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Abstract

We introduce mechanisms for secure keyword
searches on a document server. We propose pro-
tocols with computational privacy, query correct-
ness assurances and minimal or no leaks: the
server either correctly executes client queries or (if
it behaves maliciously) is immediately detected.
The client is then provided with strong assur-
ances proving the authenticity and completeness
of server replies. This is different from existing re-
search efforts, where a cooperating, non-malicious
server behavior is assumed.

We also strengthen the privacy guarantees. The
oblivious search protocol not only hides (from the
server) the outsourced data but also does not leak
client access patterns, the queries themselves, the
association between previously searched keywords
and returned documents or between newly added
documents and their corresponding keywords (not
even in encrypted form). This comes naturally at
the expense of additional computation costs which
we analyze in the context of today’s off the shelf
hardware. In a reasonable scenario, a single CPU
off-the-shelf PC can easily handle hundreds of such
oblivious searches per minute.

1 Introduction

In data outsourcing frameworks, data manage-
ment needs of clients are off-loaded to special-
ized service providers. This is intuitively advanta-
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geous for parties with less experience, resources
or trained man-power such as small companies
and individuals. Moreover, the resulting exper-
tise consolidation at the service provider is likely
to result in increased availability, better quality
and cheaper service. Examples include a wide
spectrum of applications, from traditional services
such as document and email hosting, where indi-
vidual user mailboxes are stored on a dedicated
remote mail server, to novel paradigms such as
database services, in which dedicated database
servers are providing query execution and an as-
sociated query interface to the outsourced data to
multiple clients. Here we focus on a conjunctive
keyword search application scenario in which out-
sourced documents are to be retrieved based on
keyword searches to a file or email server.

In such scenarios it is often important to protect
both the outsourced information as well as the as-
sociated client access patterns. Confidentiality can
be achieved by storing the data encrypted. Main-
taining the benefits of data outsourcing however,
requires techniques for querying such encrypted
data directly on the server with minimal addi-
tional overhead and load on the client side.

While the general problem of performing ar-
bitrary queries over encrypted data seems to be
quite challenging, several research results provide
solutions for queries of specific levels of expressiv-
ity. In particular the core problem of perform-
ing simple [4, 5, 6, 11, 23] and conjunctive key-
word searches [15] has been addressed. Existing
research however, assume the existence of a coop-
erating, non-malicious—albeit illicitly curious—
server. For example in the case of a keyword
search on a document server, the server is assumed
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to fully comply to the query protocol and reply
with all the documents matching a particular (set
of) keyword(s). Denial of service or malicious be-
havior on the side of the (possibly compromised)
server has not been considered so far.

In this paper we propose to address the issues of
assurance and privacy in outsourced data frame-
works. We introduce a set of protocols which pro-
vide the client with strong cryptographic query as-
surances, proving the authenticity and complete-
ness of server replies. Additionally, we strengthen
the privacy guarantees as follows: we not only hide
from the server the outsourced data but also do
not leak client access patterns, the queries them-
selves (not even in encrypted form), the associ-
ation between previously searched keywords and
returned documents or between newly added doc-
uments and their corresponding keywords. This
is especially challenging due to the dynamic na-
ture of the interaction between the client and the
server. The proposed solutions handle such dy-
namic behavior and enable the client to naturally
add and remove documents on the server.

To do so, we rely on maintaining just enough
state information at the client side, which serves
as checksum to authenticate server messages. The
client is assumed to be able to store a number of
checksums that increases linearly with the number
of search keywords. The proposed solutions are
independent of the deployed encryption methods.

The paper is structured as follows. Section 2
introduces the operating model and discusses in-
formation leaks. Related work is explored in Sec-
tion 3. Initial mechanisms for query assurance are
introduced in Section 4. Section 5 proposes meth-
ods for querying data with computational privacy
guarantees. Section 6 discusses alternative related
protocols and Section 7 concludes.

2 Model

Informally, a server offers document (e.g., files,
emails, relational data) hosting for storage or pro-
cessing power constrained clients. The clients

need to perform queries1 on the stored documents
while revealing a minimal amount of information
to the server. Additionally, the client will require
to be able to add new documents and remove or
update arbitrary previously-stored ones.

The adversarial setting considered in existing
research assumed a server that is curious but not
malicious. In this work we propose to go one
step further and consider malicious server behav-
ior. The server is now not only curious, but also
malicious (e.g., by actively withholding informa-
tion from the client), given the chance to get away
undetected.

Thus, not only do clients need to preserve
the confidentiality of the documents themselves
and the clear-text content of the keyword search
queries but now also require assurances of cor-
rectness and completeness with respect to all the
outsourced documents. Query correctness assures
that only documents are returned that match the
query; query completeness assures that all such
documents are returned by the server. While cor-
rectness is trivial to check for a client, assuring
completeness is challenging.

Notation. In the following let us consider the in-
teraction perspective of a single client. Let each
document be identified uniquely by a document
identifier, which is assumed to be uncorrelated to
the contents of the file. We assume in the fol-
lowing that documents are identified by random
(uniformly distributed) numbers. Each document
identifier is placed in a “header” of the correspond-
ing document, before encryption. For simplicity,
we will use “di” to denote these identifiers and
D = (di)i=1..n to denote the outsourced documents
so far. Let K = (ki)i>0 be the set of keywords seen
so far and k be their number. Let χ be the average
number of keywords per document.

Both the stored documents in D as well as
the query keywords q = {ki1 , ki2 , . . . , kiq} are en-
crypted with a symmetric key under the client’s
control. For simplicity we will not use an explicit
notation for this encryption but rather assume it

1In this paper we are discussing mainly conjunctive key-
word search queries.
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implicitly. The introduced mechanisms are inde-
pendent of the used encryption method.

Unless specified otherwise let us assume that
the client is able to store O(k) data items. Let
the actual client storage size be denoted by m.

Information Leaks. Given a method for
searching for keywords on encrypted data, let us
informally define certain classes of information
leaks. As we are mostly concerned with the leaks
that the query protocol itself introduces, we as-
sume perfect (non-malleable) encryption of both
the keywords and the outsourced documents.

Intuitively, the notion of a leak refers to the
ability of the server to infer information about
the plain-text of or the access patterns to the
outsourced encrypted information. Naturally, in
the absence of queries from the client, there are
(by our assumption on the encryption system) no
leaks. We are thus mostly concerned with the in-
formation leaked after a client submits a query
and it is executed by the server.

Let us first define the concept of keyword search
tokens. In order to perform a (conjunctive) key-
word search on the server, the client will need to
submit a query. This query will naturally be com-
posed of a set of information items that relate
uniquely to the searched keywords. In the sim-
plest, un-encrypted case, these information items
could be the keywords themselves for traditional
databases. If the data is stored encrypted on the
server, these items are secure constructs derived
from the keywords (e.g. encrypted query key-
words). We call any such information items for
a given query keyword search tokens.

We say that a type 1 leak occurs, if, after re-
ceiving and executing a query q = {k1, k2, . . .},
the server can systematically construct any asso-
ciation between the already seen keyword-tokens
(including the ones for the current query) and the
so far returned encrypted documents. For exam-
ple, if, for a given query, the client simply provides
the associated encrypted keywords to the server.
Upon returning the query results, the server can
easily infer that the returned documents are as-
sociated with the submitted encrypted query key-

words.

An arguably more undesirable leak is a type 2
leak. A type 2 leak is characterized by the server
being able to construct a mapping between each
and every considered keyword search tokens and
all stored encrypted documents.

Type 2 leaks can be induced by data structures
required by the query mechanism. For example,
a type 2 leak occurs if the query protocol requires
a data structure on the server which provides a
mapping between all documents and encrypted
keywords. Additionally, once all the considered
keyword search tokens have been used individu-
ally (e.g., if all the keywords have been searched
for), a type 1 leak converges naturally to a type 2
leak.

For completeness let us also define type 3 leaks.
This type of leak occurs in the process of adding
new keywords (not considered in existing research)
if as a result the server knows that previously
stored documents do not contain the added new
keywords, or at least that the client is not aware
of them.

The significance of each such leaks is applica-
tion specific. Providing query assurances while
also handling leaks becomes increasingly expen-
sive. Thus, for example, if the deployment sce-
nario allows for type 1 leaks, (e.g., a low-security
email-server setup) then a lower-overhead assur-
ance mechanism is desirable.

3 Related Work

Simple Keyword Searches. Song et al.[23]
propose a scheme for search on encrypted data in
a scenario where a mobile, bandwidth restricted
user, wishes to store data (e-mail) on an untrusted
server. The scheme requires the user to split the
data into fix-sized words, encrypt each word sep-
arately using a symmetric key protocol and xor
the result with a structure containing a pseudo-
random bit string and a mapping of the string
under a secret key, using a pseudo-random func-
tion. The secret key is made dependent on the
encrypted word. The resulting data is stored on
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the server. The structure enables the detection
of keyword matches, without revealing the server
the keyword or the contents of the stored data.
The drawbacks of the scheme are fix-sized words,
the complexity of the encryption and search (O(n)
where n is the number of words) and the impossi-
bility of verifying the completeness of the results
returned by the server. The paper also discusses
the use of an encrypted index, allowing the whole
data to be encrypted as a block.

Additionally, this scheme features type 1 leaks.
Indeed, correlations between searched keywords
and matched documents are naturally exposed by
the scheme. Moreover, the server can further
perform any combinations of conjunctive keyword
searches with the keywords searched by the client.
Also, when adding new documents, the server can
search them with the tokens revealed by previous
keyword searches of the client.

Eu-Jin Goh [11] proposes to associate indexes
with the documents stored by the server. More
precisely, the index of a document is a Bloom fil-
ter [3] containing a codeword for each each unique
word in the document. The codeword of a word is
derived by twice applying a pseudo-random func-
tion to the word. The size of document indexes,
as documented in the paper, is proportional to
the document size. Chang and Mitzenmacher [6]
propose a similar approach, where the index asso-
ciated with documents consists of a string of bits
of length equal to the total number of words used
(dictionary size). Two solutions are given, one
where the dictionary of words can be stored at the
client and one where it has to be stored encrypted
at the server.

All of the above methods feature type 1 leaks.
As discussed above (Section 2), at the extreme,
these leaks can degenerate into type 2 leaks.

An interesting version of searching on encrypted
data is proposed by Boneh et al.[4], where e-mails
encrypted by senders with the public key of the
intended receiver are stored on untrusted mail
servers. The paper presents two protocols allow-
ing receivers to securely search on the encrypted
data. The first protocol, a non-interactive search-

able encryption scheme, is based on a variant of
the Diffie-Hellman problem and uses bilinear maps
on elliptic curves. The second protocol, using only
trapdoor permutations, needs a large number of
public/private key pairs.

Conjunctive Keyword Searches. Golle et
al.[15] extend the above problem to conjunctive
keyword searches on encrypted data. They pro-
pose two solutions. The first solution requires the
server to store capabilities for conjunctive queries,
whose size is linear in the total number of docu-
ments. The paper claims that a majority of the
capabilities can be transferred offline to the server,
but this only assumes that the client knows be-
forehand its future conjunctive queries. The sec-
ond solution requires much less communication
between the client and the server, proportional
with the number of keywords in the conjunctive
search, but doubles the size of the data stored by
the server. A limitation of both schemes is the re-
quirement of specifying the exact positions where
the matches have to occur.

None of the above protocols handle the issue of
query completeness; there is no guarantee of the
correct receipt of all query-matching documents
by the client.

XML Documents. For XML documents,
Brinkman et al.[5] build a special polynomial for
each document, facilitating the retrieval of key-
word matches. The polynomials are subsequently
split between the server and client. Since the
client’s polynomial is randomly generated, the
client can store only a random seed, used to gener-
ate its version of the polynomial. The polynomial
expression stored by the server for each document
is of size proportional to the number of words in
the document.

Database Queries. Hacigumus et al.[16] pro-
pose a method for executing SQL queries over
encrypted data outsourced to a server. The en-
crypted data is partitioned into secret partitions
such that queries referencing original data items
identifiers are rewritten in terms of such partition
identifiers (which are kept publicly associated with
the encrypted data partitions). The workload (e.g.
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relational JOINS) of such a rewritten query over
the encrypted partitioned data can now be per-
formed partly on the server but the query results
will contain a super-set of the actual desired re-
sults. The authors then propose to perform the
remaining work (pruning of non-matching tuples)
in a post-processing phase on the client side.

The information leaked to the server is claimed
to be minimal. This is arguable, as it basically de-
pends directly on the partitioning scheme. At the
one extreme, if there are many partitions and each
partition contains exactly one tuple in the original
relation, the information leak becomes 100% un-
less the client stores enough information (order of
the relation size) to randomize partitioning. But
requiring the client to hold the same size of infor-
mation as the server defeats the whole purpose of
outsourcing data in the first place. At the other
extreme, if there are only a very small number
of partitions the outsourcing benefit is defeated
again, as most of the data will be returned to
the client for post-processing. Nevertheless, the
proposed method elegantly illustrates the natural
trade-off between information leaks and storage
and computation overheads.

Private Information Retrieval. Private infor-
mation retrieval (PIR) mechanisms were first pro-
posed in [9] as a solution to accessing outsourced
data, while preventing the data servers to learn
anything about the client access patterns. It is
important to note that the main purpose of PIR
protocols is to hide access patterns but not the
actual data content.

In initial results, Chor et al.[7] proved that, in
an information theoretic setting (in which queries
do not reveal any information at all about the ac-
cessed data items) any solution requires Ω(n) bits
of communication. To avoid this overhead, Chor
et al.[7] show that if multiple non-communicating
databases hold replicated copies of the data, PIR
schemes requiring sub-linear communication exist.

A more practical setting, namely computational
PIR (cPIR) was explored in subsequent efforts.
In [8, 21] the initial assumptions were relaxed and
the server is assumed to be able to perform only

polynomial time computations. The query ac-
cess patterns are then only computationally hid-
den from the server. An instance of cPIR proposed
by Kushilevitz and Ostrovsky [17], uses the hard-
ness assumption of deciding quadratic residuosity
[14] in order to provide an elegant result, namely
a single-server PIR protocol with sub-linear com-
munication.

Oblivious RAMs. In related seminal work [20],
Ostrovsky and further in [13] Goldreich and Ostro-
vsky address the problem of hiding memory access
patterns of software, specifically, the locations ac-
cessed, the access order and access count. In [20],
a method for doing on-line simulations of arbitrary
RAM accessing programs is proposed. The cost
paid is just a slowdown poly-logarithmic in the
initial program running time.

4 Query Assurances

In this and the following section we discuss a se-
ries of mechanisms that gradually increase privacy
and completeness assurances. The final goal is a
solution that not only provides query assurances
but also oblivious keyword search, leaking nothing
to the curious (and possibly malicious) server. In
particular, the server (i) will not be able to be-
have maliciously (e.g., by incorrectly replying to
queries) without being immediately detected and
(ii) will not be able to determine what keywords
were searched for (not even in encrypted form) or
what documents correspond to which keywords.

In this section we handle mostly (i) and set
the stage for oblivious keyword search mecha-
nisms, discussed subsequently. In particular we
propose a keyword search protocol that can cope
with malicious behavior: the server either cor-
rectly executes client queries or (if it behaves ma-
liciously) is immediately detected with high prob-
ability. The client is then provided with strong
assurances proving the authenticity and complete-
ness of server replies.
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4.1 Dynamic Data

Let us first consider a simple query mechanism
allowing a client to verify the correctness of server
query responses.

Single Keyword Searches. In the case of single
(non-conjunctive) keyword searches, one natural
way for the client is to store a counter for each key-
word, containing the number of outsourced match-
ing documents. The client then only needs to
compare the number of documents returned to
a single keyword query with the locally stored
counter. Authenticity is guaranteed by the fact
that the documents are stored encrypted. Query
completeness is guaranteed if the number of re-
turned documents matches the expected value,
as the server cannot—by the assumptions on the
encryption scheme—create new encrypted docu-
ments that “look” authentic.

While this scheme is easy to implement, it has
the drawback of not recording the identity infor-
mation of matching documents. This becomes im-
portant when document removals are possible. In
this case, the server can record document removal
requests initiated by the client, but remove differ-
ent documents. It can then return different sets
of documents for future keyword queries. In ef-
fect this compromises the client’s ability to au-
thenticate the removal process. We call this a
replacement attack. For example, if documents
named di, dj and dl contain keyword k1 and the
client requests the removal of document dj , upon
a later request for the documents containing k1,
the server can return di and dj . An arguably un-
scalable fix to this problem would be for the client
to record all document deletion requests. Before
exploring how this issue could be solved let us first
consider the more interesting case of multiple key-
words.

Conjunctive Keyword Searches. Counters
alone cannot be applied for multiple keyword
searches. A (not scalable) fix would be to store
one count for all subsets of all keywords K.

Another idea would be for the client to store,
for each keyword, a simple set structure of identi-
fiers of documents containing it. Let us call these

keyword document sets (KDS). These will then be
used to double-check server responses. For exam-
ple the KDS sets corresponding to keywords k1

and k2 in Figure 1, are KDS1 = {d1, d3} and
KDS2 = {d2, d3}. If the client needs to query
the server for all documents containing keywords
k1 and k2, it will first look at KDS1 and KDS2,
perform their intersection, and request from the
server the corresponding documents (in this case
{d3}). In this solution, the client will need to store
O(nk) values.

4.1.1 Server-Side KD Sets.

To solve this inconvenience, the natural follow-up
would be to store the KDS sets on the server. For
each query, the client will requests them from the
server. This immediately raises the problem of
authenticating the KDS sets themselves.

Intuitively, to handle the above issue of authen-
ticating the KDS sets retrieved from the server,
the client will have to store some sort of checksum
information. Then, when retrieving a KDS it can
verify its authenticity by computing its checksum
and comparing it with the stored (known) value.

Before discussing what such an actual check-
sum might look like, let us first briefly explore
the server-side. Naturally, any outsourced data
structure (including the KDS, as well as the doc-
uments themselves) will be kept encrypted on the
server, allowing only the client direct access to its
contents. By the assumption on the encryption
system, the server is not able to gain information
on the outsourced documents by looking at the
encrypted versions; in addition, the server cannot
create new valid encrypted documents.

Instead of using a single encryption key for all
document identifiers in all such document sets we
propose to use a different key per KDS for en-
crypting the items it contains (the reason for this
choice will become clear in Section 6). Let key be
a client-side secret and KDSi by definition the set
of all documents containing keyword ki.

Note: In the following, let H() denote a one-way
cryptographic hash, such as SHA-512 [19]. Also,
let “||” denote concatenation.
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Then, let keyi = H(key||ki) be the key used
to encrypt the document identifiers that are con-
tained in KDSi. These keys are easily generated
by the client when a new document is to be out-
sourced on the server. Additionally, this is done
without any additional storage requirements on
the client (which needs to only remember a secret
value key).

As we will see, in a static data case (only), the
advantages of such a scheme are that a server will
not be able to cross-correlate document identifiers
between KDS sets (the same document will be rep-
resented differently in different KDS sets). This
will thus significantly reduces the types of leaks
incurred.

4.1.2 Onion Hashing.

Getting back to the issue of authenticating the
KDS sets retrieved from the server, let us first note
that the server will not be able to add new (valid-
looking) entries to any KDS (as a non-malleable
cipher is used). The server could however mali-
ciously remove entries from the sets before return-
ing them.

To alleviate this problem, we proposed above
to compute (and store at the client) a checksum
for each KDS that can verify its content. One
natural choice would be a cryptographic hash or
message digest of its content. One problem with
such an approach is that for every new incoming
document, simply updating these checksums will
require the client to retrieve each and every one
of the associated sets from the server first. This
might not be acceptable. For new documents, the
client would like the checksum values it keeps to
be easy to update, preferably without significant
communication with the server.

We propose the following mechanism. For illus-
tration purposes, let us consider three documents
all containing (at least) keyword k1 coming in (or
being generated) in the following chronological or-
der: d1, d2, d3 and d4. The KDS for keyword k1

on the server will now contain these new document
identifiers, KDS1 = {d1, d2, d3, d4}.

A structure that would allow the client to au-

thenticate this set while also permitting further
updates (without communicating with the server)
works as follows. The client maintains one hash-
value per set, initialized with zero (when no docu-
ments containing the corresponding keyword have
been seen so far).

Next, for each new document received, the
client will concatenate the previous hash value
with the identifier of the document and com-
pute a one-way cryptographic hash function of
it. In the above case for example, for keyword
k1, the client would store the value Hcheck =
H(d4||H(d3||H(d2||H(d1||0)))). This would effec-
tively construct a one-way “onion hash” combin-
ing all the document identifiers in the set. This
construct allows for a simple authentication pro-
cess for the set of documents per keyword provided
by the server at a later time: re-constructing the
hash from the set received from the server and
comparing it with the stored version. The scheme
also has the advantages of being easy to build and
of requiring a constant amount of storage space.
Document additions are easy to perform, since the
client only has to add one hash layer to the val-
ues stored for all the keywords contained in the
new document. The problem of this scheme how-
ever consists in the difficulty of removing arbitrary
documents. This is the case for example if d2 is to
be removed from the server. Next time the server
replies with the set missing d2, the checksum can-
not be reconstructed.

This constitutes a problem. While the scheme
can be augmented to allow the removal of all doc-
uments “older than a certain timestamp” (details
are out of scope here), it will still not provide the
ability to support removal of documents that were
stored chronologically in the “middle”. This is of-
ten undesirable. We now propose a novel check-
sum mechanism that solves this problem.

4.1.3 Multiplicative Checksums

Let the client choose two secrets: a large prime
p and a random integer 1 < x < p. Instead of
a hash, for a given keyword, the client stores a
product of terms, each term corresponding to one
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of the documents in the associated document (as-
sumed numeric) identifier set. To authenticate a
KDS set {d1, . . . , dt} the client stores the number

t∏

i=1

(di + x)mod p;

for an example see Figure 1. We call this a mul-
tiplicative checksum. Such a checksum allows for
both easy removal (multiplication by (di + x)−1)
and addition (multiplication with (di + x)) of ar-
bitrary documents. In the following, unless spec-
ified we are going to name this construct “client
checksum(s)” or, even simpler “checksums” if un-
ambiguous.

document serverdata client

d1: k1

d2: k2

d3: k1 k2

d4: k3 k4

k1: (d1+x)(d3+x) mod p

k2: (d2+x)(d3+x) mod p

k3: (d4+x) mod p

k3: (d4+x) mod p

Figure 1: Checksums can be kept on the client
side to authenticate server replies.

Suppose that the terms (di + x) are uniformly
distributed 2 over Z

∗
p. By appropriate coding of

the document identifiers, this is easily achievable
(e.g. through the full domain hash scheme of [2]).
Then, the checksum for an arbitrary KDS set is
also uniformly distributed over Z

∗
p.

But how about a malicious server? Let us re-
member the replacement attack discussed above.
Apparently, multiplicative checksums are vulner-
able to such an attack. When instructed to re-
move a certain document (di) the server will at-
tempt to instead remove (a set of) other docu-
ments {dj1 , .., djt

} while preserving the value of
the multiplication checksum. Upon closer inspec-
tion however, it becomes clear that this is not pos-
sible. A malicious server running such an attack

2Although it can happen by construction that (di +x) ≡
0 mod p, we ignore this event for the analysis, as it only
occurs with negligible probability.

only has an extremely low chance (of 1/p) to suc-
ceed, as the checksum is stored under the client’s
control, and the server cannot produce new en-
crypted documents. This shows that client check-
sums can both serve as efficient and easy means
to authenticate KDS sets.

Leaks. Since the server keeps for each keyword a
set of identifiers of documents containing the key-
word, even though the keywords and document
identifiers were encrypted by the client, this solu-
tion exhibits a type 2 leak. Each time a document
is added on the server, to keep the search structure
consistent, the client needs to update the KDS sets
corresponding to keywords contained in the docu-
ment.

Overheads. The server is required to store the
KDS sets, thus incurring a O(nχ) storage over-
head. For each searched keyword, the client will
have to retrieve the corresponding KDS set from
the server. The average size of a KDS is n×χ

k
, in-

curing O(n×χ
k

) communication costs (a single mes-
sage of this size). Additionally, the client will need
to compute its checksum (O(n×χ

k
costs) multipli-

cations).

Using a typical example of an email server stor-
ing (for a particular user) n = 10000 emails,
k = 1000 keywords and χ = 50 keywords per doc-
ument, we have the following overheads: a mes-
sage of roughly 2 KBytes and 500 multiplications
at the client.

4.2 Static Data

The dynamic data solution presented so far fea-
tures type 2 leaks and uses O(k) client-side stor-
age. In a static data scenario, no new documents
are added by the client after outsourcing to the
server. We would also like to extend the static
scenario by allowing the client to remove some of
the documents added to the server (we call this a
“semi-static” case). This scenario is further built
upon and explored in Section 6.1 where we discuss
severely storage- constrained mobile clients.

In a static scenario, the client will com-
pute/encrypt off-line all necessary data structures
required by the server to perform searches. It will
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then outsource these structures to the server. In a
mobile client scenario for example, this can hap-
pen e.g., on the “home PC”, allowing for later
read-only retrieval of documents by the mobile
client, e.g., a laptop.

Semi-static data. In a semi-static scenario,
if the client is allowed to dynamically remove
documents, the above proposed storage mecha-
nism used in conjunction with client-side storage
of checksums (O(k)), features only type-1 leaks.
This is so because document identifiers are en-
crypted with different keys in different KDS sets;
the server is prevented from building associations
between keywords and documents. Such asso-
ciations are leaked only during actual keyword
searches (type 1 leaks).

No Document Removals. Additionally, if the
data model is completely static, (document re-
movals are not allowed) it turns out that client
storage requirements can be reduced. This is
mainly so because now, instead of individually en-
crypting each document identifier in each server-
stored KDS set, these sets can be encrypted as
a whole with one single key (as no updates are
expected). For example, KDSi can be encrypted
with the key keyi = H(key||ki) (see Section 4.1.2).

Then, if complete KDS encryption is deployed,
the encryption mechanism also naturally provide
for KDS authentication. There is no need any
more for client-side checksums. The ability to
properly decrypt the retrieved lists will be a guar-
antee of no tampering. Thus, while requiring only
O(1) client storage, this solution again features
only type 1 leaks.

5 Towards Obliviousness

While the mechanisms proposed above have the
advantage of being relatively cheap and not leak-
ing more information than existing efforts (type 1
leaks), we propose to get closer to complete (com-
putational) privacy. The following mechanisms
prevent a curious server to determine (i) what

keywords were previously searched for (not even
in encrypted form), and (ii) what document iden-
tifiers correspond to which (possibly encrypted)
keywords.

5.1 Less Information Leaks

The leak source of the above explored methods is
the client signaling the server the keywords con-
tained in newly added document. This happens in
the process of document addition when the KDS
sets will need to be updated on the server. If we
would modify document addition such that for ex-
ample the client updates all KDS sets stored at
the server (instead of only the ones corresponding
to keywords contained in the new document), the
server will learn nothing of the new document.

To do so, let us represent all server-stored KDS
sets as a k×n bit matrix C, where each row corre-
sponds to a keyword and each column to a docu-
ment. The bit at row i and column j, Cij, is then
set to 1 if and only if the document dj contains
the keyword ki.

document serverdata client

d4: k3 k4

…

…

k1

k2

k3 x

x
x

d’4d’3d’2d’1

k4 x

C~
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d4

x
x

k1

k2

k3

C

k4

d’4

k1

k2

k3

k4

C~

x

x

x
x

x

x
F

1

2a

3

Figure 2: Adding a new document involves com-
puting and then obfuscating the corresponding
matrix column entry.

Storing C in clear at the server naturally leads
to a type 2 leak. To avoid this, instead of revealing
C to the server, the client provides an obfuscated
version of the matrix, called C̃, to the server. C̃
is computed out of C in a pseudo-random but yet
reversible manner. Let F be a bitwise pseudo-
random function [12]. We compute the entries of
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the matrix C̃ by

C̃ij = last bit(F (ki, Rj , Cij)),

where Rj is a random number corresponding to
document dj . Rj can be easily computed (with
only constant storage) by the client out of the doc-
ument identifier using a pseudo-random number
generator G and a constant random seed R.

The client can dynamically outsource a new
document by constructing a matrix column hav-
ing “1”s only in positions corresponding to key-
words contained in the document and encoding
this column using F as previously shown (see Fig-
ure 2). The resulting column, along with an en-
crypted version of the document are then sent to
the server. If the client is storage-constrained, the
computation of the initial C̃ can be done in a sim-
ilar, sequential manner. Removing a document is
a much simpler operation, requiring only the elim-
ination of the corresponding column of C̃.

Keyword Searches. A conjunctive keyword
search query = {k1, k2, . . . , kq} is initiated by the
client by revealing the corresponding row indexes,
p1, p2, . . . , pq, to the server, which returns the ac-

tual rows of C̃. To then recover the correspond-
ing rows of C, the client initializes the pseudo-
random generator G with the random seed R in
order to sequentially compute the pseudo-random
values R1, . . . , Rn corresponding to all documents.
Then, for all 1 ≤ j ≤ n, the client sets Cpij = 0

if last bit(F (ki, Rj , 0)) = C̃pij , otherwise Cpij = 1.
Finally, the client uses the stored client checksums
of keywords k1, . . . , kq in order to verify the cor-
rectness of the inverted (r1, . . . , rq) rows (and thus
implicitly of the server response). If it checks,
the client performs a bit-wise AND of the rows,
r = ∧q

i=1
ri and requests from the server the docu-

ments corresponding to positions in r that contain
“1”s.

Query Completeness. The proposed solution
provides query completeness, as the server is not
able to alter the client checksum. Furthermore,
the server can only cheat on the matrix C̃, whose
entries are transformed in a pseudo-random man-
ner back into the matrix C by the client. Altering

data client

d’4
k1

k2

k3

k4

C~

x

x

x

d’4

k1

k2

k3

k4

C~

x
x

x

add d4

2b

3
document

server

F
2a

1

Figure 3: The ranks of keywords (rows in C̃) are
permuted to avoid leaks derived from the public
nature of the keyword dictionary. Refer also to
Figure 2.

the matrix elements of C̃ essentially results in a
random selection of the KDS sets. However, due
to the properties of the client checksum (see Sec-
tion 4.1.3), the chance of the server of hitting a
different KDS set that has the checksum expected
by the client is negligible (bounded by 1/p).

Leaks. This solution exhibits a type 1 leak, since
the client reveals relations between row indexes
corresponding to the searched keywords and the
encrypted documents containing them.

An additional leak is to be handled here. It oc-
curs if the considered keywords become (or are)
public, e.g., when an entire known dictionary is
used. If keywords are kept alphabetically ordered
in C̃, the server can build a one-to-one correspon-
dence between rows in the matrix and actual key-
words. This then becomes a leak problem due to
the fact that the client will reveal which keywords
it is considering upon searching, as it first retrieves
the corresponding rows from the matrix. While
not explicitly pointing it out, we believe other au-
thors also encountered this problem in a slightly
different context [6].

We handle this (similarly to [6]) by randomly
permuting the keywords (rows in the matrix, see
Figure 3): the client generates a pseudo-random
permutation [18] of the alphabetically ordered
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keywords. It then stores and keeps secret k records
of the type (ki, pi, ci), where ki is the i-th alpha-
betically ranked keyword, pi ∈ [1, . . . , k] its cor-
responding position in the permutation and ci is
ki’s checksum (see Section 4.1.3). Keyword ki is
then associated with the pith row of C̃.

In the following we propose a method that pre-
vents even type 1 leaks (by deploying a variation of
computational PIR) at the expense of additional
computation costs.

5.2 Oblivious Search

While type 1 leaks seem less revealing, in the worst
case they still lead to type 2 leaks. Moreover,
type 1 leaks allow the server to build statistics
of keyword search popularity and eventually per-
form guesses. In this section we propose an oblivi-
ous keyword search method, allowing the client to
hide any information about the queried keywords,
albeit at increased computation cost for the client.
The only information leaked to the server consists
in the number of keywords contained in conjunc-
tive queries, shared by sets of documents.

We use a modified version of the Computational
PIR scheme of Kushilevitz and Ostrovsky [17] to
achieve this goal. Initially, the client randomly
chooses two prime numbers p and q of equal bit
length, computes their product, N = pq and sends
N to the server. To search for documents contain-
ing keyword ki, without revealing the row index pi

corresponding to ki in matrix C̃, the client gener-
ates k numbers, s1, s2, . . . , sk, such that the pi-th
number spi

corresponding to the row pi of the ma-

trix C̃, is a quadratic non-residue (QNR) and the
rest are quadratic residues (QR), all modulo N .
The client sends s1, s2, . . . , sk to the server.

For each column c in the bit matrix C̃, the server
computes exactly one value, vc, as the product
of k numbers, vc =

∏k
i=1

vic, where vic = 1 iff.

C̃ic = 0 and vic = si otherwise. The server sends
the computed values v1, v2, . . . , vn to the client,
that checks their quadratic residuosity. If value vc

is a quadratic residue, then C̃pic is 0, otherwise it
is 1. Since spi

is a quadratic non-residue, vpic is a

quadratic residue if and only if C̃pic is 0.

By the quadratic residuosity assumption, the
server cannot check the quadratic residuosity of
s1, s2, .., sn or of v1, v2, .., vn without being able to
compute the primes p and q (known only to the
client). The client however can easily check this
residuosity and thus re-construct the complete pi-
th row of C̃, without revealing pi to the server.
As the server is unable to distinguish quadratic
residues from non-residues, the protocol leaks to
the server nothing more than the number of key-
words contained in a conjunctive query.
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Figure 4: Oblivious Keyword Search.

The remaining steps of this solution follow
exactly the protocol presented above (see Sec-
tion 5.1). The client converts the pi-th row of
C̃ into the pith row of C and uses the checksum
information corresponding to ki to verify the ac-
curacy of the information sent by the server.

Overheads. Complete computational privacy
comes at additional computation costs. First, the
server is required to store C̃, thus incurring a
O(nk) storage overhead.

For each searched keyword, the client will need
to generate and send k − 1 QR values and one
QNR (O(k) costs). The server is required to per-
form on average nk

2
− n multiplications (C̃ looks

random, thus roughly half of its entries will trig-
ger multiplications) and send back O(n) data. The
total computation overhead is clearly dominated
by this PIR component at the server. The com-
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munication overhead is O(k + n), induced by the
transmission of two messages: one of size O(k) fol-
lowed by another one of size O(n). The client can
verify quadratic residuosity on the fly in not more
than O(1) extra storage.

Note: While more details are out of scope, it
might be worth noting, that, because the same
si values are repeatedly used in computations for
each column of C̃, deploying dynamic program-
ming techniques could further reduce the number
of actual multiplications performed.

This looks a bit worrisome. It is clear that obliv-
iousness comes at an expense. But is this feasible
with today’s hardware? To find out, let us start
by considering a set of benchmarks performed on
an (obsolete) 1GHz Pentium III Processor (or its
equivalent AMD Athlon) with 384Mb of RDRAM
(Rambus) running at 800Mhz with ECC correc-
tion. These benchmarks report between 2500 and
3000 MIPS in Dhrystone [24] (available at [1]) and
between 200 and 220 million 32-bit integer multi-
plications per second (reported by [22]).

Thus, for a 32-bit operation setup, things seems
to be quite favorable, since a server can easily sup-
port 20-30 searches per second. The bit-size of N
however has to be larger, as N ’s factoring would
allow the server to understand each query and a
type 1 leak would occur. For smaller values of N ’s
bit-size, if the client uses a different N value for
each search (or a finite set of searches) this can be
further alleviated as it would require separate fac-
toring for each of them. It is important however,
that it is reasonable hard to factor N for each such
instance and that the process is not sustainable
over a large number of queries. We believe that
currently this can be reasonably ensured with N
size in the 256 to 512 bit range. For completeness
purposes, in the following we also discuss the case
of 1024 bits.

We thus set out to evaluate what can be
achieved with today’s cheap, off the shelf hard-
ware, and available open source arbitrary preci-
sion libraries. For this purpose, we chose to bench-
mark 128, 256, 512 and 1024-bit operations on
a 2.4GHz AMD Athlon64 CPU using the GMP

[10] library. We naturally expected the figures
above (for 32 bit operands) to scale down by a
factor of 16 for 128-bit operands and 256 for 512-
bit operands, in effect yielding roughly 14 million
128-bit and 0.85 million 512-bit multiplications
per second in the above setup. And, given that
our CPU is 2-3 times faster than this setup, we
expected values roughly 2.5 higher.

Running in single-user mode on a Linux box, we
obtained a speed of about 15.5 (128 bits), 4.1 (256
bits), 1.3 (512 bits) and 0.37 (1024 bits) millions
of multiplications per second. Naturally, the fact
that we did not achieve the expected 2.5 higher
values is likely due to GMP optimization issues.
We believe that in an industry-level optimized as-
sembler implementation one could safely achieve
higher speeds, e.g., at least 30 million 128-bit and
0.74 million 1024-bit operations per second on the
same off the shelf hardware.

This is good news. What these results basically
show is that in such a setup, even a simple PC-
based server can easily support a throughput any-
where between 4 and 360 complete oblivious key-
word search queries per minute. Let us see why. In
the example above, for n = 10000 and k = 1000,
the server will perform roughly nk

2
−n ≈ 5 million

operations. Depending on the assumed size of N ,
this can result in roughly 360 (128 bits), 80 (256
bits), 15.5 (512 bits) and 4.5 (1024 bits) searches
per minute.

We believe these numbers to be well within rea-
sonable bounds. After all, it is unlikely that more
than a small fraction of clients will submit queries
at the exact same time. Additionally, it is ex-
pected that the rest of the activities of the server
are mostly I/O related (e.g., serving documents
over the network) which do not interfere signifi-
cantly with modular arithmetic. Thus, deploying
the oblivious keyword search mechanisms would
easily allow one single server to handle tens to
hundreds of users. Beyond that, the load can be
naturally distributed on different servers by either
having each serve different sets of users or simply
splitting C̃ between them. Moreover, a natural
obliviousness-costs trade-off can be put in place,
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allowing the client to naturally choose a lower bit-
size for N as time passes and the server “gains”
more trust.

6 Discussion

6.1 Storage-Constrained Mobile Client

The oblivious keyword search method achieves a
1/k probability of the server guessing the searched
keyword. This is the result of O(k) client-side stor-
age and O(k + n) communication overhead. We
now ask the following question: in the case of a
severely storage-constrained (e.g., mobile) client,
is it possible to reduce the storage and communi-
cation overhead (possibly at the expense of obliv-
iousness) e.g., in scenarios involving static data?
Moreover, we would also like to preserve the cor-
rect behavior of the server through the use of
query assurance mechanisms. (see Section 4).

Let us adapt the solutions presented above to a
scenario involving such a mobile client. In this sce-
nario, the client transitions from an initial ”home”
stage, where it can process and store encrypted
documents, along with resulting meta-data on the
server, to a roaming behavior enabled by the usage
of small mobile devices. During this stage, con-
strained by the scarce computational, storage and
communication resources of mobile devices, the
client only wants to retrieve documents matching
desired keywords with minimal overhead, without
adding new documents on the server. We now as-
sume that the storage available at the client is m,
such that n < m < k.

The main client-side storage requirement of the
previous solutions is O(k), one entry for each key-
word. We propose a solution (see Figure 5) where
instead of storing for each keyword ki the corre-
sponding row number pi in C̃ and the checksum
ci for verifying the accuracy of server answers, the
client moves this information, kept in an ordered
fashion, to the server.

Specifically, the client generates two keys, sk
and key and a random value R and keeps them
secret. During the initial stage, the client gen-
erates a record Esk(ki, ci, R) for each keyword

ki, and associates a value, H(key, ki), to the
record. The client first orders the records accord-
ing to H(key, ki), and then removes the auxiliary
H(key, ki) values used for sorting and stores the
ordered list of records, L, on the server. R is
used by the client to randomize records. More-
over, the row index pi of a keyword ki is set to
be the rank of H(key, ki) in the ordered list of
records, pi = rank(H(key, ki), L). That is, the
row C̃pi

of C̃ encrypts information about docu-
ments containing keyword ki. Due to the secret
ordering of records, the server cannot build one-
to-one mappings between keywords and records or
keywords and rows in C̃, even when the server has
a dictionary of all the keywords. Finally, the client
divides L into blocks of m keywords and C̃ into
corresponding blocks of m rows.

To obtain from the server the record of keyword
ki, without knowing and also without revealing its
rank in L and in C̃, the client generates H(key, ki)
and performs a binary search using H(key, ki) in
L, which is ordered by the H(key, kj) value of all
keywords. For this, the client asks the server for
the first and last entries of the middle block in
L, corresponding to keywords kf and kl, and de-
crypts them. If H(key, ki) is ranked between the
H(key, kf ) and H(key, kl), the client requests the
entire block of m records of L from the server.
Subsequently, the client performs a binary search
for H(key, ki) inside the block (requiring only
O(log m) decryptions instead of O(m)). How-
ever, if H(key, ki) is ranked before H(key, kf ), the
client recursively searches the first half of L, oth-
erwise it recursively searches the second half of L.

After retrieving the record of ki, Esk(ki, ci, R),
the client computes the rank pi of H(key, ki) in
L, according to the search pattern previously fol-
lowed. Moreover, the client knows the block num-
ber bi containing the record of ki. The bith block
of m rows of C̃ contains the row corresponding
to keyword ki, at rank ri = pi mod m. Then,
following the oblivious keyword search protocol
(see Section 5.2), the client generates m num-
bers, s1, s2, .., sm, where only sri

is a quadratic
non-residue while the others are quadratic residues
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and sends them to the server, along with bi. The
server processes only the bith block of C̃ using
s1, s2, .., sm (see Section 5.2) and sends the client
the n resulting numbers, one for each document.
The client then reconstructs the desired row of C̃
by checking quadratic residuosity.
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Figure 5: A storage-constrained client will place
the encrypted checksums on the server and access
it by performing two rounds of binary search. This
comes at the expense of complete obliviousness.

Leaks. This solution prevents the server from
learning the exact keyword searched, with a preci-
sion of m entries. That is, the client still leaks cor-
relations between blocks containing m entries cor-
responding to arbitrary keywords and documents
matching some keywords inside the blocks.

Overheads. The server storage overhead is
O(k). For each searched keyword, the client
needs to generate and send m − 1 QR values and
one QNR (O(m)). Subsequently, it will need to
perform O(log k/m + log m) decryptions and n
quadratic residuosity verifications (cost O(n)) per
searched keyword. Thus, the computation over-
head is O(n+log k/m). The communication over-
head can be broken down into: a message com-
posed of m integers, followed by log k/m short
messages, followed by a final message of size O(n).
This becomes O(log k/m + n).

7 Conclusions

In this paper we addressed query assurance and
privacy in a dynamic outsourced data framework
in the presence of (not only lazy but also) poten-
tially malicious data servers. Our results focused
on conjunctive keyword search scenarios, in which
outsourced documents are retrieved based on key-
word searches submitted by a client to a file or
email server.

We proposed a set of protocols in which the
client is provided with cryptographic assurances
proving the authenticity and completeness of
server replies. These protocols also strengthen
the privacy guarantees: not only is the outsourced
data hidden (from the server) but so are client ac-
cess patterns, the queries themselves (even in en-
crypted form), and the association between previ-
ously searched keywords and returned documents
or between newly added documents and their cor-
responding keywords.
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