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Abstract. We introduce and motivate the concept of unclonable group
identification, that provides maximal protection against sharing of iden-
tities while still protecting the anonymity of users. We prove that the
notion can be realized from any one-way function and suggest a more
efficient implementation based on specific assumptions.

1 Introduction

A large body of literature studies the problem of group identification, where one
wants to verify that a given user is a member of a certain group, while ensuring
that the user’s personal identity is not revealed. Particular instances of this
include group signatures [5, 3, 19] and identity escrow[14]. In some applications,
a dishonest user has an interest in giving away to another person the data that
allow him to identify himself as a member of the group - such as password and
secret keys. The security problems implied by such a scenario have not been
given much attention so far in the literature1.

In this paper we study this type of problem. As a motivating example, con-
sider the issue of software protection: it is well known that one of the strongest
motivating factors in getting people to register as software users is if this enables
some functionality that cannot be accessed without registration (and payment).
This works particularly well, if the functionality requires access to the vendor’s
website, since then unauthorized access to the functionality cannot be achieved
only by reverse engineering the software. In the case of games, for instance, the
opportunity to play against others may be available to only registered users, and
only through the vendor’s website.

Verifying that a user is registered may be done in many different ways. In this
paper, we are interested in solutions that work under the following constraints:

– An honest user can connect an unlimited number of times using the same
private key material, or at least updates should only be necessary with long
time intervals.

– We want to protect users’ privacy, i.e., honest users have to identify them-
selves only as registered users and do not have to reveal their personal iden-
tities.

1 Some earlier works suggest to discourage this by forcing users to either give away
all their information, or nothing, but here we are interested in cases where dishonest
users in fact have an interest in giving everything away



– We want to do as much as possible to protect against attacks where a user
“clones” himself by handing a copy of his personal data (software, secret
key(s), etc.) to another person in order to get the benefits of two registrations
while only paying for one.

Note that the cloning attack may be easy or very hard to carry out physically,
depending on how the user’s personal keys are stored, but only in very few cases
can it be considered impossible.

Of course, we can only hope to detect cloning if the user and clone actually
connect to the vendor’s website. A further trivial observation is that if first
the user connects, then leaves the site and then the clone connects, we cannot
distinguish this from two connections made by an honest user, since he would
also use the same private key material in both cases. An event we can hope
to detect, however, is if both user and clone connect so that they are on the
site simultaneously, since this is exactly what cannot occur if the user has been
honest. In this case, we not only want to detect the attack, we also want to be
able to reveal the identity of the user who cloned himself. Note that, apart from
the fact that the above simultaneous scenario is the only one in which we can
hope to catch a cloning attack, the scenario is also of practical relevance. For
instance, the case of a user who buys one copy of a game and distributes it to
all his friends so they can play against each other online, is exactly a case where
a number of clones would want to be connected simultaneously.

An unclonable identification scheme informally is an identification scheme
where honest users can identify themselves anonymously as members of a group,
but where clones of users can be detected and have their identities revealed if
they identify themselves simultaneously. In this paper, we give a formal definition
of this primitive. We show that it can be realized assuming existence of one-way
functions (which is clearly a minimal assumption), and we give a more efficient
implementation based on specific assumptions. On the technical side, our most
efficient solution is based on a new technique for proving in zero-knowledge,
given gx in a group of prime order, that x was chosen pseudorandomly from on
a committed secret key.

Of course, before attempting a construction such as we have sketched,
one should verify if existing primitives already allow solving the problem.

First, one might consider using an anonymous E-cash scheme[15, 6], i.e., some
number of electronic coins are issued to each user, and users use them to “pay”
for access to the site. This would lead to a functionality that is incomparable
to the one we sketched above: Cloning in this case means sharing e-coins with
others, and so the cloning attack is exactly double spending and can therefore
detected even if the two spendings do not take place simultaneously. But on the
other hand, honest users can only use each coin once, and must come back for
more coins throughout the life of the system. This reveals information on how
often a user connects, and is also not consistent with our goal, namely a solution
where you can join a group once and then identify yourself an unlimited number
of times using the same key material.



One may also consider using group signatures[5, 3, 19], and have users identify
themselves by signing a message chosen by the verifier (using his current system
time, for instance). This achieves anonymity but does not protect against cloning.
To do this, one would need the property that if the same user signs the same
message twice, this would result in signatures that could be detected as coming
from the same user. This does not follow from the standard definition of group
signatures, and is actually false for known schemes, since these are probabilistic
and produce randomly varying signatures even if the message is fixed. A similar
comment applies to identity escrow schemes[14].

2 Definition

An unclonable identification scheme involves a Group Manager GM , a set of
Verifiers and some number of Users. The idea is that after some initialization,
there will be several events, where some set of users prove “at the same time” to
a verifier V that they are members of the group managed by GM . Since we want
to detect if V is talking to clones of the same user at the same time, every proof
should take as input some string α that represents in some sense the current
time or phase of the protocol we are in. However, this does not have to be linked
to real time. What is important is that whenever a set of users want to prove
themselves, they should agree with V on a value for α that has not been used
before. More precisely, the demands are

– An honest V must be able to ensure that all users he talks to at a given
point prove themselves using the same value of α.

– An honest user should be able to ensure that he never executes Prove with
the same value of α more than once.

One solution that works in the case where V runs a website that users would
like to be connected to for some length of time, is as follows: with regular in-
tervals, e.g., each hour each user who is connected must prove himself using the
current date and hour as α, as defined by the verifier’s system time. This works
if there is sufficient agreement on the time between users and V and if users
remember at which time they last did a proof. But many other solutions are
possible. Therefore, we have chosen to separate the way time is defined from the
definition as such by assuming that the entire system proceeds in consecutive
phases, with a unique number assigned to each phase. In each phase, some subset
of users decide to prove themselves to some verifier V , and the number assigned
to the current phase will be used as the string α. In Section 7 we propose a way
to realize such a scenario without relying on synchronization, or requiring users
to keep state.

The system is defined by two probabilistic polynomial time algorithmsKeyGen,
Detect and two two-party protocols Join and Prove. These are used as follows:

– Initially, GM runs KeyGen on input 1k, to get output public key pk and
secret key sk. We assume for simplicity that the set of possible pk’s output
by KeyGen(1k) can be recognized in polynomial time.



– When a user U joins the system he runs Join with GM . Common input is
pk. Private input to GM is sk. The protocol outputs to GM either “reject”
or a string id. Output to U is “reject” or a membership certificate certU .
We assume Join is executed on a secure channel so that no other entity will
have access to the data exchanged.

– To prove he is a member of the group, the user U executes protocol Prove
with a verifier V . Common input is the public key pk and the string α
assigned to the current phase, U uses certU as private input. At the end of
the protocol V accepts or rejects. Each user executes Prove at most once in
every phase.

– Algorithm Detect gets as input a number of transcripts of executions of
Prove, done with pk as input in the same phase. It outputs a (possibly
empty) list of strings. The intuition is that this algorithm should be able
to tell if the result of one or more cloning attacks are among a given set of
proofs, and if so, it will output the identities of the involved users.

Definition 1. The algorithms and protocols in a secure unclonable identification
scheme must satisfy the following:

Completeness Assume GM , V and user U are honest. Execution of KeyGen,
followed by executions of Join and Prove always result in V accepting.

No Cloning Consider an honest GM who executes (pk, sk) = KeyGen(1k).
Consider any probabilistic polynomial time algorithm Ũ who plays the fol-
lowing game on input pk: in any phase, it can issue one or more of the
following requests:

1. It can ask that a set of honest users execute Join with GM (no data
returned to Ũ).

2. It can ask to execute Join itself with GM .
3. It can ask that some number of honest users who already joined the group

execute Prove with Ũ acting as verifier, using pk and the current value
of α as input.

Finally, Ũ executes Prove a number of times with an honest verifier V , on
input pk and the current value of α. The instances of
We now want to capture the idea that in the last step, Ũ can only have proofs
accepted by using user identities it got from GM , it must “know” which one
of them it is using in each case, and if it uses any of them more then once,
the Detect algorithm will catch this.
To this end, we demand that there exists a probabilistic algorithm Extract
which gets as input the complete view of Ũ2 and outputs a user identity, for
every instance of Prove that V accepted in the last step. The expected time
to run Ũ and then Extract must be polynomial. If the scheme is set in the
common reference string model, Extract is allowed to choose the reference

2 This means that Extract can rewind Ũ to any state that occurred during the game



string to be used in Ũ ’s attack, the distribution must be the same as in real
life3.
We require that the following holds except with negligible probability:
All user identities output by Extract are among those that were generated in
the conversations between Ũ and GM . Furthermore, the Detect algorithm,
when given as input the conversation between Ũ and V , will output exactly
those user identities that occur more than once in the output of Extract.
Note that this implies that if Ũ did not execute any Join’s, there are no
user identities Extract can legally output, so we are then in fact demanding
that all Ũ ’s proofs are rejected except with negligible probability. Thus we do
not need a separate soundness condition in the definition demanding that
non-members are rejected.

Anonymity Consider any probabilistic polynomial time algorithm Ṽ , who will
act as both GM and verifier in an attempt to break the anonymity of honest
users. Ṽ gets 1k as input and outputs a valid pk (can be assumed without loss
of generality since we assumed that invalid pk’s can be easily recognized). It
then plays the following game: it interacts with a set of honest users, where
in each phase some users execute Join and other users execute Prove with
Ṽ . Of course, no honest user will attempt to do Prove unless he already
did Join successfully. At some point Ṽ stops and outputs a bit, and we let
preal,Ṽ (k) be the probability that 1 is output.
We now want to express the demand that Ṽ should only learn what is un-
avoidable, namely the number of honest users that interact with it in each
phase. So we compare the above game to a different one, where Ṽ interacts
with a simulator M . The simulator gets as input for each phase the num-
ber of users who want to execute Join and the number that want to execute
Prove in the current phase. These numbers are chosen with the same distri-
bution as in the first game. Let psim,Ṽ (k) be the probability that 1 is output
in this case.
We demand that there exists a simulator probabilistic polynomial time sim-
ulator M such that for any Ṽ , |preal,Ṽ (k)− psim,Ṽ (k)| is negligible in k.

We note that in this definition, we have for simplicity used the usual two-
phase structure of identification schemes to define soundness and non-cloning,
where first the adversary talks to the honest users and then tries to fool the
honest verifier. Thus we do not allow him to interact with an honest prover and
and honest verifier simultaneously. However, this is not a serious restriction, as
there are several techniques that allow handling even this concurrent case, such
as the so called designated verifier proofs[10, 7]. These techniques can be used
with any of the schemes we propose here.

As for the scheduling of the individual protocols in a single phase, we consider
two cases: one where in each phase the proofs given to an honest verifier are

3 This is similar to what is seen in many UC secure protocols: the adversary “knows”
which input he is contributing to the protocol because the input can be extracted
by a simulator who knows some trapdoor information related to the reference string



composed sequentially, and one where the composition may be concurrent, with
a scheduling chosen by the adversary. We speak of sequential and concurrent
security, accordingly. On the other hand, we assume that honest users (provers)
may interact concurrently with an adversarial verifier.

3 A Theoretical Solution

3.1 Some Tools

We will need a secure string commitment scheme. Such a scheme follows from
any one-way function using for instance Naor’s construction[16], where there
is a public key Pcom which is a random string (of length polynomial in the
security parameter k) that can be chosen once and for all by the receiver of
commitments. We let comPcom(str, rstr) denote a commitment to string str using
random coins rstr. Such a commitment determines str uniquely except for a
negligible fraction of the public keys, and commitments to different strings are
polynomially indistinguishable assuming the underlying one-way function is hard
to invert.

Based on such a commitment scheme and, for instance, Blum’s protocol for
Graph Hamiltomicity or the one from [12] for graph 3-colorability, we can build
generic proofs of knowledge for any binary relation R that can be checked in
polynomial time. The protocol in its basic form is a three move protocol where
the second message is a one-bit challenge from the verifier. When we work with
security parameter k, we may compose sequentially k instances of this protocol,
to obtain a zero-knowledge proof of knowledge for R with negligible soundness
error. We may also compose in parallel k instances of the protocol. This is also a
proof of knowledge for R, more precisely, on common input x, the prover proves
knowledge of w such that (x,w) ∈ R.

Protocols obtained by this parallel composition are special cases of so-called
Σ-protocols. By definition, such protocols have three properties: first, conversa-
tions are of form (a, e, z), where a = a(x,w, coinsP ) is a function of x,w and
the prover’s random coins, e is a k-bit challenge, and z = z(x,w, coinsP , e) is a
function of the prover’s private data and the challenge. Based on x, (a, e, z) the
verifier decides to accept or reject. Second, the protocol is honest-verifier (com-
putational) zero-knowledge (and is therefore witness indistinguishable). Third,
the protocol has the special soundness property, i.e., from x and accepting con-
versations (a, e, z), (a, e′, z′) with e 6= e′, it is easy to compute w such that
(x,w) ∈ R.

Using a technique known as the OR-construction[8], one can combine Σ-
protocols for two relations R0, R1, to obtain a new Σ-protocol, where on input
x0, x1, the prover proves he knows w such that (x0, w) ∈ R0 or (x1, w) ∈ R1,
without revealing which is the case, i.e., the protocol is witness indistinguishable.

We will need a family of pseudorandom functions[11]. Such a family is indexed
by a key s (a random string of length k bits), and can be designed to have
any desired (polynomial in k) input and output length, assuming any one-way



function. We let fs() denote such a pseudorandom function. The basic property
is that even given oracle access to the function (and not the key), it cannot be
efficiently distinguished from a truly random function.

Finally, we will need a secure signature scheme, which can again be built from
any one-way function[18]. Such a scheme comes with probabilistic polynomial
time algorithms Gen, Sign, V erify for key generation, signing and verifying sig-
natures. Gen(1k) outputs a key pair Psign, Ssign. On input message m and the
private key, Sign produces a signature σ = Sign(Ssign,m). On input message,
signature and public key, V erify produces as output V erify(Psign,m, σ) which
is accept or reject.

3.2 The Scheme

We first explain the intuition behind the solution: when joining the group, user
U will make a commitment cU to a random string rU and will obtain GM ’s
signature σU on the commitment. He then proves he is a member of the group
by proving that he knows a valid signature σU on some message cU , without
revealing either value. Moreover when giving this proof he uses some random
coins. These are not chosen at random but pseudorandomly as frU

(α). That
is, he obtains the coins by applying the pseudorandom function to the current
α-value, using rU as key. He also proves that he has done exactly this. Note that
this will force a clone of the user to use the same coins if he gives a proof for the
same α-value, by security of the commitment and signature schemes. This idea
of choosing the randomness for a proof pseudorandomly is somewhat similar to a
technique from a completely different context, namely resetable zero-knowledge
[13].

The proof given is actually a Σ-protocol, so the transcripts of proofs given by
user and clone are of form (a, e, z) and (a′, e′, z′). But when all inputs and random
coins are the same in the two cases, we must have a = a′. Furthermore, e 6= e′

with overwhelming probability, so if both proofs are accepted, special soundness
of the protocol means that one can easily compute the prover’s secret, which
will immediately identify the user in question.

We now describe the components of our scheme – throughout the descrip-
tions, it is understood that a party who detects an invalid proof or signature will
immediately stop and reject:

KeyGen On input 1k, it generates keys (Psign, Ssign) for the signature scheme
and public key Pcom for the commitment scheme (with security parameter
k). Finally, it chooses a random k-bit string R. The public key is pk =
(Psign, Pcom,R) while the private key is sk = Ssign.

Join The user U sends cU = commitPcom(rU , sU ) where ru is a random k-bit
string. GM assigns a unique identity idU to U , and sends to U a signature
σU = Sign(Ssign, (cU , idU )) on cU concatenated by idU . Also, GM proves
in zero-knowledge that he knows a signature (valid under Psign) on R.
This is easy given that GM knows Ssign. The output certificate for U is
rU , sU , σU , idU , while output for GM is idU .



Prove Recall that pk and the string α is common input to the protocol. User
U first makes commitments CU , DU , EU to cu, idU , σU , respectively. He will
now give a proof of knowledge related to these commitments, the group
public key pk and the number α assigned to the current phase. This proof
consists of three ingredients. The first is a proof of knowledge, that U knows
how to open the commitments CU , DU , EU to strings cu, idU , σU such that
σU is GM ’s signature on (cU , idU ). While giving this proof, he uses frU

(α) as
random coins. That is, the protocol transcript is (a1, e1, z1), where it should
be the case a1 = a1((pk, CU , DU , EU ), (cU , idU , σU ), frU

(α)). The second
ingredient is a proof that U knows sU , rU such that cU = commit(rU , sU ),
and such that the message a1 from the previous protocol satisfies a1 =
a1((pk, CU , DU , EU ), (cU , idU , σU ), frU

(α)). Also this proof is a three move
protocol of form (a2, e2, z2), and we are going to do the two proofs in parallel,
so that the overall conversation will have form (a1, a2, e1, e2, z1, z2). The final
ingredient is a proof of knowledge of GM ’s signature on the string R that
is part of pk. This is combined with the previous ingredients using the OR
construction mentioned above, i.e., U is proving that he knows a signature
on R, or strings cu, idU , σU , rU , sU satisfying the conditions just described 4.

Detect Looks at all the proofs given in a phase and finds all places where
two conversations include tuples of form (a1, a2, e1, e2, z1, z2), respectively
(a′1a

′
2, e

′
1, e

′
2, z

′
1, z

′
2) and where a1 = a′1 and e1 6= e′1. For any such case it will

use the special soundness property to extract the underlying cU , idU , σU , and
appends idU to its output list.

Theorem 1. Assuming one-way functions exist, the above scheme is a secure
unclonable identification scheme with sequential security.

We remark that concurrent concurrent security can be obtained under the
same assumption in the common reference string model, using a technique similar
to the one used in the more efficient protocol we describe later.

The key to the proof of the theorem is

Lemma 1. The proof of knowledge given by the user during the Prove protocol
is witness indistinguishable

Proof. Recall that the proof given by U is a combination using the OR-construction
of first a proof of knowledge of a signature on R and second a proof of knowledge
of values cu, idU , σU , rU , sU satisfying a number of properties. Conversations in
the latter protocol are of form (a1, a2, e1, e2, z1, z2). The OR construction leads
to a witness-indistinguishable protocol if both protocols used are honest veri-
fier zero-knowledge. This is true for the first protocol, which is just a standard
Σ-protocol and so is honest verifier zero-knowledge by construction.

It is therefore enough to show that the second protocol is honest verifier
zero-knowledge. Some notation for this: the part (a1, e1, z1) of a conversation

4 Of course, the latter is normally the case, the other option is included for proof-
technical reasons



will be called proof 1. It has the commitments CU , DU , EU and public key pk as
public input, while the secret witness is cU , idU , σU . The rest of the conversation
(a2, e2, z2) is called proof 2. It has CU , DU , EU , pk, a1 as public input while the
secret witness is cU , idU , σU , rU , sU .

Both proof 1 and proof 2 are Σ-protocols constructed from generic zero-
knowledge techniques as explained above. They therefore have honest verifier
simulators M1,M2 respectively. However, note that in our context, proof 1 is
not done using the normal prover algorithm, we use pseudorandom coins for
the prover, and furthermore the key for this pseudorandomness is used as input
in proof 2. Hence a proof is required that we can still use M1,M2 to simulate.
We do this by defining a series of distributions where the first is that of real
conversations and the last is the one output by the honest verifier simulator
we propose. The result will then follow from arguing that each distribution is
computationally indistinguishable from the previous one.

The sequence of distributions are produced as follows:

1. Run the honest prover U ’s algorithm (with known secret witnesses and ran-
dom challenges).

2. Same as above, but proof 2 is replaced by running the honest verifier sim-
ulator M2(CU , DU , EU , pk, a1) for proof 2. Note that this requires that rU
is known, to do proof 1 according to the protocol. However, we will still
get something indistinguishable from the previous distribution. This is be-
cause the output of M2 is indistinguishable from a real conversation, even to
someone who knows the secret witness for proof 2. Indeed, M2 is simulating
a protocol constructed from generic techniques based on any commitment
scheme as explained earlier. This means that the simulation essentially pro-
duces a set of commitments, some of which are opened and some are not.
The unopened commitments have contents different from what would be the
case in a real conversation, however, this is the only difference. By the hiding
property of the commitments, this difference cannot be detected in polyno-
mial time, even knowing what the commitments are supposed to contain.

3. As 2., but the commitment cU is replaced by a commitment to a random
value. This is indistinguishable from 2. by the hiding property of commit-
ments.

4. As 3., but when doing proof 1, instead of using rU to compute pseudorandom
values for the random coins, we use oracle access to the function frU

().
We now do not know ru explicitly, but we will produce exactly the same
distribution as in 3.

5. As in 4., but the oracle access to frU
() is replaced by oracle access to a

random function. This is indistinguishable from 4. by pseudorandomness of
the function frU

().
6. As in 5., but the transcript of proof 1 is now generated by running the hon-

est verifier simulator M1 for proof 1. This is indistinguishable from 5., since
there, we ran proof 1 following the prover’s normal algorithm, using real ran-
dom coins. Summarizing, this last distribution is generated by first running
M1(CU , DU , EU , pk) to get (a1, e1, z1), and running M2(CU , DU , EU , pk, a1)
to get (a2, e2, z2), and this defines the desired honest verifier simulation.



We can now proceed with the proof of the required properties.
Anonymity: if Ṽ behaves such that at least one instance of the Join protocol

completes successfully with non-negligible probability, then we can extract from
the proof of knowledge given by Ṽ a signature on R. Note that no attempts
to do Prove would occur before this point. Given this signature, it is trivial to
simulate (without rewinding) all subsequent instances of Prove knowing only
the number of instances to be done in each phase. This cannot be distinguished
from the real game by witness indistinguishability of the underlying proofs of
knowledge.

No cloning: we first describe the required Extract algorithm. It will, for each
proof Ũ had accepted in the last stage of the attack, rewind Ũ to the start of this
proof and try to extract the secret witness it is using by the standard rewinding
technique of sending random challenges to Ũ until it answers a new challenge
correctly. At this point a valid witness can be extracted. each such witness must
include either a signature on R, or a signature σU on a pair of form (cU , idU ).
Extract outputs idU in the latter case, and a random string in the former. We
put the limitation that the algorithm gives up on a proof and outputs a random
string if it rewinds more than 2k times, where k is the length of challenges.

To estimate the running time of this, note that the probability that Ũ will
have a proof accepted, given the state it is in just before the proof, is determined
by the number T of challenges it will answer correctly. The probability that we
will have to run Extract on the proof is T2−k, while the number of rewinds we
have to do is 0 if T = 0, 2k if T = 1 and 2k/(T − 1) if T > 1. It follows that
contribution to the total expected running time from each proof is polynomial.
The total expected running time is just the sum of these contributions since we
compose sequentially.

To finalize the argument, we need the following
Claim: we may assume that in the output of Extract, we will only see triples

(cU , idU , σU ) that were obtained earlier by Ũ in some instance of Join. Indeed,
if this is false with non-negligible probability, we can break the signature scheme
in a chosen message attack: we choose at random to either ask for signatures on
all pairs cU , idU or a signature on R and use this to simulate the Join protocols
done by Ũ and all proofs by honest users given to Ũ (without rewinding, we just
follow the protocol). Then by witness indistinguishability, Ũ ’s behaviour will be
essentially the same as before, so the knowledge extraction from Ũ will give us
a signature on a new message with non-negligible probability.

Consider now any two of the Prove instances where the same triple cU , idU , σU
is extracted. Let (a1, a2, e1, e2, z1, z2), (a′1, a

′
2, e

′
1, e

′
2, z

′
1, z

′
2) be the transcripts of

the two proofs where knowledge of cU , idU , σU was proved. Now, soundness of
the Join protocol implies that we can also extract two pairs (rU , sU ), (r′U , s

′
U )

such that
cU = commitPcom(rU , sU ), commitPcom(r′U , s

′
U ),

and that

a1 = a(pk, (cU , idU , σU ), frU
(α)), a′1 = a(pk, (cU , idU , σU ), fr′U (α)).



But we must have rU = r′U , or the the binding property of the commitment
scheme is broken. This immediately implies that a1 = a′1, and therefore, since
e1 6= e′1 with overwhelming probability, Detect will successfully extract idU , a
required in the definition

4 A More Efficient Solution

In this section, we present a more efficient unclonable group identification scheme,
based on two main ingredients: First a technique recently proposed by Camenisch
and Lysyanskaya [3] for digital signatures based on bilinear groups, with pro-
tocols for proving knowledge of a signature on a committed value. Second, a
new technique for proving that an element in a group is of form gψ where ψ is
a pseudorandom value computed from a committed key. We will borrow some
notation from [3] (and several earlier papers): given a public string x, a private
witness w and a predicate pred,

PK{w : pred(x,w)}

means that we execute a Σ-protocol for the relation {(x,w)| pred(x,w) = true},
that is, a prover convinces a verifier that he knows w such that the predicate on
x and w is satisfied. We will also use the following variant:

PK(κ){w : pred(x,w)}

where κ is a bit string. This stands for the following: we execute the underlying
Σ-protocol in the normal interactive way, except that the verifier sends as the
second message a random string κ, and the challenge the prover has to answer
is determined as H(x, a, κ), where H is a hash function, modelled as a random
oracle and a is the first message in the original protocol. The point of this
construction is that it allows simulation of the protocol without rewinding, due
to the “programmability” of the random oracle, and (for the same reason) it also
allows knowledge extraction by standard rewinding. Since we will need the last
point for the proof, we cannot just use the Fiat-Shamir heuristic.

4.1 Proofs of Knowledge with Pseudorandom Exponents

In this subsection, we introduce some tools to be used in our construction. To
this end, we consider a group Gp of prime order p. We will assume p is chosen as
a safe prime, i.e., p = 2q + 1 where q is also prime. Gq will denote the (unique)
subgroup of Z∗

p of order q.
We further consider the case where a prover knows exponents x1, ..., xt ∈ Zp

such that β = αx1
1 · · ·αxt

t for publically known β, α1, ..., αt ∈ Gp. A standard
Σ-protocol for prover P and verifier V can be used to prove knowledge of the
xi’s. That is, we want:

PK{(x1, ..., xt) : β = αx1
1 · · ·αxt

t } (1)



Since a Σ-protocol for this will be useful for us later we write it explicitly
here:

1. P chooses r1, ..., rt ∈ Zp uniformly at random and sends to V ai = αri
i for

i = 1..t.
2. V chooses a random challenge ε ∈ Zp.
3. P responds with zi = ri + εxi mod p for i = 1..t. V checks that

∏t
i=1 α

zi
i =

βε
∏t
i=1 ai.

It is well known (and straightforward to show) that this protocol is indeed a
Σ-protocol for the underlying relation.

We now consider a change to this protocol where P chooses the randomness
in the first message according to a pseudorandom function ΨK(i, α, b), where
K is a key committed to by P , α is a public input, i is a number and b is a
bit. We will use a variant of the pseudorandom function of Naor and Reingold,
based on the DDH assumption in Gq, so that outputs from Ψ are in Gq. We
specify below how the function works and how the key is committed. However,
in the previous protocol, the random exponents were chosen in Zp, whereas the
pseudorandom function produces output in the subgroup Gq. To resolve this, we
let the exponents be chosen as the difference between two pseudorandom values,
which allows us to hit all of Zp. The modified protocol then works as follows:

1. P sets ri = ΨK(i, α, 0) and si = ΨK(i, α, 1) and sends to V ai = αri
i , bi = αsi

i

for i = 1..t.
2. V chooses a random challenge ε ∈ Zp.
3. P responds with zi = ri−si+εxi mod p for i = 1..l. V checks that

∏t
i=1 α

zi
i =

βε
∏t
i=1 aib

−1
i .

To argue that this is aΣ-protocol for the same relation, we make the following
Assumption 1

– The distribution of ui− vi mod p where ui, vi are chosen uniformly in Gq, is
statistically close to uniform over Zp.

– The distribution of gu, where u is uniform over Gq is computationally indis-
tinguishable from uniform over Gp.

Lemma 2. Under Assumption 1 and the DDH assumption in Gq, the above
protocol is a Σ-protocol for the relation specified in (1).

Proof. Completeness is trivial, and special soundness follows exactly as for the
previous standard protocol. For honest verifier zero-knowledge, we argue as fol-
lows: To simulate, we will choose ε and zi at random in their respective domains
and then choose the ai, bi at random in Gp, subject to∏t

i=1 α
zi
i = βε

∏t
i=1 aib

−1
i . Now, assuming K is known only to P , pseudo-

randomness of Ψ implies that our variant is indistinguishable from a protocol
where ΨK(i, α, 0), ΨK(i, α, 1) are replaced by uniformly random choice ui, vi from
Gq. This creates a distribution of zi that is statistically close to the simulated



distribution one by the first item in Assumption 1. Finally, we observe that the
prover generates the ai, bi as αi raised to exponents in Gq whereas the simulator
chooses them uniformly in Gp. These cases are indistinguishable by the second
item in Assumption 1.

Our goal is now to allow P to prove that he has followed the specified algo-
rithm for choosing the ai, bi’s pseudorandomly. For this, we need to specify in
detail how the pseudorandom function works. We assume that input strings to
Ψ all have length at most k (where k can in principle be arbitrary). A key to
the function is a number K ∈ Zq. Finally, we will need a hash function H that
take a string str of length at most k as input and outputs an element in Gq. We
will model this function as a random oracle. The pseudorandom function is now
defined as:

ΨK(str) = H(str)K mod p

We note that the function mapping y to yK mod p is a weak pseudorandom
function assuming the DDH assumption holds in Gq, i.e., as long as y is randomly
chosen and is not controlled by the adversary, the outputs look random. However,
in our case, and assuming the random oracle model, the function is only used
on values produced by H, and these are guaranteed to be random, even if the
adversary chooses the inputs to H. This argument is easily formalized to prove

Lemma 3. In the random oracle model, and assuming DDH holds in Gq, ΨK()
as defined above is a strong pseudorandom function.

We will assume that the key K is committed to by P in a somewhat non-
standard way which, however, fits nicely with the construction we will see in
the following. Concretely, we assume that d = gγ

Kδr

hu is given, for publically
known g, h ∈ Gp and γ, δ ∈ Gq. With this, we can summarize our goal, namely
to give a Σ-protocol implementing

PK{(K, r, u) : d = gγ
Kδr

hu, ai = α
ΨK(i,α,0)
i , bi = α

ΨK(i,α,1)
i , i = 1..l.}

For this, it will be be enough to show how P can prove that some given a satisfies
a = αΨK(str) for public str and g, a ∈ Gp. Since anyone can compute ψ = H(str),
our task reduces to:

PK{(K, r, u) : d = gγ
Kδr

hu, a = αψ
K

} (2)

A protocol for this follows here:

1. P chooses s, w ∈ Zq, ν ∈ Zp at random. He sends v1 = gγ
sδw

and v2 = αψ
s

to V .
2. V selects a random bit c.
3. P responds with z1 = s − cK mod q, z2 = w − cr mod q and z3 = ν −
cuγs−Kδw−r mod p. V checks as follows: if c = 0, that gγ

z1δz2
hz3 = v1 and

αψ
z1 = v2. If c = 1, that dγ

z1δz2
hz3 = v1 and aψ

z1 = v2.



Since this protocol only works with a 1-bit challenge, we need to repeat it an
appropriate number of times to have a sufficiently small soundness error.

Lemma 4. The above is a Σ-protocol for the relation specified in (2)

Proof. Completeness follows by inspection of the protocol. Special soundness: if
for given v1, v2, the prover can send satisfactory answers z1, z2, z3 to c = 0 and
z′1, z

′
2, z

′
3 to c = 1, we have by the checks carried out by V that gγ

z1δz2
hz3 = v1

and αψ
z1 = v2 and dγ

z′1δz′2hz
′
3 = v1 and aψ

z′1 = v2. Combining these equations
imply that a = gΨ

z1−z′1 and d = αγ
z1−z′1δz2−z′2h(z3−z′3)γ

−z′1δ−z′2 ,
i.e., a, d are of the required form. Finally, honest verifier ZK is argued by

the following simulator: choose z1, z2 at random in Zq, z3 at random in Zp and
c as a random bit. If c = 0, set v1 = gγ

z1δz2
hz3 and v2 = αψ

z1 . If c = 1,
set v1 = dγ

z1δz2
hz3 and v2 = aψ

z1 . This simulation is seen to be perfect by a
standard argument.

4.2 The New Scheme

Our main idea for the scheme is similar to the earlier theoretical one: the user U
will commit to a secret key K. When registering with the group manager GM
he will obtain a signature on the commitment cU , using the signature system
described in [3] (called scheme A in [3]). He can now prove membership of the
group by proving knowledge of a valid signature on cU (as well as proving knowl-
edge of this value). If he tries to clone his identity we can exploit the special
soundness property of the protocol used and extract his identity.

KeyGen Let GM take a security parameter k and output two groups Gp = 〈g〉
and Gp = 〈g〉 of prime order p = Θ

(
2k

)
where p = 2q + 1 and q is a prime.

Let Gq denote the unique subgroup of Z∗
p of order q. Let γ, δ be random

generators of Gq, and h a random generator of Gp. Let e : Gp × Gp → Gp

be an efficiently computable bilinear map.
To set up the signature scheme, GM chooses the following values at random:
x ∈ Zp, y ∈ Zp and zK ∈ Zp and sets X = gx, Y = gy. The secret
key for the signature scheme is Sk = (x, y) and the public key is Pk =
(q,Gp,Gp, g,g, e,X, Y ).

Join The user U chooses at random rU ∈ Zq and a key K ∈ Zq. U makes a
commitment cU = γKδrU mod p to K and sends it to GM . Furthermore,
U proves knowledge of K and rU using the standard protocol for proving
knowledge of discrete logarithms:

PK(κ){(K, rU ) : cU = γKδrU }

GM verifies that U is allowed to join the group and if so, he computes a
signature σ = (a, b, c) on cU where a is chosen at random in Gp, b = ay,
c = ax+cUxy and sends it to U . GM considers cU as the user’s id in the
following, whereas (K, rU , a, b, c) serves as the membership certificate.



Prove Recall that the string α is common input to U and V . U essentially
proves that he is a member of a group by proving that he knows a valid
message and signature from GM . First U blinds his signature σ by choosing
at random µ, r′ ∈ Zp and computing σ̃ =

(
ã, b̃, ĉ

)
where ã = ar

′
, b̃ = br

′
,

ĉ = (cr
′
)µ. Then U sends σ̃ and CU to V and both compute

vx = e (X, ã) , vxy = e
(
X, b̃

)
, vs = e (g, ĉ)

V chooses a k-bit string κ at random, and U proves knowledge of a signature
on cU to V by sending the following proof:

PK(κ){(cU , ρ) : vsρ = vxv
cU
xy } (3)

Here, as ρ, the honest U uses ρ = µ−1 mod p. V will accept if this proof is
correct and it holds that:

e (ã, Y ) = e
(
g, b̃

)
Note that it was shown in [3] that the checks carried out by V plus the
proof that vsρ = vxv

cU
xy together imply that U must know a valid signature

on some message. Doing the proof PK(κ){(cU , ρ) : vsρ = vxv
cU
xy } is clearly

a special case of the general type of proof from lemma 2, so the protocol
from there can be used directly. The underlying Σ-protocol for this proof,
after specializing it to the concrete scenario here, will have a first message
consisting of 4 group elements

τ1 = vr1xy, τ2 = vr2s ,

ω1 = vs1xy, ω2 = vs2s ,

Furthermore, we will require that

r1 = ΨK(1, α, 0), r2 = ΨK(2, α, 0)
s1 = ΨK(1, α, 1), s2 = ΨK(2, α, 1)

U must therefore prove that the values of r1, r2 and s1, s2 were generated
pseudorandomly from K. Recall that from lemma 4, we have a proof of the
form (after adapting the notation)

PK(κ){(K, rU , µ) : v−1
x = vγ

KδrU

xy vµs , τ1 = vH(1,α,0)K

xy } (4)

- and of course something similar for τ2, ω1, ω2.
All proofs to be given during Prove can be done simultaneously, using the
same challenge in all Σ-protocols



Detect Look at all proofs given in a phase and find all places where two conver-
sations include tuples of the form (τ1, τ2, ω1, ω2), respectively (τ ′1, τ

′
2, ω

′
1, ω

′
2)

where τ1 = τ ′1, τ2 = τ ′2, ω1 = ω′1, ω2 = ω′2. If the two challenge values
involved in these two conversations are different, use the special soundness
property to extract a witness for the proof in question - this will be a pair
of form (cU , ρ). Output all cU ’s found this way.

Theorem 2. Assuming security of the signature scheme from [3], the DDH as-
sumption in Gq, and Assumption 1, the scheme described above is a secure un-
clonable identification scheme in the random oracle model, with sequential secu-
rity. The Join and Prove protocols are constant-round, and have communication
complexity O(k) bits, respectively O(k2) bits.

The scheme described here is extremely similar in structure to the theoretical
solution we gave earlier, so the proof is very similar as well. We only sketch it
here. Completeness follows by inspection of the protocols. For no cloning, the
required Extract algorithm will use standard rewinding to extract witnesses for
all proofs given. By a standard argument, this will succeed for all proofs that
were accepted by the verifier, with overwhelming probability. Soundness of the
proofs imply that the adversary must have used the key involved correctly, and
hence the values of τ1, τ2, ω1, ω2 will be identical in all instances of subproof
(3), where the same key was used. This allows Detect to recover the required
information (see the remark following Lemma 2). As for anonymity, note that all
instance of subproofs from (4) can be replaced by (perfect) simulations without
changing the view of the adversary. After this change, the key K is only used
to call the pseudorandom function, and no other information on K is present,
since the commitment cU hides K perfectly. We can therefore use Lemma 2 to
conclude that also instances of subproofs from (3) can be replaced by simulations
without this being detectable by the adversary.

5 On Concurrent Security

For both the theoretical and the more efficient solution, it holds that all the
proofs given by honest users can be simulated without rewinding. Hence, the
only problem in obtaining concurrent security lies in the Extract algorithm that
is required for the no cloning property, and which requires rewinding in both
solutions.

To avoid this, we can use the common reference string model. We will place
in the reference string a public key pk for an encryption scheme. This should
be a key for Paillier encryption [17] in the efficient solution. The idea is that
in the Prove protocol, U will send an encryption Epk(cU ) - where cU is the
commitment signed by V to the key of the pseudorandom function. Of course,
U will be required to prove that the ciphertext was correctly formed - in the
efficient solution, the fact that in Paillier encryption the plaintext “sits in the
exponent” implies that this can be done efficiently using well-known techniques,
see e.g. [9, 19].



The Extract algorithm can now choose the reference string such that it knows
the secret key and can now simply decrypt all the ciphertexts sent in proofs given
by the adversary, and each plaintext is a commitment identifying a particular
(corrupt) user. Moreover the adversary knows the key K committed to, since he
must give a proof of knowledge to GM before obtaining the signature. Hence,
by soundness of the Prove protocol, the adversary is forced to use K correctly
when doing the proofs, implying that Detect will find the correct results.

6 On membership revocation

After discovering the identity of a dishonest user, the group manager needs to
act. If the identity cU can be used to identify the user in real life some appropriate
action can be taken, but if the identity of the user is only the value cU , we can
only hope to kick the user out of the group by ensuring that the value cU can
never be used again.

Since the value cU is unconditionally hidden, nothing in the current protocol
prevents a dishonest user from proving membership of the group again at a later
point in time. To allow for revocation of memberships, we can extend the protocol
with an dynamic accumulator as described in [4]. An accumulator scheme [1, 2]
is an algorithm that allows one to hash large set of values into a short value,
called the accumulator such that there is a witness that a given input is in the
accumulator. A dynamic accumulator allows one to efficiently add and remove
values from the accumulator. It can be used in the following way.

When the user joins the group and sends cU , the group manager adds cU to
the accumulator. To prove membership of the group, the user is now required,
in addition to the protocol we already have, to prove that the value cU is in
the accumulator. We will omit the details of how this is done, but they can be
found in [4]. The only thing we will mention is that in order to do this, we need
a commitment to cU , but this follows already from the protocol, since v−1

x , is a
commitment to cU .

When the identity of a dishonest user is discovered, the group manager re-
moves cU from the accumulator, which prevents the user or any clones of the
user from proving membership of the group.

7 How to agree on “time” values

Recall that there are two requirements to the timestamp α used in the protocol.
All players need to agree on the value, and all clients acting as provers need to
know it is unique to this protocol instance. A simple counter could be used if
all clients could remember the value from the last invocation. But even if the
client stores only a private key and remembers no other data between invocations
we can still come up with a safe α assuming we have a collision resistant hash
function h and each client has access to random bits.

A simple solution would be to have the server ask each clients for a some
random input and send the concatenation of all these strings to all clients. We



then use the hash of this string as α. But this means that every client must do
work linear in the total number of clients.

We suggest instead the following more efficient protocol to generate α. The
server send to each client a list of pairs of integers ((l1, p1), (l2, p2), . . . , (ln, pn)).
This list is a partial description of the structure of a hash tree, where li is the
length of the hash input i levels from the leaf corresponding to this client, and
pi is the position of the previous hash value in this string.

Each client chooses a random bit string s0 and sends h(s0) to the server. The
server constructs a hash-tree using all the strings. The final hash value will be
used as α. The server send α and a proof to each client. The proof consists of
all hash inputs on the path from the leaf where this client’s s0 was used to the
root.

The proof is a list of bitstrings s1, s2, . . . , sn. When receiving α and a proof,
the client must verify the following three properties:

– ∀i ∈ {1, 2, . . . , n} : |si| = li
– for i ∈ {1, 2, . . . , n} it must hold that h(si−1) is a substring of si starting on

position pi.
– h(sn) = α

If the server follows the protocol it is clear that all clients will receive the
same α and all honest clients will accept the proof. What remains to be shown
is that no honest client will accept the same α in different protocol invocations
except with negligible probability.

Theorem 3. If there exist a polynomial time adversary that will cause an honest
client to accept an α-collision in a polynomial number of invocations with non-
negligible probability, we can construct a polynomial time algorithm that will
produce a hash collision with non-negligible probability.

Before we can prove this theorem we will need to prove two lemmas.

Lemma 5. If an experiment have success probability p then after 6c independent
experiments we have at least cp successful with at least 5

7 probability.

Proof. Let s denote the number of successful experiments then E(s) = P (s ≥
cp)E(s|s ≥ cp)+P (s < cp)E(s|s < cp) ≤ P (s ≥ cp)(cp+E(s))+1∗ cp⇒ P (s ≥
cp) ≥ E(s)−cp

E(s)+cp = 6cp−cp
6cp+cp = 5

7 Here I assume cp is an integer.

Lemma 6. An adversary which have 50% probability of causing an honest client
to accept two identical αs in N invocations can be used to construct an algorithm
that will find a hash collision with 50% probability in O(N4) protocol invocations.

Proof. First we realize, that given two protocol transcripts with same first mes-
sage from the server and same α they will contain a hash collision except with
negligible probability. There is a negligible probability for the client to chose the
same random string in two invocations. That means we can safely assume s0



differs in two invocations. Find the highest i for which si differs, those two si
strings must hash to the same value.

We are given an adversary that have good probability of producing a collision
in N rounds, there must be at least one round n for which the probability of
finding the first collision in the n’th round is at least 1

2N , but we don’t know
which n would work. If we knew n the following algorithm would work.

for x in 1..24N do
simulate the first n − 1 rounds and save the state just before the client
choose his random string in the n’th round.
for y in 1..24Nn do

simulate the n’th round starting from the saved state
if An α-collision was produced in this round then

Save the protocol trace.
end if

end for
if At least n traces were saved then

Find a hash collision in the traces
Output the found hash collision
Terminate

end if
Clear the saved traces.

end for
We will call a saved state promising if there is at least 1

4N probability of
finding the first α-collision in a single run from the saved state to the end of the
current round. Using lemma 5 we get that given a promising state the 24Nn
runs will find the required n α-collisions5 with probability at least 5

7 .
The probability of reaching a promising state in a single execution of n

rounds is at least 1
4N which we see from the following calculations. P (success) =

P (success|promising)P (promising)+P (success|¬promising)(1−P (promising)) ≤
1 ∗ P (promising) + 1

4N ∗ 1 ⇒ P (promising) ≥ P (success)− 1
4N ≥ 1

4N . Using this
and lemma 5 we get that repeating 24N times guarantees at least 5

7 probability
of at least one promising state.

Now we know the overall success probability is at least 5
7 ·

5
7 >

1
2

Considering that in general we don’t know n we can still find a hash collision
by trying above algorithm for every possible n in the range 1..N this algorithm
takes time O(N4) and have 50% probability of success, which concludes the
proof.

Now we are ready to prove theorem 3

Proof. ¿From the adversary construct a new adversary that will cause an α-
collision with probability 50% by repeating the attack a polynomial number of

5 The reason n α-collisions are needed is, that then by the pigeonhole principle at
least two of those n will collide with the same α since there are only n − 1 earlier
values to collide with.



times. Use this adversary with lemma 6 to construct an algorithm which will
find a hash collision with at least 50% probability which is non-negligible.

Notice that this proof does not work for parallel composition of protocol
invocations. But it is not supposed to work in that case. In fact an honest client
does not execute parallel instances, and the purpose of this paper is to detect
dishonest clients that perform such parallel invocations.
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