
CVS, one could limit and control the verifiability of his digl signatures subject to the fulfilled of
a number of conditions he specifies. We also give two effidl@E constructions based on bilinear
pairings for the standard signature schemes of ElIGamal &#& R

In future work, we plan to add the function of traceabilityttie CVS scheme. In details, in the current
schemes, once the ordinary signature is extracted, nobmay ¢tell whether it is generated directly or
extracted from a partial signature. This is the perfect ediivility property, which is basically good. But
in some scenarios in which the recipient may be able to coaliphe witnesses, the signer may want
to have a certain trapdoor to allow him to prove to others,asagurt judge, whether a given signature
is signed directly or recovered from partial signature gghre signatures of the witnesses on a number
of condition statements. That is, a recovered signaturensally indistinguishable from an ordinary
signature signed directly, but when the signer releasepald@, everyone would be convinced that a
recovered signature is one extracted from a partial sigadtyithe witness endorsements. Consequently
the witnesses are held accountable.
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Appendix A: Proofs — Relations between Security Notions

Proof related to the Confirmation Protocol

Lemma 3. Given two ensembles of distributidnX , } and{Y) }, which have the same sample space for
all A, and a PPT algorithrif, (a transcript simulator) whose input space is the same asthg, and
Yy, let7(x) denote the output 6fy on inputz.® If {X,} = {Y,} in the security parametey, then

{z = Xom(z) = {Ta(2)} : (z,7(2)} ={y = Yaim(y) —{Th(®)} : (v, 7(v))}

Proof of Lemma 3.
We prove this lemma by contradiction. Suppgsé, } and{Y,} are indistinguishable with negligible
indistinguishability coefficient x y-, that is, for all PPTA,

1
poly(\)’

Assume there is a PPT distinguisiBrwhich can tell apart the two distributiongz «— X :
(z,7(z))} and{y < Y\ : (y,7(y))}. That s, the following is non-negligible.

|Priz <« Xy : A(x) =1 = Prly— Yy : A(y) = 1]| < exy(A) <

_ Priz — Xy;7(z) — {T\(2)} : D(z,7(z))
—Prly < Yxn(y) — {Ta(y)} : D(y, 7(y))

We show how to us® to constructD’ to tell whether a given belongs taX ), or Y,. The construction
is as follows:

1]

ep(A) 1

D'(6) whered — X whenb = 0 andd «— Y, whenb =1
RunT) to generate the transcrip{J) for ¢.

RunD on (9, 7(9)).

OutputD’s guesd for b.

If D andT) are PPT, then so i&’. Obviously,

Priz «— X, : D'(x) = 1] = Prlz «— X);7w(z) < {T\(z)} : D(z, 7 (x)
Prly —Yx:D'(y) =1] = Prly — Yx7(y) —{Tx(y)} : D(y, 7(y))

) =1], and
=1].
Substituting these two equations into the expressiam04), then,

ep(A) = |Prlz « X\ :D'(x) =1] — Prly < Y\ : D'(y) = 1]] < exy(N)

This concludes the reductiolap () must be negligible, otherwise y (\) is non-negligible (a contra-
diction). That is,

{Xo} =N} = {r = Xyn(e) — {Th(@)}: (2, 7(2)} = {y « Yain(y) < {Tay)} = (4, 7(y))}-

Note thatT is probabilistic, so even for the same inpytl’, () may be different between two evaluations.
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Proof: Simulatability and Unforgeability imply Cheat-imm unity

Theorem 8. An unforgeable and simulatable CVS scheme is also cheatsilergiven its confirmation
protocol is zero knowledge.

Proof of Theorem 8.

Assume the given CVS scheme is unforgeable and simulataitteraspect to a PPT simulator
Fakeg(m,C). Let SImT(4) be the transcript simulator of the zero knowledge proof dsethe confir-
mation protocol wheré is a partial signature.

In the cheat-immunity game defined in the paper, an adveisatyays given a valid partial signa-
ture as a challenge. In the following proof, we force an astws, capable to win the cheat-immunity
game with non-negligible probability, to run on a challengaich is not a valid partial signature but a
fake one from the simulatdfake. Since the adversary is just an algorithm, it is thus definpessible
to run it on a deviated input. Of course, it is likely that tlivarsary would not output the desired result
on the deviated input, but this is what we want to show.

In order to run the adversary on a deviated input, we modigydéfinition of the cheat-immunity
game slightly, namely, in the challenge phase, no confiongirotocol would be run between the chal-
lenger and the adversary, but instead the adversary is gigballenged partial signature and a transcript
of a confirmation protocol run on that partial signature. éibtat a run of the interactive confirmation
protocol is replaced by a transcript without any interattidVe argue that the proof obtained in this
amended model also applies to the original model of cheattinity if the confirmation protocol is zero
knowledge. The justification is as follows:

If the confirmation protocol of a CVS scheme is zero-knowtadbe only information obtainable
from running the confirmation protocol is whether a givertiphsignature is true/valid. Hence, the
only difference between the information obtainable fronivaig partial signature and the transcript
recorded during the confirmation protocol run on it and tHermation obtainable from a given
partial signature and a simulated transcript of the confiongrotocol is the validity of the given
partial signature and nothing else. In other words, if areaglry can extract the ordinary signature
from a valid partial signature after running the confirmatwotocol on it, it should also be able to
do so with almost the same computational effort even withoahing the confirmation protocol.
Consequently, we would neglect running the confirmationiqual in the challenge phase to force
as adversary to run on an invalid partial signature. In f&ete insist on running the confirmation
protocol between the adversary and the challenger in théeolga phase, it is still possible (even
though inefficient) using the rewinding technique commdiolynd in the transcript simulator of
any zero knowledge proof, as it is used in [28]. In order to enak adversary accept a partial
signature input and run on it, in each round of iteration @f tbonfirmation protocol, we prepare
the answer of some of all the possible challenged questibtise challenge question comes out
to be what has been prepared, then this round is succes#figiwise, we reset the adversary
to the start of the current iteration round and restart thisyd again. As mentioned before, this
rewinding is possible because the adversary is just anatherithm or Turing machine we use as
a subroutine. Of course, we have to take more computationsrplete an iteration round now
but in most zero knowledge proofs, the overall computationld still remain polynomial time.

Now we can describe the proof. Suppose there exists a PPTsadyd which can win the cheat-
immunity game with non-negligible probabilityﬁf. We show how to construct a distinguisherfrom
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A for the simulatability game, which can distinguish a truetiphsignature CVSig) from a fake one
generated byrake.

D(&): Oy is atrue/fake partial signature whén= 0/1
Setup.
Get from its challenger the public keys of the signer and @gges, and pass themAo
Run A on the same set of public keys.
Keep the signer private key if given one.
Query.
Pass all signing and endorsement queries frbto its oracles and return the results4o
For signing queries, run the confirmation protocol as an tigdretween4 and the challenger.
Challenge.
A outputs(m, C), m € M, C C C x W, to be challenged.
Pasgm, C) to its challenger and receive the challerdge
Compute the confirmation transcriptd,) = SimT(d;) for d;.
Pasgd, m(dp)) as a challenge td.
Guess.
A outputse. Output gues$’ where:

Y { 0, VerS(m,o)=1

1, otherwise

First, it can be seen thd? is PPT if A andVerS are both PPT.

The probability of success db with respect to the simulatability gamel:

Priim[success] = Pr[b/ = b|d]
= LPr[t) = 0[] + 3 Pr[t) = 1|64]
= 3Pr[0y — {CVSigg(m,C)};0 «— {A(d)} : VerS(m, o) = 1]
+3Pr(6 «— {Fakes(m,C)};0 — {A(61)} : VerS(m, o) = 0]
= 5T+ — 3Pr[6y — {Fakes(m,C)};0 — {A(61)} : VerS(m, o) = 1].

Note we use the facpG! = Pr[dy « {CVSigg(m,C)};o « {A(d)} : VerS(m, o) = 1]. Rearrang-
ing terms, we have:

QT = (Prim[success] — ) + s Pr[0y — {Fakeg(m,C)};0 — {A(61)} : VerS(m, o) = 1]

18For the sake of simple notations, we tend to use short nofiw the probability in question. For example, we just evrit
Prlt = b|é] to denote the probability that the guessiafthat is,b’ is the same as the challenged biiven §, which could
be generated fror€VSig (if b = 0) or Fake (if b = 1). We also neglect the preamble like public key generatiarnially,
this probability should be written as:

(PKs, sks) — {CVKGS(1M)}; (PKw, skw) — {CVKGW (1*), YW;

MO 9CW s . § {CVSigg(m,C)}, b=0

Pr m M,C 2 7b {0,1},5b { {Fakes(m,C)}, b=1 "
o+ {A(d)}; b = ~(VerS(m, o) = 1})
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Taking absolute values on both sides and dendting, — {Fakes(m,C)};0 «— {A(01)} : VerS(m, o) =
1] by ¢, we have:

%pﬁf < |Pr%@[suocess] — %| + ‘%Pr[él — {Fakegs(m,C)};0 «— {A(61)} : VerS(m, o) = 1”
= Advp™ + 1 Pr[s, — {Fakeg(m,C)};0 — {A(61)} : VerS(m, o) = 1]

PGl < 2Advi™ <. (3)

If pﬁf is non-negligible, then eitheﬁdvfjm or 4 is non-negligible. We consider the following two
cases:

Casel —Adv%m is non-negligible. Obviously, the existence of such a PPT algorithmvould break
the simulatability property, which is a contradiction asassume the CVS scheme is simulatable.

Case 2 — is non-negligible. We argue that it ; is non-negligible, then we could uskto create an
existential forgery as follows.

F

Setup.

Get all the public keys of the signer and witnesses.

Run A on the same set of public keys.

Keep the witness private keys$.

Query.

Pass all signing queries to its oracle and relay the resattk to A.

Run the confirmation protocol as an agent in betwdeand the challenger.
Answer all endorsement queries itself using the witnesafmikeys.
Challenge.

A outputs(m, C), m € M, C C C x W, to be challenged.

Created = Fakeg(m, C'), and compute the confirmation transcrigt) = SimT(¢) for 6.
Pasgd, m(dp)) as a challenge td.

Guess.

Output the final output of A as a forgery output.

Obviously, if A is PPT, thent' is also PPT akake is PPT. Asm is chosen to be not queried before,
the probability of successful existential forgery Byis then given by:

% = Pr[s «— {Fakeg(m,C)};0 « {A(6)} : VerS(m, o) = 1]

Note thatp%F should be equal te;y which is non-negligible. This concludes that the given C\¢Besne
is existentially forgeable if ; is non-negligible, which is a contradiction as we assumeC¥i€ scheme
is unforgeable.

In conclusion, if the given CVS scheme is simulatable Qiﬁldvrgim is negligible for all PPTD) and
unforgeable (i.ep%!" is negligible for all PPTF), then it is also cheat-immune with negligii(’ for
all PPTA. [ |
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Equivalence between Simulatability, Invisibility and Anonymity

Theorem 9 (Simulatability implies Invisibility). Given a simulatable CVS scheme in an adaptive query
model with respect to a PPT fake signature simul&adtes(m, C), it is message-invisible in the same
adaptive query model if and only {fFakeg(mo,C)} = {Fakegs(mi,C)} in the same adaptive query
model for allS, mg, my, andC.

Proof of Theorem 9.
Assume the given CVS scheme is simulatable with respect tBTaddinulatorFake, that is, the
correspondingﬁldv%"m is negligible for all PPTD.

If Part

Suppose there exists a PPT distinguisPerhich can break the invisibility property, that is, able to
distinguish which one of the two given messagesandm; a given partial signaturé is for. We show
how to construct another distinguish®f to tell whether a given, is genuine fromCVSig (b = 0) or
fake fromFake (b = 1). In the following discussion, we denote the negatioh by b.

D'(6): 0 is a true/fake partial signature whénr=0/1

Setup.

Ask its challenger for the public keys of the signer and thinesses
RunD on the same set of public keys.

Get the signer’s private key from its challenger and passt.t
Query.

Pass all signing and endorsement queries ffdto its oracle.

Relay the results back .

Run the confirmation protocol as an agent betwPeand the challenger.
Challenge.

D outputs(mg, m1, C) to be challenged.

Flip a coinc < {0, 1}. Output(m., C) to its challenger.

Pass the challengg to D.

Guess.

D outputs a guesks. Output the final gueds’ for b:

b, ¢=0
n_ ) Y
b _{b’, c=1

Obviously, if D is PPT, so igD'.

Then the probability of success Bf with respect to simulatability is given by:

Pr2im[Success] = Pr[b" = b|dy)]

LPr[t) = b|6y,c = 0] + 2 Pr[t) = b|dy,c = 1]

_ %Pr[b’—0|50,c—0] 1Pl = 1151, = 0
+4Pr[ = 1]60,c = 1] + 1 Pr[t) = 0[61,¢ = 1]

= 1Pr[s « {CVSigg(mo,C)} : D(5) = 0] + 1 Pr[ « {Fakeg(mg,C)} : D(8) = 1]
+%Pr[5<— {CVSigg(m1,C)} : D(6) = 1] + 1 Pr[s — {Fakeg(mi,C)} : D(5) = 0]

= 1Pr[s « {CVSigg(mo,C)} : D(5) = 0] + %Pr[éH{CVSIgS(ml,C’)} D(6) = 1]
+2Pr[6 — {Fakeg(mq,C)} : D(6) = 1] — 1 Pr[§ «— {Fakes(m1,C)}: D(5) = 1]

+1-
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Note we use in the above expression the fact:
Pr[d — {Fakeg(mi,C)} : D(§) = 1] + Pr[o «— {Fakegs(m1,C)} : D(6) =0] =1

Note also that the probability of success@fvith respect to invisibility is given by:

Privw(Success] = —Pr[é — {CVSigg(my,C)} : D(6) = O]—i—%Pr[é «— {CVSigg(m1,C)} : D(5) = 1].

Hence,
Prlv[Success| + 1 = Priim[Success] + 1 Pr[s — {Fakeg(mi,C)} : D(5) = 1]
—1Pr[5 — {Fakeg(mg,C)} : D(6) = 1]
2 (PrEwSuccess] — 1) = (Pr3i™[Success] — 1) + 2(Pr[s — {Fakeg(m1,C)} : D(5) = 1]

—Pr[d — {Fakeg(mo,C)} : D(9) = 1]
2AdvR™ + FebNS

2 7710 mi

Advle’w

IN

whereef3e = |Pr[s — {Fakeg(my,C)} : D(§) = 1] — Pr[§ — {Fakeg(mo,C)} : D(6) = 1].
Therefore, if AdvL is non-negligible, then eitheddv!™ or ef3€, is non-negligible. The former
condition implies the given CVS scheme is not simulatableofatradiction) whereas the latter implies
{Fakegs(mo, C)} ¢ {Fakes(m;,C)} (again a contradiction). Hencedv5™ must be negligible if the
given CVS scheme is simulatable with respedtafie and{Fakeg(mo, C)} = {Fakeg(m,C)} inthe

same attack model.

Only if Part

The given CVS scheme is simulatable with respedtake implies indistinguishability between the
following: {CVSigq(m,C)} = {Fakeg(m,C)}, VS, m,C, that s, the following is negligible for all
PPTD.

epm = |Pr[§ « {CVSigg(m,C)} : D(8) = 1] — Pr[§ « {Fakes(m,C)} : D(8) = 1]|

If the CVS scheme is also invisible, then for any two messaggsindm,, {CVSigg(mo, C)} =
{CVSigg(m1,C)}, VS, C, that s, the following is negligible for all PPD.
v = |Pr[é — {CVSigg(my,C)} : D(§) = 1] — Pr[d « {CVSigg(m1,C)} : D(d) = 1]|

€D. (mo,m1)

For all S, C and any two messages, andm, and for any PPT distinguish&?,

Pr[§ «— {Fakeg(mgo,C)} : D(6) = 1] — Pr[d «— {Fakeg(m1,C)} : D(J) = 1]
= Pr[o — {Fakeg(mg,C)} : D(6) = 1] — Pr[é < {CVSigg(mo,C)} : D(9)
+Pr[d « {CVSigg(m1,C)} : D(6) = 1] — Pr[é «— {Fakeg(m;,C)} : D(6
+Pr[d — {CVSigg(mo,C)} : D(§) = 1] — Pr[d «+ {CVSigg(m1,C)} : D

= 1]

) =1]

(6) =1]

If we denote Pr[d « {Fakes(mo, C)} : D(d) = 1] — Pr[d — {Fakeg(mi,C)} : D(9) = 1]] by €5 0 )
and take absolute values on both sides, then we have:

e%ak(ino my S 1Pr[6 — {CVSigg(mo, O)} : D(5) = 1] — Pr[§ — {Fakes(mo,C)} : D(6) = 1|
+|Pr[6 «— {CVSigg(m1,C)} : D(6) = 1] — Pr[§ « {Fakeg(my,C)} : D(5) = 1]
+|Pr[6 — {CVSigg(mq, C)} : D(8) = 1] — Pr[§ « {CVSiggs(m1,C)} : D(6) =

_ Sim Sim Inv
- ED mo +€D mi te

|
1]]
D: (mo,m1)
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I e my) 1S non-negligible, either one of the following is non-nedie: €27, ., €37, €520 1)
which is a contradiction to either the simulatability orisibility assumption. As a result, given a simu-
latable CVS scheme (with respectRake), if it is also invisible, then the following must be true fall

S, mo, Mmi, C:

{Fakegs(mo, C)} = {Fakeg(mi,C)}

Theorem 10 (Simulatability implies Anonymity). Given a simulatable CVS scheme in an adaptive
query model with respect to a PPT fake signature simuleaées(m, C), it is signer-anonymous in the
same adaptive query model if and only{ifakego(m,C)} = {Fakegi(m,C)} in the same adaptive
guery model for allS0, S1, m, andC.

Proof of Theorem 10.
Assume the given CVS scheme is simulatable with respect tBTaddmulatorFake, that is, the
correspondingﬁldv%im is negligible for all PPTD.

If Part

Suppose there exists a PPT distinguisParhich can break the anonymity property, that is, able to
distinguish which one of the two given signe$® and S1 has signed a given partial signature We
show how to construct another distinguistier (c € {0,1}) to tell whether a givem, is genuine from
CVSig (that is,b = 0) or fake fromFake (that is,b = 1). We give two constructions; in the following
discussion, we use= 0 andc = 1 to denote the difference between the two implementatiori3.otn
the following, we usé’ ande to denote the negations bfandc respectively (wheré', c € {0,1}).

D.(dp): I is atrue/fake partial signature whén= 0/1

Setup.

Ask its challenger for the public keys of the witnesses.

Ask its challenger for the public and private keys of one sigraySc.
RunCVKGS(1*) to generate the public and private keys of the other sigier
RunD on the public keys ofc andSe.

Pass all the witness public keys and the two signer privats t&D.

Query.

Pass allSc signing queries fronD to its oracle. Relay the results back®o
Answer all.S¢ signing queries fronD by runningCVSigg..

Pass all endorsement queries fréhto its oracle and relay the results backlo
Challenge.

D outputs(m, C') to be challenged.

Output(m, C) to its challenger.

Pass the challengg to D.

Guess.

D outputs a guesks. Output the final gueds’ for b:

b, ¢=0
/N )
b _{b’, c=1

Obviously, if D is PPT, so igD. for bothe = 0 andc = 1.
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The probability of success @, with respect to simulatability is given by:

Prim[Success] = Pr[b" = b|d)]
%Pr[b’ = 0[60] + 3 Pr[b) = 1|64]
= 1Pr[6 < {CVSiggy(m,C)} : D() = 0] + 3 Pr[§ — {Fakego(m,C)} : D(0) =

The probability of success @, with respect to simulatability is given by:

Prm[Success] = Pr[b” = b|d)]
%Pr[b’ = 1[0] + 3 Pr[b/ = 0|64]
= 1Pr[6 « {CVSigg,(m,C)} : D() = 1] +  Pr[s — {Fakeg(m,C)} : D(5)

Note the probability of success &f with respect to anonymity is given by:

Prr[Success| = LPr[§ — {CVSiggy(m,C)} : D(§) = 0] + 1 Pr[§ « {CVSigg,(m,C)} : D(5) = 1]
= %Pr[é — {CVSigg,(m,C)} : D(5) = 0] + %Pr[é «— {Fakeso(m,C)} : D(6) =
§Pr[5 — {CVSigg,(m,C)} : D(d) = 1] + 5Pr[é — {Fakegi(m,C)} : D(6) = 0]
$Pr[6 — {Fakego(m,C)} : D(8) = 1] — 3 Pr[s — {Fakegi(m,C)} : D(6) = 0]

1
= Prszm[Success] + Prszm[Success] -1
Pr[é — {Fakego(m,C)} : D) =1

—
=g
~

Note we substitute the values Bt/ [Success] and Prii™[Success] into the above equation and use
the fact: Pr[é <« {Fakegi(m,C)} : D(0) = 1] + Pr[0 < {Fakegi(m,C)} : D(6) =0] =1

Denote| Pr[§ « {Fakegi(m,C)} : D(§) = 1] — Pr[d « {Fakego(m,C)} : D(5) = 1] byeFa"g0 51)-
Note thatD is set to distinguish between the genuine signaturég®@ndS1; nevertheless, if mput with

Fake, D must give an output. Subtractl@from both sides and taking absolute values, we have:

Adv Ano < Adv%m—kAde’m—i—% %alzgo s1)

Therefore, ifAdv™ is non-negligible, then eithetdvy™, Advy™ oref2e is non-negligible. Either

mo,mi
Adv%'m orAdfu%"m is non-negligible implies the given CVS scheme is not sirtaldke (a contradiction).
On the other handgﬁfok%l is non-negligible implies{Fakego(m,C)} 2 {Fakesi(m,C)} (again a

contradiction with the given condition). Hencédvé”o must be negligible if the given CVS scheme is
simulatable with respect teake and{Fakegso(m,C)} = {Fakegi(m,C)}.

Only if Part

The given CVS scheme is simulatable with respeditake implies indistinguishability between the
following: {CVSigg¢(m,C)} = {Fakes(m,C)}, VS, m,C, that is, the following is negligible for all
PPTD.

e = |Pr(§ « {CVSigg(m,C)} : D(§) = 1}] — Pr[§ « {Fakeg(m,C)} : D(5) = 1]|

If the CVS scheme is also anonymous, then for any two sigfiérand S1, {CVSigg,(m,C)} =
{CVSigg;(m,C)}, Ym, C, that is, the following is negligible for all PPD.

egf“()so,sn = |Pr[§ « {CVSiggz(m,C)} : D(§) = 1}] — Pr[é « {CVSigg,(m,C)} : D(5) = 1]
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For allm, C and any two signer§0 andS1, and for any PPT distinguishé?,

Pr[5 — {Fakego(m,C)} : D(8) = 1] — Pr[s — {Fakeg;(m,C)} : D(6) = 1]

= Pr[s — {Fakego(m, )} : D(8) = 1] — Pr[6 — {CVSigg,y(m,C)} : D(6) = 1]
+Pr[§ «— {CVSigg,(m,C)} : D(8) = 1] — Pr[s — {Fakeg;(m,C)} : D(6) = 1]
+Pr[§ — {CVSiggy(m, C)} : D(5) = 1] — Pr[5 — {CVSigg, (m,C)} : D(8) = 1]

If we denotg Pr[o «— {Fakeg(mg,C)} : D(0) = 1] — Pr[o < {Fakeg(mi,C)} : D(0) = 1] byeg’}k&m m)
and take absolute values on both sides, then we have: 7

sy < |Prld — {CVSiggy(m,C)} : D(8) =1] — [5 «— {Fakeso(m,C)} : D(0) = 1]]
+|Pri6 — {CVSigg, (m,C)} : D(0) = 1] — Pr[6 — {Fakesi(m,C)} : D(6) = 1]|
T |Pr(o — {CVSiggy(m, )} : D(9) = 1] = Pr[s — {CVSigs, (m, €)} : D(6) =1]]
= Bl + Dl + e - (50,51)
If e,FDa"(‘ESO 51 Is non-negligible, either one of the following is non-negflie: e3¢, e3¢, €70 51):

which is a contradiction to either the simulatability or agmity assumption. As a result, given a simu-
latable CVS scheme (with respectRake), if it is also anonymous, then the following must be true for
all S(), Sl, m, C"

{Fakeso(m,C)} = {Fakegi(m,C)}

Theorem 12.Invisibility does not imply Simulatability.

Proof of Theorem 12.

In the following, we will show the necessary requirement dogiven invisible CVS scheme to be
simulatable.

If the given CVS scheme is invisible, then the following miusid: {CVSigg(m, C')} = {CVSigg(m’,C)}
for allm # m/S, C. That is, the following is negligible for all PPD.

€Beimmy = |Prld — {CVSigg(m,C)} : D(6) = 1] — Pr[6 — {CVSigg(m',C)} : D(5) = 1]]
For all possible simulatorisake, the following must hold for all PPT distinguishefsfor S, C', m # m/’:

ke = Prim,m’ — M;§ « {CVSigg(m/,C)} : D(8) = 1]
—Prim,m’ — M;d — {Fakeg(m,C)} : D(d) = 1]

= Prim,m’ — M;é — {CVSigg(m/,C)} : (
—Prim,m’ — M;d — {CVSigg(m,C)} :
+Prim,m’ — M;é — {CVSigg(m,C)} :
—Prim,m’ — M;d — {Fakeg(m,C)} : D(é)
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Taking absolute values on both sides, we get:

|Pr[m,m' — M;§ «— {CVSigg(m',C)} : D(§) = 1]
< |Prim,m' «— M;d «— {CVSigg(m',C)} : D() = 1]
—Prim,m’ — M;d «— {CVSigg(m,C)} : D(6) = 1]|
+|Prim,m' — M; «— {CVSigg(m,C)} : D(6) = 1]
—Prim,m' — M;d «— {Fakeg(m,C)} : D(§) = 1]|
= |Pr[d < {CVSigg(m/,C)} : D(6) = 1] — Pr[d « {CVSigg(m,C)} : D(6) = 1]|
+ |Prim «— M;é «— {CVSigg(m,C)} : D(§) = 1] — Prim «— M; 6 — {Fakeg(m,C)} : D() = 1]|

— Inv Sim—Fake
= ¢p. (m,m’) teépm

Note thategf?m m’) is the advantage dP to break the invisibility property when the challenge meggssa

arem andm/, ande%’;";fake is the advantage dP to break the simulatability property with respect to
the simulatof~ake when the challenge messageris Since the given scheme is invisible, tlﬂé@jmm,)
is negligible for all PPTD.

If the given CVS scheme is simulatable, then there has td ad®PT simulatoFake’ so that the
following distributions are indistinguishablefCVSig¢(m, C)} and {Fakeg(m,C)} for all S,m,C.

That is, the following is negligible for all PPD.

eJim-Fake' _ | prl§  {CVSigg(m,C)} : D(6) = 1] — Pr[d — {Fakes(m,C)} : D(8) = 1]|

D:m
As the condition that{<" < v .+ eSim—Fake’ gpplies for allFake including Fake’ and
eg‘:”(m m) is negligible in the security parameter since the schemwisible. For the scheme to be sim-

ulatable with respect tBake’, eff:%‘Fake/ is negligible. These together imp&ﬁf‘ke' must be negligible.
In other words, then the following value must be negligible:

!Pr[m,m/ — M;d — {CVSigS(m/,C’)} : D(8) = 1] — Prim,m’ «— M;§ «— {Fakes(m,C)} : D() = 1”

which in essence implie§CVSigg(m/,C)} = {Fakes(m,C)} for all S, m andC, and allm’ #
m. In fact, this necessary condition implies that there existother PPT simulatdfake” such that
{CVSig4(m,C)} = {Fakes(m, C)} for all S, m, C, which is the sufficient condition for the scheme to
be simulatable.

In conclusion, invisibility does not imply simulatability

Theorem 13.Anonymity does not imply Simulatability.

Proof of Theorem 13.

In the following, we show the necessary requirement for amgmous CVS scheme to be simulat-
able.

If the given CVS scheme is anonymous, then for any two sigférand.S1, {CVSigg,(m,C)} =
{CVSigg;(m,C)}, Ym, C, that is, the following is negligible for all PPD.

eps0.51) = | Prlo — {CVSigge(m, C)} : D(8) = 1] — Pr[5 « {CVSigg, (m, C)} : D(5) = 1]]
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For all possible simulatorSake the following must hold for all PPT distinguishé&? for all m, C and
signersS0 # S1:

ke = Pr[§ « {CVSigg,(m,C)} : D(8) = 1] — Pr[s — {Fakego(m,C)} : D(8) = 1]
= Pr[6 < {CVSigg;(m,C)} : D(J) = 1] — Pr[d «— {CVSiggy(m,C)} : D() = 1]
+Pr[d « {CVSiggy(m,C)} : D(6) = 1] — Pr[d « {Fakego(m,C)} : D(6) = 1]

Taking absolute values on both sides, we get:

|Pr[d « {CVSigg,(m,C)} : D(0) = 1] — Pr[6 « {Fakego(m,C)} : D(5) = 1]|
< |Pr[6 < {CVSigg,(m,C)} : D(§) = 1] — Pr[é « {CVSiggy(m,C)} : D(J) = 1]|
+|Pr[d « {CVSiggy(m,C)} : D(6) = 1] — Pr[o «— {Fakego(m,C)} : D(5) = 1]|
= 1] — Pr[é — {CVSiggy(m,C)} : D(6) = 1]

= |Pr[d < {CVSigg,(m,C)} : D(é)(

+ |Pr[o «— {CVSiggy(m,C)} :
6Ano +e Sim—Fake
- D: (S0,51) €D: S0

|
D(5) = 1] — Pr[s — {Fakego(m,C)} : D(8) = 1]|

Note thateA”(Os0 1) is the advantage dP to break the anonymity property for signe§8 and.S1, and
Szm Fake :

en is the advantage dP to break the simulatability property with respect to thedaor Fake
when the challenge messagenis Since the given scheme is anonymous, tk%f?fsoﬂ) is negligible
for all PPTD.

If the given CVS scheme is simulatable, then there has td @e@®PT simulatoFake’ so that the
following distributions are indistinguishable{CVSig¢(m,C)} and {Fakes(m,C)} for all S,m,C.
That is, the following is negligible for all PPD.

efim—Fake’ _ | pr[§  {CVSigg(m,C)} : D(6) = 1] — Pr[5 — {Fakels(m,C)} : D(3) = 1]|

As the condition that7ake’ < eAn *ls0,61) T epim= Fake’ applies for allFake including Fake’ and

is negligible in the security parameter since the schemaasyamous. For the scheme to
Szm Fake’

An
D (so S1)
be simulatable with respect feake’, is negligible. These together imp%‘"‘ke' must be
negligible. In other words, then the foIIowing value mustriagligible:

epm — | Pr[d «— {CVSigg(m,C)} : D(8) = 1] — Pr[§ — {Fakes(m,C)} : D(6) = 1]|

which in essence implie§CVSigg, (m,C)} = {Fakego(m,C)} for all SO, m andC, and allS1 #
S0. In fact, this necessary condition implies that there exastother PPT simulatdfake” such that
{CVSig4(m,C)} = {Fakes(m, C)} for all S, m, C, which is the sufficient condition for the scheme to
be simulatable.

In conclusion, invisibility does not imply simulatability |

Theorem 14 (Anonymity implies Invisibility). Assuming the partial signatures of a CVS scheme gener-
ated from two distinct and independently picked public/gie key pairs (i.e. from two different signers)
are independent, an anonymous CVS scheme is also invisible.

Proof of Theorem 14.
Assume the given CVS scheme is anonymous with negligaﬁbdeé”o for all PPTD.
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Suppose there exists a PPT distinguisPawhich can break the invisibility property, that is, able to

distinguish which one of the two given messagesandm; a given partial signaturé is for. We show
how to construct another distinguistf to tell whether a given, is signed by signes0 or S1.

For the sake of clarity, we add an index to the distinguisinesuch a way thaDg, denote an

invisibility distinguisher which tells whether a given sa@ture ofSy is on message:g or m; .

D'(8,): b=S0/S1

Setup.

Get the witness public keys and the two signer public keys{fbandS1) from its challenger.
Run®D on the public key of50 and all witness public keys.

Get the private key of the signers from its challenger and gas one forS0 to D.
Query.

Pass all signing and endorsement queries ffdto its oracle.

Relay the results back .

Challenge.

D outputs(mg, m1, C') to be challenged.

Flip a coinc < {0, 1}. Output(m,, C) to its challenger.

Pass the challengg to D.

Guess.

D outputs a guess. Output the final guess’ for b:

b, ¢=0
/N )
b _{b’, c=1

Obviously, if D is PPT, so i€D’. Then the probability of success Bf with respect to anonymity is given

by:

Prane[Success| = Pr[b = b|5y)
%Pr[b’ = b|6p,c = 0] + %Pr[ = |6y, c = 1]
= Pr[b’ —0]50,(:—0] 1Pt =1|61,¢ = 0]
+1Pr[t) = 1]6p,c = 1] + £ Prt/ = 0|61, c = 1]
= 1Pr[5 «— {CVSigg,(mo, C)} : Dgo(8) = 0]
+iPr[5 « {CVSigg;(mo, C)} : Dso(8) = 1]
+%P7”[5 — {CVSiggy(m1,C)} : Dgo(6) =1]
+ZPT[(5<—{CV.Si951(m1, )} Dso(é) ]
= 1Pr[6 — {CVSiggy(mo, C)} : Dso(d () 0]
(
(

+3Pr(d — {CVSiggy(m1,C)} : Dso(d) = 1]
+1Pr[s — {CVSigg, (mo, C)} : Dgo(6) = 1]
—%Pr[&—{CVSigSl(ml, C)} : Dso(d) = 1]
1

Note we use in the above expression the fact:

Prio — {CVSigg,(m1,C)} : Dso(d) = 0] + Pr[d « {CVSigg,(m1,C)} : Dgo(6) =1] =1

Note also that the probability of successIdfy with respect to invisibility is given by:

1 . 1 .
Priv[Success] = §P7‘[5 — {CVSiggy(mo,C)} : Dso(d) = 0]—|—§Pr[5 — {CVSiggy(m1,C)} : Dso(d) =
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Hence,

sPriv[Success| + 1 = Prir[Success] + 1 Pr[d «— {CVSigg, (mg, C)} : Dgo(8) = 1]
—1Prld — {CVSigg, (m1,C)} : Dso(9) = 1]
3 (Prkw[Success) — 1) = (Prar°[Success] — 3) + 1 Pr[§ < {CVSigg (mo, C)} : Dso(8) = 1]

—1Pr[§ « {CVSigg, (m1,0)} : Dgo(8) = 1]

Advle’w < 2Advé,"° %eﬁézmoml
where
egé:mo,ml = |Pr[6 «— {CVSigg;(mo,C)} : Dso(d) = 1] — Pr[d « {CVSigg,(m1,C)} : Dso(d) = 1]|

Provided signatures from distinct, independent signing leze independent, the signatures fr§in
namely,CVSigg, (mo, C) andCVSigg, (m1, C), should be independent of the view Dfy initialized
for SO’s signatures. As a resulRs, should not make a guess better than a random one. HEnge—
{CVSigg, (mo,C)} : Dso(8) = 1] ~ Pr[§ «— {CVSigg,(m1,C)} : Dgo(8) = 1] ~ 1 and the term
€30:mo.m, Should be negligible.

As a result, ifAdfug”” is non-negligible, thenﬁldvg‘?" should also be non-negligible (a contradic-
tion). In conclusion, if partial signatures generated frifferent signing keys are independent (which
is usually true), then anonymity of a CVS scheme impliesnitgsibility. |
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Appendix B: Proofs — The Security of the Generic CVS Constrution

Security of the Generic CVS Construction from IBE

Lemma 15. If the underlying ordinary signature sche$iéG is existentially unforgeable under a chosen
message attack, then the generic CVS construction is wedblg.

Proof of Lemma 15.

We prove the unforgeability property of the generic corntam by contradiction. Assumg&IG is
existentially unforgeable under chosen message attaakgpoSe there is a PPT forging algorithim
which can forge a CVS partial signature with probability utsesgoJQ_VS . We show how to construct
another forging algorithro®’ from F to forge a signature fa$ 7G.

Jf/
Setup.
Ask its challenger for the signer public kéyKs.
Run Setup to get all the witness public/private key palBKw,, skw,), 1 < < N.
RunF on PKg and(PKy,, skw,).
Query.
WhenF issues &g query for(m;, C;) whereC; = {(c;;, W;;) : 1 <i < N},
ask its signing orale for an ordinary signaturg= Sig(sks,m;).
Randomly choose;; (1 < ¢ < N) to create a partial signature:

6j = <O’j D h <@£V CL]’Z') s {EnC(PKWjZ.,CjZ‘, aji)} ,C’om (O’j, h (@f\f CL]’Z'>)>
With a;;'s, o, and all random coins used, run the confirmation protocdi wit
Guess.
F outputs a guesgn, o). Output(m, o).

Obviously, if F'is PPT, thenF” is also PPT (a¥nc andCom are also PPT). Note thaf should
outputm # my, Vj The probability of success o is:

PP = Pr[Ver(m,o, PKs) = 1] = p%"%

If the CVS scheme is forgeable, that js7" is non-negligible, thep3¢ is also non-negligible (a
contradiction). Hence, i§7G is unforgeable in the sense th:g?{G is negligible for all PPTA, then so
is the CVS scheme given by the generic construction. [ |

Lemma 16. Given a pseudorandom generator and a computationallych@immitment scheme, if the
underlying IBE scheme is semantic secure, then the gen¥i&donstruction is simulatable with respect
to the given simulatoFake.

Proof of Lemma 16.

It is easy to show that the given CVS scheme with one witnesedare, then a CVS scheme with
many witnesses is also secure. Hence, we will consider &sivithess case.

Assumel BE is IND-ID-CPA secure} is a pseudorandom generator, &n@ M is computationally
hiding. Supposé is a PPT distinguisher which has non-negligible advantégje%im in winning the
simulatability game defined in Definition 6. We can basefbto construct another distinguish& to
break the semantic security 6BE.

To avoid confusion, we should clarify that in the followinigadission, we denote the challenge ci-
phertext of the IBE game lfy;,, b € {0, 1} and the queried verifiability condition set lay;.
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D'(Cy), be{0,1}
Setup.
Ask its challenger for the public kel K of the PKG. Use it as the witness public key fof.
RunCVKGS to generate the signer public/private key gdtK g, skg).
RunD on PK¢ and(PKg, skg).
Query.
Signing Queries@s) on (m;, C;) whereC; == (c¢;, W).
- Generater; = Sig(m;, skg)
- Randomly picka; and encrypts itself to generate the partial signature:
d; = (0 ® h(aj), Enc(PKg,cj,a;), Com(oj, h(a;)))
- Based on all the random coins used, run the confirmatioropobtvith D.
Endorsement Querie®)Xg) on (¢;, W).
- Pass all endorsement queries, 1) from D as extraction queries a1 to its oracle to getl;.
- d; is equivalent tary (¢;).
Challenge.
D outputsm and(c, W) to ask for a challenge.
Create a signature; on a message: using.Sig.
Randomly pickory € S,.
Randomly picka;, ay € P;pe. Outputa; anda to ask for a challeng€’, where
o — { Enc(PKg,c,at), b=0
7\ Enc(PKg,vc, ag), b=1.
Flip a coine € {0, 1} and send the following challenge T
5 — { (oy ® h(ay), Cp, Com(oy, h(ar))), e=0
‘ (o7 @ h(ag), Cp, Com(oy, h(ay))), e=1
Guess.D outputs a guess. Outputd’ as a guess fa.

Note: (o¢ & h(at), Enc(PKg, ¢, a), Com(ot, h(at))) is equivalent taCVSigg(m, C) and
(of @ h(ay), Enc(PKg,c,ar),Com(oy,h(ay))) is equivalent tdrake(C).

Obviously, if D is PPT, so isD’ (assumingEnc, h andCom are all PPT). In the following discus-
sion, we abuse the notation — we wrilJ) instead the full notatiorD (6, m,C). Hence,(m,C) is
always part of the input t® and the associated algorithms. Again, we abuse the nothgiaariting
Enc(PKg,c,a) asEnc(a).

The probability of success @’ is given by:

PriBE[Success] = Pr[b/ = b|Cy)

D ~ irio) : 015, = oy o) Boct) Com, )
YLPID(3,) = 015, = {77 & hay), Bnc(a), Com(oy, h(ag))
+%PT[D(58) = 1[0 = (o¢ ® h(ar), Enc(as), Com(oy, h(ar)))]
+3Pr[D(6) = 1|6c = (oy @ h(ay), Enc(ay), Com(oy, h(ay)))].

Note that

Priim[Success] = $Pr[D(s 0|0e = (o¢ @ h(ar), Enc(ar), Com(oy, h(at)))]
=1

de = (of ® h(as), Enc(as), Com(os, h(ays)))].
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SubstitutingPriPE [Success] into Pri™[Success], we have

sPr3im[Success] = PriPF[Success]
—%Pr[D(ée) = 0[6e = (o @ h(ayf), Enclay), Com(og, h(ay)))]
—3Pr[D(dc) = 1]6. = (o¢ @ h(ar), Enc(ay), Com(oy, h(ay)))]
= PriBP[Success] — &
+1Pr[D(S.) = 1|6, = (0} @ h(ay), Enc(ar), Com(o s, h(ay)))]
—1Pr[D(6.) = 1|6, = (o1 ® h(ay), Enc(ay), Com(oy, h(a)

Subtracting% and then taking absolute values on both sides, we have

FAdvE™ < AdvFPE + L Pr[D(6.) = 1|6 = (o @ h(ay), Enc(a;), Com(ay, h(ay)))]
—Pr[D(0¢) = 1|0c = (o¢ ® h(ay), Enc(af), Com(oy, h(ar)))]|.

Letep denote Pr(D(d.) = 1|6 = (o5 @ h(af), Enc(ar), Com(os, h(as)))] — Pr[D(0.) = 1]0. =
(ot®h(ar), Enc(ag), Com(oy, h(ay)))]|. Then we could viewp as the advantage @ in distinguishing
the following two distributions:

Af={m — M;c—C;o5 — Sy;a,d" — Prpg : (o5 ® h(a), Encw (c,a’), Com(og, h(a)))},
Ay ={m — M;c«— C;or — {Sigs(m)};a,d’ «— Pipg : (6¢ & h(a), Ency (c,a’), Com(oy, h(a)))}

We argue thaEncyy (¢, a’) would not have useful information to helpin distinguishing the above
two distributions as anda’ are picked independently; even if one know how to deciptyy (c,a’) to
obtaina’, o’ has no useful information aboutwhich is needed to tell whether a givértomes fromA ¢
or A,. If ep is non-negligible, then it is straightforward to constrérom D another algorithmD” with
an advantagep» = ep to distinguish the following two distributions:

Iy ={m «— Mo — So;a — Prpg : (0 ® h(a),Com(os, h(a)))},
I; = {m « M;o, «— {Sigs(m)};a «— Prpg : (o0 ® h(a), Com(ay, h(a)))}

The idea of the construction @” is when a challengéo @ h(a), Com(o, h(a))) (Whereo could be
equal too, or o) is received,D” randomly picksa’ € P;pg, createsEncy (c,a’), and add it to the
challenge to create a new challenge® h(a), Ency (c,a’), Com(o, h(a))) for D.

The advantage of reducing the problem of distinguisiingl1, to that of distinguishing\ ;/A; is the
adaptive queries, more specifically, the endorsementegian the simulatability game would not help
in any way in distinguishindl; andIl;. In other words, we do not need to take into account of adaptiv
queries while showing the indistinguishability betweldp andII;. Besides, the indistinguishability
betweenll; andIl; implies that ofA ; and A, in the simulatability game.

Let ¢, and ecops be the indistinguishability coefficients of the pesudo@andgenerator and the
commitment scheme. Recall thatdenotes the advantage of the best PPT distinguisher inglisshing
between the output distribution of a pseudorandom genetato{0,1}» — {0,1}* and a uniform
distribution over the output space bf that is, betweedz « {0,1} : h(x)} and{y « {0,1} : y}.
Whereas¢cons denotes the advantage of the best PPT distinguisher inglisshing between the output
distributions of the commitments of two different input wes, say; andoy, that is, betweerr «
{0,1}* : Com(oys,7)} and{r « {0,1}* : Com(oy,7)}. Now, we can show the indistinguishability
betweenll; andIl;. In the following discussion, if{ andY” are computationally indistinguishable, we
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denoteX = Y. The proof below is based on the standard hybrid argumentLamuna 1.

I, ={m— M;o; — {Sigs(m)};a — Prpg : (6t ® h(a),Com(o, h(a)))}

>~ {m «— M;oy — {Sigs(m)};r — {0,1} : (oy ® r, Com(oy, 7))} (with €p,)

>~ {m «— M;oy « {Sigs(m)};r, 7"« {0,1}s . (+/,Com(os, 7))}

> {m — M;op « Spymr’ {0, 1} 2 (¢, Com(ays,7))} (with econr)
> {m — M;op — Syy1 {0,112 (of @7, Com(op,7))}

= {m «— Moy — Sp;a «— Prae : (0 @ h(a), Com(os, h(a)))} (with ep,)

As aresultep = epr < 2¢;, + €conm- Substituting back, we have

%Adv%m < Advé?E + %Eh + %ECOM
Advis)lm < 2Adv{)j,BE + €, + %GC’OM-

If we assumeC'OM is computationally hiding and is a pseudorandom generator, then bgtrand
econm should be negligible in their security parameters. Consetly if Adv%'m is non-negligible, the
only possibility is eitherAdvIPF is non-negligible, meanin®’ could break the semantic security of
the IBE scheme (a contradiction). In other words, the seimaeturity of the IBE scheme implies the
simulatability of the CVS construction with respect to theeg construction ofake. SinceFake is
PPT, we could conclude that the given generic CVS constmiesi simulatable. |

63



Appendix C: Proof — Semantic Security of the IBE Constructian from
CVS

Proof of Theorem 18.

Now, we show that the above construction satisfies the dondifor IND-ID-CPA secure IBE. We
assume the CVS scheme is simulatable with respd€ikte. Suppose the above constructed IBE scheme
is not IND-ID-CPA secure, that is, there exists an advers@ryhich can win thdND-ID-CPA game
with a non-negligible advantagédvIPF. In other words, given a ciphertegn, &,, PKs) whered,, is
a valid/fake partial signature whén= 0/1, D could tell whether the plaintext bit= 0 or b = 1 with
a non-negligible advantage. Up to this point, it is cleat thaould be used to break the simulatability
property of the underlying CVS scheme with respecFédke. However, for completeness, we show
how to construct another adversdpyfrom D to tell whether a given partial signatusgoriginates from
CVSig or Fake.

D'(6)

Setup.

Get the public key’ K of the witness from its challenger. R@hon PK.
Get the signer’s public/private key paiP K g, skg).

Query.

Extraction QueryID;). Pass all extraction queries fraito its endorsement oracle.
Challenge.

D outputs] D to be challenged. (Note the plaintext could onlyCher 1.)
Randomly select a messagec M.

Passn, ID to its challenger and receive the challerdge

Pasx, = (m, &, PKg) as a challenged ciphertext 1.

Guess.

D outputs a guess. Outputd’ as a guess far.

It obvious that the advantage Bf with respect to CVS simulatability is the same as the adggnta
of D on breaking the semantic security of the IBE scheme. Hehtiee ilatter is non-negligible, so is
the former, a contradiction as we assume the given CVS scigesimulatable with respect teake. In
conclusion, the constructed IBE scheme is semanticallyreeas long as the CVS scheme is simulatable.

|
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Appendix D: A CVS Construction based on Verifiable Encryption (VE)

In [1, 5], a fairly general technique called verifiable emptign (VE) which encrypts and runs a proof
protocol simultaneously is proposed. This technique has beed for constructing designated confirmer
signature schemes by Goldwasser et. al [28]. For any bimdagion’R on which a>-protocol for proof

of knowledge exists, the VE technique could be used to ent¢mgowitnesaw for a certaine (such that
(z,w) € R) while at the same time prove to the recipient that he isyealteiving an encryption ab.

In VE, the resulting communication transcript is used aseiingryption ofw. As this technique is fairly
general, we could use it to construct a CVS scheme with anystiBiEmes if there is no design restriction
forbidding the merge of the blinding mechanism and the coriion protocol into one entity. To use
VE for efficient CVS construction, the only restriction isthhe verification function of the underlying
signature scheme is a certain homomorphic one-way funoticsome encoding of the message. In fact,
most standard signature schemes like RSA and ElIGamal b&ddhg type as illustrated in the following
example.

Example 1

RSA We consider the simple hash-and-sign RSA signature. Thiicidy is (n,e) wheren = pq
for some large primep and ¢, anded = 1 (mod¢(n)). The signature of a messageis o =

2

h(m)? modn. To verify, check i&* = h(m) modn.

Let f(z) = z° modn. Given two signatures, and o, for two messages:, andm, it is easy to
see thatf(ogo1) = (0001)¢ = o§o] = f(00)f(o1) = h(mo)h(m1). Thatis, a signature is the
homomaorphic pre-image gf on the hashed message.

For simplicity, we show how to construct a CVS scheme withnglsi witness out of VE; a straight-
forward extension with multiple witness is possible.

Suppose the verification equation of a certain existegtiatiforgeable signature schemdéG for
a message signature pdin, o) is: f(o) o and f is homomorphic in the sense thatogo) =
f(oo)f(o1) wherer denotes some encoding em. Denote the signer and the recipient Syand V'
respectively, and leEnc(r, I D, x) be the encryption function of a semantically secure IBE oreasage
x for an identity/ D with a random coirr.

Given a message, a condition statememtand its ordinary signature, the partial signature gener-
ation and confirmation protocol constructed based on VE islasvs (Depicted below is just a single
round of iteration):

1. Commit: S randomly picksy € S from the signature space 6f encryptsy andyo respectively to
getey = Enc(rg,c,v) ande; = Enc(ry, ¢, yo) whererg, r are just random coins for encryption.
S computes? = f(y). S givesV the following: 3, ey, e1. Note thatf is the signature verification
equation.

2. Challenge V flips a coinb € {0, 1} and send$ as a challenge faf.

3. Response S repliesV with the following:

_ (T ) )7 b=0
(up, vp) = { (7‘?,’7}/0), b=1

4. Verify : V checks the following:
fb=0, checks = f(vo); eo < Enc(ug,vo)
If b=1, checkgm < f(v1); e1 < Enc(ui,vy)
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Supposé; is the negation of; with definition as follows:

— 0, b;=1

bi = { 1, b;=0
In each round, the probability that the signgrcould cheat successfully |§ the successful cheat-
ing probability for all £ rounds becomeg%. Besides,b cannot be all zero in all thé rounds. If
the verification test is passed for &l rounds, the resulting partial signature would be theiple
{(biavbi7€a) : 1 < i < k}. In each round, the responses to all (two) possible chalehg= 0 or
b = 1 are computed (resulting in and~o) and encrypted (to givey ande;) by S which in response to
the challengé would reveal one of them,. Once the remaining encrypties is decrypted, the recipient
could recovew using the previously reveled response and the challengeexample, if the challenge
b = 0 in a particular round(0, v, e;) would be the partial signature output for that round; oacés
decrypted using the witness signatures,for that round is recovered, from whiehcould be recovered
dividing vo (obtainable frome;) with ~. In order to ensure a reasonably high probability to recever
all £ tuples need to be stored by the recipient although one of thesulfficient for recovering if the

signer is honest.
As can be seen, the partial signature size could be conblgidasige in some cases.
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Appendix E: A Possible Construction for the Homomorphic Mapping

The normN (e) for the extension field,, is defined as follows.
Definition 16 For anye € F,;, N(e) € F,, is defined by:
N(e)=exel ... xel =@ -D/e-1
The norm satisfies the following properties:
1. N(ere2) = N(e1)N(e2), Ver,ex € Fpy;
2. N mapsF, ontoF, andF; ontoF;;

3. N(a) =d!, VacF,

A Example Construction

Lets =1/l mod(p — 1). We construct the invertible group homomorphisif}, — I, as follows:

fla) =a, Va € Fp,
f7He)=N(e)*, VeeF,

We could check the correctness of the inverse as follows.
Foralla € IF),

U (f(@) = fHa) = N(a)’ = (d')* =a

We could check the homomorphic property as follows:
For anyaq,as € Fp,

flaraz) = ara2 = f(a1) f(a2)

For anye;, es € Isz,
fM(erea) = N(erea)® = N(e1)*N(e2)® = f~ (ex) ' (e2)

Sincep is a safe primep — 1 = 2n wheren is a composite of large primes. In most cagesjould
be much smaller that any primein As a result, ifl is odd,! is prime top — 1 and we could easily find
sasl~! mod(p — 1) using the extended Euclidean algorithm/ i§ even, we need to find the image of
the inverse mapping as tlie- ¢th root in Z;. To find s, we could break dowi as2/’ so that!’ is odd
and should be prime tp — 1). The inverse of’ in Z,_; can be computed using the extended Euclidean
algorithm, from which we could find th# — th root in Z;. To find thel — th root, we can take square
root modp on thel’ — th root, which has an efficient algorithm [32].

To ensure that such computation is possible for the redipiile running the confirmation protocol,
we need to restrict to using evenn computing the pairings.
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Appendix F: Security Analyses of the Pairing-based CVS Cortauctions

Proof of the CVS Unforgeability Theorem

We are going to prove that given a signature scheme exiabgntinforgeable against a chosen message
attack, a CVS scheme constructed from it using a PPT blindiaghanism is also unforgeable. When
we say a given signature scher§éG is existentially unforgeable against a chosen messagekatta
we mean that any PPT adversary, allowed access to a sigracte avhich returns valid signatures on
messages chosen by the adversary, cannot create a vabdusgyon a message not previously queried
to the signing oracle except with negligible probabilitytémms of the security parameter.

Proof of Theorem 20.

Assume thaS G is existentially unforgeable under a chosen message atatk is a PPT blinding
mechanism irC'V S for creating partial signatures from an ordinary signairé/G. Suppose there
exists a PPT forgef which can break the unforgeability ¢fV''S. Note thatB would only take an
ordinary signature of /G, witness public keys and condition statements as inpuératise, it is inap-
plicable for generating partial signatures. Then, we cagle.F to construct a forgefr’ to create an
existential forgery foiSIG. The forging algorithmF”’ runs as follows:

F' gets the signer public kef? Ks from its SIG challenger and run€VKGW to generate a set
of witness public/private key paif§ PK;, sk;)} and runF on the keysPKg, {(PK;, sk;)}. WhenF
makes a signing query on a message and a set of verifiability condition§’;, 7' passesn; to its
own signing oracle to query an ordinary signatatreand then rund3 ono; to create a partial signature
;. F' returnsd; to F and uses the knowledge of and all the random coins used Byto carry out a
confirmation protocol withF, and this completes the reply to the query madefhbyFinally, 7 has to
output a message signature pair, o); 7' passes this as its output to tiéG challenger.

Obviously, if 7, B and the key generation algorithms are all PPT, s#’is Besides,F’ perfectly
simulates the adversary environmentfarandF should return, with a probability of succqééF‘CVS,

a valid message signature pin,o) with m # m;, Vj. Note thato is a valid ordinary signature
of SIG for m. Then the probability of succegsy “’“ of 7 in creating an existential forgery for
SIG is pH =V 1f pF=CV5 is non-negligible in the security parameterso isp’ —*/“, which is
contradictory to the assumption thaf G is existentially unforgeable. Hence, the resulting CVSesch
built on STG and B must be unforgeable $7G is unforgeable. |

Security Analysis for the Pairing-based CVS Construction ér Elgamal Signatures
Proof of the Simulatability Property (Claim 21)

Given a signer public key paily, ys), witness public key$P;,Y;),1 < i < N, and a set of condition
statementsg;, breaking the simulatability property of the Elgamal bag€adS scheme is in essence to
distinguish which of the following two distributions a givéupleé = (v, z, Uy, Us, ..., Un) belongs to:

e CVS(N) = {(%z, U1,Us,...,Un) 17 < Gya = Dlog, (¢"™y2);r — L3 Uy = v Py 2 = f(a) [T, yf}

o FAKE(N) = {(’y,z,Ul,Ug,...,UN) iy Gra— Tir — Z5 Ui = 1Pz = fa) 1Y, y}

wherey; = é(Y;, H(¢;)). The first one is the distribution of a partial signat@¥Sig whereas the
second one is that of the output of a simulgake. Of course, an adversary is allowed to make queries
on other partial signatures and simulator outputs befareiviang such a problem as a challenge.
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Proof We first show that simulatability could be achieved by theafigl CVS construction for the
single-witness case in the random oracle model if the da@sibilinear Diffie Hellman problem is hard.
Then we give a security analysis to discuss why the simuldyaproperty for the single-witness case
implies that of the multiple-witness case.

Security Analysis for the Single-Witness Case

To prove the simulatability property, we need to show thatrehis no PPT algorithm which can
distinguish the following two distributions with a prob#tyi of success significantly better than a wild
guess (even allowed to make CVS signing quefigsand endorsement querié€ks):

e CVS(1) = {(’y,z,U) iy — Gia= Dlogy(gh(m)yz);r —ZyU=rP;2= f(a)y{}
o FAKE(L) = {(’y,z,U) iy Gia— Lyir — Ly, U =rPi5z = f(a)y{}

where(Py, Y1) is the public key of the witness and = é(Y1, H(c)) for a condition statemerat

Instead of proving the simulatability game, we prove ano#impler one. We replace in the
first distributionCVS(1) by a random number picked by the adversary instead of a pénedElgamal
signature of a message picked by the adversary. That is, wetd@stricta to be part of the Elgamal
signature but a random number picked by the adversary. IDetahe new game is as follows:

GameA

The challenger run€VKGW(1*) to generate the witness private keyand public key(P;, Y1) where
Y1 = x1 P, but no signer key is generated as before. In fact, the padheo§igner is absent in this new
game. The adversary is allowed to make endorsement querasyacondition statement of his choice
as before to obtain a witness signatute= =1 H (c;). When the adversary is ready for a challenge, it
outputs a random numberand a condition statement The challenger flips a coih € {0,1} and
outputsd, = (zp, U) as the challenge, wherg = f(ap)é(P1, H(c))™* andU = r P, for some random
r picked by the challenger but unknown to the adversary. Wher0, the challenger setg, = a; when

b = 1, the challenger randomly picks and setsy, = a/. The adversaryd has to output a guess for

b and its advantage is defined 4gvG*™*4 = | Pr(t/ = b] — |. The adversaryl wins if AdvG®™e4 is
non-negligible in the security parameter

We could prove that the CVS construction for Elgamal sigrestus simulatable with respectfake
if the probability of winningGameA is negligible for all PPT adversaries. The argument is devid:
We could show by contradiction. SuppoSameA is hard but there is a PPT distinguishBrwhich
could break the simulatability property of the CVS condlinrg, we could construcD’ based onD to
win GameA. First, D’ generates the needed signer public/private keys and passdiD together with
the witness public key it gets from its challenger. Whenehiera signing query fronD, D’ creates
a partial signature itself. When there is an endorsementyqii® queries its challenger and relays the
reply back taD. Finally, D outputs a message and a condition statemento be challengedD’ creates
an Elgamal signaturéy, a) onm and outputs: andc as its own challenge request. When gets its
challengey, = (23, U), it passegr, z,U) as a challenge t®. Note that there is only one possible value
for a in Z; (the one picked byD’) that would fit+ to satisfy the verification equation of the Elgamal
scheme; hence, for any picked by the challenger, it will not satisfy the Elgamalifieation equation.
In other words, whem = 0, the challenge, is a CVS partial signature for messageand condition
statement, otherwise g, is indistinguishable from a simulator output forThis thus perfectly simulate
a challenge forD. Finally, D outputs its guess’ of b; D’ outputsd’ as its guess. Obviously, D can
break the simulatability property with non-negligible adVageAdvf)im, thenD’ can winGameA with
the same advantage, thatMvg?m“’A = Adv%m. This concludes the reduction.
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We could show that iff is a random oracle, making polynomially many endorsementigsi of
¢; # c (wherec s the challenged condition statement) would not help imivig GameA. The steps are
similar to those in Boneh and Franklin's IBE [2]. In detaige define a new gam@ameB and show
that the difficulty of winningGameB implies the difficulty of winningGameA. A detailed description
of GameB is as follows:

GameB

The challenger picks a witness public k¥, Y') whereY = P for some randomly picked € Z;.
Then the challenger picks a randgine G, and gives(P,Y') and(@ to the adversary. The adversary
outputs a numbet € Z, to be challenged. The challenger flips a coig {0,1} and outputsp, =
(f(ap)e(P, Q)*",rP) for a randomly picked € Z;. Whenb = 0, a; = a; whenb = 1, the challenger
randomly picksa’ € Z, and setsy, = o’. Finally, the adversary has to output a gu&sfor b. The
adversary wins the game §f = b and its advantage is defined dgvG"™*® = |Pr[t' =b] — 1|.
GameB is said to be hard iﬂdvﬁ“meB is negligible in the security parameterfor all PPT adversaries.

We now show how an adversafy with a non-negligible advantage of winnigameA could be
used to construct another adversaryfor GameB if H is a random oracle and why other (polynomially
many) endorsement queries would help considerably in imedpliving Game A for a particulare.

D’ gets from its challenge® and the witness public ke, Y') whereY = 2P for some unknown
r € Z; and givesD the public key(P,Y") as well as the random oracle hash functign Note that in
the random oracle model) is forced to query an oracle under full control Bf in order to evaluate
H. HereH is controlled byD’ as described below; how the endorsement queries are haisdisb
described.

H Queries: D can query the random oracl¢ at any time. To respond to these queri®$,maintains
alist H — list of tuples(c;, Q;,t;, coin;) whose details are as follows. Note thatc {0,1}* is
the condition statemen®; is the responsél (c;), t; € Z, andcoin; € 0, 1. Initially, H — list is
empty. WhenD queries the oraclél with a condition statement;, D’ responds as follows:

1. All the previous queries are kept i — list; if the current query; is in the list, return the
previous responsf (c¢;) = Q.

2. If not, it generates a new one as follows: it first picks adman numbert; € Z; and then
flips a coincoin; so thatPr|coin; = 0] = a. If coin; = 0, it computes)); = ¢;Q returning
H(cj) = t;Q; otherwise, it compute§); = t;P returningH (c;) = t;P. The new entry
(¢j,Qj,t;, coiny) is added tad — list. Itis clear thatD’ cannot distinguish the query output
from a random one.

Endorsement Queries: When D' is asked for an endorsement queryit responds as follows: K; is
in the H — list, it retrieves the corresponding tuple, otherwise gensrateew one and adds the
tuple back to theld — list. Note that ifcoin; = 1, D’ could answer the query, otherwise, this run
fails. The response dD’ to endorsement queries is described below.

1. If H(cj) = Q; = t;Q, this run of D’ fails.

2. Otherwise H(c;) = t; P and D’ returns the query resultd (¢;) = t;Y. Note thatt;Y =
tjixP = xt; P = xH(c;).

Then, D outputs a numbeu € Z; and a condition statementfor challenge. D’ looks up the
H — list for c; if the random coin in the tuple i, then H (c) = tP (for somet € Z;) and D would
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not help in solvingGameB and this runs ofD’ fails. Otherwise,H (¢) = ¢@, and D’ sends out: as
a challenge request to its challenger which return the ehglly, = (25, U) = (f(ap)é(P, Q)*",rP)
wherea;, = a whenb = 0 anda;, = o’ whenb = 1 for some unknown random numb&r D’ computes
V = t~1U sends ouby, = (2, V) as a challenge td®. It could be seen that = ¢t~'U = ¢~1rP and
e(P,H(c))! '™ = &(P,tQ)! '™ = ¢(P,Q)™ = z; hencey, is a valid challenge t@. D’ continues
answer queries as before. Finally,outputs its guest for b and returng’ as its own guess.

If D’ does not abort during the simulation, the adversary enmieont viewed byD is identical to its
view in the real attack, and th&dvg?meB = Advg“meA. What remains is to calculate the probability
that D’ aborts during the simulation. SuppaBémakes at mosjz endorsement queries. The probabil-

ity that D’ does not terminate equalsg,.. = a(1 — «)?. Note thatpyc. < (ﬁ) (1 — ﬁ) =

m (where e is the base of natural logarithm), and by choosihgroperly, we could achieve

this maximum probability of successfully running’. Taking the optimal, we haveAdvg?meB =

_ 1 GameA
eram) AVD™

We now can show thatfameB is hard based on the decisional bilinear Diffie Hellman (DBDH
assumption. We show how an adversarwhich have a non-negligible advantage of winnigmeB
could be used to solve the DBDH problem in the following camstion of D’: Given a problem instance
(P,zP,yP, 2P, e) for the DBDH problem,D’ sets(P,Y) = (P,zP) and@ = yP and sends them to
D. D outputs a numbes for challenge. In returnD’ setsyy, = (f(a)e, 2P) as a challenge foD.
Finally, D outputs its guesk’. If & = 0, D’ outputs that P, z P, y P, 2 P, ¢) is a BDH tuple, otherwise, it
outputs not. Note that, & = é(P, P)*, thenf(a)e = f(a)é™* andyy, = ¢o in GameB. Whereas,
if e # é(P,P)*, f(a)e could be re-written ag(a)e = f(a')é(P, P)*¥* for some unknowrn:’ where
fld) = % andy, = 1 in GameB. This is perfectly simulated adversary environment the
same as that iGiameB. The advantageldvBPPH of D’ in solving the DBDH problem is the same as
AdvgameB.

Putting the pieces together, the hardness of/#teD H problem implies the hardness 6lameB
which in turn implies the hardness 6fameA if ¢ is polynomial. Finally, the hardness 6fameA
implies the hardness of breaking the simulatability propef the Elgamal CVS construction. Overall,
if D could break the simulatability property of the CVS condiarc with a non-negligible advantage
Advf)im, then there exists an algorithm’ (constructed based aR) which could solve the decisional

bilinear Diffie Hellman problem with an advantagelv /" = i Advy™.

Security Analysis for the Multiple-Witness Case

We prove by contradiction. We assume the simulatabilitypprty is achieved in the single witness
case. Suppose there is a PPT distinguighgrwhich can break the simulatability property fosr > 1
where N is the number of withesses. We show how to construct anotisénglisherD,, based on
Dy, which could break the simulatability of the single-witaesmse, that is, distinguishing which of the
following two distributions a given tupléy, z, U) belongs to:

e CVS(1) ={(7,2,U):v < Gya= Dlog,(g"™yd);r « 23U =7rPjz = fa)yi}
o FAKE(L) = {(y,z,U) iy = Gia— Lyir — LU =1P52 = f(a)y’l”}
where(Py, Y1) is the public key of the witness and = é(Y;, H(c)) for a condition statemerat

The construction of; (based orDy) is as follows:
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In the setupD; asks its challenger for the signer’s private and public k&ys= z; andPKg = y;
respectively, and the witness public kBY<; = (P, Y1) whereY; = z; P; for some unknown; € Ly.
Without loss of generality, we set this 88, for the multiple-witness case. TheR; creates the public
and private keys for other witnessg§,2 < i < N as follows: Uniformly pick randonx;, ¢; € Z; and
computeP; = t; P, andY; = z; P;. The public key for witnes$V; is (P;,Y;) = (t; P, x;t; Py). Sincet;
andx; are randomly picked, the resulting distribution of the p/pbrivate keys of each one of the last
N — 1 witnesses are the same as that generated\MiyGW.

D, answer queries fromy in the following way: WhenDy makes a signing query); creates a
partial signature itself as it knows the signer’s privatg kg. To answer any endorsement queries on
a condition statement for witne$®;, D, makes an endorsement query to its challenger on the same
condition statement and passes the result badRpyo For the endorsement queries for other witnesses
W;,2 <i < N, Dy answers them itself using the private key

When Dy outputs a message and a condition se€ = {(¢;,W;) : 1 < i < N} asking for a
challenge,D; outputsm and (¢;, W7) as its challenge request. It is possible that ;) has been
queried before as there is no restriction in our definitiorsiofiulatability that(c;, W;) has to be a
new one; at least one df;, W;) not previously queried would constitute a valid challengguest.
We will discuss later about abortion probability of this. tles continue assuming, W) is a new
condition. D; receives its challeng® = (v, z, U;) whered, € CVS(1) whenb = 0 andj, € FAKE(L)
whenb = 1. Note thatU; = rP; for some unknown € Z; andz = f(ap)y] = f(ap)e]'” (where
y1 = é(Y1,H(c1)) ande; = é(P1,H(c1))) with ao being part of a Elgamal signature and some
randomly picked numberD; computes the following foR < ¢ < N: U; = t;U; (Note thet;U; =
tirPy = rP.), y; = é(U;, H(¢;))™ = é(P;, H(c;))™ (using the secret keys;,2 < i < N) and
2= 21N, ur = flap)yy TIN, v = f(a) TIY., yi. D1 passes the following as a challenge foy;:

6, = (v,2,U1,Us,...,Up). It could be seen thal, € CVS(N) if 6, € CVS(1) (b = 0), whereas
0, € FAKE(N)if &, € FAKE(L) (b =1).

Dy could continue making signing and endorsement querie&:; J#17) is in the query, then this
run fails. Otherwise, whei®  outputs its guess' for b, D, outputsh’ as its guess fob. Obviously, if
Dy is PPT, so isD; and the advantage db; is the same as that dbyy, that is, Advy™ = Adv%’;”,
providedD; does not abort in the simulation. Now, it remains to find ot pinobability of success of
D;. Note that no matter how many queries out of the requestdtena condition sef(c;, W;) : 1 <
i < N} are made byDy, Dy must answer at least one of them directly according to theitiefi.

In that case, if(c;, W7) is in the remaining subsef); makes a successful run, and the probability of
that ispsucc = 3. Overall, the advantage db; is Advy™ = %Advf}ﬁ. Taking the results of the
single witness case here, if there exists a PPT distingurslaging ¢z endorsement queries in breaking
the simulatability of the Elgamal CVS construction withwitnesses with a non-negligible advantage
Adv™(N), then there exist®’ which could solve the DBDH problem with an advantagéy 5501 =

7N6(11JrqE)Advffm(N). As a result, ifAdvEBPH is negligible in the security parametarfor all PPT

algorithm D, so isAdv%"m(N) provided bothN and gz are polynomially many. In fact, in the real
cases,N would usually be a very small integer, usually 10, so the restriction would be fulfilled
without mentioning. |

Proof of the Zero Knowledge Property of the Confirmation Protocol (Claim 22)

The confirmation protocol for the Elgamal based CVS constincsatisfies the property of complete-
ness, soundness, and zero knowledge as follows.
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e Completeness. Since the signer knows anda, he could always computes (in response to the
challengeb) 6 in step 3 which passes the verification in step 4 provided baafe all the steps.
Consideringg = 0, # = u, then

e?w; =el =1;;

b = ee
?
A=) (T o)) s~ (T o

) = ’yfil(zni\;ly;‘) = t.

Consideringg = 1,0 = u + r, then
+r -1

0, —b_ 6 _ _u U, .
W, =€, =ew, T =ereje, =ty

007 I ) (T 89 7 (0 ),
b I o @ TR T 0) o @)y ([ ) oy (L )

€

Note for the casé = 1, we use the homomorphic property thfat!(f(a)e) = af~!(e), Ya €
L, € € Fﬁ,. If a valid signature onn could be recovered from, then~® should be equal to

¢"™)y7 which is equal tap. Hence¢ = v/ (TIX1%"") which concludes for the case= 1.

~% = ) or 3i, U; # rG;. By following the protocol procedures, the siglﬁérlcouldangive
a correct responsé when the challenge is 0. However, when the challenge is 1a83 he
test in step 4, the signer needs to find a solutidior eithere? = t;w; or f~1(z Hij\il yi) =

af [T, v?). Either one is equivalent to the DL problem@s.

On the other hand, suppose now the signer bet that the chelleill be 1, he tries to deviate
from the protocol. He could randomly pickdeand compute; andt which satisfy the verification
equation in step 4, and give theseandt to the verifier in step 2. However, if the challenge is 0,
he could not find: satisfying the equations’ = t; = e?wi‘l which is the DL problem again.

e Soundness.Suppose the set of equations does not hold, in particfifal HNZ ) # a (where

Hence, the signer could cheat successfully in each rourtdanitrobability of success equal %o

e Zero-Knowledge. We need to find a PPT simulator which can simulate the outpuistript
without any interaction with the signer. As in the soundngad, the simulator even having no
knowledge about andr could always give a correct response to a prepared challengef the
two possible challenges) in each round. Using this stratatiythe standard rewinding technique,
the simulator could generate a transcript indistinguihflom the true transcript recorded during
a confirmation protocol run. The operation is as follows: $imeulator runs the signer and verifier
algorithms of the confirmation protocol to emulate a proafried out. In each round, if the
challenge is the same as the prepared one, the simulatologdesthe next round, otherwise, it
rewinds the protocol back to the start of the current rourtistarts with a new prepared challenge.
On average, 2 iterations would enable the simulator to cetefithe generation of one round of
transcript. Hence, the transcript simulator is PPT.

Security Analysis for the Pairing-based CVS Construction 6r RSA Signatures
Proof of the Simulatability Property (Claim 23)

The steps of proving that the RSA CVS construction is sinatilgt is almost the same as that in the
Elgamal CVS construction. What we need to show is the hasdoBSame A implies simulatability in
the single witness case described below.
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Proof
Security Analysis for the Single-Witness Case

We could prove that the CVS construction for RSA signatusesirhulatable with respect teake if
the probability of winningZameA is negligible for all PPT adversaries. The argument is devid: We
could show by contradiction. Suppo&&meA is hard but there is a PPT distinguishierwhich could
break the simulatability property of the CVS constructiarg could constructD’ based onD to win
GameA. First, D’ generates the needed signer public/private keys and passttiD together with the
witness public key it gets from its challenger. When ther® s&gning query fronD, D’ creates a partial
signature itself. When there is an endorsement guetygueries its challenger and relays the reply back
to D. Finally, D outputs a message and a condition statementto be challengedD’ creates an RSA
signatures onm and randomly picks a number € Z? to createy = ao. D’ outputsa = f1(a) andc
as its own challenge request. WhBngets its challengé, = (z;, U), it passeg~, z, U) as a challenge
to D. Note that there is only one possible value foin Z; (the one picked byD’) that would have
f~'(a) = o able to retriever from ~; hence, for any/’ picked by the challenger, it will not recover an
RSA signature satisfying the RSA verification equation. thmeo words, whem = 0, the challengey, is
a CVS partial signature for messageand condition statement otherwise g is indistinguishable from
a simulator output foe. This thus perfectly simulate a challenge for Finally, D outputs its guess of
b; D' outputsb’ as its guess. Obviously, iD can break the simulatability property with non-negligible
advantageddv;™, thenD’ can winGameA with the same advantage, that isfoGime4 = Advyim.
This concludes the reduction.

Security Analysis for the Multiple-Witness Case
The reduction is the same as that in the Elgamal CVS congiruby replacingf by f o f;.

Proof of the Zero Knowledge Property of the Confirmation Protocol (Claim 24)

The confirmation protocol satisfies the completeness, smasdand zero knowledge properties as fol-
lows:

e Completeness. Since the signer knows anda, he could always computes (in response to the
challengeb) 6 in step 3 which passes the verification in step 4 provided baafe all the steps.
Consideringy = 0, thenf = v andy = v modp, then

5(v¢)? = s = v modn = (¢ modn)¢ modn,

Ot =ef = e =t; and

FOTIY, v¢ = f(v modp) T, yt =t.

Consideringy = 1, thend = u + r andy) = (a modn)(v modn) modp, then

Q

5(v¢)® modn = 57¢ modn = v®(ac)® modn = véa®c® modn = (av)¢c® modn
= (¢ modn)¢h(m) modn,

—b 0 u+r 4—1

6 _ _ N T e A
ew, =€, =e w;, =elee =t

(W) [T ¥¢ = f(av modp) [T, v = f(a modp) f(v modp) TTY, v [T yr
— (flamodp) TV, o7 ) (v modp) T, ) = =t.

Note here we use the homomorphic property thatiaz) = f(a1)f(a2), Yai,as € Zy,.
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e Soundness.Suppose the set of equations does not hold. By following tb&opol procedures,
the signer could always give a correct respo@isghen the challenge is 0. However, when the
challenge is 1, to pass the test in step 4,there is only aesinghhich could satisfy the first
equation. To find a value d@f which could satisfy the last two equation with a fixedthe signer
needs to solve the DL problem. Unlike the EIGamal case dészlipreviously, there is only a
singled which is the right answer and finding it is equivalent to the @bblem.

On the other hand, suppose now the signer bet that the challetfi be 1, he tries to deviate from
the protocol. He could randomly pigkandi to compute a set of values fert¢; andt¢ satisfying
the verification equation in step 4, and give thedg andt to the verifier in step 2. Since there are
three constraint equation for two variables, there is asiggt which works for a particular choice
of (0,%). If the challenge is O, to satisfying the first equation f@nsiture verification, he needs
to find u to make the last two equations hold, which is equivalent éoDh problem again.

As a result, the signer could cheat successfully in eachdreith a probability of success equal
tol.

e Zero-Knowledge. As in the soundness part, the verifier could always give aecbresponse of a
prepared challenge (out of the two possible challengesadh eound. Using this strategy with the
standard rewinding technique, the signer could simulatarescript that is indistinguishable from

the true transcript recorded during a real confirmationqmaitrun. The construction is similar to
that in the EIGamal based CVS construction.
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