
Modeling Insider Attacks on

Group Key-Exchange Protocols

Jonathan Katz∗† Ji Sun Shin∗

Abstract

Protocols for authenticated key exchange (AKE) allow parties within an insecure network to
establish a common session key which can then be used to secure their future communication.
It is fair to say that group AKE is currently less well understood than the case of two-party
AKE; in particular, attacks by malicious insiders — a concern specific to the group setting —
have so far been considered only in a relatively “ad-hoc” fashion. The main contribution of this
work is to address this deficiency by providing a formal, comprehensive model and definition
of security for group AKE which automatically encompasses insider attacks. We do so by
defining an appropriate ideal functionality for group AKE within the universal composability
(UC) framework. As a side benefit, any protocol secure with respect to our definition is secure
even when run concurrently with other protocols, and the key generated by any such protocol
may be used securely in any subsequent application.

In addition to proposing this definition, we show that the resulting notion of security is
strictly stronger than the one proposed by Bresson, et al. (termed “AKE-security”), and that
our definition implies all previously-suggested notions of security against insider attacks. We also
show a simple technique for converting any AKE-secure protocol into one secure with respect
to our definition.

Key words: Group key exchange, Insider attacks, Universal composability.

1 Introduction

Protocols for authenticated key exchange (AKE) allow parties within a completely insecure network
to establish a common session key and furthermore to be assured that they are sharing this key with
each other (i.e., with their intended partners). The case of two-party AKE has been extensively
investigated [18, 10, 19, 2, 6, 4, 29, 13, 14] both from a definitional standpoint as well as from the
standpoint of designing efficient protocols for this task. Less well understood is the group setting
where a session key is to be established among more than two parties. Formal definitional work in
this setting began only recently with the introduction of a formal model by Bresson, et al. [7, 8, 9]
(with some additional modifications by Katz and Yung [23]) which was based on earlier work in
the two-party setting by Bellare, Pointcheval, and Rogaway [2, 3, 5]. In the subsequent discussion,
we refer to protocols secure in the model of Bresson, et al. as “AKE-secure”.

AKE-security does not take into account any notion of protection against “insider attacks”,
and in fact it is easy to see that AKE-secure protocols may be completely insecure against attacks
by malicious insiders (cf. Claim 1, below). The lack of a comprehensive and formal model which

∗{jkatz,sunny}@cs.umd.edu. Dept. of Computer Science, University of Maryland.
†Research supported by NSF Trusted Computing Grant #0310751 and NSF CAREER award #0447075.

1

adequately treats insider attacks has led to a number of relatively “ad-hoc” definitions1 of security
against insider attacks [24, 27, 1, 20, 16] as well as a number of claimed “attacks” on provably-
secure protocols [28, 33, 32, 17] (however, the protocols in question were never claimed to be secure
against insider attacks). Recent work of Cachin and Strobl [11] deals with the case of fail-stop
faults, but does not deal with the more general case of adversarial (Byzantine) failures. Note that
the possibility of insider faults/attacks in the group setting represents a qualitative difference from
the two-party setting where insider attacks are not a concern.

Of course, when an insider is malicious there is no way to prevent this malicious player from
learning the value of the session key computed by a group of which he is a valid member. However,
there are still important and potentially-avoidable security concerns to be addressed: for example, a
malicious insider should not have the ability to learn the session keys computed by groups of which
he is not a member, and should not be able to impersonate other honest players or to cause different
(honest) members of a group to compute different session keys without detecting that something is
amiss. Although one can continue to list various properties of this sort which any “secure” group
AKE protocol should satisfy (as done in, e.g., [27, 16]), it is unclear how to determine when any
given list of attacks has exhausted all the relevant possibilities! It is for precisely this reason that
a comprehensive model is useful.

1.1 Our Contributions

As a way to better model insider attacks, we introduce definitions of security for group AKE
protocols within the universal composability (UC) framework [12]. In the UC framework, a cryp-
tographic task is specified via an appropriate ideal-world functionality; a secure protocol is then
defined as one which adequately “mimics” this ideal-world functionality in a way made formal in
[12] (the reader is referred there for details). By introducing a suitable ideal functionality for the
task of group key exchange, we are assured that any secure protocol will automatically guarantee
security against both insider and outsider attacks. The primary advantage of working within the
UC framework is that we need only specify what it is we wish a group AKE protocol to achieve
(via introduction of the appropriate ideal-world functionality), rather than provide a laundry-list
of attacks we wish to prevent. As a sanity check for our proposed ideal functionality, however, we
show that any protocol which securely realizes the functionality proposed here is also AKE-secure
(i.e., is secure against “outsider” attacks in the sense of Bresson, et al.) as well as secure against
the various insider attacks considered in [27, 16]. As mentioned earlier, the definition of Bresson,
et al. does not guarantee any security against insider attacks; thus, we see that our definition is
strictly stronger than AKE-security.

Working within the UC framework also yields other advantages, as highlighted by Canetti and
Krawczyk in the context of two-party key exchange [14]. In particular, additional advantages
include: (1) protocols proven secure within the UC framework remain secure even when run con-
currently with any other set of protocols; (2) the session keys generated by any UC-secure protocol
may be securely used by any application calling the protocol as a sub-routine; also (3) we obtain
a definition which guarantees security even in the so-called strong corruption model where honest
players may be compromised at any point during execution of the protocol. Although some previ-
ous definitions of group AKE describe security against such attacks, none of the above-mentioned
references show a group AKE protocol which is proven secure in the strong corruption model.

As mentioned above, the definition of security developed in this work is strictly stronger than

1By “ad-hoc” we do not (necessarily) mean “informal”. Rather, we mean that these works do not present a general
framework in which to deal with insider attacks, but instead consider a seemingly “ad-hoc” collection of such attacks.

2

AKE-security. We show, however, a simple and efficient compiler which transforms any AKE-
secure protocol into a protocol which securely realizes the ideal functionality proposed here. Our
compiler is essentially the one suggested (without proof) in the full version of [23, Section 2.1], and
is fundamentally different from the one used by Canetti and Krawczyk [14] for a similar purpose in
the two-party setting. In particular (informally), the compiler suggested by Canetti and Krawczyk
authenticates an acknowledgment (“ack”) message using a message authentication code (MAC)
keyed by the session key sk generated by the two parties. In our setting, however, this would not
result in a protocol secure against insider attacks since a malicious insider may know sk as well!
Instead, our compiler requires the parties to sign an “ack” message using a long-term key established
for this purpose. (For exactly this reason, our compiler is also fundamentally different from the ones
suggested by Bellare, et al. [5] and Bresson, et al. [7] to achieve explicit authentication.) However,
some additional subtleties arise (see Section 4.2 for details): in particular, we must ensure that
the “ack” message both (1) does not leak information about sk (in a computational sense); yet
(2) corresponds to a unique possible sk. Thus, for example, the “ack” message cannot simply be
computed as v = Fsk(r), where F is a pseudorandom function and r is a random value: in this case
(even if r is public), v would not necessarily correspond to a unique sk.

1.2 Previous Related Work

Clearly, the work most relevant to our own is that of Canetti and Krawczyk [14] who consider
two-party key exchange within the UC framework. Our work builds on theirs, however our goals
are somewhat different in that we set out with the aim of modeling insider attacks (which are not
of much concern in the two-party setting) and merely view the UC framework as a convenient way
to achieve this goal. (In contrast, Canetti and Krawczyk were most concerned with composability,
and specifically use the UC framework for that reason.)

Works which come closest to providing a formal model in which to analyze insider attacks on
group AKE protocols include [27, 16], which both list various security concerns to be addressed
when malicious insiders may be present. In contrast, we view our work as providing a single,
simple, and comprehensive definition of insider attacks; moreover, our definition encompasses all
the definitions of those previous papers. A mechanism for protecting against certain insider attacks
in shown in [27]; however, their approach is tailored for a specific protocol and no proofs of security
or formal definitions are given (indeed, depending on how various components of their schemes are
instantiated, specific attacks appear possible).

Steiner [30, Section 5.2] (see also [25]) proposes an ideal functionality for group AKE within
the framework of Pfitzmann and Waidner [26]. Insider attacks were not the specific focus there,
but nevertheless it is claimed that protocols securely realizing the given ideal functionality are also
secure against (certain classes of) insider attacks. Arguably, the ideal functionality defined in this
work is simpler and more straightforward than the one given in [30] (although, to be fair, this
probably depends to some extent on one’s relative familiarity with [12] vs. [26]). Furthermore,
although a specific, O(n)-round protocol (where n is the group size) is proven secure in [30], no
generic method for constructing secure protocols is given.

2 AKE-Security

Here, we review the notion of “AKE-security” essentially along the lines of [7, 8, 9, 23] (but with
some modifications). We then formally introduce two notions of security against insider attacks;
these may be of independent interest, as they appear to be the first formal definitions of such

3

attacks. We conclude this section by showing, as one might expect, that AKE-security does not
imply security against either of these attacks. This motivates our subsequent introduction of a new
framework which does adequately handle such attacks (among others).

Participants and initialization. There is a fixed set of n players U = {U1, . . . , Un}. Any
subset of these players may run the group AKE protocol at any time (possibly concurrently) in
order to share a session key. During some initialization phase which occurs before the protocol
is ever executed, each player U runs a key-generation algorithm G(1k) to generate a long-term
public/secret key pair (PKU , SKU). Player U keeps the secret key SKU private and the public
key PKU is assumed to be known by all other participants and the adversary as well. Following
most previous work, we assume that all long-term keys are honestly-generated; this is equivalent
to assuming that no players are corrupted before the initialization phase concludes. We stress that
this is for simplicity only (and, in particular, our analysis of the compiler in Section 4.2 does not
rely on this assumption).

Session IDs, partner IDs, and related notions. Each player U ∈ U is allowed to run the
protocol multiple times with possibly different groups of participants; following [2], we model this
via the use of instances, and denote instance i of player U as Πi

U . We treat session IDs in a different
manner than [7, 23], and follow [4, 13, 14] in assuming that unique session IDs are provided by some
higher-level protocol when the group key-exchange protocol is first initiated. Thus, all members
taking part in a given execution of a protocol will de facto have the same session ID. Besides
being more in line with the way session IDs are handled in the UC framework, this also simplifies
matters in the group setting where each player’s view (i.e., transcript) of a single execution of the
protocol may be different (this is in contrast to the two-party setting, where two players executing
a protocol (without interference from the adversary) obtain identical transcripts and hence the
session ID can be defined as some function of this common transcript). Moreover, since a single
player may be running multiple instances of a group key-exchange protocol concurrently, players in
practice need a way to distinguish the sessions to which incoming messages belong. Thus, in some
sense, pre-defined session IDs are implicit in the models of [7, 23] anyway.

The session ID of instance Πi
U is denoted sidi

U . The partner ID of instance Πi
U (denoted pidi

U)
is a set containing the identities of the players in the group with whom Πi

U intends to establish a
session key, including U itself. The value of pidi

U is established, along with sidi
U , when instance Πi

U

first initiates the protocol. Session IDs and partner IDs are public information.
We say an instance Πi

U accepts when it computes a valid session key ski
U . (An instance may also

terminate without accepting, and in this case it does not output any session key at all. Whether
or not a particular instance has accepted or has instead terminated without acceptance is public
information.) If an instance computes a session key ski

U , we assume it outputs (sidi
U , pidi

U , ski
U).

Once an instance accepts, it remains in an accepting state. Finally, we say instances Πi
U and Πj

U ′

(with U 6= U ′) are partnered iff (1) they have both accepted; (2) sidi
U = sid

j
U ′ ; and (3) pidi

U = pid
j
U ′ .

Correctness. We define correctness following [7, 8, 9, 23] by requiring that if the adversary honestly
forwards all messages between instances of players in a given set pid, and each such instance holds
the same value sid, then these instances all accept and output identical session keys.

Adversarial model. Actions of an adversary are modeled using various oracles:

• Execute(sid, pid) prompts a complete execution of the protocol between unused instances of
players in pid (using session ID sid), and outputs a transcript of the execution. This models
passive attacks.

4

• Send(U, i,M) sends message M to instance Πi
U and outputs the response. A query of the

form Send(U, i, (sid, pid)) is used to prompt Πi
U to initiate the protocol using session ID sid

and partner ID pid (where we require U ∈ pid).

• Reveal(U, i) provides the adversary with the session key ski
U of instance Πi

U , assuming this
instance has accepted.

• Corrupt(U) outputs the long-term secret key SKU of player U . This models corruption of the
long-term state of this player, or corruption of this player at a time when it is not currently
executing the protocol.

• Test(U, i) does not correspond to any real-world action, but provides a means of defining
security (see below). This query is allowed only when Πi

U has accepted. In response to this
oracle call, a random bit b is chosen. If b = 0 a random session key is output, while if b = 1
the session key ski

U is output. The adversary is allowed to access this oracle once, at any
time.

For Execute and Send queries, we require that any sid is used by at most a single instance of a given
player. The above definition of the Corrupt oracle corresponds to the so-called weak corruption
model. It is also possible to consider the strong corruption model whereby Corrupt(U) returns the
internal state of any active instances of U in addition to U ’s long-term secret key.

AKE security. We define AKE-security following [7, 23]. Say instance Πi
U is associated with

session (sid, pid) if sidi
U = sid and pidi

U = pid. We say a player U is corrupted if the adversary
queries Corrupt(Ui). We define two notions2 of freshness: in the weak corruption model, an instance
Πi

U associated with session (sid, pid) is considered unfresh if (1) the adversary queried Reveal(U ′, j)

for any instance Πj
U ′ associated with (sid, pid), or (2) the adversary corrupted some player in pid

before every instance associated with (sid, pid) had terminated. In the strong corruption model,
instance Πi

U is considered unfresh if (1) as above, or (2) the adversary corrupted some player in pid

before Πi
U terminated. (Note that the strong corruption model is strictly stronger than the weak

corruption model.) All other instances are considered fresh. The adversary succeeds (denoted by
event Succ) if it queries the Test oracle regarding a fresh instance, and correctly guesses the value
of the bit b used by the Test oracle in answering this query. Define the advantage of adversary A

attacking protocol π to be Advake

A,π
def
= |Pr[Succ]− 1

2
|. Protocol π is said to be AKE-secure if, for any

poly-time adversary A, the advantage Advake

A,π is negligible (as a function of the security parameter).
Our definition of freshness automatically ensures that AKE-security encompasses forward secrecy.

The protocol of [23], in particular, is shown there to be AKE-secure in the weak corruption
model.

2.1 Modeling Insider Attacks within the Above Framework

Here, we provide definitions of insider attacks within the AKE-security model of the previous
section. Although the definitions given here will be superseded by the definitions of the following
section, these definitions may be of independent interest as they appear to be the first formal
definitions of insider security for group key exchange within the AKE-security framework. We
first define a notion of agreement and then define security against insider impersonation attacks.

2Our compiler will be applied to protocols secure in the weak corruption model, and will result in protocols secure
in the strong corruption model. Thus, we provide a relatively weak definition of the former but a strong definition of
the latter.

5

The first notion was suggested in [23], and is also implicit in the security definitions of [13, 14]
(for the two-party case). Our definition of insider impersonation attacks is stronger than the
numerous varieties of insider attacks considered in [27, 16] (in particular, a protocol secure against
our notion of insider impersonation attacks is also secure with respect to all the notions considered
in [19, 27, 16]) with the exception that we do not consider so-called key compromise impersonation
(KCI) attacks in which an adversary corrupts a player U and then impersonates other (uncorrupted)
players to (uncorrupted instances of) U . The primary reason we do not consider such attacks is a
technical one: when we move to the UC framework a player is either corrupted or not and so such
an attack no longer makes sense (namely, there is no longer any such thing as an “uncorrupted
instance” of a corrupted player U). We remark, however, that our compiler of Section 4.2 is easily
seen to prevent KCI attacks.

Our notion of agreement requires that any partnered instances (of uncorrupted players) agree
on the session key they output. (Recall that if two instances are partnered, then by definition they
have accepted. Agreement does not require that either all parties involved in an execution of the
protocol accept or else no parties accept; this is impossible to achieve in an asynchronous model in
which the adversary controls all communication in the network.)

Definition 1 An adversary A violates agreement if there exist partnered instances Πi
U ,Πj

U ′ such

that (1) neither U nor U ′ are corrupted, but (2) ski
U 6= sk

j
U ′ . We say a protocol guarantees agreement

if the probability that any poly-time adversary violates agreement is negligible. ♦

We say that an adversary impersonates U ′ to Πi
U if (1) U ′ is uncorrupted, (2) Πi

U accepts, and

(3) U ′ ∈ pidi
U , but (4) there does not exist any instance Πj

U ′ with (sidj
U ′ , pid

j
U ′) = (sidi

U , pidi
U).

Before describing notions of security against insider impersonation attacks, we first provide for
comparison a notion of security against outsider impersonation attacks which does not take into
account insider attacks yet is not implied by AKE-security (see Claim 1 below).

Definition 2 An adversary A succeeds in an outsider impersonation attack if there exist a party U ′

and an instance Πi
U such that (1) A impersonates U ′ to Πi

U and (2) no players in pidi
U are corrupted

at the time Πi
U accepts. We say a protocol is secure against outsider impersonation attacks if the

probability that any poly-time adversary succeeds in the above attack is negligible. ♦

We now extend the above to encompass insider attacks.

Definition 3 An adversary A succeeds in an insider impersonation attack if there exist a party U ′

and an instance Πi
U such that (1) A impersonates U ′ to Πi

U and (2) neither U nor U ′ is corrupted
at the time Πi

U accepts. We say a protocol is secure against insider impersonation attacks if the
probability that any poly-time adversary succeeds in the above attack is negligible. ♦

Note that security against insider impersonation attacks implies security against outsider imper-
sonation attacks.

As useful shorthand, we will say that a protocol is secure against insider attacks if it is AKE-
secure, secure against insider impersonation attacks, and guarantees agreement. It is not hard to
see that an AKE-secure protocol need not be secure against insider attacks: In fact, an AKE-secure
protocol does not even guarantee security against outsider impersonation attacks.

Claim 1 There exists (under standard cryptographic assumptions) an AKE-secure protocol which
is neither secure against outsider impersonation attacks nor guarantees agreement.

Proof We describe a “silly” protocol which is AKE-secure but which is not secure against
outsider impersonation attacks (we remark that there are more “natural” protocols with the same

6

properties, but it is easiest to prove the claim with the protocol we describe). Basically, any AKE-
secure protocol which achieves implicit authentication but not explicit authentication will suffice.
Here is one possibility: starting with any AKE-secure protocol π, construct protocol π ′ as follows:

• Upon receiving message b|m, run protocol π on input message m.

• When protocol π instructs to send message m, send message 0|m.

• When the protocol has concluded, compute a temporary session key sk ′ exactly as directed
by π. If all incoming messages were pre-pended by a “0”, set sk = sk ′ and accept iff directed
to by π. Otherwise, choose sk at random and accept.

It is easy to see that π′ remains AKE-secure. (Informally, if the adversary sends a message pre-
pended with a “1” to an instance then that instance generates a completely random session key;
if the adversary always sends messages pre-pended with a “0” to some instance then that instance
will essentially just run π, which is AKE-secure.) It is also easy to see that π ′ is not secure against
outsider impersonation attacks since an adversary can cause any instance of any player to accept
by simply sending to that instance a message pre-pended with a “1”.

The above protocol does not guarantee agreement, either. To see this, consider an adversary
who acts as a man-in-the-middle in an honest execution of the protocol between two parties, but
who flips one of the pre-pended bits from a “0” to a “1”. In this case, both players will accept but
will compute different session keys with all but negligible probability.

3 Universally Composable Group Key Exchange Protocols

In this section, we introduce an ideal functionality for group key exchange within the UC framework
and then show that any protocol which securely realizes this functionality is automatically AKE-
secure and secure against insider attacks. In the following section, we show an efficient compiler
which converts any AKE-secure group key-exchange protocol into a UC-secure group key-exchange
protocol.

3.1 Group Key Exchange in the UC Framework

For a general overview of the UC framework, we refer the reader to [12, 14]; the latter, in particular,
focuses on (two-party) key exchange within the UC framework. A brief recap of the UC framework
is also provided in Appendix A. Roughly speaking, a cryptographic task is defined by specifying
an appropriate ideal-world functionality F ; a protocol π is then said to securely realize the desired
task if the actions of the participants running π in the real world (in the presence of a real-world
adversary) can be appropriately simulated by an ideal-world adversary having access only to the
ideal functionality F (and dummy parties interacting with F). To formally define a notion of UC-
security for group key exchange protocols, then, we must only specify an appropriate ideal-world
functionality FGKE for group key exchange. This functionality is given in Figure 1. We now briefly
explain the functionality and describe some choices made in its definition. (Some of what follows
assumes familiarity with [14].)

The interface. A player Ui runs a group key exchange protocol with an input of the form
(sid, pid, new-session), where pid is the set of identities of players with whom Ui should share a
session key and sid is a session ID. The local output of the protocol run by player Ui takes the form
(sid, pid, κ) where κ ∈ {0, 1}k is the session key and k is the security parameter.

7

Ideal Functionality FGKE

FGKE proceeds as follows, running on security parameter k, with players U1, ..., Un, and an ideal
adversary S.

Initialization: Upon receiving (sid, pid, new-session) from player Ui for the first time (where pid is
a set of at least two distinct user identities containing Ui), record (sid, pid, Ui) and send this
to S. In addition, if there are already |pid|− 1 recorded tuples (sid, pid, Uj) for Uj ∈ pid \ {Ui}
then store (sid, pid, ready) and send this to S.

Key Generation: Upon receiving a message (ok) from S where there is a recorded tuple
(sid, pid, ready), do:

• If all U ∈ pid are uncorrupted, choose κ← {0, 1}k and store (sid, pid, κ).

• If any of the U ∈ pid are corrupted, wait for S to send a message (key, κ) and then store
(sid, pid, κ).

Key Delivery: If S sends a message (deliver, Ui) where there is a recorded tuple (sid, pid, κ) and
Ui ∈ pid, then send (sid, pid, κ) to player Ui. (This message is delivered to Ui immediately, as
discussed in the text.)

Player Corruption: If S corrupts Ui ∈ pid where there is a recorded tuple (sid, pid, κ) and message
(sid, pid, κ) has not yet been sent to Ui, then the adversary is given κ. Otherwise, S is given
nothing.

Figure 1: The group key-exchange functionality FGKE .

Overview of the functionality. We summarize the functionality as described in Figure 1, provid-
ing some commentary along the way. As expected, the functionality begins with an “initialization”
phase in which the functionality waits to be notified by each of the players who are supposed to
take part in an execution of the protocol. Once FGKE receives a notification from each of the players
— with identical values of sid and pid — the functionality enters a “ready” state and informs the
adversary to this effect by sending the adversary a ready message.

Let |pid| = n. At this point, the n players expected to take part in the protocol are all ready to
receive a key. However, the functionality does not choose a key until it receives an ok message from
the adversary. The purpose of the ready/ok messages is to allow the adversary the opportunity
to corrupt players at some point in time after they have all initiated the protocol, but before the
session key has been generated. (In the real world, this corresponds to corrupting a player after it
and its partners have begun execution of the protocol, but before any player has generated a session
key.) This “delay” in the functionality seems necessary in order to properly model corruptions that
may occur at any time during execution of the protocol, and indeed — although omitted there —
also seems necessary for the proof of security in [14].

Once the adversary sends the ok message, the functionality chooses a key. At this point, if none
of the players in pid is corrupted, the session key is chosen uniformly at random from {0, 1}k . If at
least one of the players in pid is corrupted, the adversary is allowed to choose the value of the session
key, as in [14]. Finally, this key is delivered to the players according to a scheduling determined by
the adversary. In particular, a key is delivered to a player only when delivery is requested by the
adversary. Once the adversary requests that the functionality deliver a key to a player, we make
the convention that the key is delivered to this player immediately. This convention follows the
recent revisions of the UC framework (see [12, footnote 11]), and is different (and, in our mind,

8

more natural) than the definitional choice made in [14].3

Multiple sessions and session state corruption. As discussed in [14], although key-exchange
protocols are generally viewed as handling multiple sessions, it suffices (in the UC framework) to
consider protocols and ideal functionalities handling only a single session. Universal composition
with joint state (see [14, 15]) can then be used to obtain the so-called “multi-session” extension
which handles multiple executions of the protocol. An important point is that for our purposes
there is not even any efficiency loss in doing so, since the multi-session extension of an authenticated
key-exchange protocol is the same as the underlying single-session protocol except that a “multi-
session authentication module” is used. The latter are easy to construct using any digital signature
scheme by concatenating the unique (sub-)session ID of the current session to any messages that
are signed [15].

Focusing on single-session protocols simplifies the definitions and the analysis. As discussed in
[14], however, doing so necessitates a slight change in the UC framework itself. In particular, when
considering the multi-session extension of FGKE one needs to augment the basic UC model with a
notion of session-state corruption which is intended to capture the same sort of attacks modeled
by the Reveal oracle in the definition of AKE-security. (In the “standard” UC framework there is
no notion of obtaining the state of a player without fully corrupting the player, nor is it possible
for the adversary to obtain the state of a player for only a subset of that player’s executions.) Such
session state corruption is not explicit in Figure 1 since that figure presents only the single-session
version of the functionality.

Perfect forward secrecy. Perfect forward secrecy is the notion that corruption of a player should
not reveal previous session keys generated by that player. We have already noted above (and in
footnote 3) that the presence of the “key delivery” phase of FGKE , and the convention by which
messages from FGKE are delivered immediately, are intended to ensure that FGKE “knows” when
messages have been delivered, and we have claimed that such knowledge is helpful for an accurate
modeling of forward secrecy. We now explain why this is so.

Notice that if a player is corrupted after having output the session key (in some execution of
the protocol), then forward secrecy requires that the adversary not be able to learn the value of
the session key output by Ui in that execution. Since the functionality FGKE is “aware” of when a
player outputs the session key (since that player outputs the session key immediately after receiving
(sid, pid, κ) from FGKE , and this message is received by Ui immediately after FGKE sends it), FGKE

can give the appropriate information to the adversary when a corruption occurs. In particular, if
the adversary corrupts a player after the session key has been sent to that player (corresponding
to a corruption in the real world after the player has output a session key), the adversary is given
nothing.

UC-secure channels. It should be possible to define a notion of UC-secure (group) channels,
following [14] who define such a notion for the two-party case. We leave this for future work.

3.2 Relation to Previous Definitions

We say a group key exchange protocol is UC-secure if it securely realizes the (multi-session extension
of) ideal functionality FGKE . In other words, for any adversary A there exists an ideal adversary

3Seemingly, another way to achieve the same effect would be to have the functionality output (sid, pid, κ) (for all
players) immediately, and then have delivery of these messages be controlled by the adversary. In order to properly
model session state corruption (see below) as well as forward secrecy, however, we will require the functionality to
“know” when a message has been delivered to a party.

9

S such that no ppt environment Z can determine whether it is interacting with A and players
running the protocol in the real world, or whether it is interacting with S and “dummy” players
communicating with (the multi-session extension of) ideal functionality FGKE in the ideal world.
The following claims serve as useful “sanity checks” for our definition:

Claim 2 Any UC-secure group key-exchange protocol is AKE-secure (in the strong corruption
model).

The proof, which appears in Appendix B.1, is quite straightforward and is very similar to the proof
of the analogous result in the two party setting [14].

Claim 3 Any UC-secure group key-exchange protocol is secure against insider attacks. That is, it
is secure against insider impersonation attacks and guarantees agreement.

The intuition behind the proof of this claim, which appears in Appendix B.2, is rather straightfor-
ward given the definition of the ideal functionality in Figure 1. The main idea is that if a protocol is
not secure against insider attacks, then there exists an adversary A which violates security against
insider attacks when attacking this protocol. We use A along with an appropriate environment Z
to distinguish interactions of A in the real world from interactions of any adversary S in the ideal
world, thus proving that the protocol is not UC-secure.

4 Constructing UC-Secure Protocols

We have already shown (cf. Claims 1–3) that UC-security is strictly stronger than AKE-security.
We describe here, however, how any AKE-secure protocol π can be compiled to give a UC-secure
protocol π′. Our compiler is essentially the one suggested (without proof) in the full version of
[23, Section 2.1] but is fundamentally different — although similar in spirit — from the compiler
analyzed in [14]. Specifically, as pointed out in the Introduction, the compiler of [14] authenticates
an “ack” message using a MAC keyed with a session key known to all parties participating in the
protocol. Such an approach would simply not work in our setting, since a malicious insider would
know the value of this session key and hence be able to impersonate the “ack” message of other
(honest) players. Instead, our compiler uses a long-term signature scheme to sign an “ack” message
of a similar sort. We have mentioned already in the Introduction, though, that certain additional
technicalities arise. We set the stage for dealing with these in the following section.

4.1 Technical Preliminaries

Let Σ = (Gen,Sign,Vrfy) be a signature scheme which is existentially unforgeable against adaptive
chosen-message attack. We also use a pseudorandom function family [22] F with the additional
guarantee of what we term collision-resistance: informally, this means that there exists a value
v0 such that no efficient adversary can find two different keys s, s′ such that Fs(v0) = Fs′(v0).
Formally:

Definition 4 Let F = {F k} with F k = {Fs}s∈{0,1}k be a pseudorandom function family (PRF).
We say that F is a collision-resistant PRF if there is an efficient procedure Sample such that the
following is negligible in k for all poly-time adversaries A:

Pr

v0 ← Sample(1k);
s, s′ ← A(1k, v0)

:
s, s′ ∈ {0, 1}k

∧

s 6= s′
∧

Fs(v0) = Fs′(v0)

 .

10

Informally, the definition requires that for all k there exists an (efficiently computable) v0 such that

the function defined by g(x)
def
= Fx(v0) is collision-resistant. ♦

It is easy to construct a collision-resistant PRF in the random oracle model: if H is a random

oracle, simply set Fs(x)
def
= H(s|x) (the Sample algorithm can simply output the all-0 string). It is

also possible to construct4 a collision-resistant PRF in the standard model based on any one-way
permutation:

Lemma 4 Assuming the existence of a one-way permutation, there exists a collision-resistant PRF.

Proof We show that the Goldreich-Goldwasser-Micali [22] construction of a PRF from a one-way
permutation f actually gives a collision-resistant PRF. Recall the GGM construction: given one-
way permutation f : {0, 1}k → {0, 1}k with hard-core predicate h : {0, 1}k → {0, 1}, first construct
a length-doubling pseudorandom generator G : {0, 1}k → {0, 1}2k via:

G(s) = fk(s)h(fk−1(s)) · · · h(s).

Let G0(s) denote the first k bits of G(s), and let G1(s) denote the last k bits of G(s). For a binary
string x = x1 · · · x`, define

Fs(x) = Gx`
(· · · (Gx2

(Gx1
(s))) · · ·).

It is shown in [22] that the function family F = {F k} with F k = {Fs}s∈{0,1}k is pseudorandom.

Now, note that Fs(0
`) = f `·k(s). Since f is a permutation, this means that the function

g(x) = Fx(0`) is a permutation, and hence collision-resistant. (In fact, we achieve something even
stronger than required by Definition 4.1: first, the Sample algorithm here is deterministic; second,
collision-resistance holds information theoretically.)

4.2 The Compiler

Our compiler is presented in Figure 2, and we briefly describe it here. Given protocol π, we
construct protocol π′ as follows: first, we assume values v0 and v1 6= v0 are publicly known5 (where,
informally, v0 is a value for which Definition 4 is satisfied). During the initialization phase of π ′,
each player Ui establishes long-term verification/signing keys (PKi, SKi), in addition to any keys
needed by π. The compiled protocol then runs π until the point when Ui is ready to accept (in π)
with key ski. (If Ui would terminate without accepting in π, then Ui terminates without accepting
in π′.) Then, player Ui computes acki = Fski

(v0) and sk′i = Fski
(v1), and erases the rest of its state.

It signs acki (along with Ui, sidi, pidi) and sends this signature to all other players. Ui then waits to
receive a signature from all players in pidi \ {Ui}. If any of the signatures it receives do not verify
as expected, Ui terminates without accepting. Otherwise, it accepts with sk ′

i as its session key.
We remark that our compiler actually fulfills two purposes. First, it ensures that the resulting

protocol π′ satisfies the “ACK-property” as defined in [14]. Informally (see [14, Section 4.4] for
further details), a protocol satisfies the ACK-property if, whenever player Ui outputs (sidi, pidi, ski)
and no players in pidi are corrupted, then the internal state of all players in pidi can be simulated
given ski and the messages sent between these parties. The ACK-property was shown in [14] to be
essential for proving UC security of key-exchange protocols.

4We have subsequently noticed that the same result was previously shown by Fischlin [21]; in fact, a more efficient
construction is also given there. We include the proof of Lemma 4 for self-containment.

5We remark that for both constructions of collision-resistant PRFs given in the previous section (i.e., based on
random oracles or one-way permutations), this public information is not needed.

11

AKE→UC compiler

Let F be a collision-resistant PRF, and assume that v0 is output by Sample(1k) and publicly-known.
Let v1 6= v0 also be publicly-known.a

Initialization Phase: During the initialization phase of π′, each player Ui runs Gen(1k) to generate
long-term verification/signing keys (PKi, SKi) (in addition to any keys needed for π).

The Protocol: Players run protocol π. If Ui would terminate without accepting in π, then it
terminates without accepting in π′. Otherwise, if Ui would accept (in protocol π) with output
(sidi, pidi, ski), this player performs the following additional steps:

1. Ui computes acki = Fski
(v0) and sk′i = Fski

(v1). Next, Ui erases all its local
state except for acki, sk

′
i, sidi, and pidi. Then, Ui computes a signature σi ←

SignSKi
(Ui, sidi, pidi, acki) and sends the message (Ui, σi) to all players in pidi.

2. Upon receipt of |pidi| − 1 messages (Uj , σj) from all other players Uj ∈ pidi \ {Ui},
player Ui checks that VrfyPKj

((Uj , sidi, pidi, acki), σj) = 1 for all Uj ∈ pidi. Assuming

all verifications succeed, Ui accepts, erases its internal state, and outputs (sidi, pidi, sk
′
i).

If any of the verifications do not succeed, Ui terminates without accepting (and with no
output).

aAs pointed out in the text, for the specific collision-resistant PRFs discussed in Section 4.1 no public
information is needed.

Figure 2: Compiler to be applied to AKE-secure protocol π to yield UC-secure protocol π ′.

In addition to this, our compiler ensures security against insider attacks via the use of a signature
scheme. We stress again that a signature scheme (rather than a message authentication code as
in [14]) is necessary, as a malicious insider knows the session key computed by the uncorrupted
parties taking part in the protocol.

Finally, we informally discuss why our compiler requires the use of a collision-resistant PRF.
If F were not collision resistant, then in general it may be possible for a malicious insider to cause
two honest parties Ui, Uj to compute keys ski, skj such that

acki = Fski
(v0) = Fskj

(v0) = ackj

but
sk′i = Fski

(v1) 6= Fskj
(v1) = sk′j

(so, in particular, ski 6= skj). If this occurs, Ui and Uj will both accept in π′ but will output
different session keys sk′i, sk

′
j ; thus π′ would not guarantee agreement. Using a collision-resistant

PRF prevents this attack.

Theorem 5 If π is an AKE-secure protocol (in the weak corruption model), then applying the
compiler of Figure 2 to π results in a UC-secure protocol π ′.

Proof (Sketch) For simplicity, we show that π ′ realizes FGKE ; however, it is not hard to adapt
the proof below to show that π′ realizes the multi-session extension of FGKE . (Alternately, universal
composition with joint state [12, 14, 15] could be used to show that the multi-session extension of
π′ securely realizes the multi-session extension of FGKE .)

12

Let A be a real-life adversary. We describe in full an ideal-process adversary S such that no
poly-time environment Z can tell whether it interacts with A and players running π ′ in the real
world, or with S and (dummy) players communicating with FGKE in the ideal world. S proceeds
as follows (when we say S “aborts” we mean it sends a special abort signal to Z and halts):

1. Messages from Z to S are forwarded to A, and messages from A to S are forwarded to Z.

2. S generates public/private keys on behalf of all players, and gives the resulting public keys
to A. These include both the keys for π as well as the keys required by the compiler itself.

3. When S receives a message (sid, pid, Ui) from FGKE for an uncorrupted player Ui, it begins
simulating for A a copy of protocol π ′ being run by Ui with session ID sid and partner ID pid.
Any messages sent by A to Ui are processed by this simulated copy of π ′, and any messages
output by the simulated copy of π′ are given to A.

4. If at any point in time a simulated copy of π ′ being run on behalf of an uncorrupted player
Ui outputs a session key sk′, adversary S checks to see whether any of the players in pid have
been corrupted.

(a) If no players in pid are corrupted, then:

i. If S has not yet sent (ok) to FGKE , then S checks that it has received message (sid,
pid, ready) from FGKE . If not, S aborts. Otherwise, it sends (ok) to FGKE , followed
by (deliver, Ui).

ii. If S has already sent the message (ok) to FGKE , then S sends the message (deliver,
Ui) to FGKE .

(b) Otherwise, say C ⊆ pid \ Ui are the corrupted players. Then:

i. If S has not yet sent (ok) to FGKE , then S first sends (sid, pid, new-session) to FGKE

on behalf of any of the players in C who have not done so already, receives message
(sid, pid, ready) from FGKE , and then sends (ok) to FGKE . (If S does not receive
(sid, pid, ready) after executing the above, it aborts.) Next, S sends (key, sk ′) and
(deliver, Ui) to FGKE .

ii. If S has already sent (ok) to FGKE and no players in pid were corrupted at that
point in time, then S sends (deliver, Ui) to FGKE .

iii. Otherwise, S has already sent (ok) and (key, sk′′) to FGKE (i.e., a player in pid

was corrupted at the time the “ok” message was sent). If sk′′ 6= sk′ then S aborts.
Otherwise, S sends (deliver, Ui) to FGKE .

5. When A corrupts a player Ui, S corrupts that player in the ideal world. S also gives A all
the secret keys of player Ui. Finally, S provides A with the current internal state of Ui as
follows:

(a) If S has not yet sent (ok) to FGKE , then S simply gives A the current internal state of
the simulated copy of π′ being run on behalf of Ui.

(b) If S has already sent (ok) to FGKE but has not yet sent (deliver, Ui) to FGKE , then S
obtains a key κ from FGKE when it corrupts Ui. If the simulated copy of π′ being run
on behalf of Ui does not include a value acki, then S aborts. Otherwise, S hands to A
the internal state (acki, κ, sid, pid).

13

(c) If S has already sent (ok) and (deliver, Ui) to FGKE , then S returns nothing (i.e., an
empty internal state) to A.

The above constitutes a complete description of S. We now sketch the proof that no poly-
time Z can distinguish its interactions with S (in the ideal world) from its interactions with A
(in the real world). We begin by stating a claim which is central to the proof. In everything that
follows, we let Ui refer to both the simulated copy of π ′ being run by S (in the ideal world) as
well as the corresponding real player (in the real world); in contrast, we will use U 0

i to refer to the
corresponding dummy player in the ideal world.

Claim 6 Except with negligible probability, whenever an uncorrupted player Ui outputs (sid, pid, sk′)
and holds state6 (ack, sk′, sid, pid), then every uncorrupted player Uj ∈ pid has ended its execution
of π and either holds state (ack, sk′, sid, pid) (if Uj has not yet completed its execution of π ′) or
holds no state and has already output (sid, pid, sk′) (if Uj has completed its execution of π′).

Proof (of claim) Say uncorrupted player Ui accepts and holds state (acki, sk
′
i, sidi, pidi). Then it

must be the case that Ui has received valid signatures on (Uj , sidi, pidi, acki) from all other players
Uj ∈ pidi. Considering any uncorrupted player Uj ∈ pidi, unless the adversary A has forged a
signature with respect to the public key of Uj (which occurs with only negligible probability by
security of the signature scheme), this means that a simulated copy of π ′ being run by Uj has
generated a signature on (Uj , sidi, pidi, acki) and so, in particular, Uj has ended its execution of π.
It only remains to show that the value sk′j held by Uj is identical to the value sk′i held by Ui. Since,
by construction of the compiler, Fski

(v0) = acki = Fskj
(v0) and F is a collision-resistant PRF, we

have ski = skj except with negligible probability. Assuming this to be the case, we then have

sk′j = Fskj
(v1) = Fski

(v1) = sk′i,

as desired.

Corollary 7 Except with negligible probability, any uncorrupted players Ui, Uj who share the same
values of sid, pid and who output a session key will in fact output the same session key.

We now summarize the differences, from the point of view of Z, between an interaction of Z
with A and with S. The summary is interspersed with (sketches of) proofs that the differences are
not noticeable to Z.

• Steps 1, 2, and 3 of S do not introduce any differences from the point of view of Z.

• Step 4(a)(i) introduces two differences. First, S may abort. Second, the key output by “dummy”
player U 0

i (as observed by Z) is chosen uniformly at random by FGKE , not as sk′.

We first claim that the probability that S aborts at this step is negligible. If S aborts at this
step, it means that FGKE has not yet sent (sid, pid, ready) to S or, equivalently, there exists some
player U 0

j ∈ pid \ U 0
i from whom FGKE has not yet received (sid, pid, new-session). But Claim 6

shows that, except with negligible probability, all uncorrupted players in pid have completed their
execution of π and thus, in particular, have sent (sid, pid, new-session) to FGKE (note that S does
not begin running the simulated copy of π ′ for a player Uj until S receives (sid, pid, Uj) from FGKE ,
and FGKE does not send this message to S until player U 0

j sends the appropriate “new-session”

6Note that this represents the state held by the player immediately before it outputs (sid, pid, sk′); after it outputs
this, the state is erased as directed by the compiler.

14

message to FGKE). Since, in step 4(a)(i) all players in pid are uncorrupted, it follows that S aborts
here with only negligible probability.

We claim also that it is computationally indistinguishable (from the point of view of Z) whether
“dummy” player U 0

i outputs a random session key (as it does in the ideal world) or Ui outputs the
session key sk′ (as would occur in the real world). We may consider two cases:

1. If A never corrupts any players in the remainder of its execution, then this claim follows
readily from Corollary 7, the assumed AKE-security of π, and the pseudorandomness of F .
(Corollary 7 is needed to argue that any uncorrupted players who output a session key in the
simulations being provided by S will output identical session keys, exactly as observed by Z
for the outputs of the dummy players.)

2. If A later corrupts some players in pid, then due to the way corruptions are handled by S
this will not introduce any noticeable difference from the point of view of Z (again relying
on Claim 6, the assumed AKE-security of π, and the pseudorandomness of F). In particular,
if a player U ′ ∈ pid is corrupted before it outputs a key, then S obtains the key κ from FGKE

and “patches” the internal state of U ′ appropriately (cf. step 5(b)). If U ′ ∈ pid is corrupted
after it outputs a key, there is nothing to simulate (cf. step 5(c)).

• Step 4(a)(ii) introduces the following difference: the key output by “dummy” player U 0
i (as

observed by Z) is chosen uniformly at random by FGKE , not as sk′. That this is inconsequential
follows a similar line of reasoning as in the case of step 4(a)(i).

• In step 4(b)(i), S may abort. However, this only occurs if there is some uncorrupted player in pid

who has not yet sent (sid, pid, new-session) to FGKE . As argued in the case of step 4(a)(i), however,
it follows from Claim 6 that this occurs with only negligible probability.

We remark also that the key sk′ that S sends to FGKE matches exactly the key that (uncorrupted)
player Ui outputs. So the simulation is perfect in that respect. Furthermore, Corollary 7 indicates
that, except with negligible probability, if the simulated copy of π ′ being run on behalf of any other
honest player later outputs a session key, that key will be sk′.

• In step 4(b)(ii), Ui has output a session key sk′ and, furthermore, at the time the first uncorrupted
player (say, Uj) accepted, all players in pid were uncorrupted. But then Corollary 7 shows that,
with all but negligible probability, the key sk′ output here is identical to the key previously output
by Uj . Similarly, the session keys output by the “dummy” parties U 0

i and U0
j (which are observed

by Z) will be identical.

• In step 4(b)(iii), S may abort. In this step, there was an uncorrupted player who previously
output session key sk′′. Corollary 7 indicates that every uncorrupted player who outputs a session
key will output the same session key sk′′. So, S will not abort except with negligible probability.

• Steps 5(a) and 5(c) do not introduce any differences from the point of view of Z (note, in
particular, that since S has not sent the “ok” message to FGKE , no session key has yet been chosen
by FGKE in step 5(a)).

• In step 5(b), note that if S has sent an “ok” message to FGKE then there must be some other
player Uj (different from the player Ui being corrupted in this step) who was uncorrupted at the
time it accepted (this is because S only sends the “ok” message when this occurs). From Claim 6,
this means that with all but negligible probability Ui indeed has a value acki as part of its internal
state (and so S will not abort in this step). It then follows from the pseudorandomness of F that

15

including the value κ (that was output already by “dummy” player U 0
j) in the internal state is

computationally indistinguishable from using the actual session key computed by Ui.
This completes our sketch of the proof.

5 Conclusion

This paper provides a formal and comprehensive way of modeling insider attacks in group key-
exchange protocols by suggesting an ideal functionality for group key exchange within the UC
framework. We show that the definition introduced here is strictly stronger than that of AKE-
security, and that it also encompasses prior definitions of security against insider attacks. We then
show a simple and efficient compiler which transforms any AKE-secure protocol into one secure
with respect to our definition. We hope the framework introduced here will provide a basis for
future work analyzing the security of existing group key-exchange protocols, and will also serve as
a tool toward developing more efficient protocols secure against insider attacks.

References

[1] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton, and G. Tsudik. Exploring Robustness
in Group Key Agreement. ICDCS 2001.

[2] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. Crypto ’93.

[3] M. Bellare and P. Rogaway. Provably-Secure Session Key Distribution: the Three Party Case.
STOC ’95.

[4] M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design and Analysis of
Authentication and Key Exchange Protocols. STOC ’98.

[5] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against
Dictionary Attacks. Eurocrypt 2000.

[6] S. Blake-Wilson, D. Johnson, and A. Menezes. Key Exchange Protocols and Their Security
Analysis. Proc. 6th IMA Intl. Conf. on Cryptography and Coding, 1997.

[7] E. Bresson, O. Chevassut, D. Pointcheval, and J. Quisquater. Provably Authenticated Group
Diffie-Hellman Key Exchange. ACM CCCS 2001.

[8] E. Bresson, O. Chevassut, and D. Pointcheval. Provably Authenticated Group Diffie-Hellman
Key Exchange — The Dynamic Case. Asiacrypt 2001.

[9] E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic Group Diffie-Hellman Key Exchange
under Standard Assumptions. Eurocrypt 2002.

[10] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. Systematic
Design of Two-Party Authentication Protocols. Crypto ’91.

[11] C. Cachin and R. Strobl. Asynchronous Group Key Exchange With Failures. PODC 2004.

[12] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
Manuscript dated Jan. 28, 2005, available at http://eprint.iacr.org/2000/067. A preliminary
version appeared in FOCS 2001.

16

[13] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels. Eurocrypt 2001.

[14] R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and Secure
Channels. Eurocrypt 2002. Full version available at http://eprint.iacr.org/2002/059.

[15] R. Canetti and T. Rabin. Universal Composition with Joint State. Crypto 2003.

[16] Z. Cheng, L. Vasiu, and R. Comley. Pairing-Based One-Round Tripartite Key Agreement
Protocols. Available at http://eprint.iacr.org/2004/079.

[17] H.-Y. Chien. Comments: Insider Attack on Cheng et al.’s Pairing-Based Tripartite Key Agree-
ment Protocols. Available at http://eprint.iacr.org/2005/013.

[18] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Trans. Info. Theory 22(6):
644–654 (1976).

[19] W. Diffie, P. van Oorschot, and M. Wiener. Authentication and Authenticated Key Exchanges.
Designs, Codes, and Cryptography 2(2): 107–125 (1992).

[20] X. Du, Y. Wang, J. Ge, and Y. Wang. An Improved ID-Based Authenticated Group Key
Agreement Scheme. Available at http://eprint.iacr.org/2003/260.

[21] M. Fischlin. Pseudorandom Function Tribe Ensembles Based on One-Way Permutations: Im-
provements and Applications. Eurocrypt ’99.

[22] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. J. ACM
33(4): 792–807 (1986).

[23] J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange. Crypto
2003. Full version available at http://www.cs.umd.edu/~jkatz/papers.html.

[24] G. Lowe. A Hierarchy of Authentication Specifications. Computer Security Foundations Work-
shop ’97.

[25] B. Pfitzmann, M. Steiner, and M. Waidner. A Formal Model for Multi-Party Group Key
Agreement. Technical Report RZ-3383 (#93419), IBM Research.

[26] B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and Its Applica-
tion to Secure Message Transmission. IEEE Security and Privacy, 2001.

[27] S. Saeednia and R. Safavi-Naini. Efficient Identity-Based Conference Key-Distribution Proto-
cols. ACISP ’98.

[28] K. Shim. Cryptanalysis of Al-Riyami-Paterson’s Authenticated Three Party Key Agreement
Protocols. Available at http://eprint.iacr.org/2003/122.

[29] V. Shoup. On Formal Models for Secure Key Exchange. Available at
http://eprint.iacr.org/1999/012.

[30] M. Steiner. Secure Group Key Agreement. PhD Thesis, Universitat des Saarlandes, 2002.
Available at http://www.semper.org/sirene/publ/Stei_02.thesis-final.pdf.

17

[31] H.-M. Sun and B.-T. Hsieh. Security Analysis of Shim’s Authenticated Key Agreement Pro-
tocols from Pairings. Available at http://eprint.iacr.org/2003/113.

[32] Q. Tang and C.J. Mitchell. Rethinking the Security of Some Authenticated Group Key Agree-
ment Schemes. Available at http://eprint.iacr.org/2004/348.

[33] F. Zhang and X. Chen. Attack on an ID-based Authenticated Group Key Agreement
Scheme from PKC 2004. Info. Proc. Lett. 91(4): 191–192 (2004). Also available at
http://eprint.iacr.org/2003/259.

A Brief Review of the UC Framework

We provide a brief review of the universally composable security framework [12]. The framework
allows for defining the security properties of cryptographic tasks so that security is maintained
under general composition with an unbounded number of instances of arbitrary protocols running
concurrently. In the UC framework, the security requirements of a given task are captured by
specifying an ideal functionality run by a “trusted party” that obtains the inputs of the participants
and provides them with the desired outputs. Informally, then, a protocol securely carries out a
given task if running the protocol in the presence of a real-world adversary amounts to “emulating”
the desired ideal functionality.

The notion of emulation in the UC framework is considerably stronger than that considered in
previous models. As usual, the real-world model includes the parties running the protocol and an
adversary A who controls their communication and potentially corrupts parties, while the ideal-
world includes a simulator S who interacts with an ideal functionality F and dummy players who
simply send input to/receive output from F . In the UC framework, there is also an additional
entity called the environment Z. This environment generates the inputs to all parties, observes all
their outputs, and interacts with the adversary in an arbitrary way throughout the computation. A
protocol π is said to securely realize an ideal functionality F if for any real-world adversary A that
interacts with Z and real players running π, there exists an ideal-world simulator S that interacts
with Z, the ideal functionality F , and the “dummy” players communicating with F , such that
no poly-time environment Z can distinguish whether it is interacting with A (in the real world)
or S (in the ideal world). Z thus serves as an “interactive distinguisher” between a real-world
execution of the protocol π and an ideal execution of functionality F . A key point is that Z cannot
be re-wound by S; in other words, S must provide a so-called “straight-line” simulation.

The following universal composition theorem is proven in [12]. Consider a protocol π that
operates in the F -hybrid model, where parties can communicate as usual and in addition have
ideal access to an unbounded number of copies of the functionality F . Let ρ be a protocol that
securely realizes F as sketched above, and let πρ be identical to π with the exception that the
interaction with each copy of F is replaced with an interaction with a separate instance of ρ. Then,
π and πρ have essentially the same input/output behavior. In particular, if π securely realizes
some functionality G in the F -hybrid model then πρ securely realizes G in the standard model (i.e.,
without access to any functionality).

18

B Proofs of Claims

B.1 Proof of Claim 2

We show that any UC-secure protocol is also AKE-secure (in the strong corruption model). The
basic idea is very similar to the proof in the two party setting [14] except that we give a direct
proof without introducing an intermediate notion of security (cf. SK-security in [14]). Let π be a
UC-secure group key exchange protocol, and let π̃ be the multi-session extension of π [12, 14, 15]
which UC-securely realizes F̃GKE , the multi-session extension of FGKE . Assume to the contrary that
π̃ is not AKE-secure. Then there exists an adversary Ã breaking the AKE-security of π̃ with non-
negligible probability. We use Ã to construct an environment machine Z and a real-life adversary
A so that for any ideal adversary S, Z can distinguish whether it interacts with A and players
running π̃ in the real world, or with S and dummy players communicating with F̃GKE in the ideal
world. Environment machine Z and real-life adversary A proceed as follows. A runs Ã, giving to
it any public keys that were given to A. Then:

1. When Ã asks Execute(ssid, pid), this message is forward to Z. There are two cases, depending
on whether any players in pid are corrupted:

• If none of the players in pid are corrupted, Z invokes all players in pid with input
(new-session,sid,ssid,pid). All messages between these parties are forwarded by A, and
the resulting transcript is given to Ã. Let (ssid, pid, κ) be the output of any of the
parties in pid as observed by Z. For each party U ∈ pid, environment Z records session
(U, ssid, pid, κ) and marks this session completed and fresh.

• If some players in pid are corrupted, Z invokes any uncorrupted players in pid as above
but instructs A to run the protocol honestly on behalf of all corrupted parties. (Specif-
ically, if player U is corrupted then Z runs the protocol honestly on behalf of U , and
instructs A as to what messages should be sent on U ’s behalf; messages from other par-
ties to U (that are received by A) are forwarded by A to Z.) Z records (U, ssid, pid, κ)
as above (for each U ∈ pid), but marks these sessions completed and unfresh.

2. When Ã asks Send(U, i, (ssid, pid)), this message is forwarded to Z. There are three cases:

• If no players in pid are corrupted, then Z invokes U with input (new-session, sid, ssid,
pid). Also, Z records (U, ssid, pid, ?) as an uncompleted and fresh session.

• If some players in pid are corrupted but U is not, then Z proceeds as above but marks
the session as uncompleted and unfresh.

• If U is corrupted, then Z instructs A to run the protocol honestly on behalf of U and
output the first protocol message. Session (U, ssid, pid, ?) is recorded as uncompleted and
unfresh.

3. When Ã asks Send(U, i,M), let instance Πi
U be associated with session (ssid, pid). Assuming

session (U, ssid, pid, ?) is uncompleted, Z proceeds as follows: if U is uncorrupted, Z instructs
instructs A to deliver M to the appropriate session of player U , and to return the response of
player U to Ã. If U is corrupted, then Z instructs A to execute the next step of the protocol
honestly on behalf of U .

4. Whenever a player U outputs (ssid, pid, κ) — whether U is uncorrupted and this output is
observed by Z, or whether U is corrupted and this output is computed by Z locally — Z
records (U, ssid, pid, κ) and marks this as completed.

19

5. When Ã asks Reveal(U, i), say Πi
U is associated with (ssid, pid). A forwards this message to

Z who then checks if there is a completed session (U, ssid, pid, κ). If not, Z tells A to return
“invalid query”. Otherwise, Z gives κ to Ã (via A) and marks the session unfresh. Also, any
other sessions of the form (U, ssid, pid, ?) are marked unfresh.

6. When Ã asks Corrupt(U), A corrupts player U and provides Ã with the internal state of U .
For any (ssid, pid) that U is associated with, Z (who finds out about this corruption) marks
any uncompleted sessions of the form (U ′, ssid, pid, ?) as unfresh.

7. When Ã asks Test(U, i), say Πi
U is associated with (ssid, pid). This message is forwarded to

Z who checks if there is a record (U, ssid, pid, κ) marked as completed and fresh. If not, Z
outputs a random bit and halts. Otherwise, Z flips a coin b← {0, 1}. If b = 0, Z provides Ã
(via A) with a random session key. If b = 1, Z provides Ã (via A) with κ.

8. When Ã outputs a guess bit b′, this is forwarded to Z who proceeds as follows: if b′ = b,
output 1. Otherwise, output 0.

First, we consider the case when Z is interacting with Ã (via A) in the real world with players
running π̃. The view of Ã is identical to what it would see when attacking π̃ under the AKE-
security definition, and furthermore any terminated and fresh instance (according to the AKE-
security definition) is marked completed and fresh in the above. So if Ã distinguishes a real session
key (of a fresh instance) from a random session key with probability non-negligibly better than 1

2
,

then Z outputs 1 with probability non-negligibly greater than 1

2
.

On the other hand, when Z is interacting with S and dummy players in an ideal execution with
F̃GKE , the key of any completed and fresh session is uniformly distributed independent of the view
of S (since the key is such case is chosen uniformly at random by F̃GKE). Therefore, there is no
way for S to distinguish a real session key from a random key for fresh sessions. This implies that
no ideal adversary S can skew the output of Z from a random bit.

Since the above contradicts the assumption that π̃ is UC-secure, it follows that π̃ must be
AKE-secure.

B.2 Proof of Claim 3

Let π be a UC-secure group key exchange protocol, and let π̃ be the multi-session extension of π

[12, 14, 15] which UC-securely realizes F̃GKE , the multi-session extension of FGKE . Assume to the
contrary that π̃ is not secure against insider attacks. Then there exists an adversary Ain violating
insider security of π̃. We use Ain to construct an environment machine Z and a real-life adversary
A so that for any ideal adversary S, Z can distinguish whether it interacts with A and players
running π̃ in the real world, or with S and dummy players communicating with F̃GKE in the ideal
world. A will run Ain as a subroutine; then, environment machine Z and real-life adversary A
proceed as follows:

1. Oracle queries of Ain are handled as described in the proof of Claim 2 (cf. Appendix B.1).

2. During the execution, Z outputs 1 and halts if the following event happens: there exist players
U,U ′ and a completed and fresh session (U, ssid, pid, κ) such that U ′ was not corrupted before
this session was completed, U ′ ∈ pid, but there is no session (U ′, ssid, pid, ?).

3. During the execution, Z outputs 1 and halts if the following event happens: there exist two
players U and U ′ and sessions (U, ssid, pid, κ), (U ′, ssid, pid, κ′) which are completed and fresh

but κ 6= κ′.

20

4. Otherwise, Z outputs 0.

First, we consider the case when Z is interacting with Ain (via A) in the real world with players
running π̃. Clearly, whenever Ain violates security against insider impersonation attacks or violates
agreement, Z outputs 1. So, if Ain violates security of π̃ against insider attacks with non-negligible
probability, then Z outputs 1 with non-negligible probability.

On the other hand, when Z is interacting with S and dummy players in an ideal execution
with F̃GKE , we claim that Z never outputs 1. First of all, the event in step 2 does not happen in
the ideal world because a copy of FGKE running within F̃GKE does not proceed in the session ssid

until it receives (new-session, sid, ssid, pid) from all the players U ∈ pid (regardless of whether other
players in pid are corrupted). Next, let us see why the event in step 3 does not happen in the ideal
world, either. No matter whether S or FGKE has chosen the key value, FGKE distributes the same
session key to all the players who receive a key in any particular session. Once a key is chosen, even
though S can instruct F̃GKE to deliver or not to deliver the key to each player, S cannot modify the
key value delivered to (and output by) uncorrupted players. Therefore, any uncorrupted players
who output a session key will output the same session key.

Since the above claims would contradict the UC-security of π̃, it follows that π̃ is secure against
insider attacks.

21

