
Notes on weaknesses in a leakage-resilient
authenticated key transport protocol

SeongHan Shin, Kazukuni Kobara, and Hideki Imai

Institute of Industrial Science, The University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

shinsh@imailab.iis.u-tokyo.ac.jp, {kobara,imai}@iis.u-tokyo.ac.jp
http://imailab-www.iis.u-tokyo.ac.jp/imailab.html

June 23, 2005

Abstract. Tang et al., [1] have showed weaknesses in a leakage-resilient
authenticated key transport (so-called RSA-AKE) protocol [2] and then
proposed an enhanced protocol. The objective of this paper is two-fold.
First, we clarify some ambiguities that may cause misunderstandings on
the RSA-AKE protocol by [1]. Second, we show that Tang’s protocol is
insecure against a weaker adversary who gets the client’s stored secret:
the adversary can retrieve the password with off-line dictionary attacks
after eavesdropping only one message. Note that the RSA-AKE protocol
is secure against an adversary who gets the client’s stored secret and the
server’s RSA private key.

1 Tang’s observations on the RSA-AKE protocol

Here we clarify some ambiguities that may cause misunderstandings on the RSA-
AKE protocol by [1]. Please, refer to Section 2 of [1] or the conference paper [2]
for the RSA-AKE protocol. For an easier discussion, we paste Section 3 of [1]
here and explain about some ambiguities.

Here are three observations Tang claimed in [1].

1. Observe that pij is the only secret used for authentication in the j-th run
of the RSA-AKE protocol. So, if the attacker has compromised Si and ob-
tained pij , then he can successfully impersonate C to Si in the subsequent
protocol executions without the need to have access to pw. If this occurs, the
legitimate client will no longer be able to authenticate himself, because the
password verifier held by Si will change. However, if the legitimate client au-
thenticates himself before the attacker uses the stolen pij , then the attacker
cannot launch the above attack because the stolen password verifier pij will
no longer be valid.
This attack means that leakage of pij from Si may enable an attacker to
mount an impersonate attack. Hence the RSA-AKE protocol does not ap-
pear to be suitable for use in environments where the server is not securely
protected.



2

2. Suppose, for example, that the attacker has obtained αij and replaced the
RSA public key (e,N) with (e′, N ′), where e′ = ϕ(N ′), just before the j-
th execution of the RSA-AKE protocol. In this case, the attacker can ex-
haustively search for the password using the intercepted message z. This
is because xe′

mod N ′ = 1 for every x (since e′ = ϕ(N ′)), and hence
z = f(j, pw + αij) mod N ′. That is, the only unknown used to compute
z is pw.

3. Shin, Kobara and Imai suggest that C can use the same password pw with a
number of servers Si (i ≥ 1). However, it is potentially dangerous to do this.
Suppose the client shares the same password with m servers Si (1 ≤ i ≤ m).
Then an attacker can successfully guess the password with a probability p by
mounting n/m dictionary attacks in parallel at each server Si (1 ≤ i ≤ m),
while he would need to mount n dictionary attacks against one specific server
in order to achieve the same goal. This attack means that the client might
need to change his password much more frequently (if m is very large) in
order to prevent undetected dictionary attacks.
This attack is of particular concern in environments where m is large and
the client chooses the password from a small password set, e.g., based on
personal preferences.

Here are our explanations in order to clarify some ambiguities.

As for the first observation: We already mentioned that the RSA-AKE pro-
tocol is insecure against the leakage of stored secret pij (see Table 1 and
Section 5.1 of [2]). As Tang said, this attack is only possible until the client
successfully run the RSA-AKE protocol with the server.
A more important point to be noted is that the RSA-AKE protocol is de-
signed to minimize the effect caused by the leakage of the stored secrets.
That means, the leakage of pij from one server doesn’t affect the other
runs of the protocol between the client and the remaining servers where
the client, remembering only one password, is communicating with many
servers! For example, if an adversary A gets the verification data pij from
server Si the adversary, of course, impersonates the client to the server Si.
However, the adversary A cannot impersonate the client to the remaining
servers Sk (1 ≤ i, k ≤ m and i �= k) where m is the number of servers the
client is communicating with. And the adversary A cannot impersonate the
remaining servers Sk to the client as well.

As for the second observation: A simple check can prevent the attack that
the client doesn’t send z if the encryption of x (i.e., xe) is 1. We omitted this
check because it is a common consensus for computing a value in a finite
field (we think).
The RSA-AKE protocol is especially designed for the client’s devices with
very-restricted computing power so that e should be a small prime (e.g., 3
or 216 + 1) (see Introduction and Section 3.1 of [2]). Checking whether e is
3 or 216 + 1 is not difficult for the client.



3

As for the third observation: Unfortunately, Tang et al., seems missing the
following points with respect to the RSA-AKE protocol. (For more details,
see Figure 1 and Section 3.1 of [2].)
First, in order to do parallel on-line dictionary attacks to servers Si (1 ≤
i ≤ m), an adversary first should obtain the client’s stored secret αij and
all of the servers’ RSA private keys (di, Ni) (1 ≤ i ≤ m). Second, in order
to continue parallel on-line dictionary attacks, the adversary should obtain
the client’s stored secret αij successively. If the adversary A does not have
αi(j+1) in the (j + 1)-th run of the RSA-AKE protocol, A cannot do on-line
attacks any more since the secret αij is useless at the end of the protocol.
Think of a client who accesses a web-mail server every 6 hours using the
RSA-AKE protocol, the adversary A can do on-line attacks for the period
with αij and (d,N) and then A should steal the next αi(j+1) to continue
on-line attacks for the next same period.

2 The insecurity of Tang’s protocol

We briefly show the initialization and the actual execution of Tang’s protocol.
In the initialization stage, server Si generates its RSA key pair ((e,N), (d,N))

and two large primes p and q, where p = 2q+1 and q > N . Also, server Si gener-
ates two generators g1 and g2 of a multiplicative subgroup of order q in Z∗

p where
g2 = gx∗

1 and x∗ is randomly selected form Z∗
q . Finally, Si sends (e,N), p, g1 and

g2 to client C who remembers many passwords pwi according to servers Si (1 ≤ i)
where pwi �= pwj if i �= j. The client C registers a password verifier gpi1

2 mod p
at server Si where pi1 = αi1 + pw mod q and αi1 is randomly selected from Zq.
At the end of the initialization stage, C stores p, g1, g2, αi1, (e,N) and a counter
j (initially set to 1) on some insecure devices that are not necessarily securely
protected and may leak the stored information. Si stores p, g1, g2, g

pi1
2 , (d,N)

and a counter j (initially set to 1) in its database, which may leak the stored
information as well.

In the j-th (j ≥ 1) execution of Tang’s protocol, C and Si perform as follows.

1. C first computes pij = αij + pw mod q, t1 = g
pij

1 mod p. Then C chooses
a random x ∈ Z

�
N and computes W = f(j, t2), y = xe mod N , and z =

y · W mod N . Finally, C sends IDC , j, z, t1 to Si.

We omit the remaining procedures of the actual execution since we need the first
message in order to show the insecurity of Tang’s protocol (see Section 4.1 of [1]
for the whole description).

The insecurity of Tang’s protocol: Suppose an adversary who gets
the client’s stored secret (p, g1, g2, αij , (e,N), j) before the j-th execution. Only
eavesdropping the first message (i.e., t1), the adversary can compute the pass-
word pw with off-line dictionary attacks: t1 = g

αij+pw
1 mod p. Then the adver-

sary can freely impersonate the client to server Si (the exact same attack is
possible to the remaining servers).



4

Note that the RSA-AKE protocol is secure against an adversary who gets the
client’s stored secret and the server’s RSA private key.

Acknowledgements

The main motivation of this paper is the work that was proposed by Tang et.
al., in [1], and we show here our comments on Tang’s work. In fact, although
Tang received our comments (on Section 3 of [1]) before he submitted his work
to ePrint server, he wrote in his acknowledgements as if we supported his work
while the truth is different.

References

1. Q. Tang and Chris J. Mitchell, ”Weaknesses in a leakage-resilient authenticated
key transport protocol”, http://eprint.iacr.org/2005/173, June 10, 2005.

2. S. Shin, K. Kobara, and H. Imai, ”Efficient and leakage-resilient authenticated key
transport protocol based on RSA”, In J. Ioannidis, A. D. Keromytis, and M. Yung,
editors, The Third International Conference on Applied Cryptography and Network
Security (ACNS2005), LNCS 3531, pages 269-284. Springer-Verlag, USA, 2005.


