
Secure Delegation of Elliptic-Curve Pairing

Benôıt Chevallier-Mames1, Jean-Sébastien Coron2, Noel McCullagh3?,
David Naccache2, and Michael Scott3?

1 Gemplus Card International
Applied Research & Security Centre

Avenue des Jujubiers, La Ciotat, F-13705, France
benoit.chevallier-mames@gemplus.com

2 Gemplus Card International
Applied Research & Security Centre 34 rue Guynemer, 92447 Issy-les-Moulineaux,

France
{jean-sebastien.coron, david.naccache}@gemplus.com

3 School of Computing
Dublin City University

Glasnevin
Dublin 9, Ireland

{noel.mccullagh, mike}@computing.dcu.ie

Abstract. In this paper we describe a simple protocol for securely dele-
gating elliptic-curve pairings. A computationally limited device (typically
a smart-card) will delegate the computation of the pairing e(A, B) to a
more powerful device (for example a PC), in such a way that:

1. the powerful device learns nothing about the points being paired (A
and B), nor about the pairing’s result e(A, B),

2. and the limited device is able to detect when the powerful device is
cheating.

We also describe more efficient variants of our protocol when one of
the points or both are already known, and further efficiency gains when
constant points are used.

1 Introduction

Since the discovery of the first practical identity-based cryptosystem based on the
elliptic-curve pairing [1], pairing-based cryptography has become a very active
research area. To date, many pairing-based protocols have been proposed with
novel and attractive properties, for example for key-exchange [5] and digital
signatures [3].

The increasing popularity of pairing-based cryptosystems and their foresee-
able deployment in computationally constrained devices such as smart-cards and
dongles spurred recent research in the implementation of pairing (e.g. [7]). Un-
fortunately, although pairing is a cubic-time operation, pairing implementation

? These authors are presently also at NoreTech.



attempts in limited devices such as smart-cards reveal that the embedded code
may be slow, resource-consuming and tricky to program.

Given that several PC-based pairing libraries exist, it seems natural to find-
out whether a smart-card could interact with such packages to privately compute
the elliptic-curve pairing. Note that beyond preserving operands and results from
preying eyes, the card must also ascertain that bogus libraries don’t mislead it
into generating wrong results.

In this paper, we propose a simple protocol for the secure delegation of
elliptic-curve pairing. A computationally limited device (for example a smart-
card) will delegate the computation of the elliptic-curve pairing e(A,B) to a
more powerful device (for example a PC), in such a way that:

1. the powerful device learns nothing about the points being paired (A and B)
nor about the pairing’s result e(A,B),

2. and the limited device is able to detect when the powerful device is cheating.

The limited device will restrict itself to simple curve or field operations. We
also describe efficient variants of our protocol applicable when one of the points
A and B or both are already publicly known.

2 Preliminaries

Our protocol for secure pairing delegation is actually more general than just
elliptic-curve pairing: as most pairing-based cryptosystems, it works for any bi-
linear map. Therefore, we briefly review the necessary facts about bilinear maps.
We follow the notations of [2], except that we use the additive notation for the
groups G1 and G2. We refer the reader to [6] for an extensive background on
elliptic-curve pairing.

1. G1 and G2 are two (additive) cyclic groups of prime order p;

2. G1 is a generator of G1 and G2 is a generator of G2;

3. ψ is a computable isomorphism from G1 to G2 with ψ(G1) = G2;

4. e is a computable bilinear map e : G1 · G2 → GT ;

5. GT is a multiplicative cyclic group of order p.

A bilinear map is a map e : G1 × G2 → GT with the following properties:

1. Bilinear: for all U ∈ G1, V ∈ G2 and a, b ∈ Z, e(a.U, b.V ) = e(U, V )ab

2. Non-degenerate: e(G1, G2) 6= 1

Note that the previous conditions imply that e(G1, G2) is a generator of GT .



3 Secure Pairing Delegation

In this section, we formalize the security notions for secure pairing delegation.
Our setting is the following: a computationally limited device, called the card
and denoted by C, will delegate the computation of e(A,B) to a more powerful
device, called the terminal and denoted T . Both devices are actually probabilistic
polynomial-time Turing machines.

The security notions could be formalized in the general framework of secure
multiparty computation (for standard definitions, see for example [4]). However,
we observe that our setting is much simpler than general secure two-party com-
putation: the terminal has no secret and outputs nothing; only the terminal can
be malicious. Therefore, we say that a protocol for pairing delegation is secure
if it satisfies the three following security notions:

Completeness: after protocol completion with an honest terminal, C obtains
e(A,B), except with negligible probability.

Secrecy: a (possibly cheating) terminal should not learn any information
about the points A and B. Formally, for any malicious T , there exists a simulator
S such that for any A,B, the output of S is computationally indistinguishable
from T ’s view:

S
c≡ ViewT (A,B)

Correctness: C should be able to detect a cheating T , except with negligible
probability. Formally, for any cheating T and for any A,B, C either outputs ⊥
or determines e(A,B), except with negligible probability.

4 Our Protocol

4.1 Description

In the following, we describe our protocol for securing pairing delegation. C and
T are given as input a description of the groups G1, G2 and GT , and a description
of the bilinear map e : G1 · G2 → GT . C and T receives the generators G1 and G2;
moreover we assume that C receives e(G1, G2). C is given as input the points A
and B and must eventually determine e(A,B).

1. C generates a random g1 ∈ Zp and a random g2 ∈ Zp, and queries the three
following pairings from T :

α1 = e(A+ g1.G1, G2), α2 = e(G1, B + g2.G2)

α3 = e(A+ g1.G1, B + g2.G2)

2. C checks that α1, α2, α3 ∈ GT , by checking that (αi)p = 1 for i = 1, 2, 3.
Should this test fail, C outputs ⊥ and halts.

3. C computes a purported value for e(A,B):

eAB = α−g2
1 · α−g1

2 · α3 · e(G1, G2)g1g2 (1)



4. C generates four random values a1, r1, a2, r2 ∈ Zp and queries the pairing:

α4 = e(a1.A+ r1.G1, a2.B + r2.G2)

5. C computes:

α′4 = (eAB)a1a2 · (α1)a1r2 · (α2)a2r1 · e(G1, G2)r1r2−a1g1r2−a2g2r1 (2)

and checks that α′4 = α4. In this case, C accepts eAB as the genuine value of
e(A,B); otherwise it outputs ⊥.

4.2 Security Proof

The following theorem shows that our protocol is secure:

Theorem 1. The previous protocol is a secure pairing delegation protocol.

Proof. The completeness property is easily established. From bilinearity:

e(A+ g1.G1, B + g2.G2) = e(A,B) · e(A,G2)g2 · e(G1, B)g1 · e(G1, G2)g1g2

Then, for an honest T , we have:

α1 = e(A+ g1.G1, G2) = e(A,G2) · e(G1, G2)g1 (3)
α2 = e(G1, B + g2.G2) = e(G1, B) · e(G1, G2)g2 (4)
α3 = e(A+ g1.G1, B + g2.G2) (5)

Combining the four previous equations, we obtain:

α3 = e(A,B) · (α1)g2 · (α2)g1 · e(G1, G2)−g1g2

which, using (1), shows that C computes the correct eAB = e(A,B). Moreover,
using:

α4 = e(a1.A+ r1.G1, a2.B + r2.G2)
= e(A,B)a1a2 · e(A,G2)a1r2 · e(G1, B)r1a2 · e(G1, G2)r1r2

we obtain from equations (3) and (4):

α4 = (eAB)a1a2 · (α1)a1r2 · (α2)r1a2e(G1, G2)r1r2−a1g1r2−a2g2r1

which, using (2), gives α4 = α′4 and shows that C eventually outputs the correct
eAB = e(A,B).

The secrecy property follows from the fact that T receives only random, in-
dependently distributed points in the groups G1 and G2. Therefore, the simulator
S simply consists in running T with randomly generated points. The simulator’s
output and T ’s view when interacting with C are then identically distributed.



The correctness property is established as follows: we show that if the value
eAB computed by C at step 3 is unequal to e(A,B), then the element α′4 com-
puted by C at step 5 has a nearly uniform distribution in GT , independent of
T ’s view. Then, the probability that α4 = α′4 at step 5 will be roughly 1/p.
Therefore, C will output ⊥, except with negligible probability.

We let U = a1.A+r1.G1 and V = a2.B+r2.G2. Moreover, we let a, b, u, v ∈ Zp

be such that A = a.G1, B = b.G2, U = u.G1, V = v.G2, which gives:

u = a1 · a+ r1 (6)
v = a2 · b+ r2 (7)

C checks that α1, α2, α3 ∈ GT . Therefore, we must have eAB ∈ GT , and since
e(G1, G2) is a generator of GT , we can let β1, β2, β3 ∈ Zp be such that:

α1 = e(A,G2) · e(G1, G2)g1+β1 (8)
α2 = e(G1, B) · e(G1, G2)g2+β2 (9)

eAB = e(A,B) · e(G1, G2)β3 (10)

Therefore, the value eAB is correct iff β3 = 0.
From the previous observation, we also have α′4 ∈ GT . Therefore, we can

assume that α4 ∈ GT , since otherwise α′4 6= α4 and C outputs ⊥. Then we can
let β4, β

′
4 ∈ Zp be such that:

α4 = e(U, V ) · e(G1, G2)β4 (11)

α′4 = e(U, V ) · e(G1, G2)β′4 (12)

Therefore, C outputs eAB iff β4 = β′4.
In the following, we assume that u 6= 0 and v 6= 0. Since (u, v) is uniformly

distributed in Zp, this happens with probability (1− 1/p)2 ≥ 1− 2/p.
We show that if β3 6= 0, then β′4 has a nearly uniform distribution in Zp,

independent of T ’s view, and therefore β4 = β′4 happens with negligible proba-
bility.

From equations (2), (8), (9), (10) and (12), we obtain:

β′4 = a1a2β3 + a1r2β1 + a2r1β2 (13)

T ’s view includes the points A+ g1.G1, B + g2.G2, U and V and the group ele-
ments α1, α2, α3 and α4. Therefore, T ’s view is entirely determined by (β1, β2, β3, β4, u, v, r),
where r is the randomness used by T . Moreover, given (β1, β2, β3, β4, u, v, r), the
element (a1, a2) is uniformly distributed over Z2

p.
From equations (6), (7) and (13), we obtain:

β′4 = a1a2(β3 − bβ1 − aβ2) + a1(vβ1) + a2(uβ2)

Lemma 1. Let p be a prime integer and let a, b, c, d ∈ Z such that (a, b, c) 6=
(0, 0, 0). Then the number of solutions (x, y) ∈ Z2

p to the polynomial equation
a · xy + b · x+ c · y + d = 0 mod p is at most 2p− 1.



Proof. The proof is straightforward and is therefore omitted.

Since u, v 6= 0, then β3 6= 0 implies (β3 − bβ1 − aβ2, vβ1, uβ2) 6= (0, 0, 0). Then
using the previous lemma, for any γ ∈ Zp, the probability over (a1, a2) ∈ Z2

p

that β′4 = γ is such that:

Pr[β′4 = γ] ≤ 2p− 1
p2

≤ 2
p

Therefore, if β3 6= 0, the probability that β′4 = β4 is at most 2/p.
Since u = 0 or v = 0 with probability at most 2/p, we conclude that if

eAB 6= e(A,B), then C outputs ⊥, except with probability at most 4/p. ut

Note that the security of the protocol is not based on any computational
assumptions; namely the protocol achieves unconditional security.

4.3 Efficiency

Our protocol requires a total of four scalar multiplications in G1 and four in G2,
and a total of ten exponentiations in GT . Our protocol is actually a one-round
protocol since the four pairing queries can be performed in the same round.

5 Efficient Variants

In this section, we describe more efficient variants of our protocol, when one of
the points A and B or both are already publicly known.

For example, when decrypting a Boneh-Franklin ciphertext [1], the point A
is the user’s private key, and B is some part of the ciphertext. Therefore, B
is already publicly known and does not need to be protected. Moreover, when
encrypting with Boneh and Franklin’s scheme,A is the trusted party’s public-key,
and B is the recipient’s identity. Therefore, both A and B are already publicly
known and don’t need to be protected.

When B is publicly known, the definition of the secrecy property is modified
by simply giving B to the simulator. When both A and B are public, the secrecy
property is not necessary anymore.

5.1 Secure Pairing Delegation with Public B

The protocol is the same as the protocol described in the previous section, except
that we can take g2 = 0 since point B does not need to be protected.

1. C generates a random g1 ∈ Zp and queries the three following pairings from
T :

α1 = e(A+ g1.G1, G2), α2 = e(G1, B), α3 = e(A+ g1.G1, B)



2. C checks that α1, α2, α3 ∈ GT , by checking that (αi)p = 1 for i = 1, 2, 3.
Should this test fail, C outputs ⊥ and halts.

3. C computes a purported value for e(A,B):

eAB = (α2)−g1 · α3 (14)

4. C generates four random values a1, r1, a2, r2 ∈ Zp and queries the pairing:

α4 = e(a1.A+ r1.G1, a2.B + r2.G2)

5. C computes:

α′4 = (eAB)a1a2 · (α1)a1r2 · (α2)a2r1 · e(G1, G2)r1r2−a1g1r2 (15)

and checks that α′4 = α4. In this case, C outputs eAB ; otherwise it outputs
⊥.

The protocol is more efficient than the protocol of Section 4 since only three
scalar multiplications in G1 and G2, and eight exponentiations in GT are required.

Theorem 2. The previous protocol with public B is a secure pairing delegation
protocol.

Proof. The proof is similar to the proof of theorem 1 and is therefore omitted.

5.2 Secure Pairing Delegation with Public A and B

The protocol is similar to the previous protocol except that we can also take
g1 = 0 since A does not need to be protected.

1. C queries the three following pairings from T :

α1 = e(A,G2), α2 = e(G1, B), α3 = e(A,B)

2. C checks that α1, α2, α3 ∈ GT , by checking that (αi)p = 1 for i = 1, 2, 3.
Should this test fail, C outputs ⊥ and halts.

3. C computes a purported value for e(A,B):

eAB = α3

4. C generates four random values a1, r1, a2, r2 ∈ Zp and queries the pairing:

α4 = e(a1.A+ r1.G1, a2.B + r2.G2)

5. C computes:

α′4 = (eAB)a1a2 · (α1)a1r2 · (α2)a2r1 · e(G1, G2)r1r2

and checks that α′4 = α4. In this case, C outputs eAB ; otherwise it outputs
⊥.

The protocol is more efficient than the protocol of Section 4 since only two
scalar multiplications in G1 and G2, and seven exponentiations in GT are required.

Theorem 3. The previous protocol with public A and B is a secure pairing
delegation protocol.

Proof. The proof is similar to the proof of theorem 1 and is therefore omitted.



6 A Different Strategy for Constant Known Points

As pointed out in section 5 it is common to calculate the IBE encryption pairing
as e(A,B)r, where A is the trusted parties public key and B is the recipients
public key, rather than e(rA,B) since pairing exponentiation is quicker than
point scalar multiplication. We noted earlier that e(A,B) is not a secret value,
both of the points A and B are public knowledge. Furthermore, the point A is
used to encrypt to any member of this IBE domain. Because of this, we call it a
constant point.

We do not have to protect these points or the result of the pairing - if we
off-load this computation to a terminal we only have to verify that the correct
value has been returned. A random point Q ∈ G2 and a value αc = e(A,Q) are
stored on C. It should be noted here that A, the constant point, is used in the
construction of αc. Q and αc are not available outside C.

1. C generates a random x ∈ Z∗
p and sends T the element of G2, xS, where

S = B −Q.
2. T computes the purported values

α1 = e(A, xS)
α2 = e(A,B)

and returns these to C
3. C computes:

α1c = αx−1

1 (16)

4. C does the equality checks α1c ·αc
?= α2 and αp

2
?= 1. If these checks are true

then C returns α2 as the result of the pairing eAB , otherwise it outputs ⊥
and halts.

Efficiency: The above protocol only requires one point scalar multiplication,
two pairing exponentiations and one pairing multiplication.

6.1 Pairing with one constant known secret point

A special case - Boneh & Franklin IBE decryption: In the previous
section we looked at pairings whereby all of the points were public, and we
gave a real-life application, B&F IBE encryption. We now look at B&F IBE
decryption. In IBE decryption we have to keep one point secret, the recipients
private key, which, for consistancy with the previous section we will denote B.
This pairing also includes a public point, moreover, there is redundancy in the
ciphertext to make sure that the ciphertext was not tampered with in transit.
We can use this to our advantage - it can be used to determine a cheating T . We



call this a special case, as it allows us to do a reduced amount of computation.
We still however need to prevent T from determining the result of the pairing.
A is the G1 element of the B&F IBE ciphertext.

1. C generates a random value x ∈ Z∗
p.

2. C computes xB where B is the private key, and passes this value to T .
3. T computes the following:

α = e(A, xB) (17)

4. C computes the following:
αc = αx−1

(18)

5. C now, instead of doing any validation check on the actual pairing, just uses
this value in traditional IBE decryption. If the pairing value supplied was
not correct (i.e. the ciphertext was tampered with) then this simply results
in IBE decryption failing.

Efficiency: The above protocol only requires one point scalar multiplication
and two pairing exponentiations.

6.2 Other Scenarios

We saw in the previous section that we were able to exploit the redundancy in
the IBE ciphertext to allow us to determine if T had cheated in it dealings with
C. However, we are not always this fortunate. We now look at situations where
we have to determine using the pairing values alone, whether T has cheated. We
look at the scenario above where the element of G1 is public, the element of G2

is secret and we may or may not want to keep the result of the pairing secret.
The two schemes of section 6 and subsection 6.1 can be easily modified to create
a new scheme that has the properties of both. This protocol, for the pairing of
the points A and B would then proceed as follows, with the values αc = e(Q,B)
stored on C. Again αc is generated from the known constant point and a random
point. αc, Q and B are not available off the card.

1. C calculates the value S = A − Q. C then generates the random values
x, y, z ∈ Z∗

p and calculates the xS, yB and zB. These values are passed to T .
2. T uses these values to calculate the following pairings:

α1 = e(xS, yB)
α2 = e(A, zB)

3. T now returns the calculated values α1 and α2 to C.
4. C now calculates:

α1c = αxy−1

1

α2c = αz−1

2



5. C now does the following validation checks, α1c · αc
?= α2c and αp

2c
?= 1. If

this test is passed, C returns α2c as the result of the pairing eAB , otherwise
it returns ⊥ and halts.

It’s obvious how the above protocol could be adapted to blind both points
by C doing a random multiplication of A, then passing this blinded value to T ,
and then a doing a subsequent pairing exponentiation by the inverse when the
pairings are recieved back from T .

Efficiency: The above protocol only requires three point scalar multiplication,
three pairing exponentiations and one pairing multiplication (or 4, 3 and 1 for
the variation with both points blinded).

7 Security Proof

Theorem 4. The scheme proposed in section 6.2 is a secure pairing delegation.

Proof. The scheme has the properties of completeness, secrecy and correctness
as outlined in section 3.

Completeness: After completing the protocol with an honest terminal C ob-
tains the values eAB . This follows from the bilinearity of the pairing, αc =
e(Q,B) and the fact that C deliberately constructs A as A = S +Q, that is
(S = A−Q):

α
(xy)−1

1 · αc = αz−1

2

e(xS, yB)(xy)−1
· αc = e(A, zB)z−1

e(S,B) · αc = e(A,B)
e(S,B) · e(Q,B) = e(A,B)

e(S +Q,B) = e(A,B)

Secrecy: As in section 5.1 we assume that one of the points in the pairing is
public knowledge.
The terminal T views the points xS, yB and zB. However since S is a gen-
erator of G1 and B is a generator of G2, and the nonces x, y and z are
random ∈ Z∗

p, then xS, yB and zB are randomly distributed in G1 and G2

respectively. The simulator S simply consists of running T with randomly
generated points in G1 and G2. The simulators output and T ’s view when
interacting with C are indistinguishable.

Correctness: C will return a result eAB if the validation checks succeed, oth-
erwise it will return ⊥. For a cheating T , C will return a result eAB with
the same probability that T can give to C two elements of GT such that the
validity check 19 holds.



αz−1

2 /α
(xy)−1

1
?= αc (19)

If we write α1 as pγ , α2 as pκ and αc as pξ for unknown γ,κ and ξ, and p a
generator of GT . Then we have the following relationship:

pκz−1
/pγ(xy)−1 ?= pξ

pκz−1−γ(xy)−1 ?= pξ

κz−1 − γ(xy)−1 ?= ξ (20)

κ
?= (ξ + γ(xy)−1)z

γ
?= (κz−1 − ξ)(xy)

0 ?= γ − (κz−1 − ξ)(xy)

Since Q is random and unknown to the attacker, then pξ is random and
unknown to the attacker. Also, we know that the equation evaluates to an
element ∈ GT . Therefore, for each value of pκ there is exactly one value
for pγ for which the equation holds (as shown above). This value is entirely
determined by the random nonces in the system (x, y, z) and therefore is
uniformly distributed in GT .

Lemma 2. The total number of valid solutions to an equation of the form
0 = γ − (κz−1 − ξ)(xy), for fixed x, y, z and ξ ∈ Z∗

p is (p− 1).

Proof. γ can take any value in Z∗
p, that is (p− 1) different values. The cor-

responding value of κ is given by κ = (ξ + γ(xy)−1)z, see equation 20.

The number of valid solutions to the above equation is (p − 1). The total
number of possible solutions for (pκ′ , pγ′) ∈ G2

T is (p− 1)2 (γ taking (p− 1)
different values and κ taking (p − 1) different values). This leads to the
following, where (pκ′ , pγ′) is an attempt to break the system, but where
x, y, z and ξ are unknown.

Pr[κ′ = (ξ + γ′(xy)−1)z] ≤ (p− 1)
(p− 1)2

≤ 1
(p− 1)

The probability of T returning to C a tuple (pκ′ , pγ′) that was not generated
according to the protocol, such that C does not return ⊥ is negligible. ut

8 Conclusion

In this paper we described a simple protocol for secure delegation of elliptic-
curve pairing. Our protocol allows a computationally limited device (for example
a smart-card) to delegate the computation of the pairing e(A,B) to a more
powerful device (for example a PC), in such a way that:



1. the powerful device learns nothing about the points being paired (A and B)
nor the pairing’s result e(A,B),

2. and the limited device is able to detect when the powerful device is cheating.

We have also described more efficient variants of our protocol when one of
the points or both are already known, and further efficiency gains when constant
points are used.

Our protocols achieve unconditional security. An interesting research direc-
tion would be to speed-up the protocols by trading-off unconditional security
against computational security.

References

1. D. Boneh and M. Franklin, Identity based encryption from the Weil pairing, SIAM
J. of Computing, Vol. 32, No. 3, pp. 586-615, 2003.Proceeding of Crypto ’2001,
Lecture Notes in Computer Science, vol. 2139, Springer-Verlag, pp. 213-229, 2001.

2. D. Boneh, H. Shacham and B. Lynn, Short signatures from the Weil pairing. Pro-
ceedings of Asiacrypt ’01, Lecture Notes in Computer Science, vol. 2248, Springer-
Verlag, pp. 514-532, 2001.

3. D. Boneh and X. Boyen, Short Signatures Without Random Oracles. Proceedings
of Eurocrypt 2004, Lecture Notes in Computer Science, vol. 3027, pp. 56-73, 2004.

4. R. Canetti, Security and Composition of Multiparty Cryptographic Protocols,
Journal of Cryptology, (2000) 13: pp. 143–202.

5. A. Joux, A one round protocol for tripartite Diffie-Hellman. Proceedings of ANTS
IV, Lecture Notes in Computer Science, vol. 1838, pp. 385–394. Springer-Verlag,
2000.

6. A. Menezes, Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publish-
ers, 1993.

7. M. Scott and P. Barreto, Compressed Pairings, Proceedings of Crypto 2004, Lecture
Notes in Computer Science, vol. 3152, pp. 140–156 2004.


