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Abstract. In recent papers [4], [9] they worked on hyperelliptic curves
Hb defined by y2+y = x5+x3+b over a finite field F2n with b = 0 or 1 for
a secure and efficient pairing-based cryptosystems. We find a completely
general method for computing the Tate-pairings over divisor class groups
of the curves Hb in a very explicit way. In fact, Tate-pairing is defined
over the entire divisor class group of a curve, not only over the points
on a curve. So far only pointwise approach has been made in [4], [9] for
the Tate-pairing computation on the hyperelliptic curves Hb over F2n .
Furthermore, we obtain a very efficient algorithm for the Tate pairing
computation over divisors by reducing the cost of computing. We also
find a necessary condition for hyperelliptic curve to have a significant
reduction of the loop cost in the Tate pairing computation.
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1 Introduction

Pairing-based cryptosystems have been one of the most active research areas in
cryptology due to discovery of an identity-based encryption scheme and its sig-
nificance as a cryptoanalytic tool. Recently, the Tate pairing and the Weil pairing
have been used to construct various cryptosystems. It is therefore significantly
important to develop efficient methods of the paring computation for the purpose
of practical applications of the pairings to the cryptosystems. In fact, pairings
on supersingular curves can provide us with more efficient implementations than
pairings on ordinary curves [2] in terms of processing speed [1], [11], [15] and
bandwidth requirements [22].

In recent papers [4], [9] they worked on hyperelliptic curves Hb defined by
y2 + y = x5 + x3 + b over a finite field F2n with b = 0 or 1 for a secure and
efficient pairing-based cryptosystems.

In this paper we find a completely general method for computing Tate pair-
ings over divisor class groups of the curves Hb in a very explicit way. In fact,
the Tate pairing computation is defined over the entire divisor class group of a
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curve, not only over the points on a curve. So far only pointwise approach has
been made in [4], [9] for the Tate pairing computation on the hyperellitic curves
Hb over F2n . Both results in [4], [9] are restrictive in a sense that the results
are only point-wise computation, and in particular the paper [4] works for only
points belonging to F2n × F2n . In general, divisors do not have to be written
as the sum of points contained in the defining field F2n . Hence, when divisors
are not a sum of rational points, there has been no general method for the Tate
pairing computation. We thus present a very general method and algorithms for
computing the Tate pairings over divisors in this paper.

Furthermore, we obtain very efficient algorithm for the Tate pairing compu-
tation over divisors by reducing the cost of computing. The reduction of the loop
cost was made by using the divisor version of the Eta pairing; the Eta pairing
was introduced in [4]. In recent years Duursma and Lee [11] introduced a closed
formula of the Tate paring for a very special family of hyperelliptic curves for the
Tate pairing computation; this significantly reduced the total number of itera-
tions for the Tate pairing computation over such curves. Barreto and others [4]
tried to clarify why such curves are very special enough to make a reduction of
the loop cost for the final computation of the Tate pairing. They provided us
with a necessary condition for a hyperelliptic curve to have a significant reduc-
tion of the loop cost in the Tate pairing computation. However, some parts are
overlooked, so it ends up with an incorrect necessary condition. We hence find
a correct necessary condition, and this condition is quite general in a sense that
it works not only for points, but also for divisors of a curve.

We begin with brief background information in Section 2, and Section 3 gives
octupling formulas for divisors and reduction formulas for evaluating the Tate
pairing on the divisors over Hb. Section 4 discusses the endomorphism for pairing
computation and Eta pairing for reducing the cost of computation. In Section 5
we obtain main results and algorithms for the Tate pairing computation on the
divisors of Hb. We finish our paper with some remarks in Section 6.

2 Preliminaries

In this section, we recall the basic definitions and properties (see [16] for further
details). Let Fq be a finite field with q elements and F̄q be the algebraic closure of
Fq. Hyperelliptic curves defined over Fq are algebraic curves with genus g which
are described by the following equation;

H/Fq : y2 + h(x)y = F (x), (1)

where F (x) in Fq[x] is a monic polynomial with deg(F ) = 2g + 1, h(x) ∈
Fq[x], deg(h) ≤ g and there are no singular points on H.

Now let

H = {(a, b) ∈ F̄q × F̄q | b2 + h(a)b = F (a)} ∪ {O},
and let H(Fq) = H ∩ (Fq ×Fq) be a set of rational points on H with the infinite
point O. We denote the group of degree zero divisor classes of H by JH , and it is
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simply called the Jacobian of H. Note that each divisor class can be uniquely rep-
resented by the reduced divisor using the Mumford representation [20]. Reduced
divisors of the curve H can be found as follows.

Theorem 1 (Reduced divisor [16], [20]). Let K be the function field given
by H defined over Fq. Then each nontrivial divisor class of JH can be represented
by

D =
r∑

i=1

Pi − rO, where r ≤ g, Pi 6= O, Pi ∈ H.

Let Pi = (ai, bi), 1 ≤ i ≤ r and uD(x) =
∏r

i=1(x− ai). Then there exists a
unique polynomial vD(x) ∈ F̄q[x] satisfying

1) deg(vD) < deg(uD) ≤ g

2) bi = vD(ai)
3) uD(x) | vD(x)2 + vD(x)h(x)− F (x),

and D = g.c.d.(div(uD(x)), div(vD(x) + y)).

We will denote a divisor class as D = [uD, vD], where D is a reduced divisor
and uD, vD are polynomials in Fq[x] satisfying the three conditions in Theorem 1.

Now we recall the definition of the Tate pairing(see [12] for further details).
Let ` be a positive divisor of the order of JH(Fq) with gcd(`, q) = 1, and k be
the smallest integer such that ` | (qk−1); such k is called the security multiplier.
Let JH [`] = {D ∈ JH | `D = O}. The Tate pairing is a map

t : JH [`]× JH(Fqk)/`JH(Fqk) → F∗qk/(F∗qk)`

t(D, E) = fD(E′) (2)

where div(fD) = `D and E′ ∼ E with support(E′) ∩ support(div(fD)) = ∅.
In fact, the fields of characteristic 2 are the most commonly used field in the

cryptosystems. In this paper we work on the following curves:

Hb : y2 + y = x5 + x3 + b, b = 0 or 1 (3)

which is defined over F2n with n coprime to 6.
The curves H0 and H1 are hyperelliptic curves, and their divisor class groups

have good group structures. To determine `, we need to know the orders of
JH0(Fq) and JH1(Fq), and they are given as follows.

Theorem 2 ([27]). Let gcd(n, 6) = 1. For the curve Hb, we have

#JH0(F2n) = 22n + 2n + 1 + (−1)[(n+1)/4]2(n+1)/2(2n + 1), (4)
#JH1(F2n) = 22n + 2n + 1− (−1)[(n+1)/4]2(n+1)/2(2n + 1), (5)

where [ ] denotes the floor function value, and JHb
(F2n) is a cyclic group.
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3 Efficient computations on JHb

As pointed in [9], [4], octupling a divisor on the curve Hb is computationally
very simple, of which complexity is almost the same as octupling of a point on
elliptic curves. While a divisor of elliptic curves have one-to-one correspondence
with a point on the curves, divisors of hyperelliptic curves are expressed not by
a single point, but by a sum of the points.

For a divisor D = [uD, vD] of the curve Hb with uD(x), vD(x) ∈ F2n [x], we
can find a very explicit formula for 8[D] in terms of the coefficients of uD and vD

without inversions in F2n from the doubling formula. This is a divisor version of
the result in [9], [4] for octupling formula of the point.

Proposition 1. Let Hb be a hyperelliptic curve defined by y2 + y = x5 + x3 + b
over F2n . Then for a divisor D = [uD, vD] = [x2 + uD,1x + uD,0, vD,1x + vD,0]
in JHb

and for some UD(x) ∈ F2n [x],

8[D] = div
(

GD(x, y)
UD(x)

)
+ [U8(x), V8(x)], where

GD(x, y) = GD,4(x, y)2 ·GD,8(x, y)

U8(x) = x2 + uD,1
64x + (1 + uD,1 + uD,0)64

V8(x) = (vD,1 + uD,1)64x + (vD,1 + uD,1 + vD,0 + uD,0 + 1)64

and GD,4, GD,8 are described in Table 1. In the table, nM indicates that it re-
quires n multiplications in F2n .

In the following Proposition 2 for any divisor E = [uE , vE ] we obtain the
reduction formulae for GD,4, GD,8 at each point (xj , yj) of a divisor E. These
formulae will be very useful for efficient computation of our main result. Basically
we represent GD,4 and GD,8 as linear polynomials in xj as follows.

Proposition 2. Let E be a divisor of the curve Hb be defined by

E = Q1 + Q2 − 2O = [uE , vE ],

such that uE = x2 +x+uE,0, vE = vE,1x+vE,0, and Qj = (xj , yj) for j = 1, 2.
Let GD,4(Qj) = CD,1xj +CD,2 and GD,8(Qj) = CD,3xj +CD,4. Then CD,i’s

(with i = 1, 2, 3, 4) are given in the following table 2 (We note that CD,i’s are
expressed in terms of coefficients of uE and vE). Therefore, we obtain

GD(E) = (C2
D,1uE,0+CD,1CD,2uE,1+C2

D,2)
2(C2

D,3uE,0+CD,3CD,4uE,1+C2
D,4).

Proof. From uE(xj) = xj
2 + uE,1xj + uE,0, we have

xj
2 = uE,1xj + uE,0. (6)
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Table 1. Octupling formula with divisor representation

INPUT D = [uD, vD] ∈ JHb
(F2n )

OUTPUT GD,4(x, y) = (y + x3 + b)2 + (y + x3 + b)(δ1x2 + δ2x + δ3) + δ4x4 + δ5x3 + δ6x2 + δ7x + δ8

GD,8(x, y) = (y + b + 1)2 + (y + b + 1)(ε1x2 + ε2x + ε3) + ε4x4 + ε5x3 + ε6x2 + ε7x + ε8

Initiation w0 = uD,1vD,1, w1 = uD,1uD,0, w2 = uD,1vD,0, w3 = uD,0vD,1
(Cost: 4M)

GD,4 w4 = w2 + w3

δ1 = (uD,1
2 + uD,1)

4, δ2 = uD,1
4, δ3 = w4

0, δ5 = w4
1

(Cost: 2M) δ4 = (uD,0
2 + uD,0)

4 + δ5, δ7 = w4
2, δ6 = (uD,1w4 + uD,0)

4 + δ7

δ8 = (vD,1w4 + vD,0
2)4

GD,8 w5 = uD,1(uD,0
2 + uD,0 + w2 + w3), w6 = uD,1(w1 + vD,0)

ε1 = uD,1
32, ε2 = δ4

1 , ε3 = (uD,1
3 + uD,1 + w0 + w1)

16, ε4 = (uD,1 + uD,0 + 1)32

ε5 = (uD,1
2 + uD,1 + w1)

16, ε6 = (ε3 + uD,0
2 + uD,0 + w1 + w5)

16

(Cost: 5M) ε7 = (w5 + w6)
16, ε8 = (uD,0

3 + (uD,1
2 + vD,1)(w2 + w3) + vD,0

2 + uD,0 + w6)
16

Total cost 11 M

Since yj = vE(xj), we also have

yj = vE,1xj + vE,0. (7)

By using Equations (6) and (7) the functions GD,4 and GD,8 can be written
as linear polynomials as given in the table 2. Since GD(E) = GD(Q1)GD(Q2),
the result as asserted follows immediately from Proposition 2. ¤

4 Endomorphism and Eta pairing

Barreto and others [4] tried to classify certain curves which are very special
enough to have an efficient algorithm for the Tate pairing computation. They
provided us with a necessary condition for a hyperelliptic curve to have a sig-
nificant reduction of the loop cost in the final computation of the Tate pairing
over points.

In the rest of this section we find a correct necessary condition, and this
condition is quite general since it works not only for points, but also for divisors
of a curve.

Let H be a hyperelliptic curve over some finite field Fpn , and let ψ be an
endomorphism on the curve H. For two divisors D,E in JH , the Eta pairing is
defined by

η(D, E) =
n−1∏

i=0

fDi(ψ(E)), (8)
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Table 2. Reduction formula of GD,4, GD,8 for the point evaluation

INPUT E = (x1, y1) + (x2, y2)− 2O ∈ JHb
(F212n )

GD,4(x, y) = (y + x3 + b)2 + (y + x3 + b)(δ1x2 + δ2x + δ3) + δ4x4 + δ5x3 + δ6x2 + δ7x + δ8

GD,8(x, y) = (y + b + 1)2 + (y + b + 1)(ε1x2 + ε2x + ε3) + ε4x4 + ε5x3 + ε6x2 + ε7x + ε8

OUTPUT CD,i for i = 1, ..4 where G4(xj , yj) = CD,1xj + CD,2 and G8(xj , yj) = CD,3xj + CD,4

Initiation k1 = uE,0 + vE,1 + uE,1
2, k2 = uE,1uE,0 + vE,0 + b, k3 = vE,0 + b + 1

GD,4 W = k2
1 + uE,1(k1δ1 + δ5 + δ4uE,1) + δ1k2 + δ2k1 + δ6

CD,1 = uE,1W + uE,0(k1δ1 + δ5) + δ3k1 + δ2k2 + δ7

CD,2 = uE,0W + k2
2 + δ4uE,0

2 + δ3k2 + δ8

GD,8 W = vE,1
2 + uE,1(vE,1ε1 + ε5 + ε4uE,1) + ε1k3 + ε2vE,1 + ε6

CD,3 = uE,1W + uE,0(vE,1ε1 + ε5) + ε3vE,1 + ε2k3 + ε7
CD,4 = uE,0W + k2

3 + ε4uE,0
2 + ε3k3 + ε8

where Di+1 + (hDi) = pmDi with a divisor D0 = D and some positive integer
m.

Assume that the multiplication by pm has an extremely special form such as

pm((P )− (O)) ≡ ([pm]P )− (O). (9)

It is known that the map [pm] of the multiplication by pm has degree p2m, so
the map [pm] is of degree p2m. Furthermore, from the general fact about the
map between curves over a finite field [24, Corollary 2.12], the map [pm] can
be written as [pm] = φπ, where φ is some separable automorphism and π is a
Frobenius map of p2mth power.

Let q = pmn, then it follows from Eq. (9) that H has a property that

q(P )− q(O) = (γ(P ))− (O) + (gP ) (10)

for some automorphism γ on H and some function gP . Thus γ can be given by
γ = φnπn.

The following theorem is very crucial for efficient computation of the Tate-
pairing. Originally similar results for the points were given in [4, Theorem 1],
but the necessary condition was not quite correct. We hence provide correct
necessary condition as follows, and this is quite general in a sense that it works
for divisors.

Theorem 3. Let q = pmn, γ be an automorphism of JH induced from Eq. (10),
and ψ be an endomorphism on the curve H over Fpn .

Assume that
φnψ[q] = ψ, (11)

where ψ[q] denotes a map obtained by raising the coefficients of ψ by qth power,
that is, if ψ(x) =

∑
aix

i, then ψ[q](x) =
∑

aq
i x

i.
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Then for a divisor D in JH(Fpn) and a divisor E in JH , we have

η(qD, E) = η(D, E)q.

Proof. We have
γ(D) + (gD) = qD,

where a function gD is given by

gD =
i=n−1∏

i=0

hpm(n−1−i)

Di
.

Hence, η(D,E) = gD(ψ(E)). Comparing gqD with gD, it is easy to verify that

gqD = gD(φ−n), (12)

from the fact that the map φn is a separable automorphism. Then we have
η(D,E)q = gD(ψ(E))q = gD(ψ[q](E)); the last equality is from the fact that
both D and E have coefficients in Fq.

Furthermore, η(qD, E) = gqD(ψ(E)) = gD(φ−n)(ψ(E)) by Eq. (12).
Our assertion therefore follows immediately from Eq. (11). ¤

Let Hb : y2 + y = x5 + x3 + b be the hyperelliptic curve over F2n as before.
We concern with the twisted Tate pairing

t̂ : JHb
(F2n)[`]× JHb

(F2n)/`JHb
(F212n) −→ F∗212n

t̂(D, E) = fD(ψ(E))
212n−1

` .

We use the same endomorphism ψ used in [9]. We identify F212n ∼= F2(α, τ, s0)
with α, τ, s0 defined as follows . We will use a similar notation as in [4], but we
will rewrite the field F26n in a slightly different way for efficiency (or to represent
with simple primitive polynomial).

We first take α ∈ F2n to be such that its minimal polynomial irr(α, F2) ∈
F2[x], and then τ ∈ F26n with the minimal polynomial irr(τ, F2n) = x6 +
x + 1 ∈ F2n [x]. Finally we choose s0 ∈ F212n that has the minimal polynomial
irr(s0, F26n) = x2 + x + τ5 ∈ F26n [x].

F212n ∼= F2(α, τ, s0)

| s2
0 + s0 + τ5 = 0

F26n ∼= F2(α, τ)

| τ6 + τ + 1 = 0
F2n ∼= F2(α)

We define an endomorphism ψ by

ψ : Hb(F212n) −→ Hb(F212n)
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such that ψ(x, y) = (x + w, y + s2x
2 + s1x + s0), where

w = τ5 + τ4 + τ2, s2 = τ5 + τ, s1 = τ3 + τ2 + τ + 1, s2
0 = s0 + τ5.

In particular, if (x0, y0) belongs to Hb(F2n) ⊂ Hb(F212n), then the x-coordinate
of ψ(x0, y0) is in F26n and y-coordinate of ψ(x0, y0) is in F212n .

For any divisor E of Hb, let E = Q1 + Q2 = [uE , vE ] = x2 + uE,1x +
uE,0, vE,1x+vE,0] ∈ JHb

with Qj = (xj , yj) for j = 1, 2. Then the endomorphism
ψ on divisors are easily deduced as follows: E′ = ψ(E) = [uE′ , vE′ ], where

uE′ = x2 + uE,1x + (uE,0 + uE,1w + w2), (13)

vE′ = (vE,1 + s2uE,1 + s1)x + (vE′,1w + vE,0 + s2uE,0 + s0). (14)

Let q = 23n with n coprime to 6, then our curve Hb satisfies the property in
Eq. (10) due to the octupling formula in [9], [4].

In the following lemma we prove that our curve Hb also satisfies the cru-
cial condition in Eq. (11) for Theorem 3. For the points, similar result is given
in [4, Lemma 2]. Very importantly, we point out that the result in [4, Lemma 2]
works only for the points in F23n . The following result works for the divisors in
JHb

(F23n) which may consist of the points in F26n .

Lemma 1. Let E be a divisor of the curve Hb, and φ be a map defined on the
curve Hb such that φ(x, y) = (x + 1, y + x2 + 1). Then we have the following

φnψ[q](E) = ψ(E).

Proof. In fact, we have

ψ[8n](x, y) = (x+w8n

, y+s8n

2 x2+s8n

1 x+s8n

0 ) = (x+w+1, y+(s2+1)x2+s1x+s8n

0 );

this is from the fact that w8n

= w + 1 and s8n

2 = s2 + 1 for any odd n, and
s8n

1 = s1 for any n. We observe that

s8n

0 =

{
s0 + w2 if n ≡ 1 (mod 4)
s0 + w2 + 1 if n ≡ 3 (mod 4)

(15)

We note that φ4 = 1, so we have φn = φ if n ≡ 1 (mod 4) while φn = φ3

if n ≡ 3 (mod 4). In both cases, it is easy to see that φnψ[q](x, y) = ψ(x, y). It
thus also follows immediately that φnψ[q](E) = ψ(E) for any divisor E. ¤

Therefore, we can reduce the loop cost for computing fD(ψ(E))
212n−1

` by
using the η pairing as given in Theorem 4.
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5 Main Theorem and Algorithms

First, we describe how to compute the Tate pairing

t̂(D, E) = fD(ψ(E))
212n−1

` ,

where ψ is the endomorphism defined in Section 4.
From the following lemma, we can get t̂(D, E) by computing 26nD instead

of computing (26n + 1)D.

Lemma 2 ( [9]). Let t̂ be the twisted Tate pairing on Hb : y2 + y = x5 + x3 + b
( b = 0 or 1 );

t̂ : JHb
(F2n)[`]× JHb

(F212n)/`JHb
(F212n) −→ F∗212n

Then t̂(D, E) = (fD(ψ(E))
82n+1

` )2
6n−1 = f̃D(ψ(E))2

6n−1, where 26nD = div(f̃D)+
D̃.

The following lemma gives the general formula for [8i]D for any positive
integer i. It may be useful to express [8i]D in terms of the coefficients of uD

(resp. vD) explicitly.

Lemma 3. Let D = [x2+uD,1x+uD,0, vD,1x+vD,0] be a divisor in JHb
. Let Di

denote [8i]D = [uDi , vDi ] for each integer i ≥ 1, and uDi(x) = x2+uDi,1x+uDi,0

and vDi(x) = vDi,1x + vDi,0 with uDi,j , vDi,j ∈ F2n for j = 0, 1. Then the
coefficients of uDi(x) (resp. vDi(x)) can be determined by the coefficients of
uD(x) (resp. vD(x)) as follows.





uDi,1 = u82i

D,1

uDi,0 = u82i

D,0 + iu82i

D,1 + i2

vDi,1 = iu82i

D,1 + v82i

D,1

vDi,0 = i(v82i

D,1 + u82i

D,1 + u82i

D,0 + 1) + v82i

D,0

(16)

Now, we are ready to obtain the following main result.

Theorem 4. Let E = [uE , vE ] = [x2 + uE,1x + uE,0, vE,1x + vE,0] be a divisor
in JHb

, and let E′ = ψ[q](E) = [uE′ , vE′ ] with uE′(x) = x2 + uE′,1x + uE′,0 and
vE′(x) = vE′,1x + vE′,0. We define GDi(E

′) to be

(C2
Di,1uE′,0 +CDi,1CDi,2uE′,1 +C2

Di,2)
4(C2

Di,3uE′,0 +CDi,3CDi,4uE′,1 +C2
Di,4)

2,

where CDi,j’s are the values obtained from Table 2 with input vaules Di and E′.
Then the Tate pairing value for a divisor D in JHb

is given by

fD(ψ(E))
212n−1

` =
n−1∏

i=1

GDi(E
′)8

2n−1−i

.
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Proof. We define a function f̃D by

f̃D =
2n−1∏

i=0

h82n−1−i

Di
.

And we also have

η(D, E) =
n−1∏

i=0

hDi
(ψ(E))8

2n−1−i

.

In fact, it is easy to see that f̃D(ψ(E)) can be written in terms of Eta pairing
as follows.

f̃D(ψ(E)) = η(D, E)qη(qD,E).

It then follows from Theorem 3 and Lemma 1 that

f̃D(ψ(E)) = η(D, E)2q. (17)

We have that η(D,E)q =
∏n−1

i=0 hDi(ψ
[q](E))8

2n−1−i

. Furthermore, hDi =
GDi

UDi
. In fact, the denominator UDi(ψ

[q](E)) can be ignored in the final exponen-
tiation since the denominator belongs to F26n , that is,

fD(ψ(E))
212n−1

` = f̃D(ψ(E))2
6n−1 =

n−1∏

i=0

GDi(E
′)8

2n−1−i

.

We have already know how to compute GDi(E
′) in an explicit way as shown

in Table 2 with input values Di and E′. Therefore, our assertion follows imme-
diately. ¤

———————————————————————————————

Algorithm 5.

INPUT D = [uD, vD], E = [uE , vE ] ∈ JHb
(F2n), endomorphism ψ, q = 8n

OUTPUT t̂(D, E)
1: Compute E′ = ψ[q](E) = [x2 + uE′,1x + uE′,0, vE′,1x + vE′,0] by Eq.s (13)

and (14).
2: f ← 1, G ← 1, S ← D
3: for i = 1 to n do
4: compute GS,4 and GS,8 using Table 1 with S as input.
5: compute CS,1, CS,2, CS,3, CS,4 using Table 2 with E′ as input.
6: G ← G8 · (C2

1uE′,0 + C1C2uE′,1 + C2
2 )4 · (C2

3uE′,0 + C3C4uE′,1 + C2
4 )2

7: S ← [U8, V8] using Proposition 1 with S as input.
8: Return Gq2−1

———————————————————————————————–
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In Step 8, let G = c + ds0, c, d ∈ F26n . Then the final exponentiation can
be easily computed as follows;

t̂(D, E) = (c + ds0)2
6n−1 =

c + ds̄0

c + ds0
=

(c + ds̄0)2

Norm(c + ds0)

=
c2 + d2(τ5 + 1)
c(c + d) + d2τ5

+
d2

c(c + d) + d2τ5
s0

6 Remarks

For the problem of computing the Tate pairing over divisors, we can approach
the problem in a very naive way as follows. For the polynomials in the represen-
tation of a divisor, we can represent the coefficients of the polynomials by the
symmetric functions on their roots. Then it is possible to compute the Tate pair-
ing over divisors by using the elimination method via Gröber bases computation.
However, this naive approach certainly requires overly complicated tedious com-
putation process, and it is almost impossible to use the result for implementation
of the Tate pairing. It is therefore definitely necessary to find a much simpler
and explicit method for computing the Tate pairing over divisors. In this paper
we achieved this task, and we found a very general method and algorithms for
computing the Tate pairings over divisors.

Very recently Barreto and others in [4] obtained a closed formula for the Tate
paring computation over points of the curves Hb. This is a nice result, however,
there result is restrictive since it can be applied only for the divisors which can
be written as the sum of points contained in the defining field F2n × F2n . As a
matter of fact, one can derive the general final closed formula for the Tate paring
computation over any divisors in a similar approach made in [4] by using our
main Theorem 4 and Lemma 3.
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