
VSH, an Efficient and Provable Collision

Resistant Hash Function

Scott Contini1, Arjen K. Lenstra2, and Ron Steinfeld1

1 Macquarie University
2 Lucent Technologies Bell Laboratories and Technische Universiteit Eindhoven

Preliminary version 2.2

Abstract. We introduce VSH, very smooth hash, a new hash function
for which finding collisions is provably reducible to finding nontrivial
modular square roots of very smooth numbers modulo a composite in-
teger n. By very smooth, we mean that the smoothness bound is some
fixed polynomial function of the bitlength N of n.
We show that if collisions for VSH can, asymptotically, be found faster
than factoring n using the Number Field Sieve factoring algorithm (NFS),
then n can be factored faster than by means of the NFS. Furthermore,
we show how our asymptotic argument can be turned into a practical
method to select n so that VSH meets a desired security level. Our hard-
ness assumption—and thereby the collision resistance of VSH—is thus
linked to the current state of the art of integer factorisation.
The fastest variant of VSH is theoretically pleasing because it requires
only a constant number of multiplications modulo n per N message bits.
It is also practical. A preliminary implementation on a 1GHz Pentium
III processor that achieves collision resistance at least equivalent to the
difficulty of NFS factoring of a 1024-bit RSA modulus, runs at more
than 1.1 MegaByte per second, with a moderate slowdown to 0.7MB/s
for 2048-bit RSA security.
Note. This is a preliminary write-up prepared to meet the July 15,
2005, submission deadline for NIST’s Halloween Hash Bash. Many of
the details still missing below will be properly taken care of later.

1 Introduction

Current collision resistant hash algorithms that have provable security reductions
are too inefficient to be used in practice. One example [10, 14] that is provably
reducible to integer factorisation is of the form

xm mod n

where m is the message, n a supposedly hard to factor composite, and x is
some pre-specified base value. Given a collision xm ≡ xm′

mod n, we learn that
m − m′ is a multiple of the order of x (which is in itself a divisor of φ(n)).
Such information can be used to factor n in polynomial time assuming certain
properties of x.

Since the above algorithm requires on average 1.5 (multiprecision) multipli-
cations modulo n per message-bit processed, it is quite inefficient. It seems that
so far all attempts to gain efficiency came at the cost of losing provability (see
also [1]). In this document, we propose a more efficient hash algorithm where
finding any collision (i.e., strong collision resistance) is provably as difficult as
finding nontrivial modular square roots of very smooth numbers modulo a com-
posite n, abbreviated NMSRVS. By very smooth, we mean that the smoothness
bound is some fixed polynomial function of the bitlength N of n. We refer to
our new hash as VSH, for very smooth hash.

Although it appears that the NMSRVS assumption has not been used for
security reductions before, there are two good reasons to believe that it is a
difficult problem. The first is that the density of very smooth numbers ≤ n is
O(e−u/2) where u = log n

log log n and where log denotes the natural logarithm (see

Theorem 1 in Chapter III, Section 5.1 of [15]). This implies that if we were to
try to find a very smooth quadratic residue by random search, it would take
more time (attempts) than it would to factor n using a subexponential-time
factoring method such as the Number Field Sieve (NFS, cf. [8, 4, 3]). Of course
random search is naive, so the real question is how difficult it is to solve the
NMSRVS problem using an intelligent algorithm. This brings us to our second
reason for believing it is a difficult problem. Solving NMSRVS is strongly related
to factoring, as all of the best general purpose factoring algorithms work by
finding nontrivial square roots of numbers that are smooth with respect to a
subexponential smoothness bound (as opposed to very smooth, i.e., smooth with
respect to a polynomial smoothness bound). All these algorithms have running
times of the form

L[n, r, α] = e(α+o(1))(log n)r(log log n)1−r

for constants 0 < r < 1 and α > 0 and for n → ∞. Currently, the best algorithm
is NFS which, heuristically, has expected asymptotic runtime L[n, 1/3, 1.923...].
Although this is not provable, it has not failed us yet. We show that if one
can develop an algorithm that finds collisions in VSH in some time of the form
L[n, r, α], then the algorithm can be converted into a factoring algorithm of the
same expected asymptotic running time. For instance, if we can find collisions
(asymptotically) faster than factoring n with NFS, then we have a new factoring
algorithm that has expected (asymptotic) runtime faster than NFS. Thus, if one
is willing to believe in the difficulty of factoring, NMSRVS must be hard as well.

We also show how to interpret our asymptotic arguments in a practical set-
ting. This interpretation takes the following form. If VSH uses an N -bit mod-
ulus n and smoothness bound B, then there is an easily computable integer
N ′ < N that depends on N and B and that is of the same order of magnitude
as N , such that, if VSH-collisions can be found faster than it would take to
factor N ′-bit numbers using NFS, then it is also the case that the N -bit mod-
ulus n can be factored faster than using NFS. Examples of actual values are
given. Typically, N and N ′ are close for small B. VSH gets faster by allowing a

2

larger B but by doing so one incurs a larger gap between N—the VSH-modulus
bitlength—and N ′—the modulus bitlength whose security one obtains.

As mentioned above, general purpose factoring algorithms such as NFS never
set the smoothness bound as absurdly low as it takes to break VSH since such
very smooth ‘relations’, as they are called in factoring jargon, are never found.
Practical factoring algorithms such as Quadratic Sieve (QS) and NFS use subex-
ponential functions of log n for the smoothness bound to optimise their runtimes,
whereas our construction uses a polynomial function of log n. Using polynomial
smoothness bound in QS or NFS would enormously—and disastrously—increase
their runtimes. Thus, it would not be a stretch of the imagination to believe that
the NMSVRS problem with an N -bit modulus is as hard as factoring an N -bit
modulus, i.e., without incurring the gap between N and N ′ referred to above.
In our implementation figures, however, we take the conservative approach and
distinguish between N and N ′.

As far as we are aware, our algorithm improves upon the efficiency of previous
provable algorithms. If we use a smoothness bound that is linear in log n, then
the basic VSH algorithm processes approximately log n

log log n bits of the message for
the cost of less than 3 modular multiplications. Using a variation that, among
others, releases the smoothness restriction to any fixed higher degree polynomial
in log n, the asymptotic cost can be reduced to a small constant number of
modular multiplications per log n message-bits.

Given the relationship between VSH-collision finding and integer factorisa-
tion, a natural question to ask is if a party that knows the factorisation of the
modulus n used in the hash can use this knowledge to create collisions. That is
indeed the case (cf. trapdoor hashes in [14]). Therefore, for wide-spread appli-
cation of VSH with a single modulus one would either have to rely on a trusted
party that generates the modulus (and that can create collisions at will)—we
find it hard to imagine that this would be an appealing scenario—or one would
have to rely on the method from [2] to generate a hard to factor modulus with
unknown factorisation. Since the modulus generation is a one time computation
the latter alternative looks reasonable. For ‘personalized’ application of VSH the
repudiation concerns by the owner of the VSH-modulus are not different from
the repudiation issues concerning the owner of a regular RSA modulus.

Related Work. We mention here several other hash functions with collision
resistance provably related to factoring which have been proposed in the liter-
ature (although all those have lower efficiency than VSH). This subsection will
be expanded substantially in a later version. The function we discussed in the
introduction appeared in [10, 14]. A collision resistant hash function based on a
claw free permutation pair (where claw finding is provably as hard as factoring
an RSA modulus) was proposed by Goldwasser, Micali and Rivest in [7]—this
function requires 1 squaring per bit processed. Damg̊ard [5] generalized the con-
struction to use families of r ≥ 2 claw free permutations, such that log2(r)
bits can be processed per permutation evaluation. He also gave two factoring
based constructions for such families, which require 2 modular multiplications
per permutation evaluation. The first construction requires the modulus n to

3

have 1 + log2(r) prime factors, so the modulus length becomes impractical al-
ready for small log2(r). The second construction uses an RSA modulus with two
prime factors, but requires publishing 2log2(r) random quadratic residues modulo
n. Again, this becomes prohibitive for relatively small values of log2(r).

The remainder of this paper is organized as follows. In Section 2 we present
the basic security definitions and assumptions concerning the hardness of the
NMSRVS problem. The VSH algorithm, including some of its variations, is de-
scribed and discussed in Section 3, and Section 4 concludes with some imple-
mentation results.

2 Security Definitions

Notation. Throughout this paper, let c be a fixed positive constant and let n
be a hard to factor N -bit composite for some positive integer N . Let B be a
smoothness bound < (log n)c, where we say that an integer is B-smooth if all
its prime factors are ≤ B. We represent residues modulo n as least non-negative
residues {0, 1, . . . , n−1} or largest non-positive residues {−n+1,−n+2, . . . , 0}
modulo n. It will be clear from the context which representation is being used.
By pi we denote that ith prime: p1 = 2, p2 = 3,

Definition 1. We say that an integer a is a very smooth quadratic residue mod-
ulo n if the largest prime in the factorisation of a is at most (log n)c and there
exists some integer x such that a ≡ x2 mod n. The integer x is said to be a
modular square root of a.

Definition 2. An integer x is said to be a trivial modular square root of an
integer a if a = x2, i.e. a is a perfect square and x is just the integer square root
of a.

Trivial modular square roots have nothing to do with the modulus n. Such re-
lations are easy to create, and therefore we do not want to allow them in our
security reduction. A sufficient condition for a very smooth integer a represent-
ing a quadratic residue not to have a trivial modular square root is having some
prime p such that p divides a but p2 does not divide a. Another sufficient con-
dition is that a is negative.

Many factoring algorithms construct nontrivial congruent squares modulo n
since they can be used to factor n. More precisely, in a relation of the form
x2 ≡ y2 mod n where x 6≡ ±y mod n, we have gcd(x − y, n) (or gcd(x + y, n))
as a proper factor of n. Once the factorisation of n is known, it is easy to
compute nontrivial modular square roots of smooth numbers, since computing
modular square roots is easy for primes and the results can be assembled via the
Chinese Remainder Theorem. However, without knowing the factorisation of n,
it is assumed to be a hard problem:

Definition 3. (NMSRVS: Nontrivial Modular Square Root of Very Smooth num-
bers) Let n be the product of two primes of approximately the same size. The NM-

SRVS problem is the following: Given n, find x ∈ Z∗

n such that x2 ≡ (−1)e0
∏k

i=1 pei

i

(mod n), k is such that pk ≤ B, and at least one of e0, . . . , ek is odd.

4

NMSRVS Assumption. The NMSRVS assumption is that there is no prob-
abilistic polynomial (in N) time algorithm which solves the NMSRVS problem
with non-negligible probability (the probability is taken over the random choice
of the factors of n and the random coins of the algorithm).

One can contrive moduli where NMSRVS is not difficult, such as if n is very close
to a perfect square. However, such examples occur with exponentially small
probability assuming p and q are chosen randomly, as required. According to
proper security definitions [11], these examples do not even qualify as weak keys
since the time-to-first-solution is slower than factoring, and therefore are not
worthy of further consideration.

The NMSRVS Assumption is rather weak and, more importantly, mostly
useless in practice since it does not tell us for what size moduli the NMVRVS
problem would be sufficiently hard. This is similar to the situation in integer
factorisation where the assumption that factoring is hard does not suffice to
select moduli that are believed to be meet a certain security requirement. For
that reason, we make an additional, stronger assumption about the hardness of
the NMSRVS problem that links it to the current state of the art in factoring.
We formulate the following simple result without any attempt to be rigorous.

Theorem 1. Let n of bitlength N and k be as in the NMSRVS problem, let
T (M) denote the expected runtime to factor (any) M -bit integer, and let N ′ be
a positive integer such that T (N ′) ≈ T (N)/(k+t), for a small positive constant t.
Then on average finding random solutions to the NMSRVS problem with n and
k takes time at least T (N ′).

Proof. If random solutions to the NMSRVS problem at hand can on average be
found faster than in time T (N ′), then k + t such solutions can be found in time
T ′ < T (N). But k+t random solutions to the NMSRVS problem for n and k can
be used (in time O(k3) using simple linear algebra) to construct t independent
integer solutions to v2 ≡ w2 mod n, and thus t independent chances of at least
50 percent to factor n. Thus, one may expect to factor n in time T ′ < T (N),
contradicting the definition of T (N). ut

This result gives a lowerbound on the hardness of the NMSRVS problem based
on the difficulty of factoring. Obviously, its practical implications will change as
soon as the state of the art in factoring changes—but that is true for applications
of the RSA cryptosystem as well and has so far not been a major obstacle
against its wide-spread application. A slight inconvenience when trying to use
the above theorem is that the runtime of integer factorisation algorithms (in
particular of the current fastest one, the NFS) is notoriously hard to pinpoint.
Fortunately, however, all that is needed for our application of Theorem 1 is
an approximation of the relatively runtime T (N)/T (N ′) for N -bit and N ′-bit
moduli. The latter is something for which a widely accepted approach exists: if
N and N ′ are relatively close the relative runtime can be obtained by dividing
the L[...] functions that give the asymptotic growth rate of the NFS runtime
(mentioned in the Introduction), after dropping the o(1)’s in the expression
for L.

5

The resulting computational hardness assumption for NMSRVS as formu-
lated below, allows us to effectively select parameters for VSH in such a way
that if our assumption does not hold, then integers can be factored faster than
using the current fastest integer factorisation algorithm (namely, NFS).

Computational NMSRVS Assumption. Finding random solutions to the
NMSRVS problem with an N -bit modulus n and number of different primes k
is at least as hard as factoring an N ′-bit RSA modulus, where N ′ is the least
positive integer such that

L[2N ′

, 1/3, 1.923] ≥ L[2N , 1/3, 1.923]/k.

Note that, asymptotically, for these N and N ′ both N -bit and N ′-bit num-
bers can be factored in the same time L[2N , 1/3, 1.923] = L[2N ′

, 1/3, 1.923] for
2N , 2N ′

→ ∞, since k is bounded by a polynomial function of 2N and gets ab-
sorbed by the o(1). For ‘practical’ and ‘relative’ sizes, we forget about the o(1),
so that the division by a polynomially bounded k becomes meaningful and leads
to useful and realistic results.

3 Very Smooth Hash Algorithm

Let the notation be as in the previous section. The basic version of VSH follows
below. More efficient variants of VSH are discussed at the end of this section.

VSH Algorithm. Let k (the block length) be the largest integer such that
∏k

i=1 pi < n. Let m be an `-bit message to be hashed, consisting of bits m1, m2, . . . , m`,
and assume that ` < 2k−1. To compute the hash of m perform steps 1 through
5 in succession:

1. Let ` =
∑k

i=1 `i2
i−1 with `i ∈ {0, 1} for 1 ≤ i ≤ k be the binary representa-

tion of the message length `. Note that `k = 0.
2. Compute x0 = pk+1 ×

∏k
i=1 p`i

i mod n.
3. Let L = d `

k e (the number of blocks). Let mi = 0 for ` < i ≤ Lk (padding).
4. For j = 0, 1, . . . , L − 1 in succession compute

xj+1 := x2
j ×

k
∏

i=1

p
mj·k+i

i mod n.

5. Return xL.

Remarks.

1. For 1024-bit n (i.e., N = 1024), the smallest potentially acceptable modulus
choice, k would be 130. The requirement that ` < 2k−1 is therefore not a
problem in any real application. Actually most of the bits `i will be zero. Note
that according to the Computational NMSVRS Assumption the security
level obtained by VSH using N = 1024 and k = 130 is lower than ‘1024-bit
RSA’, namely at least about ‘840-bit RSA’ (i.e., N ′ ≈ 840).

6

2. VSH essentially applies a variant of the well-known Merkle-Damg̊ard trans-
formation [9, 6] to extend the compression function H(x, m) = x2

∏

i pmi

i mod
n to arbitrarily long inputs. There are other ways to implement this idea to
improve efficiency and to deal with the case where the length is not known
ahead of time. We comment on this below.

3. In terms of efficiency, k bits are processed per iteration. Since the product
of the first K primes is asymptotically eK log K , we find that the k used in
the basic version of VSH is proportional to log n

log log n . Computing the prod-

uct
∏k

i=1 p
mj·k+i

i takes O((log n)2) using the straightforward multiplication
method and has the benefit that it requires no modular reduction. Therefore
the cost of each iteration of the hash is less than the cost of 3 modular mul-
tiplications. In particular, the basic VSH algorithm needs a small constant
number of modular multiplications per log n

log log n message bits.

4. For L-bit exponents ei for 1 ≤ i ≤ k, and with mj·k+i = ei j (where ei

consists of the bits ei 1, ei 2, . . . , ei L), the calculation of VSH as presented

above is the same as the multi-exponentiation
∏k

i=1 pei

i mod n, except for the
initial factor x0. With knowledge of φ(n), and assuming sufficiently large L,
collisions can be generated by replacing ei by ei+tiφ(n) for any set of i’s with
1 ≤ i ≤ k and positive integers ti. Thus, parties that know the factorisation
of the modulus n can create collisions at will. But note that collisions of this
sort immediately reveal φ(n) and thus n’s factorisation. Creating collisions
that cannot immediately be used to factor n appears to be a hard problem
involving discrete logarithms of very smooth numbers.

To avoid repudiation concerns if VSH would be used ‘globally’ with the same
modulus it would be advisable to generate n using the method from [2]. On
the other hand, it is conceivable—and may be desirable—to expand PKI’s to
allow one to choose one’s own hash function, rather than using a ‘fixed target’
for all. In this setting, we cannot allow the owner of a VSH-modulus to claim
he did not sign something by displaying a collision. Especially taking into
consideration that the only easy way the user can create a collision would
also reveal the factorisation of n, this would be analagous to somebody using
RSA who anonymously posts the factorisation of their modulus on the web
in order to fraudulently claim that he did not sign something. Thus, in such
a situation the VSH-modulus should be considered compromised and the
user’s certificate should be revoked.

5. The basic version of VSH described above can easily be inverted for messages
of length ` ≤ k: in that case there are only k possibilities for x0, so if we
divide the resulting hash modulo n by each of the possibililities for x2

0, one

of the k remaining values will equal
∏k

i=1 pmi

i mod n. But this value actually

equals
∏k

i=1 pmi

i , since the product is small enough so that there is no ‘wrap-
around’ modulo n. Thus, the factorisation of one of the resulting values
reveals which bits were set. We emphasize that this type of invertibility may
be undesirable for some applications, but that others require just collision
resistance (cf. Subsection below).

7

The short message invertibility problem can be solved in several ways. One
possible solution that does not affect our proof of security (cf. below) is to
square the final output enough times to ensure wrap-around (no more than
log2 log2 n times). It is conceivable that the same holds if one uses a different
iteration (such as the one from [10, 14]) for the first k or so bits. We will have
a closer look at these and related issues for the next version of this paper.

6. It is not hard to come up with different messages m and m′ for which the
hashes h(m) and h(m′) satisfy possibly undesirable multiplicative properties
such as h(m) = 2h(m′). Our methods that solve the invertibility problem
address this issue as well. In the next version of this paper we will elaborate
on this and the previous point.

Having stressed upfront (in the last three remarks above) the known disadvan-
tages of VSH, we now turn to its most attractive property, namely its provable
collision resistance.

3.1 Security Proof for VSH

We prove that VSH is (strongly) collision resistant. Using proper security notions
[12], (strong) collision resistance also implies second preimage resistance.

Theorem 2. Finding any collision in VSH is as hard as solving the Nontrivial
Modular Square Root of Very Smooth numbers (NMSRVS) problem (i.e., our
algorithm is collision resistant under the assumptions from the previous section).

Proof. We show that finding a collision either reveals a nontrivial modular square
root of a very smooth number or else it reveals the factorisation of n (and hence
we can easily solve the NMSRVS problem).

Let m and m′ be two different colliding messages. For notational convenience
we replace the x... values for m′ by y.... Assume we have a collision with xa+1 ≡
yb+1 mod n but xa 6≡ yb mod n. If both a and b are larger than 0, then we get
the following relation

x2
a ×

k
∏

i=1

p
ma·k+i

i ≡ y2
b ×

k
∏

i=1

p
m′

b·k+i

i mod n .

All quantities are by construction invertible modulo n, so

(xa/yb)
2 ≡

k
∏

i=1

p
m′

b·k+i−ma·k+i

i mod n . (1)

Since the kth prime is ≈ log n (by the prime number theorem), the right hand
side is a ratio of two very smooth numbers having modular square root xa/yb. Let
S = {i : m′

b·k+i −ma·k+i = 1 and 1 ≤ i ≤ k} and let T = {i : m′

b·k+i −ma·k+i =
−1 and 1 ≤ i ≤ k}. Equation 1 is equivalent to

[

(xa/yb) ×
∏

i∈T

pi

]2

≡
∏

i∈S∪T

pi mod n . (2)

8

So we have transformed the relation into a form where we have a modular square
root of a very smooth number. Notice that any prime with exponent −1 or 1 in
Equation 1 will have an exponent of 1 in Equation 2. Thus, as long as there is at
least one message bit in the current k-bit message-blocks that differs, Equation 2
is nontrivial.

If all bits in the current message block are the same, meaning m′

b·k+i =
ma·k+i for 1 ≤ i ≤ k, then it must be the case that x2

a ≡ y2
b mod n. We will

be able to factor n if xa 6≡ ±yb mod n, so we only need to consider the cases
xa ≡ ±yb mod n. By assumption, xa 6≡ yb mod n. If xa ≡ −yb mod n, then we
have found a nontrivial modular square root of a very smooth number in the
previous iteration. It must be nontrivial because the exponent of −1 is 1. This
completes the case of a > 0 and b > 0.

If both a and b are 0, then a similar argument to the above holds: The only
difference is that we cannot have x0 ≡ −y0 mod n because the size restriction
on ` forces both values to be less than n

2 , and clearly x0 6≡ y0 mod n if the
message lengths differ (if the lengths are the same, then it is not a real collision).

Finally, assume exactly one of a or b is 0. Without loss of generality we take
a = 0 and b > 0 and we are asking whether we can have x0 ≡ ±yb mod n in the
relation x2

0 ≡ y2
b mod n. Substituting the equation for yb, it can only happen if

x0/

k
∏

i=1

p
m′

(b−1)k+i

i ≡ ±y2
b−1 mod n .

After performing a similar transformation to the one used in Equation 2, the
left hand side has the prime pk+1 to the exponent of 1 (from x0), meaning that
yb−1 is a nontrivial square root of a very smooth number. ut

3.2 Example: A Related Algorithm that can be Broken

To emphasize the importance of the nontrivialness, consider a hash function that
works similarly to VSH, except breaks the message into blocks ri of K bits and
uses the compression function xi+1 := x2

i × 2ri mod n. By allowing ri > 1 we
can create trivial collisions. For example the message blocks r1 = e and r2 = 2e
collide with r′1 = 2e and r′2 = 0. The derivable relation for this collision (similar
to the formula for Equation 1) is

(

x2
02

2e

x2
02

e

)2

≡ 22e−0 mod n ,

or, in other words,
(2e)2 ≡ 22e mod n .

Such trivial relations are useless and thus, the security of this hash algorithm is
not reducible to factoring or any hard problem. The problem disappears again

if we replace xi+1 := x2
i × 2ri by the costlier variant xi+1 := x2K

i × 2ri , but that
is the same as the function xm mod n from [10, 14].

9

3.3 Other Security Issues

Since the output length of VSH is the length of a secure RSA modulus (thus in
the range of 1024 or 2048 bits), it seems quite suitable in practice for constructing
‘hash-then-sign’ RSA signatures for arbitrarily long messages. However, we warn
the reader that such constructions must be designed carefully to ensure that the
resulting signature scheme is secure. To illustrate a naive insecure construction,
suppose that the signer with public key (n, e) uses the same RSA modulus n
for both hashing and signing, so the signing function S∗ : {0, 1}∗ → Zn is
S∗(m) = Hn(m)1/e mod n, where Hn : {0, 1}∗ → Zn is VSH with modulus n.
For a k-bit message m = (m1, . . . , mk) ∈ {0, 1}k, the corresponding signature

is thus σ = (x2
0

∏k
i=1 pmi

i)1/e mod n, where x0 has the same value for all k-bit
messages.

This scheme is insecure under a chosen message attack, which proceeds as
follows. The attacker obtains signature σ0 = (x2

0)
1/e mod n on message m0 =

(0, 0, 0, . . . , 0) (k zero bits), a signature σ1 = (x2
0 · p1)

1/e mod n on message
m1 = (1, 0, 0, . . . , 0), and a signature σ2 = (x2

0 · p2)
1/e mod n on message m2 =

(0, 1, 0, . . . , 0). Then the attacker can easily compute the signature σ3 = σ1 ·
σ2/σ0 mod n on the new k-bit forgery message m3 = (1, 1, 0, . . . , 0) (more gen-
erally, it is easy to see that k + 1 signatures suffice to sign any k-bit message).

To avoid attacks of the type above, we would suggest the following more
theoretically sound design approach for using VSH with ‘hash-then-sign’ RSA
signatures, which does not rely on any security property of the hash function
beyond the collision resistance which it was designed to achieve:

1. Let `mod be the desired RSA signature modulus ns length (typ. `mod = 1024).
Let α = `mod − 1 so that 2α < ns. Specify a one-to-one one-way encoding
function f : {0, 1}α → {0, 1}α, and define the short-message (α-bits) RSA
signature scheme with signing function Sns

(m) = (f(m))1/e mod ns. The
function f is chosen such that the short-message scheme Sns

is existentially
unforgeable under chosen message attack. Note that no provable techniques
are currently known for finding such a function f (in the standard model),
but since f is one-to-one, there are no collision resistance issues to consider
when designing f .

2. The signature scheme for signing arbitrary length messages is now con-
structed with signing function S∗

ns,nh
(m) = Sns

(Hnh
(m)), where Hnh

is
VSH with a separate RSA modulus nh (chosen randomly and independently
of the signing modulus ns) of length α bits. The public key of the signer is
(ns, nh, e). It is now easy to prove that the scheme S∗ is existentially un-
forgeable under chosen message attack, assuming that S is and that VSH
Hnh

is collision resistant. We emphasize that the proof of this latter state-
ment no longer holds if one uses the same modulus for both hashing and
signing (in order to make the proof work for ns = nh = n we would need
the stronger assumption that Hn is collision resistant even given access to a
signing oracle Sn for scheme S).

10

We remarked above that the function VSH processes long inputs by apply-
ing a variant of the Merkle-Damg̊ard transformation to the compression func-
tion Hc(x, m) : Z∗

n × {0, 1}k+1 → Z∗

n, where Hc(x, m) = x2
∏k+1

i=1 pmi

i mod n.
This transformation may be stated in general as follows. Let Hc(x, m) : Z∗

n ×
{0, 1}k+1 → Z∗

n be the given compression function. Let B < n be a message
length bound. To hash a message M of length ` < B, pad M with zero bits to
make its length the nearest multiple of k bits, and split the padded M into k-bit
blocks M0, M1, . . . , ML−1. Define c1 = Hc(`, 1||M0) (where || denotes concata-
nation), and for i = 1, . . . , L − 1, compute ci+1 = Hc(ci, 0||Mi). The final hash
value is H(M) = cL. Note that the bit prepended to the message blocks (1 for
first block and 0 for subsequent blocks) is there to prevent collisions for messages
of different block length. In our VSH function this corresponds to the k + 1st
prime used only in hashing the first block. Except for cosmetic differences this
is the same as the transformation in [6].

The proof in [6] shows that a sufficient condition for the resulting Merkle-
Damg̊ard function H to be collision-resistant is that the compression function Hc

is collision-resistant, i.e. it is hard to find any (x, m) 6= (x′, m′) with Hc(x, m) =

Hc(x
′, m′). Our compression function Hc(x, m) = x2

∏k+1
i=1 pmi

i mod n is not
strictly collision-resistant (Hc(−x mod n, m) = Hc(x, m)) but as we proved it is
still sufficiently strong to make H collision-resistant. One may ask whether we
can generalize the result in [6] to state the conditions on a compression function
(which are weaker than full collision-resistance) that our compression satisfies
and that are still sufficient to make the Merkle-Damg̊ard function H collision-
resistant. Indeed, these conditions can be readily generalized from our proof of
Theorem 2, so we only state them here:

(1) Collision-Resistance in Second input: It is hard to find (x, m), (x′, m′) ∈
Z∗

n × {0, 1}k+1 with m 6= m′ such that Hc(x, m) = Hc(x
′, m′).

(2) Preimage Resistance for a collision in first input: It is hard to find (x, m) 6=
(x′, m′) ∈ Z∗

n×{0, 1}k+1 and m ∈ {0, 1}k+1 such that Hc(y, m) = Hc(y
′, m),

where y = Hc(x, m), y′ = Hc(x
′, m′) and y 6= y′.

(3) Small Collision-Resistance in first input: It is hard to find x, x′ ∈ ZB (note
both x and x′ are smaller than B < n) and m ∈ {0, 1}k+1 with x 6= x′ such
that Hc(x, m) = Hc(x

′, m).

Our VSH compression function satisfies all these properties (with B < n/2),
assuming the Computational NMSRVS assumption.

3.4 Variants of VSH

We briefly mention some variants of VSH.
Variation I: Cubing instead of squaring. The first is to change the squaring
operation in the compression function to a cubing, i.e., a compression function
of the form H : Zn × {0, 1}k → Zn where H(x, m) = x3

∏k
i=1 pmi

i mod n. If
gcd(3, φ(n)) = 1 then thanks to the injectivity of the RSA cubing map modulo n,
this compression function is collision resistant, assuming the difficulty of comput-
ing a modular cube root of a very smooth cube-free integer of the form

∏k
i=1 pei

i ,

11

where ei ∈ {0, 1, 2} for all i and at least one ei is not zero. This problem is related
to RSA inversion, and is also conjectured to be hard. Although this function re-
quires about 4 modular multiplications per k bits processed (compared to 3 for
the squaring version), it has the interesting property that the compression func-
tion itself is collision resistant, while this is not quite the case for the squaring
compression function (because x2

∏

i pi
mi ≡ (−x)2

∏

i pmi

i (mod n)).
Variation II: Increasing the smoothness bound. A speed-up is obtained
by allowing the use of larger values of k than the largest k for which

∏k
i=1 pi < n.

It can easily be seen that allowing larger k does not affect the proof of security
and reduction to the NMSRVS problem, as long as the smoothness bound is still
polynomially bounded in log n. As a consequence of the Computational NMSRVS
Assumption, a larger k implies that a larger N has to be used to maintain the
same level of security. Furthermore, the intermediate products in step 4 of the
VSH algorithm may get larger than n and may thus have to be reduced modulo n
every so often. Nevertheless, the fact that L gets smaller because more bits are
processed per iteration so that fewer multiplications and squarings modulo n
have to be performed, outweighs the disadvantages. A detailed analysis will
appear in the next version of this paper.
Variation III: Bytewise message processing using precomputed prime-

products. An implementation speed-up may be obtained by processing the bits
of the message b bits at a time, for some b > 1, instead of one bit at a time as in
the original description. For instance, the choice b = 8 leads to bytewise process-
ing of m. For ease of description, suppose that k is a multiple of b, in particular
that k = Sb for an integer S. For 1 ≤ s ≤ S let

Ps = {

b
∏

t=1

pet

(s−1)b+t : et ∈ {0, 1} for 1 ≤ t ≤ b}

be the set consisting of all 2b products over the sth b-tuple of primes. Then each
of the 2b elements of Ps can be indexed by a b-bit value v, namely the element
whose exponents et correspond to the bits of v, i.e.,

Ps[v] =

b
∏

t=1

pet

(s−1)b+t if and only if v =

b
∑

t=1

et2
t−1.

The sets Ps for 1 ≤ s ≤ S can be precomputed. As a result the calculation in
step 4 of the VSH algorithm can be replaced by the possibly slightly faster but
equivalent computation

xj+1 := x2
j ×

S
∏

s=1

Ps[m[j · S + s]] mod n,

where m[u] now refers to the uth b-bit chunk of m. This change has no effect on
the number of iterations or the value of N to be used to reach a certain security
level.

12

Variation IV: Bytewise message processing using primes. A no longer
equivalent but faster variant follows from the one above by redefining Ps[v] as
p(s−1)2b+v. As a result L in Step 3 becomes L = d `

bk e, and the calculation in
Step 4 becomes:

xj+1 := x2
j ×

k
∏

i=1

p(i−1)2b+m[jbk+i]+1 mod n,

where the ith b-bit chunk m[i] of the message is interpreted as b-bit integer. As
a consequence of this change the block length increases from k to bk, and the
number of small primes goes from k to k2b. Thus, a larger N has to be used
to maintain the same level of security. Overall, however, this change is clearly
advantageous, as shown in the analysis below and the runtime examples in the
next section.
Analysis of Variation IV. Let k be maximal such that

(k+1)2b

∏

i=1

pi ≤ (2n)2
b

,

i.e., (k + 1)2b is proportional to 2b log(2n)
log(2b log(2n)) and k to log(2n)

log(2b log(2n)) − 1. With

(k+1)2b

∏

i=1

pi =

2b

∏

j=1

k
∏

i=0

pi2b+j

it follows that
k

∏

i=0

pi2b+1 ≤ (2n).

Because pi2b < pi2b+1 we find that

k
∏

i=1

pi2b < n.

Therefore, each intermediate product in the compression function will be < n,
since pi2b is the largest factor that can be used for a b-bit chunk m[jbk + i] of
the message. The cost of Variation IV is therefore a constant number of modular

multiplications per bk message bits, where bk is proportional to b log(2n)
log(2b log(2n))

−

b. By selecting 2b as any fixed positive power of log n, it follows that bk is
proportional to log n: with 2b = (log(2n))d for some d > 0, we find that bk is
proportional to

d

d + 1
log(2n) − d log log(2n).

For this choice, the number of small primes k2b and the smoothness bound pk2b

are also both polynomially bounded in log n. Denoting by N ′ the security level

13

one achieves using k2b small primes and n, it then follows from the Compu-
tational NMSRVS Assumption that the number of message-bits processed per
iteration is linear in N ′ as well.
Remark. Note that also for Variation IV knowledge of φ(n) can be used to
generated collisions.

4 Efficiency in Practice

Asymptotically, the runtime of the basic VSH algorithm is O(`/k × (log n)2) =
O(` log n log log n) for an ` bit message. Note that we have treated a modular
multiplication as an O((log n)2) operation, which is how it is usually implemented
in practice, but better multiplication algorithms exist. The owner of the modulus
n = pq can do better for long messages, assuming he knows the factorisation.
This is based on Remark 4 in Section 3 since each of the k exponents of bitlength
L can be reduced modulo φ(n). We do not elaborate. As noted at the end
of Section 3, Variation IV can be made to run asymptotically faster than the
basic VSH algorithm, resulting in overall runtime O(` log n) when traditional
arithmetic is used. As shown below, this is not just an asymptotic speedup.

If the length of the message is not known ahead of time (streaming data), the
value x0 with its proper power can be ‘pasted on’ at the end of the computation
at the cost of single moduluar exponentiation.

Using a straightforward gmp-implementation of the basic VSH algorithm
on a 1GHz Pentium III, we achieved 0.355 Megabyte per second (MB/s) with
N = 1234 and k = 152, corresponding to N ′ = 1024, i.e., at least 1024-bit
RSA security. With k = 1024 (and thus a larger N = 1318 to maintain the
N ′ = 1024 security level) we got 0.419 MB/s if we process the message bitwise
(i.e., Variation II above) and 0.486 MB/s if we precompute 1024/8 = 128 sets of
256 small prime products and do bytewise message processing (i.e., Variations II
and III combined). Using Variation IV with 216 = 65536 small primes and again
bytewise processing, we achieved 1.135 MB/s (where we had to use N = 1516
to maintain N ′ = 1024), which is approximately 26 times slower than Wei Dai’s
SHA-1 benchmark [16]. This last implementation processes 65536/256 = 256
bytes per iteration, for a total of 212 = 4096 iterations per Megabyte of input.
The basic VSH algorithm processes 152 bits (i.e., 19 bytes) per iteration, for a
total of 55189 iterations per Megabyte of input.

For 2048-bit RSA security (i.e., N ′ = 2048) we got the following figures:
0.216 MB/s for the basic variant with k = 272 and N = 2398, 0.270 MB/s
for Variation II with k = 1024 and N = 2486, 0.303 MB/s for Variation II
and III (bytewise) combined, and 0.705 MB/s for Variation IV (bytewise) with
218 = 262144 small primes and N = 2874.

More complete figures will be given in the next version of this paper.

Acknowledgements: We gratefully acknowledge inspiring discussions with
Igor Shparlinski, and we thank Yvo Desmedt, Josef Pieprzyk, and Benne de
Weger for their very helpful comments.

14

References

1. M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: incremen-
tality at reduced cost. In EUROCRYPT 97, volume 1233 of LNCS, page 163–192,
Berlin, 1997, Springer-Verlag.

2. D. Boneh and M. Franklin. Efficient generation of shared RSA keys. In CRYPTO
97, volume 1294 of LNCS, page 425–439, Berlin, 1997, Springer-Verlag.

3. D. Coppersmith. Modifications to the number field sieve. In volume 6 of J. Cryp-

tology, pages 169–180, 1993.
4. R. Crandall and C. Pomerance. Prime numbers: a Computational Perspective, New

York, 2001, Springer-Verlag.
5. I. Damg̊ard. Collision-free hash functions and public key signature schemes. In

EUROCRYPT 87, volume 304 of LNCS, pages 203–216, Berlin, 1987, Springer-
Verlag.

6. I. Damg̊ard. A design principle for hash functions. In CRYPTO 89, volume 435 of
LNCS, pages 416–427, Berlin, 1989, Springer-Verlag.

7. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptively chosen message attacks. SIAM Journal on Computing, 17(2):281–308,
1988.

8. A.K. Lenstra and H.W. Lenstra Jr. The Development of the Number Field Sieve,
Berlin, 1993, Springer-Verlag.

9. R. Merkle. One way hash functions and DES. In CRYPTO 89, volume 435 of
LNCS, pages 428–446, Berlin, 1989, Springer-Verlag.

10. D. Pointcheval. The composite discrete logarithm and secure authentication. In
PKC 2000, volume 1751 of LNCS, pages 113–128, Berlin, 2000, Springer-Verlag.

11. R.L. Rivest and R.D. Silverman. Are ‘strong’ primes needed for
RSA. Report 2001/007, Cryptology ePrint Arhive, 2001. Available at
http://eprint.iacr.org/2001/007/.

12. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: definitions,
implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In B. Roy and W. Meier, editors, FSE 2004, volume 3017
of Lecture Notes in Computer Science, pages 371–388, 2004. Springer-Verlag.

13. C.P. Schnorr. Factoring integers and computing discrete logarithms via Diophan-
tine approximations. In Donald W. Davies, editor, Eurocrypt 1991, volume 547 of
Lecture Notes in Computer Science, pages 281–293, 1991. Springer-Verlag.

14. A. Shamir and Y. Tauman. Improved online/offline signature schemes. In
CRYPTO 2001, volume 2139 of LNCS, pages 355–367, Berlin, 2001, Springer-
Verlag.

15. G. Tenenbaum. Introduction to analytic and probabilistic number theory, Cam-
bridge Univ. Press, 1995.

16. Wei Dai. Crypto++ 5.2.1 Benchmarks.
Available at http://www.eskimo.com/~weidai/benchmarks.html

15

