Tate pairing computation on the divisors of hyperelliptic curves for cryptosystems

Eunjeong Lee and Yoonjin Lee
Korea Institute for Advanced Study (KIAS), 207-43 Cheongnyangni 2-dong, Dongdaemun-gu, Seoul 130-722, Korea, E-mail: ejlee@kias.re.kr, Dept. of Mathematics, Simon Fraser University, Burnaby, British Columbia CANADA V5A 1S6, E-mail: yjlee@smith.edu

Abstract

In recent papers [4], [9] they worked on hyperelliptic curves H_{b} defined by $y^{2}+y=x^{5}+x^{3}+b$ over a finite field $\mathbb{F}_{2^{n}}$ with $b=0$ or 1 for a secure and efficient pairing-based cryptosystems. We find a completely general method for computing the Tate-pairings over divisor class groups of the curves H_{b} in a very explicit way. In fact, Tate-pairing is defined over the entire divisor class group of a curve, not only over the points on a curve. So far only pointwise approach has been made in [4], [9] for the Tate-pairing computation on the hyperelliptic curves H_{b} over $\mathbb{F}_{2^{n}}$. Furthermore, we obtain a very efficient algorithm for the Tate pairing computation over divisors by reducing the cost of computing. We also find a necessary condition for hyperelliptic curve to have a significant reduction of the loop cost in the Tate pairing computation.

Keywords- Tate pairing computation, hyperelliptic curve, cryptosystem, divisors

1 Introduction

Pairing-based cryptosystems have been one of the most active research areas in cryptology due to discovery of an identity-based encryption scheme and its significance as a cryptoanalytic tool. Recently, the Tate pairing and the Weil pairing have been used to construct various cryptosystems. It is therefore significantly important to develop efficient methods of the paring computation for the purpose of practical applications of the pairings to the cryptosystems. In fact, pairings on supersingular curves can provide us with more efficient implementations than pairings on ordinary curves [2] in terms of processing speed [1], [11], [15] and bandwidth requirements [22].

In recent papers [4], [9] they worked on hyperelliptic curves H_{b} defined by $y^{2}+y=x^{5}+x^{3}+b$ over a finite field $\mathbb{F}_{2^{n}}$ with $b=0$ or 1 for a secure and efficient pairing-based cryptosystems.

In this paper we find a completely general method for computing Tate pairings over divisor class groups of the curves H_{b} in a very explicit way. In fact, the Tate pairing computation is defined over the entire divisor class group of a
curve, not only over the points on a curve. So far only pointwise approach has been made in [4], [9] for the Tate pairing computation on the hyperellitic curves H_{b} over $\mathbb{F}_{2^{n}}$. Both results in [4], [9] are restrictive in a sense that the results are only point-wise computation, and in particular the paper [4] works for only points belonging to $\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$. In general, divisors do not have to be written as the sum of points contained in the defining field $\mathbb{F}_{2^{n}}$. Hence, when divisors are not a sum of rational points, there has been no general method for the Tate pairing computation. We thus present a very general method and algorithms for computing the Tate pairings over divisors in this paper.

Furthermore, we obtain very efficient algorithm for the Tate pairing computation over divisors by reducing the cost of computing. The reduction of the loop cost was made by using the divisor version of the Eta pairing; the Eta pairing was introduced in [4]. In recent years Duursma and Lee [11] introduced a closed formula of the Tate paring for a very special family of hyperelliptic curves for the Tate pairing computation; this significantly reduced the total number of iterations for the Tate pairing computation over such curves. Barreto and others [4] tried to clarify why such curves are very special enough to make a reduction of the loop cost for the final computation of the Tate pairing. They provided us with a necessary condition for a hyperelliptic curve to have a significant reduction of the loop cost in the Tate pairing computation. However, some parts are overlooked, so it ends up with an incorrect necessary condition. We hence find a correct necessary condition, and this condition is quite general in a sense that it works not only for points, but also for divisors of a curve.

We begin with brief background information in Section 2, and Section 3 gives octupling formulas for divisors and reduction formulas for evaluating the Tate pairing on the divisors over H_{b}. Section 4 discusses the endomorphism for pairing computation and Eta pairing for reducing the cost of computation. In Section 5 we obtain main results and algorithms for the Tate pairing computation on the divisors of H_{b}. We finish our paper with some remarks in Section 6.

2 Preliminaries

In this section, we recall the basic definitions and properties (see [16] for further details). Let \mathbb{F}_{q} be a finite field with q elements and $\overline{\mathbb{F}}_{q}$ be the algebraic closure of \mathbb{F}_{q}. Hyperelliptic curves defined over \mathbb{F}_{q} are algebraic curves with genus g which are described by the following equation;

$$
\begin{equation*}
H / \mathbb{F}_{q}: y^{2}+h(x) y=F(x), \tag{1}
\end{equation*}
$$

where $F(x)$ in $\mathbb{F}_{q}[x]$ is a monic polynomial with $\operatorname{deg}(F)=2 g+1, h(x) \in$ $\mathbb{F}_{q}[x], \operatorname{deg}(h) \leq g$ and there are no singular points on H.

Now let

$$
H=\left\{(a, b) \in \overline{\mathbb{F}}_{q} \times \overline{\mathbb{F}}_{q} \mid b^{2}+h(a) b=F(a)\right\} \cup\{\mathcal{O}\}
$$

and let $H\left(\mathbb{F}_{q}\right)=H \cap\left(\mathbb{F}_{q} \times \mathbb{F}_{q}\right)$ be a set of rational points on H with the infinite point \mathcal{O}. We denote the group of degree zero divisor classes of H by J_{H}, and it is
simply called the Jacobian of H. Note that each divisor class can be uniquely represented by the reduced divisor using the Mumford representation [20]. Reduced divisors of the curve H can be found as follows.

Theorem 1 (Reduced divisor [16], [20]). Let K be the function field given by H defined over \mathbb{F}_{q}. Then each nontrivial divisor class of J_{H} can be represented by

$$
D=\sum_{i=1}^{r} P_{i}-r \mathcal{O}, \text { where } r \leq g, P_{i} \neq \mathcal{O}, P_{i} \in H
$$

Let $P_{i}=\left(a_{i}, b_{i}\right), 1 \leq i \leq r$ and $u_{D}(x)=\prod_{i=1}^{r}\left(x-a_{i}\right)$. Then there exists a unique polynomial $v_{D}(x) \in \overline{\mathbb{F}}_{q}[x]$ satisfying

1) $\operatorname{deg}\left(v_{D}\right)<\operatorname{deg}\left(u_{D}\right) \leq g$
2) $b_{i}=v_{D}\left(a_{i}\right)$
3) $u_{D}(x) \mid v_{D}(x)^{2}+v_{D}(x) h(x)-F(x)$,
and $D=$ g.c.d. $\left(\operatorname{div}\left(u_{D}(x)\right), \operatorname{div}\left(v_{D}(x)+y\right)\right)$.
We will denote a divisor class as $D=\left[u_{D}, v_{D}\right]$, where D is a reduced divisor and u_{D}, v_{D} are polynomials in $\mathbb{F}_{q}[x]$ satisfying the three conditions in Theorem 1.

Now we recall the definition of the Tate pairing(see [12] for further details). Let ℓ be a positive divisor of the order of $J_{H}\left(\mathbb{F}_{q}\right)$ with $\operatorname{gcd}(\ell, q)=1$, and k be the smallest integer such that $\ell \mid\left(q^{k}-1\right)$; such k is called the security multiplier. Let $J_{H}[\ell]=\left\{D \in J_{H} \mid \ell D=\mathcal{O}\right\}$. The Tate pairing is a map

$$
\begin{align*}
t: J_{H}[\ell] \times J_{H}\left(\mathbb{F}_{q^{k}}\right) / \ell J_{H}\left(\mathbb{F}_{q^{k}}\right) & \rightarrow \mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{\ell} \\
t(D, E) & =f_{D}\left(E^{\prime}\right) \tag{2}
\end{align*}
$$

where $\operatorname{div}\left(f_{D}\right)=\ell D$ and $E^{\prime} \sim E$ with $\operatorname{support}\left(E^{\prime}\right) \cap \operatorname{support}\left(\operatorname{div}\left(f_{D}\right)\right)=\emptyset$.
In fact, the fields of characteristic 2 are the most commonly used field in the cryptosystems. In this paper we work on the following curves:

$$
\begin{equation*}
H_{b}: y^{2}+y=x^{5}+x^{3}+b, \quad b=0 \text { or } 1 \tag{3}
\end{equation*}
$$

which is defined over $\mathbb{F}_{2^{n}}$ with n coprime to 6 .
The curves H_{0} and H_{1} are hyperelliptic curves, and their divisor class groups have good group structures. To determine ℓ, we need to know the orders of $J_{H_{0}}\left(\mathbb{F}_{q}\right)$ and $J_{H_{1}}\left(\mathbb{F}_{q}\right)$, and they are given as follows.

Theorem 2 ([27]). Let $\operatorname{gcd}(n, 6)=1$. For the curve H_{b}, we have

$$
\begin{align*}
& \# J_{H_{0}}\left(\mathbb{F}_{2^{n}}\right)=2^{2 n}+2^{n}+1+(-1)^{[(n+1) / 4]} 2^{(n+1) / 2}\left(2^{n}+1\right), \tag{4}\\
& \# J_{H_{1}}\left(\mathbb{F}_{2^{n}}\right)=2^{2 n}+2^{n}+1-(-1)^{[(n+1) / 4]} 2^{(n+1) / 2}\left(2^{n}+1\right), \tag{5}
\end{align*}
$$

where [] denotes the floor function value, and $J_{H_{b}}\left(\mathbb{F}_{2^{n}}\right)$ is a cyclic group.

3 Efficient computations on $\boldsymbol{J}_{H_{b}}$

As pointed in [9], [4], octupling a divisor on the curve H_{b} is computationally very simple, of which complexity is almost the same as octupling of a point on elliptic curves. While a divisor of elliptic curves have one-to-one correspondence with a point on the curves, divisors of hyperelliptic curves are expressed not by a single point, but by a sum of the points.

For a divisor $D=\left[u_{D}, v_{D}\right]$ of the curve H_{b} with $u_{D}(x), v_{D}(x) \in \mathbb{F}_{2^{n}}[x]$, we can find a very explicit formula for $8[D]$ in terms of the coefficients of u_{D} and v_{D} without inversions in $\mathbb{F}_{2^{n}}$ from the doubling formula. This is a divisor version of the result in [9], [4] for octupling formula of the point.

Proposition 1. Let H_{b} be a hyperelliptic curve defined by $y^{2}+y=x^{5}+x^{3}+b$ over $\mathbb{F}_{2^{n}}$. Then for a divisor $D=\left[u_{D}, v_{D}\right]=\left[x^{2}+u_{D, 1} x+u_{D, 0}, v_{D, 1} x+v_{D, 0}\right]$ in $J_{H_{b}}$ and for some $U_{D}(x) \in \mathbb{F}_{2^{n}}[x]$,

$$
\begin{aligned}
& 8[D]=\operatorname{div}\left(\frac{G_{D}(x, y)}{U_{D}(x)}\right)+\left[U_{8}(x), V_{8}(x)\right], \text { where } \\
& G_{D}(x, y)=G_{D, 4}(x, y)^{2} \cdot G_{D, 8}(x, y) \\
& U_{8}(x)=x^{2}+u_{D, 1} 64 \\
&{ }^{64}\left(1+u_{D, 1}+u_{D, 0}\right)^{64} \\
& V_{8}(x)=\left(v_{D, 1}+u_{D, 1}\right)^{64} x+\left(v_{D, 1}+u_{D, 1}+v_{D, 0}+u_{D, 0}+1\right)^{64}
\end{aligned}
$$

and $G_{D, 4}, G_{D, 8}$ are described in Table 1. In the table, $n M$ indicates that it requires n multiplications in $\mathbb{F}_{2^{n}}$.

In the following Proposition 2 for any divisor $E=\left[u_{E}, v_{E}\right]$ we obtain the reduction formulae for $G_{D, 4}, G_{D, 8}$ at each point $\left(x_{j}, y_{j}\right)$ of a divisor E. These formulae will be very useful for efficient computation of our main result. Basically we represent $G_{D, 4}$ and $G_{D, 8}$ as linear polynomials in x_{j} as follows.

Proposition 2. Let E be a divisor of the curve H_{b} be defined by

$$
E=Q_{1}+Q_{2}-2 \mathcal{O}=\left[u_{E}, v_{E}\right]
$$

such that $u_{E}=x^{2}+x+u_{E, 0}, \quad v_{E}=v_{E, 1} x+v_{E, 0}$, and $Q_{j}=\left(x_{j}, y_{j}\right)$ for $j=1,2$.
Let $G_{D, 4}\left(Q_{j}\right)=C_{D, 1} x_{j}+C_{D, 2}$ and $G_{D, 8}\left(Q_{j}\right)=C_{D, 3} x_{j}+C_{D, 4}$. Then $C_{D, i}$'s (with $i=1,2,3,4$) are given in the following table 2 (We note that $C_{D, i}$'s are expressed in terms of coefficients of u_{E} and $\left.v_{E}\right)$. Therefore, we obtain
$G_{D}(E)=\left(C_{D, 1}^{2} u_{E, 0}+C_{D, 1} C_{D, 2} u_{E, 1}+C_{D, 2}^{2}\right)^{2}\left(C_{D, 3}^{2} u_{E, 0}+C_{D, 3} C_{D, 4} u_{E, 1}+C_{D, 4}^{2}\right)$.

Proof. From $u_{E}\left(x_{j}\right)=x_{j}{ }^{2}+u_{E, 1} x_{j}+u_{E, 0}$, we have

$$
\begin{equation*}
x_{j}{ }^{2}=u_{E, 1} x_{j}+u_{E, 0} . \tag{6}
\end{equation*}
$$

Table 1. Octupling formula with divisor representation

INPUT	$D=\left[u_{D}, v_{D}\right] \in J_{H_{b}}\left(\mathbb{F}_{2^{n}}\right)$
OUTPUT	$\begin{aligned} & G_{D, 4}(x, y)=\left(y+x^{3}+b\right)^{2}+\left(y+x^{3}+b\right)\left(\delta_{1} x^{2}+\delta_{2} x+\delta_{3}\right)+\delta_{4} x^{4}+\delta_{5} x^{3}+\delta_{6} x^{2}+\delta_{7} x+\delta_{8} \\ & G_{D, 8}(x, y)=(y+b+1)^{2}+(y+b+1)\left(\epsilon_{1} x^{2}+\epsilon_{2} x+\epsilon_{3}\right)+\epsilon_{4} x^{4}+\epsilon_{5} x^{3}+\epsilon_{6} x^{2}+\epsilon_{7} x+\epsilon_{8} \end{aligned}$
Initiation (Cost: 4M)	$w_{0}=u_{D, 1} v_{D, 1}, \quad w_{1}=u_{D, 1} u_{D, 0}, \quad w_{2}=u_{D, 1} v_{D, 0}, w_{3}=u_{D, 0} v_{D, 1}$
$\begin{gathered} G_{D, 4} \\ \text { (Cost: 2M) } \end{gathered}$	$\begin{aligned} & w_{4}=w_{2}+w_{3} \\ & \delta_{1}=\left(u_{D, 1}{ }^{2}+u_{D, 1}\right)^{4}, \quad \delta_{2}=u_{D, 1}{ }^{4}, \quad \delta_{3}=w_{0}^{4}, \quad \delta_{5}=w_{1}^{4} \\ & \delta_{4}=\left(u_{D, 0}+u_{D, 0}\right)^{4}+\delta_{5}, \quad \delta_{7}=w_{2}^{4}, \quad \delta_{6}=\left(u_{D, 1} w_{4}+u_{D, 0}\right)^{4}+\delta_{7} \\ & \delta_{8}=\left(v_{D, 1} w_{4}+v_{D, 0}\right)^{4} \end{aligned}$
$G_{D, 8}$ (Cost: 5M)	$\left\{\begin{array}{l} w_{5}=u_{D, 1}\left(u_{D, 0}{ }^{2}+u_{D, 0}+w_{2}+w_{3}\right), \quad w_{6}=u_{D, 1}\left(w_{1}+v_{D, 0}\right) \\ \epsilon_{1}=u_{D, 1}{ }_{32}, \epsilon_{2}=\delta_{1}^{4}, \epsilon_{3}=\left(u_{D, 1}{ }^{3}+u_{D, 1}+w_{0}+w_{1}\right)^{16}, \epsilon_{4}=\left(u_{D, 1}+u_{D, 0}+1\right)^{32} \\ \epsilon_{5}=\left(u_{D, 1}{ }^{2}+u_{D, 1}+w_{1}\right)^{16}, \epsilon_{6}=\left(\epsilon_{3}+u_{D, 0}+u_{D, 0}+w_{1}+w_{5}\right)^{16} \\ \epsilon_{7}=\left(w_{5}+w_{6}\right)^{16}, \quad \epsilon_{8}=\left(u_{D, 0}{ }^{3}+\left(u_{D, 1}{ }^{2}+v_{D, 1}\right)\left(w_{2}+w_{3}\right)+v_{D, 0}{ }^{2}+u_{D, 0}+w_{6}\right)^{16} \end{array}\right.$
Total cost	11 M

Since $y_{j}=v_{E}\left(x_{j}\right)$, we also have

$$
\begin{equation*}
y_{j}=v_{E, 1} x_{j}+v_{E, 0} . \tag{7}
\end{equation*}
$$

By using Equations (6) and (7) the functions $G_{D, 4}$ and $G_{D, 8}$ can be written as linear polynomials as given in the table 2. Since $G_{D}(E)=G_{D}\left(Q_{1}\right) G_{D}\left(Q_{2}\right)$, the result as asserted follows immediately from Proposition 2.

4 Endomorphism and Eta pairing

Barreto and others [4] tried to classify certain curves which are very special enough to have an efficient algorithm for the Tate pairing computation. They provided us with a necessary condition for a hyperelliptic curve to have a significant reduction of the loop cost in the final computation of the Tate pairing over points.

In the rest of this section we find a correct necessary condition, and this condition is quite general since it works not only for points, but also for divisors of a curve.

Let H be a hyperelliptic curve over some finite field $\mathbb{F}_{p^{n}}$, and let ψ be an endomorphism on the curve H. For two divisors D, E in J_{H}, the Eta pairing is defined by

$$
\begin{equation*}
\eta(D, E)=\prod_{i=0}^{n-1} f_{D_{i}}(\psi(E)) \tag{8}
\end{equation*}
$$

Table 2. Reduction formula of $G_{D, 4}, G_{D, 8}$ for the point evaluation

INPUT	$E=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)-2 \mathcal{O} \in J_{H_{b}}\left(\mathbb{F}_{2} 12 n\right)$ $G_{D, 4}(x, y)=\left(y+x^{3}+b\right)^{2}+\left(y+x^{3}+b\right)\left(\delta_{1} x^{2}+\delta_{2} x+\delta_{3}\right)+\delta_{4} x^{4}+\delta_{5} x^{3}+\delta_{6} x^{2}+\delta_{7} x+\delta_{8}$ $G_{D, 8}(x, y)=(y+b+1)^{2}+(y+b+1)\left(\epsilon_{1} x^{2}+\epsilon_{2} x+\epsilon_{3}\right)+\epsilon_{4} x^{4}+\epsilon_{5} x^{3}+\epsilon_{6} x^{2}+\epsilon_{7} x+\epsilon_{8}$
OUTPUT	$C_{D, i}$ for $i=1, \ldots 4$ where $G_{4}\left(x_{j}, y_{j}\right)=C_{D, 1} x_{j}+C_{D, 2}$ and $G_{8}\left(x_{j}, y_{j}\right)=C_{D, 3} x_{j}+C_{D, 4}$
Initiation	$k_{1}=u_{E, 0}+v_{E, 1}+u_{E, 1}^{2}, k_{2}=u_{E, 1} u_{E, 0}+v_{E, 0}+b, k_{3}=v_{E, 0}+b+1$
$G_{D, 4}$	$W=k_{1}^{2}+u_{E, 1}\left(k_{1} \delta_{1}+\delta_{5}+\delta_{4} u_{E, 1}\right)+\delta_{1} k_{2}+\delta_{2} k_{1}+\delta_{6}$ $C_{D, 1}=u_{E, 1} W+u_{E, 0}\left(k_{1} \delta_{1}+\delta_{5}\right)+\delta_{3} k_{1}+\delta_{2} k_{2}+\delta_{7}$ $C_{D, 2}=u_{E, 0} W+k_{2}^{2}+\delta_{4} u_{E, 0}+\delta_{3} k_{2}+\delta_{8}$
$G_{D, 8}$	$W=v_{E, 1}^{2}+u_{E, 1}\left(v_{E, 1} \epsilon_{1}+\epsilon_{5}+\epsilon_{4} u_{E, 1}\right)+\epsilon_{1} k_{3}+\epsilon_{2} v_{E, 1}+\epsilon_{6}$ $C_{D, 3}=u_{E, 1} W+u_{E, 0}\left(v_{E, 1} \epsilon_{1}+\epsilon_{5}\right)+\epsilon_{3} v_{E, 1}+\epsilon_{2} k_{3}+\epsilon_{7}$ $C_{D, 4}=u_{E, 0} W+k_{3}^{2}+\epsilon_{4} u_{E, 0}^{2}+\epsilon_{3} k_{3}+\epsilon_{8}$

where $D_{i+1}+\left(h_{D_{i}}\right)=p^{m} D_{i}$ with a divisor $D_{0}=D$ and some positive integer m.

Assume that the multiplication by p^{m} has an extremely special form such as

$$
\begin{equation*}
p^{m}((P)-(\mathcal{O})) \equiv\left(\left[p^{m}\right] P\right)-(\mathcal{O}) \tag{9}
\end{equation*}
$$

It is known that the map $\left[p^{m}\right]$ of the multiplication by p^{m} has degree $p^{2 m}$, so the map $\left[p^{m}\right]$ is of degree $p^{2 m}$. Furthermore, from the general fact about the map between curves over a finite field [24, Corollary 2.12], the map [p^{m}] can be written as $\left[p^{m}\right]=\phi \pi$, where ϕ is some separable automorphism and π is a Frobenius map of $p^{2 m}$ th power.

Let $q=p^{m n}$, then it follows from Eq. (9) that H has a property that

$$
\begin{equation*}
q(P)-q(\mathcal{O})=(\gamma(P))-(\mathcal{O})+\left(g_{P}\right) \tag{10}
\end{equation*}
$$

for some automorphism γ on H and some function g_{P}. Thus γ can be given by $\gamma=\phi^{n} \pi^{n}$.

The following theorem is very crucial for efficient computation of the Tatepairing. Originally similar results for the points were given in [4, Theorem 1], but the necessary condition was not quite correct. We hence provide correct necessary condition as follows, and this is quite general in a sense that it works for divisors.

Theorem 3. Let $q=p^{m n}, \gamma$ be an automorphism of J_{H} induced from Eq. (10), and ψ be an endomorphism on the curve H over $\mathbb{F}_{p^{n}}$.

Assume that

$$
\begin{equation*}
\phi^{n} \psi^{[q]}=\psi \tag{11}
\end{equation*}
$$

where $\psi^{[q]}$ denotes a map obtained by raising the coefficients of ψ by qth power, that is, if $\psi(x)=\sum a_{i} x^{i}$, then $\psi^{[q]}(x)=\sum a_{i}^{q} x^{i}$.

Then for a divisor D in $J_{H}\left(\mathbb{F}_{p^{n}}\right)$ and a divisor E in J_{H}, we have

$$
\eta(q D, E)=\eta(D, E)^{q}
$$

Proof. We have

$$
\gamma(D)+\left(g_{D}\right)=q D
$$

where a function g_{D} is given by

$$
g_{D}=\prod_{i=0}^{i=n-1} h_{D_{i}}^{p^{m(n-1-i)}}
$$

Hence, $\eta(D, E)=g_{D}(\psi(E))$. Comparing $g_{q D}$ with g_{D}, it is easy to verify that

$$
\begin{equation*}
g_{q D}=g_{D}\left(\phi^{-n}\right), \tag{12}
\end{equation*}
$$

from the fact that the map ϕ^{n} is a separable automorphism. Then we have $\eta(D, E)^{q}=g_{D}(\psi(E))^{q}=g_{D}\left(\psi^{[q]}(E)\right)$; the last equality is from the fact that both D and E have coefficients in \mathbb{F}_{q}.

Furthermore, $\eta(q D, E)=g_{q D}(\psi(E))=g_{D}\left(\phi^{-n}\right)(\psi(E))$ by Eq. (12).
Our assertion therefore follows immediately from Eq. (11).
Let $H_{b}: y^{2}+y=x^{5}+x^{3}+b$ be the hyperelliptic curve over $\mathbb{F}_{2^{n}}$ as before. We concern with the twisted Tate pairing

$$
\begin{aligned}
\hat{t}: J_{H_{b}}\left(\mathbb{F}_{2^{n}}\right)[\ell] \times J_{H_{b}}\left(\mathbb{F}_{2^{n}}\right) / \ell J_{H_{b}}\left(\mathbb{F}_{2^{12 n}}\right) & \longrightarrow \mathbb{F}_{2^{12 n}}^{*} \\
\hat{t}(D, E) & =f_{D}(\psi(E))^{\frac{2^{12 n}-1}{\ell}} .
\end{aligned}
$$

We use the same endomorphism ψ used in [9]. We identify $\mathbb{F}_{2^{12 n}} \cong \mathbb{F}_{2}\left(\alpha, \tau, s_{0}\right)$ with α, τ, s_{0} defined as follows. We will use a similar notation as in [4], but we will rewrite the field $\mathbb{F}_{2^{6 n}}$ in a slightly different way for efficiency (or to represent with simple primitive polynomial).

We first take $\alpha \in \mathbb{F}_{2^{n}}$ to be such that its minimal polynomial $\operatorname{irr}\left(\alpha, \mathbb{F}_{2}\right) \in$ $\mathbb{F}_{2}[x]$, and then $\tau \in \mathbb{F}_{2^{6 n}}$ with the minimal polynomial $\operatorname{irr}\left(\tau, \mathbb{F}_{2^{n}}\right)=x^{6}+$ $x+1 \in \mathbb{F}_{2^{n}}[x]$. Finally we choose $s_{0} \in \mathbb{F}_{2^{12 n}}$ that has the minimal polynomial $\operatorname{irr}\left(s_{0}, \mathbb{F}_{2^{6 n}}\right)=x^{2}+x+\tau^{5} \in \mathbb{F}_{2^{6 n}}[x]$.

$$
\begin{aligned}
& \mathbb{F}_{2^{12 n}} \cong \mathbb{F}_{2}\left(\alpha, \tau, s_{0}\right) \\
& \mid \quad s_{0}^{2}+s_{0}+\tau^{5}=0 \\
& \mathbb{F}_{2^{6 n}} \cong \mathbb{F}_{2}(\alpha, \tau) \\
& \mid \quad \tau^{6}+\tau+1=0 \\
& \mathbb{F}_{2^{n}} \cong \mathbb{F}_{2}(\alpha)
\end{aligned}
$$

We define an endomorphism ψ by

$$
\psi: H_{b}\left(\mathbb{F}_{2^{12 n}}\right) \longrightarrow H_{b}\left(\mathbb{F}_{2^{12 n}}\right)
$$

such that $\psi(x, y)=\left(x+w, y+s_{2} x^{2}+s_{1} x+s_{0}\right)$, where

$$
w=\tau^{5}+\tau^{4}+\tau^{2}, s_{2}=\tau^{5}+\tau, s_{1}=\tau^{3}+\tau^{2}+\tau+1, s_{0}^{2}=s_{0}+\tau^{5}
$$

In particular, if $\left(x_{0}, y_{0}\right)$ belongs to $H_{b}\left(\mathbb{F}_{2^{n}}\right) \subset H_{b}\left(\mathbb{F}_{2^{12 n}}\right)$, then the x-coordinate of $\psi\left(x_{0}, y_{0}\right)$ is in $\mathbb{F}_{2^{6 n}}$ and y-coordinate of $\psi\left(x_{0}, y_{0}\right)$ is in $\mathbb{F}_{2^{12 n}}$.

For any divisor E of H_{b}, let $E=Q_{1}+Q_{2}=\left[u_{E}, v_{E}\right]=x^{2}+u_{E, 1} x+$ $\left.u_{E, 0}, v_{E, 1} x+v_{E, 0}\right] \in J_{H_{b}}$ with $Q_{j}=\left(x_{j}, y_{j}\right)$ for $j=1,2$. Then the endomorphism ψ on divisors are easily deduced as follows: $E^{\prime}=\psi(E)=\left[u_{E^{\prime}}, v_{E^{\prime}}\right]$, where

$$
\begin{gather*}
u_{E^{\prime}}=x^{2}+u_{E, 1} x+\left(u_{E, 0}+u_{E, 1} w+w^{2}\right) \tag{13}\\
v_{E^{\prime}}=\left(v_{E, 1}+s_{2} u_{E, 1}+s_{1}\right) x+\left(v_{E^{\prime}, 1} w+v_{E, 0}+s_{2} u_{E, 0}+s_{0}\right) \tag{14}
\end{gather*}
$$

Let $q=2^{3 n}$ with n coprime to 6 , then our curve H_{b} satisfies the property in Eq. (10) due to the octupling formula in [9], [4].

In the following lemma we prove that our curve H_{b} also satisfies the crucial condition in Eq. (11) for Theorem 3. For the points, similar result is given in [4, Lemma 2]. Very importantly, we point out that the result in [4, Lemma 2] works only for the points in $\mathbb{F}_{2^{3 n}}$. The following result works for the divisors in $J_{H_{b}}\left(\mathbb{F}_{2^{3 n}}\right)$ which may consist of the points in $\mathbb{F}_{2^{6 n}}$.

Lemma 1. Let E be a divisor of the curve H_{b}, and ϕ be a map defined on the curve H_{b} such that $\phi(x, y)=\left(x+1, y+x^{2}+1\right)$. Then we have the following

$$
\phi^{n} \psi^{[q]}(E)=\psi(E)
$$

Proof. In fact, we have
$\psi^{\left[8^{n}\right]}(x, y)=\left(x+w^{8^{n}}, y+s_{2}^{8^{n}} x^{2}+s_{1}^{8^{n}} x+s_{0}^{8^{n}}\right)=\left(x+w+1, y+\left(s_{2}+1\right) x^{2}+s_{1} x+s_{0}^{8^{n}}\right) ;$
this is from the fact that $w^{8^{n}}=w+1$ and $s_{2}^{8^{n}}=s_{2}+1$ for any odd n, and $s_{1}^{8^{n}}=s_{1}$ for any n. We observe that

$$
s_{0}^{8^{n}}= \begin{cases}s_{0}+w^{2} & \text { if } n \equiv 1 \quad(\bmod 4) \tag{15}\\ s_{0}+w^{2}+1 & \text { if } n \equiv 3 \\ (\bmod 4)\end{cases}
$$

We note that $\phi^{4}=1$, so we have $\phi^{n}=\phi$ if $n \equiv 1(\bmod 4)$ while $\phi^{n}=\phi^{3}$ if $n \equiv 3(\bmod 4)$. In both cases, it is easy to see that $\phi^{n} \psi^{[q]}(x, y)=\psi(x, y)$. It thus also follows immediately that $\phi^{n} \psi^{[q]}(E)=\psi(E)$ for any divisor E.

Therefore, we can reduce the loop cost for computing $f_{D}(\psi(E))^{\frac{2^{12 n}-1}{\ell}}$ by using the η pairing as given in Theorem 4.

5 Main Theorem and Algorithms

First, we describe how to compute the Tate pairing

$$
\hat{t}(D, E)=f_{D}(\psi(E))^{\frac{2^{12 n}-1}{\ell}}
$$

where ψ is the endomorphism defined in Section 4.
From the following lemma, we can get $\hat{t}(D, E)$ by computing $2^{6 n} D$ instead of computing $\left(2^{6 n}+1\right) D$.
Lemma 2 ([9]). Let \hat{t} be the twisted Tate pairing on $H_{b}: y^{2}+y=x^{5}+x^{3}+b$ ($b=0$ or 1);

$$
\hat{t}: J_{H_{b}}\left(\mathbb{F}_{2^{n}}\right)[\ell] \times J_{H_{b}}\left(\mathbb{F}_{2^{12 n}}\right) / \ell J_{H_{b}}\left(\mathbb{F}_{2^{12 n}}\right) \longrightarrow \mathbb{F}_{2^{12 n}}^{*}
$$

Then $\hat{t}(D, E)=\left(f_{D}(\psi(E))^{\frac{8^{2 n}+1}{\ell}}\right)^{2^{6 n}-1}=\tilde{f_{D}}(\psi(E))^{2^{6 n}-1}$, where $2^{6 n} D=\operatorname{div}\left(\tilde{f_{D}}\right)+$ \tilde{D}.

The following lemma gives the general formula for $\left[8^{i}\right] D$ for any positive integer i. It may be useful to express $\left[8^{i}\right] D$ in terms of the coefficients of u_{D} (resp. v_{D}) explicitly.

Lemma 3. Let $D=\left[x^{2}+u_{D, 1} x+u_{D, 0}, v_{D, 1} x+v_{D, 0}\right]$ be a divisor in $J_{H_{b}}$. Let D_{i} denote $\left[8^{i}\right] D=\left[u_{D_{i}}, v_{D_{i}}\right]$ for each integer $i \geq 1$, and $u_{D_{i}}(x)=x^{2}+u_{D_{i}, 1} x+u_{D_{i}, 0}$ and $v_{D_{i}}(x)=v_{D_{i}, 1} x+v_{D_{i}, 0}$ with $u_{D_{i}, j}, v_{D_{i}, j} \in \mathbb{F}_{2^{n}}$ for $j=0,1$. Then the coefficients of $u_{D_{i}}(x)$ (resp. $\left.v_{D_{i}}(x)\right)$ can be determined by the coefficients of $u_{D}(x)\left(\right.$ resp. $\left.v_{D}(x)\right)$ as follows.

$$
\left\{\begin{array}{l}
u_{D_{i}, 1}=u_{D, 1}^{8^{2 i}} \tag{16}\\
u_{D_{i}, 0}=u_{D, 0}^{8^{2 i}}+i u_{D, 1}^{8^{2 i}}+i^{2} \\
v_{D_{i}, 1}=i u_{D, 1}^{8^{2 i}}+v_{D, 1}^{8^{2 i}} \\
v_{D_{i}, 0}=i\left(v_{D, 1}^{8^{2 i}}+u_{D, 1}^{8^{2 i}}+u_{D, 0}^{8^{2 i}}+1\right)+v_{D, 0}^{8^{2 i}}
\end{array}\right.
$$

Now, we are ready to obtain the following main result.
Theorem 4. Let $E=\left[u_{E}, v_{E}\right]=\left[x^{2}+u_{E, 1} x+u_{E, 0}, v_{E, 1} x+v_{E, 0}\right]$ be a divisor in $J_{H_{b}}$, and let $E^{\prime}=\psi^{[q]}(E)=\left[u_{E^{\prime}}, v_{E^{\prime}}\right]$ with $u_{E^{\prime}}(x)=x^{2}+u_{E^{\prime}, 1} x+u_{E^{\prime}, 0}$ and $v_{E^{\prime}}(x)=v_{E^{\prime}, 1} x+v_{E^{\prime}, 0}$. We define $G_{D_{i}}\left(E^{\prime}\right)$ to be
$\left(C_{D_{i}, 1}^{2} u_{E^{\prime}, 0}+C_{D_{i}, 1} C_{D_{i}, 2} u_{E^{\prime}, 1}+C_{D_{i}, 2}^{2}\right)^{4}\left(C_{D_{i}, 3}^{2} u_{E^{\prime}, 0}+C_{D_{i}, 3} C_{D_{i}, 4} u_{E^{\prime}, 1}+C_{D_{i}, 4}^{2}\right)^{2}$, where $C_{D_{i}, j}$'s are the values obtained from Table 2 with input vaules D_{i} and E^{\prime}. Then the Tate pairing value for a divisor D in $J_{H_{b}}$ is given by

$$
f_{D}(\psi(E))^{\frac{2^{12 n}-1}{\ell}}=\prod_{i=1}^{n-1} G_{D_{i}}\left(E^{\prime}\right)^{8^{2 n-1-i}}
$$

Proof. We define a function $\tilde{f_{D}}$ by

$$
\tilde{f_{D}}=\prod_{i=0}^{2 n-1} h_{D_{i}}^{8^{2 n-1-i}}
$$

And we also have

$$
\eta(D, E)=\prod_{i=0}^{n-1} h_{D_{i}}(\psi(E))^{8^{2 n-1-i}}
$$

In fact, it is easy to see that $\tilde{f_{D}}(\psi(E))$ can be written in terms of Eta pairing as follows.

$$
\tilde{f_{D}}(\psi(E))=\eta(D, E)^{q} \eta(q D, E)
$$

It then follows from Theorem 3 and Lemma 1 that

$$
\begin{equation*}
\tilde{f_{D}}(\psi(E))=\eta(D, E)^{2 q} \tag{17}
\end{equation*}
$$

We have that $\eta(D, E)^{q}=\prod_{i=0}^{n-1} h_{D_{i}}\left(\psi^{[q]}(E)\right)^{8^{2 n-1-i}}$. Furthermore, $h_{D_{i}}=$ $\frac{G_{D_{i}}}{U_{D_{i}}}$. In fact, the denominator $U_{D_{i}}\left(\psi^{[q]}(E)\right)$ can be ignored in the final exponentiation since the denominator belongs to $\mathbb{F}_{2^{6 n}}$, that is,

$$
f_{D}(\psi(E))^{\frac{2^{12 n}-1}{\ell}}=\tilde{f_{D}}(\psi(E))^{2^{6 n}-1}=\prod_{i=0}^{n-1} G_{D_{i}}\left(E^{\prime}\right)^{8^{2 n-1-i}}
$$

We have already know how to compute $G_{D_{i}}\left(E^{\prime}\right)$ in an explicit way as shown in Table 2 with input values D_{i} and E^{\prime}. Therefore, our assertion follows immediately.

Algorithm 5.

$\operatorname{INPUT} D=\left[u_{D}, v_{D}\right], E=\left[u_{E}, v_{E}\right] \in J_{H_{b}}\left(\mathbb{F}_{2^{n}}\right)$, endomorphism $\psi, q=8^{n}$
OUTPUT $\hat{t}(D, E)$
1: Compute $E^{\prime}=\psi^{[q]}(E)=\left[x^{2}+u_{E^{\prime}, 1} x+u_{E^{\prime}, 0}, v_{E^{\prime}, 1} x+v_{E^{\prime}, 0}\right]$ by Eq.s (13) and (14).
2: $f \leftarrow 1, G \leftarrow 1, S \leftarrow D$
3: for $i=1$ to n do
4: \quad compute $G_{S, 4}$ and $G_{S, 8}$ using Table 1 with S as input.
5: compute $C_{S, 1}, C_{S, 2}, C_{S, 3}, C_{S, 4}$ using Table 2 with E^{\prime} as input.
6: $\quad G \leftarrow G^{8} \cdot\left(C_{1}^{2} u_{E^{\prime}, 0}+C_{1} C_{2} u_{E^{\prime}, 1}+C_{2}^{2}\right)^{4} \cdot\left(C_{3}^{2} u_{E^{\prime}, 0}+C_{3} C_{4} u_{E^{\prime}, 1}+C_{4}^{2}\right)^{2}$
7: $\quad S \leftarrow\left[U_{8}, V_{8}\right]$ using Proposition 1 with S as input.
8: Return $G^{q^{2}-1}$

In Step 8, let $G=c+d s_{0}, c, d \in \mathbb{F}_{2^{6 n}}$. Then the final exponentiation can be easily computed as follows;

$$
\begin{aligned}
\hat{t}(D, E) & =\left(c+d s_{0}\right)^{2^{6 n}-1}=\frac{c+d \bar{s}_{0}}{c+d s_{0}}=\frac{\left(c+d \bar{s}_{0}\right)^{2}}{\operatorname{Norm}\left(c+d s_{0}\right)} \\
& =\frac{c^{2}+d^{2}\left(\tau^{5}+1\right)}{c(c+d)+d^{2} \tau^{5}}+\frac{d^{2}}{c(c+d)+d^{2} \tau^{5}} s_{0}
\end{aligned}
$$

6 Remarks

For the problem of computing the Tate pairing over divisors, we can approach the problem in a very naive way as follows. For the polynomials in the representation of a divisor, we can represent the coefficients of the polynomials by the symmetric functions on their roots. Then it is possible to compute the Tate pairing over divisors by using the elimination method via Gröber bases computation. However, this naive approach certainly requires overly complicated tedious computation process, and it is almost impossible to use the result for implementation of the Tate pairing. It is therefore definitely necessary to find a much simpler and explicit method for computing the Tate pairing over divisors. In this paper we achieved this task, and we found a very general method and algorithms for computing the Tate pairings over divisors.

Very recently Barreto and others in [4] obtained a closed formula for the Tate paring computation over points of the curves H_{b}. This is a nice result, however, there result is restrictive since it can be applied only for the divisors which can be written as the sum of points contained in the defining field $\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$. As a matter of fact, one can derive the general final closed formula for the Tate paring computation over any divisors in a similar approach made in [4] by using our main Theorem 4 and Lemma 3.

References

1. P.S. Barreto, H.Y.Kim, B. Lynn and M. Scott, Efficient Algorithms for PairingBased Cryptosystems, Advances in Cryptology-Crypto 2002, LNCS 2442, pp.354-368 (2002).
2. P. Barreto, B. Lynn and M. Scott, On the Selection of Pairing Friendly Groups, SAC 2003, LNCS 3006 pp.17-25 (2004).
3. P. Barreto, Compressed Pairings, Advances in Cryptology-Crypto 2004, LNCS 3152, pp.140-156 (2004).
4. P. Barreto, S. Galbraith, C. hEigeartaigh, and M. Scott, Efficient Pairing Computation on Supersingular Abelian Varieties, Cryptology eprint Archives, Available at http://eprint.iacr.org, (2004), Number 2004/375.
5. D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing. SIAM J. Comput. 32, No. 3, pp.586-615 (2003) (electronic).
6. D. Boneh, H. Shacham and B. Lynn, Short signatures from the Weil pairing, Advances in Cryptology-AsiaCrypt 2001, LNCS 2248, pp. 514-532 (2001).
7. D.G. Cantor, Computing in the Jacobian of a Hyperelliptic Curves, Math. Comp, 48, No.177, pp.95-101 (1987).
8. L. Chen and C. Kudla, Identity Based Authenticated Key Agreement Protocols from Pairings, Cryptology eprint Archives, Available at http://eprint.iacr.org, (2002), Number 2002/184.
9. Y. Choie, J. Kim and E. Lee, Efficient Computation of the Tate Pairing on Hyperelliptic Curves for Cryptosystems, preprint.
10. Y. Choie and E. Lee, Implementation of Tate Pairing on Hyperelliptic Curves of Genus 2, Information security and cryptology-ICISC 2003, LNCS 2971, pp.97-111 (2004)
11. I. Duursma and H. Lee, Tate pairing implementation for hyperelliptic curves $y^{2}=$ $x^{p}-x+d$, Advances in cryptology-AsiaCrypt 2003, LNCS 2894, pp. 111-123 (2003).
12. G. Frey and H-G. Rück, A remark concerning m-divisibility in the divisor class group of curves, Math.Comp. 62, No.206, pp.865-874 (1994).
13. S. Galbraith, Supersingular curves in Cryptography, Advances in CryptologyAsiaCrypt 2001, LNCS 2248, pp.495-513 (2002).
14. P. Gaudry, An algorithm solving the discrete log problem on hyperelliptic curves, Advances in Cryptology-Eurocrypt 2000, LNCS 1807, pp.19-34 (2000).
15. S. Galbraith, K. Harrison, and D. Soldera, Implementing the Tate pairing, Algorithmic Number Theory Symposium - ANTS-V, LNCS 2369, pp.324-337 (2002).
16. N. Koblitz, Algebraic aspects of cryptography, Springer-Verlag (1998).
17. T. Lange, Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite Fields via Explicit Formulae, Cryptology eprint Archives, Available at http://eprint.iacr.org, (2002), Number 2002/121.
18. A.J. Menezes, T. Okamoto and S. Vanstone, Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Transactions of Information Theory, 39, No 5, pp.1639-1646 (1993).
19. V. Miller, Short Programs for Functions on Cuvres, Unpublished manuscript, (1986).
20. D. Mumford, Tata Lectures on Theta II, Birkhäuser, (1984).
21. K. Rubin and A. Silverberg, The Best and Worst of Supersingular Abelian Varieties in Cryptology, eprint 2002/006.
22. M. Scott and P.S. barreto, Compressed pairings, In Proceedings, Lecture Notes in Computer Science, Santa Barbara, US, 2004. Advances in ryptology-Crypto"2004, Springer-Verlag, to appear.
23. A. Shamir, Identity-based cryptosystems and signature schemes, Advances in Cryptology-CRYPTO 84, LNCS 196, pp.47-53 (1985).
24. J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag New York (1986).
25. N.P. Smart, On the performance of Hyperelliptic Cryptosystems, Advances in Cryptology-Eurocrypt 99, LNCS 1592, pp.165-175 (1999).
26. E.R. Verheul, Evidence that XTR Is More Secure than Supersingular Elliptic Curve Cryptosystems, Advances in Cryptology-AisaCrypt 2001, LNCS 2248, pp.433-551 (2002).
27. C. Xing, On supersingular abelian varieties of dimension two over finite fields, Finite fields and their application, 2, pp.407-421 (1996).
