
Weaknesses in a leakage-resilient authenticated key

transport protocol

Qiang Tang and Chris J. Mitchell
Information Security Group

Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

{qiang.tang, c.mitchell}@rhul.ac.uk

10th June 2005

Abstract

In this paper we demonstrate the existence of a number of weaknesses in a
leakage-resilient authenticated key transport protocol due to Shin, Kobara
and Imai. The weaknesses imply that the protocol cannot achieve the secu-
rity goals claimed by its designers. We also propose an enhanced protocol
which is immune to some of these vulnerabilities.

1 Introduction

Recently, Shin, Kobara and Imai proposed a leakage-resilient authenticated
key transport protocol [2] (referred to as the RSA-AKE protocol) to be used
in an client-server environment, where

1. A client C, who can only remember a password, wishes to communicate
with several servers.

2. C has insecure devices with very restricted computing power and built-
in memory capacity. The servers have significant computing power,
but they might be compromised.

3. Neither a PKI (Public Key Infrastructure) nor a TRM (Tamper-Resistant
Module) is available.

Shin, Kobara and Imai claimed that the RSA-AKE protocol is provably se-
cure in the random oracle model [2]. However, we show that the RSA-AKE

1



protocol suffers from potential security problems in the intended environ-
ment of use. Using a proof of equality of discrete logarithms scheme, we
propose an enhanced protocol which is immune to some of these vulnerabil-
ities.

The rest of this paper is organised as follows. In Section 2 we review the
the RSA-AKE protocol. In section 3 we demonstrate weaknesses in the
RSA-AKE protocol. In Section 4, we propose an enhanced RSA-based au-
thenticated key transport protocol. In the final section, we conclude this
paper.

2 Review of the RSA-AKE protocol

Suppose a client C shares password pw with server Si (i ≥ 1). Without loss
of generality, we suppose that C possesses identity IDC , and Si possesses
identity IDSi . Additionally, f is a full-domain hash function [3], and hi (1 ≤
i ≤ 4) : {0, 1}∗ → {0, 1}k are four different hash functions, where k is a
security parameter. Throughout this paper, f(x1, · · · , xn) and hi(x1, · · · , xn)
(1 ≤ i ≤ 4) represent computing the hash value on the concatenation of
messages xj , 1 ≤ j ≤ n.

At the initialisation stage, Si generates its RSA public/private key pair
(e,N) and (d, N), and sends (e,N) to C. C registers a password verifier
pi1 = αi1 + pw mod N at Si, where αi1 is randomly selected from ZN .
C stores αi1 and (e,N) on some insecure device such a PDA, which is not
necessarily securely protected and may leak the stored information. Si stores
pi1 and (d,N) in its database, which is also not necessarily securely protected
and may leak the stored information (both pij and (d,N)). Finally, C and
Si also store a counter j, initially set to 1.

In the j-th (j ≥ 1) execution of the RSA-AKE protocol, C and Si perform
as follows.

1. C first computes the password verifier pij = αij + pw mod N . Note
that the values of αij , j = 1, 2, · · ·, are defined recursively – see step 3
below. Then C chooses a random x ∈ Z∗

N and computes W = f(j, pij),
y = xe mod N , and z = y · W mod N . Finally, C sends IDC , j, z to
Si.

2. Si first checks whether j is the correct counter value. If the check
succeeds, Si computes y′ = z · W−1 mod N , x′ = (y′)d mod N , and
VSi = h1(IDC , IDSi , j, z, pij , x

′), and then sends IDSi , VSi to C. Oth-
erwise, Si terminates the proitocol execution.

3. After receiving Si and VSi , C first checks whether the following equa-

2



tion is valid:
VSi = h1(IDC , IDSi , j, z, pij , x)

If the check succeeds, C computes and sends VC to Si, where

VC = h2(IDC , IDSi , j, z, pij , x)

Otherwise, C terminates the protocol execution.

C computes the session key as SKij = h3(IDC , IDSi , j, z, pij , x), and
replaces the stored data αij with αi(j+1):

αi(j+1) = αij + h4(IDC , IDSi , j, z, pij , x) mod N

C sets the counter value to j + 1.

4. After receiving VC , Si first checks whether the following equation is
valid:

VC = h2(IDC , IDSi , j, z, pij , x
′)

If the check succeeds, Si computes the session key as

SKij = h3(IDC , IDSi , j, z, pij , x
′),

and replaces the password verifier pij with pi(j+1):

pi(j+1) = pij + h4(IDC , IDSi , j, z, pij , x
′) mod N

Si sets the counter value to j+1. Otherwise, Si terminates the protocol
execution as a failure.

3 Weaknesses in the RSA-AKE protocol

Shin, Kobara and Imai [2] claim that the RSA-AKE protocol is provably
secure in the random oracle model based on the assumption that the RSA
problem is computationally infeasible. They also claim that an adversary
cannot determine the correct password through off-line dictionary attacks,
even if she knows the client’s secret and the server’s RSA private key, because
generating the valid client’s authenticator after computing z, or generating
the valid server’s authenticator, fall into the category of online dictionary
attacks.

However, we show that the RSA-AKE protocol suffers from the following
potential security problems. It should be noted that the first vulnerability
is outside the scope of the security model in [2].

3



1. Observe that pij is the only secret used for authentication in the j-th
run of the RSA-AKE protocol. So, if the attacker has compromised
Si and obtained pij , then he can successfully impersonate C to Si in
the subsequent protocol executions without the need to have access
to pw. If this occurs, the legitimate client will no longer be able to
authenticate himself, because the password verifier held by Si will
change. However, if the legitimate client authenticates himself before
the attacker uses the stolen pij , then the attacker cannot launch the
above attack because the stolen password verifier pij will no longer be
valid.

This attack means that leakage of pij from Si may enable an attacker
to mount an impersonation attack. Hence the RSA-AKE protocol does
not appear to be suitable for use in environments where the server is
not securely protected.

2. Shin, Kobara and Imai point out that measures should be adopted
to restrict an attacker from replacing the RSA public key (e,N) on
the client’s device; otherwise they show that an eth-residue attack can
be mounted. They also propose a means to thwart the eth-residue
attack if the attacker does succeed in replacing the RSA public key
(e,N) with (e′, N ′). However, we show below that, in some extreme
circumstances, more serious vulnerabilities exist in this case.

Suppose, for example, that the attacker has obtained αij and replaced
the RSA public key (e,N) with (e′, N ′), where e′ = φ(N ′), just before
the j-th execution of the RSA-AKE protocol. In this case, the attacker
can exhaustively search for the password using the intercepted message
z. This is because xe′ mod N ′ = 1 for every x (since e′ = φ(N ′)), and
hence z = f(j, pw + αij) mod N ′. That is, the only unknown used to
compute z is pw. The measures proposed in [2] do not eliminate this
vulnerability.

3. Shin, Kobara and Imai suggest that C can use the same password
pw with a number of servers Si (i ≥ 1). However, it is potentially
dangerous to do this. Suppose the client shares the same password
with m servers Si (1 ≤ i ≤ m). Then an attacker can successfully
guess the password with a probability p by mounting n/m dictionary
attacks in parallel at each server Si (1 ≤ i ≤ m), while he would need
to mount n dictionary attacks against one specific server in order to
achieve the same goal. This attack means that the client might need
to change his password much more frequently (if m is very large) in
order to prevent undetected dictionary attacks.

This attack is of particular concern in environments where m is large
and the client chooses the password from a small password set, e.g.
based on personal preferences.

4



4 Enhanced authenticated key transport protocol

In the enhanced authenticated key transport protocol described below, we
make the same assumptions as in [2], except that we suppose C shares
password pwi with server Si (i ≥ 1), where pwi 6= pwj if i 6= j. We also
assume that all the operations are securely protected during the initialisation
stage.

4.1 Description of the enhanced protocol

In the initialisation stage, Si generates its RSA public/private key pair (e,N)
and (d,N). In order to eliminate the second weakness, we could require that
e is a fixed value (e = 216 + 1) or, alternatively, e ≤ N/2. Si also generates
two large primes p and q, where p = 2q + 1 and q > N . Server Si then
generates a generator g1 of a multiplicative subgroup of order q in Z∗

p ; Si

also computes a second generator g2, where g2 = (g1)x∗
mod p and x∗ is

randomly selected from Z∗
q . Finally, Si sends (e,N), p, g1, and g2 to C. C

registers a password verifier (g2)pi1 mod p at Si, where pi1 = αi1 +pw mod q
and αi1 is randomly selected from Zq.

At the end of the initialisation stage, C stores p, g1, g2, αi1, (e,N), and
a counter j (initially set to 1) on some insecure device such a PDA, which
is not necessarily securely protected and may leak the stored information.
Si stores p, g1, g2, (g2)pi1 , (d,N), and a counter j (initially set to 1) in its
database, which is also not necessarily securely protected and may leak the
stored information.

In the j-th (j ≥ 1) execution of the enhanced protocol, C and Si perform
as follows.

1. C first computes pij = αij + pw mod q, t1 = (g1)pij mod p, and t2 =
(g2)pij mod p. Note that the values of αij , j = 1, 2, · · ·, are defined
recursively – see step 3 below. Then C chooses a random x ∈ Z∗

N and
computes W = f(j, t2), y = xe mod N , and z = y ·W mod N . Finally,
C sends IDC , j, z, t1 to Si.

2. Si first checks whether j is the correct counter value. If the check
succeeds, Si computes W = f(j, (g2)pij mod p), y′ = z ·W−1 mod N ,
x′ = (y′)d mod N , and VSi = h1(IDC , IDSi , j, z, t1, (g2)pij mod p, x′),
and then sends IDSi , VSi to C. Otherwise, Si terminates the proitocol
execution.

3. After receiving Si and VSi , C first checks whether the following equa-
tion is valid:

VSi = h1(IDC , IDSi , j, z, t1, t2, x)

5



If the check succeeds, C computes the session key as

SKij = h3(IDC , IDSi , j, z, t1, t2, x),

and replaces the stored data αij with αi(j+1):

αi(j+1) = αij + h4(IDC , IDSi , j, z, t1, t2, x) mod q

C sets the counter value to j + 1.

4. C proves to Si that logg1
(t1) = logg2

((g2)pij ) using the cryptographic
primitive PLOGEQ [1]. If the proof fails, Si terminates the protocol
execution as a failure.

5. C computes and sends VC to Si, where

VC = h2(IDC , IDSi , j, z, t1, t2, x)

Otherwise, C terminates the protocol execution.

6. After receiving VC , Si first checks whether the following equation is
valid:

VC = h2(IDC , IDSi , j, z, t1, (g2)pij , x′)

If the check succeeds, Si computes the session key as

SKij = h3(IDC , IDSi , j, z, t1, (g2)pij , x′),

and replaces the password verifier (g2)pij with (g2)pi(j+1) = (g2)pij ·
gt
2 mod p, where

t = h4(IDC , IDSi , j, z, t1, (g2)pij , x′) mod q

Si sets the counter value to j+1. Otherwise, Si terminates the protocol
execution as a failure.

4.2 Security analysis

Because of the similarity between the enhanced protocol and the RSA-AKE
protocol, we omit the general security discussion here. We stress that in
the enhanced protocol, even if the attacker has obtained all the secret in-
formation from Si, he still cannot impersonate C to Si. This is because, in
the PLOGEQ mechanism [1], an attacker can only complete the proof if he
knows pij ; however, compromise of the server does not enable the attacker
to compute pij .

Note that, if we assume that both αij and (g2)pij mod p could be leaked and
obtained by an attacker, then obviously this attacker could exhaustively
compute the password. This vulnerability also exists in the RSA-AKE pro-
tocol. So both the RSA-AKE protocol and the enhanced protocol should not
be used in environments where an attacker can obtain leaked information
from both the client and the server.

6



5 Conclusions

In this paper we have demonstrated certain weaknesses in a leakage-resilient
authenticated key transport protocol. We also proposed an enhanced pro-
tocol which is immune to some of these vulnerabilities.

6 Acknowledgements

The authors would like to express their deep appreciation for the valuable
comments provided by SeongHan Shin.

References

[1] J. Camenisch, U. M. Maurer, and M. Stadler. Digital payment sys-
tems with passive anonymity-revoking trustees. In E. Bertino, H. Kurth,
G. Martella, and E. Montolivo, editors, ESORICS ’96: Proceedings of
the 4th European Symposium on Research in Computer Security, pages
33–43. Springer-Verlag, 1996.

[2] S. Shin, K. Kobara, and H. Imai. Efficient and leakage-resilient authen-
ticated key transport protocol based on RSA. In J. Ioannidis, A. D.
Keromytis, and M. Yung, editors, Applied Cryptography and Network
Security, Third International Conference, ACNS 2005, New York, NY,
USA, volume 3531 of Lecture Notes in Computer Science, pages 269–284.
Springer-Verlag, 2005.

[3] D. Stinson. Cryptography Theory and Practice. CRC Press, Inc., second
edition, 2002.

7


