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Abstract. In this paper, we suggest to use the curve Hb : y2 + y = x5 +x3 +
b, b = 0 or 1 over F2n for a secure and efficient pairing-based cryptosystems.
For this curve, we develop efficient algorithms to compute the Tate pairing
and give an implementation result of Tate paring on the curve H0.

1. Introduction

Since the discovery of an identity-based encryption scheme based on the Weil
pairing on supersingular elliptic curves, pairing-based cryptography has become one
of the most active research fields ([1, 2, 4, 5, 7, 9, 13]). Weil pairing is a quotient
of the output of two applications of the Tate pairing, except that the Tate pairing
needs an exponentiation. So it is now accepted that the Tate pairing is preferable
for its efficiency.

The Tate pairing on a curve C defined over Fq maps a pair of divisors to a re-
lated extension field F∗qk for appropriate integer k. Although the Tate pairing can
be computed by an algorithm suggested by Miller [17], in practice, it is often the
bottleneck in pairing-based systems. In addition, the Miller algorithm on hyperel-
liptic curves consists of divisor operations which are more complicated than point
operations on elliptic curves. From this reason, it was pointed out that hyperel-
liptic curve cryptosystem(HEC) is not efficient[21]. However, it was also claimed
that HEC can be efficient by giving the explicit formulae for group operation on
the Jacobian (see [15]).

The efficiency and security of pairing-based cryptosystems mostly depend on the
field size q and the extension degree k. For a curve of genus g, the required space
for the keys is g×|q| bits where |q| is the number of bits of q. The security relies not
only on the key size but also the extension field size qk[10]. Here, k is called security
multiplier. For efficient and secure systems, we consider the following value.

Definition 1.1. If a pairing-based cryptosystem implemented on a curve C, then
define

εC :=
log qk

log qg
=

security level
space of a key

.

We call εC the efficiency factor. Since the key size determines the size of the
computation unit, the larger εC can provide with the more secure and more efficient
systems. For secure system, qk should be large to make the discrete log problem
hard in both the Jacobian group over Fq and in the finite field Fqk . However, k
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should not be too large because the pairing-based cryptosystems adopt computa-
tions on the field Fqk .

It is of interest to produce families of curves for which this security multiplier k
is not too large, but not too small. To obtain a curve which satisfies an appropriate
security multiplier, supersingular abelian varieties have considered as a suitable
setting for pairing-based systems [19].

It is known that the security multiplier of the supersingular elliptic curves is
bounded by 6 and the following elliptic curve

(1) E : y2 = x3 − x + d, d = ±1 over F3n

has the maximal 6 and thus εE = 6. Note that the security multiplier of supersingu-
lar hyperelliptic curves of genus 2 over even characteristic is bounded by 12[11]. If
they are defined over odd characteristic fields, then the maximal security multiplier
is 6 [19] and thus the efficiency factor is 3, which is not the best choice in terms of
the efficiency factor. The following hyperelliptic curve

(2) Hb : y2 + y = x5 + x3 + b, b = 0 or 1 over F2n

has the maximal 12 and thus εHb
= 6. So far, for the supersingular curves C,

elliptic or hyperelliptic, εC = 6 has been the best efficiency factor for the pairing-
based cryptosystems.

Up to date, efficient algorithms and implementations of the Tate pairing were
provided on the elliptic curve (1)(see [1], [13]). And a closed formula for the Tate
pairing on y2 = xp − x + b was given in characteristic p, p ≡ 3 (mod 4) with the
security multiplier 2p(see [9]). However, for cryptographic purpose, p can be chosen
only 3 or 7 due to the subexponential algorithm of the discrete logarithm problem
on the Jacobian of hyperelliptic curves with g = p−1

2 > 3 [12]. If p is 7, it is the
hyperelliptic curve with genus 3. In this case, the efficiency factor for this curve is
14/3 which is less than the best value 6. The Tate pairing was also implemented
on hyperelliptic curves over large prime fields [8] which has only 2 as the efficiency
factor. Therefore, the best candidates for the pairing-based cryptosystem are the
curves (1) and (2). We suggest to use the curve (2) for a secure and efficient pairing-
based cryptosystems since most common cryptosystems have based on binary fields.

In this paper, we present efficient algorithms for the Tate pairing on two hy-
perelliptic curves (2) and give an implementation result for the Tate pairing on
H0. Furthermore, we showed the compressed pairing suggested by Barreto et al
in [3] can be defined on the curve Hb defined over F2n , which was explored only
in the case of odd characteristics. By compressing, one can efficiently reduce the
bandwidth occupied by pairing values without impairing security nor processing
time.

In Section 2, we recall the several definitions and basic properties of hyperelliptic
curves, divisors and the Tate pairing. We explain how to choose a cryptographically
useful curve in detail in Section 3. We give explicit formulae for divisor operations
of the hyperelliptic curve Hb : y2 + y = x5 + x3 + b in Section 4. In Section 5,
we compare the implementation results with that in [8]. Finally we summarize our
results and state open questions regarding fast computation of the Tate pairing.

We want to point out that a similar work has been posted on the preprint archive,
http://eprint.iacr.org/2004/375 by and our paper is completely independent from
the work.
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2. Preliminaries

In this section, we recall the basic definitions and properties(see [14] for further
details). Let Fq be a finite field with q elements and F̄q be the algebraic closure of
Fq. Hyperelliptic curves defined over Fq are algebraic curves with genus g which
are described the following equation;

(3) H/Fq : y2 + h(x)y = F (x),

where F (x) ∈ Fq[x] is a monic polynomial with deg(F ) = 2g+1, h(x) ∈ Fq[x], deg(h) ≤
g and there are no singular points on H.

Now let

(4) H = {(a, b) ∈ F̄q × F̄q | b2 + h(a)b = F (a)} ∪ {O}
and let H(Fq) = H ∩ (Fq × Fq) be a set of rational points on H with the infinite
point O.

2.1. Divisors. A divisor D is a formal sum of points on the curve H

D =
∑

P∈H

nP P

where nP is an integer and nP = 0 for almost all points P ∈ H. If K is the function
field defined by (3) then the set of all divisors, denoted by Div(K), forms a free
abelian group.

For a divisor D =
∑

P∈H nP P , the degree of a divisor D is deg(D) =
∑

P∈H nP

and the support of D is supp(D) = {P | nP 6= 0}. The greatest common divisor of
D1 =

∑
P∈H mP P and D2 =

∑
P∈H nP P in Div(K) is

g.c.d.(D1, D2) =
∑

P∈H

min(mP , nP )P − (
∑

P∈H

min(mP , nP ))O.

Let’s consider a subgroup

Div0(K) = {D ∈ Div(K) | deg(D) = 0}
which is called a group of zero divisors. It is well-known that the set of principle
divisors

PH = {div(g) | div(g) =
∑

P∈H

vP (g)P, g ∈ K},

where v is a valuation map from K to Z, forms a subgroup of Div0(K). Two
divisors D1 and D2 ∈ Div0 are said to be equivalent, D1 ∼ D2, if D1 = D2 +div(f)
for some f ∈ K∗. The set of equivalence classes

JH = Div0(K)/PH

forms a divisor class group which is called the Jacobian of H.
Note that each divisor class can be uniquely represented by the reduced divisor

using the Mumford representation [18]. For the curve H, a reduced divisor is
summarized as follows;

Theorem 2.1 (Reduced divisor [18], [14]). Let K be the function field given by
H defined over Fq.

(1) Then each nontrivial divisor class of JH can be represented by

D =
r∑

i=1

Pi − rO, where r ≤ g, Pi 6= O, Pi ∈ H.

(2) Put Pi = (ai, bi), 1 ≤ i ≤ r. Let uD(x) =
∏r

i=1(x− ai). Then there exists
a unique polynomial vD(x) ∈ F̄q[x] satisfying
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1) deg(vD) < deg(uD) ≤ g
2) bi = vD(ai)
3) uD(x) | vD(x)2 + vD(x)h(x)− F (x).

Then D = g.c.d.(div(uD(x)), div(vD(x) + y)).

We will denote a divisor class as D = [uD, vD], where D is a reduced divisor and
uD, vD are polynomials satisfying the three conditions in Theorem 2.1.

2.2. Tate pairing. Now we recall the definition of the Tate pairing(see [10] for
further details). Let ` be a positive integer with gcd(`, q) = 1 and k be the
smallest integer such that ` | (qk − 1) which is called the security multiplier. Let
JH [`] = {D ∈ JH | `D = O}. The Tate pairing is a map

t : JH [`]× JH(Fqk)/`JH(Fqk) → F∗qk/(F∗qk)`

t(D, E) = fD(E′)(5)

where div(fD) = `D and E′ ∼ E with supp(E′) ∩ supp(div(fD)) = ∅.
It’s well-known that the Tate pairing satisfies the following three properties(see

also [10]);
• (non-degeneracy) For each D ∈ JH [`]− {O} there exits E ∈ JH(Fqk) such

that t(D, E) /∈ (F∗qk)` (and vice versa).
• (bilinearity) For any integer m, t(mD, E) = t(D, mE) = t(D, E)m in
F∗qk/(F∗qk)`.

• (computability) For any two divisors D and E, the Tate pairing t(D, E)
can be computed in polynomial time of k log q.

3. Choice of cryptographically strong curves

In this section, we describe how to select a good hyperelliptic curve for cryptosys-
tem and explain the properties of the hyperelliptic curve Hb : y2 + y = x5 + x3 + b
defined over F2n where b = 0 or 1.

Definition 3.1 (HCDLP). Let H be a hyperelliptic curve defined over Fq and
D1 and D2 be reduced divisors in JH(Fq). Then the hyperelliptic curve discrete
logarithm problem(HCDLP) is defined as follows:

Determine a positive integer n such that D2 = nD1 if such an integer exists.

Menezes, Okamoto and Vanstone proposed a subexponential time algorithm to
solve the elliptic curve discrete logarithm problem(ECDLP) over a supersingular
elliptic curve E defined over a finite field Fq [16]. It uses the Weil pairing to reduce
the ECDLP to the discrete logarithm problem in finite field. On the other hand,
Frey and Rück suggested an algorithm to solve the discrete logarithm problem over
the divisor class group using the Tate pairing [10]. We call this algorithm the F-R
algorithm.

Algorithm 3.2 (F-R algorithm [10]).
Input: Large prime number ` | #JH(Fq) and D1, D2 ∈ JH(Fq)[`].
Output: An integer n (0 ≤ n < `) such that D2 = nD1.
Step1: Determine the smallest integer k such that ` | qk − 1.
Step2: Find E ∈ JH(Fqk)/`JH(Fqk) such that t(D1, E) has order `.
Step3: Compute n′ such that t(D1, E)n′ = t(D2, E) in F∗qk . Then n ≡ n′

(mod `).
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Table 1. A large prime factor of #JH0(Fq)

q a large prime factor of #JH0(Fq) where H0 : y2 + y = x5 + x3 bits
289 14851642607221752942766012585821135190909 134
2103 6395375588121100883440814657083560825282870457413014051377 193
2113 8532224489137138306160059160077540585447813491609487653073 193

In Algorithm 3.2, it takes a divisor E in JH(Fqk) for the nontrivial value of the
Tate pairing. The following Lemma 3.3 explains why one needs such a divisor.

Lemma 3.3 ([8]). Let H be a hyperelliptic curve of genus 2 defined over Fq and `
be a factor of #JH(Fq) with gcd(`, q) = gcd(`, q− 1) = 1. Then f(E) ∈ (F∗qk)` for
a rational function f ∈ Fq(H) and any divisor E ∈ JH(Fq) such that supp(E) ∩
supp(div(f)) = ∅.
Proof. See Lemma 3 in [8]. ¤

In general, there is no known deterministic method to find divisors D, E to get
a nontrivial value of t(D, E), i.e, t(D, E) 6∈ (F∗qk)`. However, one can obtain such
divisors using distortion map in case when H is a supersingular curve [22].

If k is the smallest integer such that ` | #JH(Fq), then F-R algorithm tells
us that hyperelliptic curve H offers no more security than a discrete logarithm
problem in Fqk . Hence the security multiplier k is necessary to be large to keep
high security in cryptographic applications. On the other hand, k should not be
too large for the computational efficiency because pairing-based protocols require
the computations on the extended fields such as t(D, E)m for some integer m.
To obtain an appropriate security multiplier k, the use of supersingular curves has
been suggested. In elliptic curves, the security multiplier is bounded by 6 and that
curves are defined in characteristic 3. But the security multiplier can be 12 on the
hyperelliptic curves of genus 2 which are defined in characteristic 2 [11].

Recall that the binary field is the most commonly used field in the cryptosystems.
In this viewpoint, we suggest the use of

(6) Hb : y2 + y = x5 + x3 + b, b = 0 or 1

which is defined over a binary field. Note that these curves have the efficiency
factor 6 as discussed in the Section 1. Furthermore, the divisor class group of the
curve Hb has a good group structure. To determine `, we need to know the orders
of JHb

(F2n), and they are given as follows.

Theorem 3.4 ([23]). Let gcd(n, 6) = 1. For the curve Hb, we have

#JH0(F2n) = 22n + 2n + 1 + (−1)[(n+1)/4]2(n+1)/2(2n + 1),(7)

#JH1(F2n) = 22n + 2n + 1− (−1)[(n+1)/4]2(n+1)/2(2n + 1),(8)

where [ ] denotes the floor function value, and JHb
(F2n) is a cyclic group.

The following Table 1 lists large prime factors of #JH0(Fq) when q = 289, 2103, 2113

for H0 : y2 + y = x5 + x3. Note that there exists an optimal normal basis of Fq for
q = 289, 2113. We implement the Tate pairing on this curve H0 in Section 5.
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4. Efficient operations on JHb

Cantor [6] introduced an algorithm for the divisor operations in the Jacobian
of hyperelliptic curves and Miller [17] described a method to compute a rational
function which comes from divisor operations. The Tate pairing can be computed
by the repetition of the Miller algorithm. In [8], using the Miller algorithm, the
rational functions are explicitly given according to the cases of divisors for the
general hyperelliptic curves with genus 2.

Here, since we work on the specific curves, Hb : y2 + y = x5 + x3 + b, the
formulae can be obtained directly from the Cantor algorithm. Especially, it turns
out that doubling of a divisor on the curve is computationally very simple, of which
complexity is almost that same as doubling of a point on elliptic curves.

For pairing based cryptosystems, we have to compute nD where D is a generator
of some cyclic group and n is an integer. If a pairing is defined on elliptic curves
then divisors have one-to-one correspondence to points on the curves. However,
for hyperelliptic curves, divisors should be expressed not by points but Mumford
representation as Theorem 2.1. Therefore we describe the operation formulae in
terms of polynomials u, v in K explained in Theorem 2.1.

Lemma 4.1. Let’s denote reduced divisors in JHb
by Di = [ui, vi] for i = 1, 2 such

that D2 + div(f) = 2D1. Assume deg u1 6= 0. Then

(1) If u1 = x + u10, then

(9) u21 = 0, u20 = u2
10, v21 = (u2

10 + u10)2, v20 = v2
10

(2) If deg u1 = 2, the formula for D2 and f are described in Table 2.

Note that when u1 = x + u10, no multiplication is needed for D2.

Table 2. Doubling when deg u1 = 2

Input D̄1 = [u1, v1] where u1 = x2 + u11x + u10, v1 = v11x + v10, F = x5 + x3 + b
Output D̄2 = [u2, v2], l(x) such that D2 + div((y + l)/u2) = 2D1

Step Expression
1 If u11 = 1 goto 2’

2 Compute l(x) = (s1x + x0)u1 + v1 = s1x3 + l2x2 + l1x + l0
s1 = 1 + u2

11, l2 = v2
11, l1 = u2

10, l0 = v2
10 + b

3 Compute u2 = monic( F+l2+l

u2
1

) = x2 + u21x + u20

w1 = s−1
1 , u21 = w2

1, u20 = (l2w1 + u11)
2

4 Compute v2 = l + 1 mod u2

w2 = w1 + l2, w3 = u20w2, v21 = (u21 + u20)(w2 + s1) + w3 + w1 + l1, v20 = w3 + l0 + 1
Cost 1I, 3M, (6S)

2’ l2 = v2
11, l1 = u2

10, l0 = v2
10 + b, u20 = l22, v20 = u2

20l2 + v4
10 + 1

Cost 1M, (6S)

From the doubling formula, we can get the 8P formula without inversion in Fq.
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Lemma 4.2. Let Hb be a hyperelliptic curve defined by y2 + y = x5 + x3 + b over
F2. Then for a divisor D = [x− x0, y0] in JHb

,

8D = div
(

g(x, y)
u4(x)2u8(x)

)
+ [u8(x), v8(x)], where

g(x, y) = g4(x, y)2 · g8(x, y)

g4(x, y) = y + x3 + (x0
2 + x0)4x2 + x4

0x + y4
0 + b

g8(x, y) = y + (x2
0 + 1)16x2 + (x2

0 + x0)16x + (x3
0 + x0 + y0 + b + 1)16

u4(x) = x2 + x + (x2
0 + x0)8

u8(x) = x + (x64
0 + 1)

v8(x) = (x2
0 + y0)64 + 1

Proof. The formula can be directly computed using (9) and Table 1. ¤

5. Efficient computation of Tate pairing on Hb

Let Hb : y2+y = x5+x3+b be the hyperelliptic curve over F2n and gcd(n, 6) = 1.
In this section, we concern with the twisted Tate pairing

t̂ : JHb
(F2n)[`]× JHb

(F2n)/`JHb
(F212n) −→ F∗212n

t̂(D, E) = fD(φ(E))
212n−1

` .

Endomorphism φ will be explained in the following section 5.1.

5.1. Endomorphism on Hb. We identify F212n ∼= F2(α, τ, ε) as the following
way.

(1) Take α ∈ F2n whose minimal polynomial irr(α, F2) ∈ F2[x].
(2) Take τ ∈ F26n whose minimal polynomial irr(τ, F2n) = x6+x+1 ∈ F2n [x].
(3) Take ε ∈ F212n whose minimal polynomial irr(ε, F26n) = x2 + x + τ5 ∈

F26n [x].

Then we can obtain the following tower of fields.

F212n ∼= F2(α, τ, ε)
| ε2 + ε + τ5 = 0
F26n ∼= F2(α, τ)
| τ6 + τ + 1 = 0
F2n ∼= F2(α)
|
F2

Furthermore, the map

φ : Hb(F212n) −→ Hb(F212n)

defined by φ(x, y) = (τ5 + τ4 + τ2 + x, x2τ5 + xτ3 + xτ2 + (x2 + x)τ + x + y + ε)
is an endomorphism. In particular, if (x0, y0) ∈ Hb(F2n) ⊂ Hb(F212n) then the
x-coordinate of φ(x0, y0) is in F26n and y-coordinate of φ(x0, y0) is in F212n .
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5.2. Efficient computation of the Tate pairing on Hb. Now we describe how to
compute the Tate pairing t̂(D, E) = fD(φ(E))

212n−1
` where φ is the endomorphism

in Section 5.1.

Lemma 5.1. Let t̂ be the twisted Tate pairing on Hb : y2 + y = x5 + x3 + b ( b = 0
or 1 );

t̂ : JHb
(F2n)[`]× JHb

(F212n)/`JHb
(F212n) −→ F∗212n

Then, for two divisors D, E ∈ JH(F2n), t̂(D, E) = f̃D(φ(E))2
6n−1, where D̃ =

26nD − div(f̃D).

Proof. Let div(fD) = `D. Since 26nD = div(f̃D) + D̃ and ` divides 26n + 1,

div(f
26n+1

`

D ) = (26n + 1)D = div(f̃D(x, y)) + D̃ + D = div(f̃D(x, y)) + div(uD(x)).

where D̃ + D = uD(x). Furthermore, u(φ(E)) ∈ F26n makes t̂(D, E) simple.

t̂(D, E) = t(D, φ(E)) =
[
fD(φ(E))

26n+1
`

]26n−1

=
[
f̃D(φ(E))u(φ(E))

]26n−1

= f̃D(φ(E))2
6n−1

¤

From this lemma, we can get t̂(D, E) by computing 26nD instead of computing
(26n + 1)D. Furthermore, in Lemma 4.2, since the degree of u8(x) where (23D) =
[u8, v8] is again 1, the lemma gives a method to compute 8nD efficiently for every
n ≥ 1. Thus f̃D(φ(E)) can be obtained efficiently by Lemma 4.2 and 5.1. So,
one can derive the following algorithm 5.2. We only consider the reduced divisors
with deg(uD) = 2 since the most reduced divisors in JHb

have the form of D =
P1 + P2 − 2O [6].

Algorithm 5.2.
Input: D = [u1, v1], E = [u2, v2] ∈ JHb

(Fq), q = 2n, endomorphism φ

Output: t̂(D, E) = f̃D(φ(E))q6−1 where div(f̃D) + D̃ = q6D
Step1: Compute P1, P2 and Q1, Q2 such that D = P1 + P2 − 2O and E =

Q1 + Q2 − 2O.
Step2: f1 ← 1, f2 ← 1, Q̂1 ← φ(Q1), Q̂2 ← φ(Q2), D1 ← P1 −O, D2 ← P2 −O
Step3: For i = 1 to 2n do

step3-1: for j=1 and 2, compute gj and D̂j such that 8Dj = div(gj/uj)+
D̂j

step3-2: for j=1 and 2, fj ← f8
j · gj(Q̂1) · gj(Q̂2), Dj ← D̂j

Step4: Return (f1 · f2)q6−1

One needs to solve quadratic equation on F2n in step 1 of Algorithm 5.2. For a
given quadratic equation x2 + u1x + u0 defined over F2n , the following algorithm
gives its roots. Here we assume that n = 2d + 1 is an odd integer.

Algorithm 5.3.
Input: u(x) = x2 + u1x + u0 in F2n [x], n = 2d + 1
Output: a root α of u(x)
Step1: If u1 = 0, then α ← u2n−1

0 . Print out α and stop.
Step2: a ← (u−1

1 )2u0.
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Step3: If trF2n/F2(a) = 0, i.e, the roots of u are in F2n , then

α′ ← a + a22
+ a24

+ · · ·+ a22d

Step4: Else, i.e, trF2n /F2(a) = 1, the roots of u are in F22n = F2n(β), where
β2 + β + 1 = 0 and β = τ5 + τ4 + τ3 + τ in Section 5.1.

α′ ← β + a + a22
+ a24

+ · · ·+ a22d

Step5: Print out α = u1α
′

Let f̃D(φ(E)) = c + dε, c, d ∈ F26n . Finally, it still remains to compute (c +
dε)2

6n−1 in step4 of Algorithm 5.2. Note that the conjugate of ε, denoted by ε̄, is
ε + 1.

t̂(D, E) = (c + dε)2
6n−1 =

c + dε̄

c + dε
=

(c + dε̄)2

Norm(c + dε)

=
c2 + d2(τ5 + 1)
c(c + d) + d2τ5

+
d2

c(c + d) + d2τ5
ε

5.3. Compressed pairing. The concept of the compressed pairing was suggested
by Barreto et al and they claimed one can efficiently reduce the bandwidth occupied
by pairing values without impairing security nor processing time [3]. The results in
[3] were developed for the curve y2 = x3 − x + 1, thus the compressed pairing was
working on the odd characteristic case. Here, we define compressed pairing in even
characterstic case and give a useful fact for exponentiating the result of the Tate
pairing. Let q = 2n where n is an prime.

Definition 5.4. The compressed pairing is defined as

δ(D, E) = trFq12/Fq6 (t̂(D, E)).

Since t̂(D,E) is an element in Fq12 of the form c + dε, where c, d ∈ Fq6 , the
compressed pairing is δ(D, E) = d which depends only d. If we use the compressed
pairing instead of the Tate pairing for the protocols, then it’s enough to store or
send d instead of c + dε. However, this compression is valuable when one can
compute tr(t̂(D, E)m) for any integer m only using δ(D, E). As noticed in [3], the
exponentiation for pairing values happens in many cryptographic protocols. The
compressed pairing for tr(t̂(D, E)m) = tr((c + dε)m) = dm can be computed by
knowing only δ(D, E) = d from the following sequence;

Proposition 5.5. For t̂(D,E) = c + dε ∈ Fq12 , c, d ∈ Fq6 , d 6= 0 and a positive
integer m, let (c + dε)m = cm + dmε. Then dm is computed by the sequence

(10) d0 = 0, d1 = d, dm = ddm−1 + dm−2

which depends only d.

Proof. By induction on m, when m = 1 the equation holds. First note that

(11) Norm(c + dε) = c2 + cd + d2τ5 = 1
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For general m, using ε2 + ε + τ5 = 0 and the relation (11), we can compute cm and
dm as follows;

cm = ccm−1 + ddm−1τ
5

dm = cdm−1 + dcm−1 + ddm−1

= c(cdm−2 + dcm−2 + ddm−2) + d(ccm−2 + ddm−2τ
5) + d(cdm−2 + dcm−2 + ddm−2)

= dm−2(cd + 1) + d2(cm−2 + dm−2)
= dm−2 + d(cdm−2 + dcm−2 + ddm−2)
= ddm−1 + dm−2.

¤

Note that the trace value of the Tate pairing does not impair an important data.

6. An Implementation result

Since the hyperelliptic curve Hb : y2 +y = x5 +x3 +b over F2n has 12 as security
multiplier, we may choose JH0(F289) for a security reason. Here, we implemented
Algorithm 5.2 using NTL library for H0 : y2+y = x5+x3 and n = 89. A large prime
` which divides #JH0(F289) was taken as listed in Table 1 and minimal polynomial
of α was taken as irr(α, F2) = x89 +x38 +1. Note that ` ≈ 2134. The elapsed time
for computing the Tate pairing essentially depends on the time cost of addition,
multiplication and squaring over F289·6 . So it is important to check the average
time for the field operations.

Since the operations in F2(α, τ)(see Section 5.1) are very slow, one may find
ζ ∈ F2(α, τ) such that F2(ζ) ∼= F2(α, τ) to improve a computing speed. Here, we
did another implementation using an isomorphism of fields. To find an isomorphism
between F2(ζ) and F2(α, τ), let α ∈ F289 whose minimal polynomial is

irr(α, F2) = x89 + x87 + x86 + x85 + x81 + x78 + x77 + x76 + x75

+ x73 + x69 + x65 + x64 + x63 + x62 + x61 + x60 + x59

+ x58 + x57 + x54 + x53 + x51 + x46 + x44 + x43 + x39

+ x37 + x34 + x33 + x32 + x30 + x29 + x27 + x26 + x23

+ x22 + x21 + x20 + x17 + x15 + x14 + x11 + x9 + x6

+ x5 + x3 + x2 + 1.

(12)

rather than irr(α, F2) = x89 + x38 + 1. Let τ ∈ F289·6 whose minimal polynomial
is irr(τ, F289) = x6 + x + 1. And let ζ ∈ F26·89 whose minimal polynomial is
irr(ζ, F2) = x534 + x161 + 1. Then F26·89 ∼= F2(α, τ) ∼= F2(ζ) and we can express
α and τ in terms of ζ (see Appendix A).

The following Table 3 shows an average time for the field operations on Fp, for
prime p, F2(α, τ) and F2(ζ) respectively. It was obtained on a 2GHz Pentium IV
with 512 Mb RAM under windows. The compiler was Microsoft Visual C++ 6.0
and NTL library was used. This is the average timing from 10000 trials using the
above fields. Time is given in µs.

Table 4 is the our main result, which compares the timing of computation of the
Tate pairing with that by Y. Choie and E. Lee [8] which is unique implementation
result of the Tate pairing on hyperelliptic curves. The fields F2(α, τ) and F2(ζ) in
Table 4 are same as the the same as those in Table 3.
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Table 3. Average time for the field operations

Fp
∼= F2534 F2(α, τ) ∼= F2534 F2(ζ) ∼= F2534

minimal p ≈ 2534 irr(α, F2) = x89 + x38 + 1, irr(ζ,F2) =
polynomials prime irr(τ, F289) = x6 + x + 1 x534 + x161 + 1

addition 3.2 6.2 1.5
multiplication 34.4 156.3 37.5

squaring 28.7 71.1 4.7
inversion 204.0 845.3 156.3

Table 4. Comparison of results

Results in [8] Our results
environments 2GHz Pentium IV, 256 RAM 2GHz Pentium IV, 512 RAM

with MP library with NTL library
curve y2 = x5 + a , a ∈ F∗p over Fp y2 + y = x5 + x3 over F2

field Fp4 , F2(α, τ)(ε) F2(ζ)(ε)
p ≈ 2256, p ≡ 2, 3 (mod 5) ∼= F289·12 ∼= F289·12

average time 515 ∼ 594 ms 3640 ms 479.5 ms

7. Conclusion

Since the Tate pairing was suggested to construct a cryptosystem, many efforts
to improve the computational speed of the Tate pairing has been researched. How-
ever, there are only a few of implementation results of the Tate pairing reported.
Since most of cryptosystems have based on binary field, it may be meaningful to
implement the Tate pairing on such a field.

In this paper, we suggest an efficient algorithm for computing the Tate pairing on
the hyperelliptic curves Hb : y2+y = x5+x3+b, which is known to have the maximal
security multiplier, and implemented the Tate pairing on H0 : y2 + y = x5 + x3

defined over F2. We also found the extension field F2(ζ) ∼= F2(α, τ) and did another
implementation of the Tate pairing on F2(ζ) to improve a computing speed. This
is the first attempt to compute Tate paring of hyperelliptic curve over the binary
fields. We also give an explicit description how to find an isomorphism between two
given large fields in Appendix A. Furthermore, we showed the compressed pairing
can be defined on the curve Hb defined over F2n , which was explored only in the
case of odd characteristics in [3].

From the Table 4, it seems that the computation of the Tate pairing on binary
fields is as efficient as on prime fields. One may get even better result using optimal
normal basis of the ground fields. Therefore, we may conclude that a binary field
is more suitable than prime field for computing the Tate pairing, when the same
number of operations are required, from Table 3.
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Appendix A. Field isomorphisms

Let ζ ∈ F2534 with irr(ζ, F2) = x534 + x161 + 1. Then F2534 ∼= F2(ζ) ∼=
F2[x]/(x534 + x161 + 1). Note that ζ2 + ζ + 1 is a primitive (2534 − 1)th root

of unity in F2(ζ). So F289 ∼= F2(α) where α = (ζ2 + ζ + 1)
2534−1
289−1 . It can be com-

puted that irr(α, F2) =
∏88

i=0(x − σi(α)) where σ is a Frobenius automorphism.
The computation of irr(α, F2) is shown in the equation (12). The expression of α
and τ in terms of ζ is listed below. We express a0 +a1ζ + · · ·+anζn as [a0a1 · · · an],
where ai ∈ {0, 1}. Then
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α = [00100101101010001111011010100111010011100111001101
00011001110001001100110110101111011010001011011001
00111101011011010110000100110100011100101101111001
11111100101001100110001110111011001011001110001000
00010111111000011011111110100110101101000111000000
10011010011101000101010000000011110111000100111000
11001000010110000111001011001011001011100100110001
10110110110110100001010001111111000101101110111011
00011110111010100110010000110111000111001000010101
00011111011101010011110100101000011110000111111000

0111101011011011010011010011011]

τ = [01111010100010111001111101000101001010111101011100
00010010101110000000111100110110000111011010000101
10100100000110001111100100010111110111111011111110
11110001110111101110101101000110110001001110001001
10100000110110111010000011011100110001010001111001
00111011110111000010010010111111001110010000100000
11000100000000100010000110110110011000010100110110
01100001100011100101010001101101011011101110101001
01101010100110111001011110110100000110010000000000
10111111000100101011111111111111101110000011011100

1101110110010100000010000011110011].
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