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Abstract. We introduce VSH, very smooth hash, a new S-bit hash func-
tion that is provably collision-resistant assuming the hardness of finding
nontrivial modular square roots of very smooth numbers modulo an S-
bit composite integer n. By very smooth, we mean that the smoothness
bound is some fixed polynomial function of S. We argue that finding col-
lisions for VSH has the same asymptotic complexity as factoring using
the Number Field Sieve factoring algorithm, i.e., subexponential in S.
VSH is theoretically pleasing because it requires only O( 1

S
) multipli-

cations modulo the S-bit composite n per message-bit (as opposed to
Ω( 1

log S
) multiplications for previous provably secure hashes). It is also

practical. A preliminary implementation on a 1GHz Pentium III proces-
sor that achieves collision resistance at least equivalent to the difficulty
of factoring a 1024-bit RSA modulus, runs at 1.1 MegaByte per second,
with a moderate slowdown to 0.7MB/s for 2048-bit RSA security.
VSH can be used to build a fast, provably secure randomised trapdoor
hash function, which can be applied to speed up provably secure signa-
ture schemes (such as Cramer-Shoup) and designated-verifier signatures.
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1 Introduction

Current collision-resistant hash algorithms that have provable security reduc-
tions are too inefficient to be used in practice. One example [16, 19] that is
provably reducible from integer factorisation is of the form xm mod n where m
is the message, n a supposedly hard to factor composite, and x is some pre-
specified base value. A collision xm ≡ xm′

mod n reveals a multiple m − m′ of
the order of x (which in itself divides φ(n)). Such information can be used to
factor n in polynomial time assuming certain properties of x.

Since the above algorithm requires on average 1.5 multiplications modulo n
per message-bit, it is quite inefficient. Improved provable algorithms exist [6]
which require Ω(1/ log log n) multiplies modulo n per message-bit, but beyond



that it seems that so far all attempts to gain efficiency came at the cost of losing
provability (see also [1]). We propose a hash algorithm that, as far as we are
aware, improves upon the efficiency of previous provable hash algorithms. Our
algorithm requires O( log log n

log n ) multiplications modulo n per message-bit, which is

reduced to O( 1
log n ) by a simple modification. It uses the same type of arithmetic

as RSA, obviating the need for completely separate hash function code such as
SHA-1. Our algorithm may therefore be useful in embedded environments where
code space is limited.

We refer to our new hash as VSH, for very smooth hash, because finding
a collision (i.e., strong collision resistance) is provably as difficult as finding a
nontrivial modular square root of a very smooth number modulo n. Here very
smooth means that the smoothness bound is some fixed polynomial function
of log n. Based on its connection to integer factorisation, we argue that it is
reasonable to believe that it is hard to find a nontrivial modular square root of a
very smooth number. We use NMSRVS to refer to our new hardness assumption.

Given this connection a natural question is if collisions can be created by a
party that knows the factorisation of the VSH-modulus. That is indeed the case
(cf. trapdoor hashes in [19]). Therefore, for wide-spread application of VSH with
a single modulus one would have to rely on a trusted party that generates the
modulus (and that can create collisions at will), or one would have to rely on
the method from [2] to generate a modulus with knowledge of its factorisation
shared among a group of authorities. Since the modulus generation is a one time
computation the latter alternative looks more reasonable than the former. For
application of VSH where each user would have a ‘personalized’ VSH-modulus,
the repudiation concerns are not different from those concerning regular RSA.

On the positive side, we show how to constructively use the factorisation
trapdoor of VSH to build a provably secure randomised trapdoor hash function
which requires only about 4 modular multiplications to evaluate on fixed-length
messages of length k < log2 n bits (compared to the fastest construction in [19],
which requires about k modular multiplications). Randomised trapdoor hash
functions are used in signature schemes to achieve provable security against
adaptive chosen message attack [19], and in designated-verifier signature schemes
to achieve privacy [10, 20]. For example, our function can replace the trapdoor
function used in the Cramer-Shoup signature scheme [5], maintaining its provable
security while speeding up verification time by about 50%.

We also present a variant of VSH using a prime modulus p (with no trapdoor),
which has about the same efficiency as the composite modulus version, and is
provably collision-resistant assuming the hardness of finding discrete logarithms
of very smooth numbers modulo p.

Related Work. We mention several hash functions with collision resistance
provably related to factoring which have been proposed in the literature. They
all have lower efficiency than VSH. The xm mod n function mentioned above
appeared in [16, 19]. A collision-resistant hash function based on a claw free
permutation pair (where claw finding is provably as hard as factoring an RSA
modulus) was proposed in [8]—this function requires 1 squaring per bit pro-
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cessed. In [6] the construction is generalised to use families of r ≥ 2 claw free
permutations, such that log2(r) bits can be processed per permutation evalua-
tion. Two factoring based constructions are presented, which require 2 modular
multiplications per permutation evaluation. In the first construction the modu-
lus n has 1+log2(r) prime factors and thus becomes impractical already for small
log2(r). The second one uses a regular RSA modulus, but requires publishing r
random quadratic residues modulo n. This becomes prohibitive too for relatively
small log2(r); as a result the construction requires Ω(1/ log S) multiplications
modulo an S-bit RSA modulus n per message bit while consuming polynomial
space (r = O(poly(S))). The constructions in [1] are more efficient but are only
provably collision-resistant assuming an underlying hash function is modeled as
a random oracle (while we make no such assumption).

Section 2 introduces security definitions and assumptions related to the NM-
SRVS problem. The VSH algorithm and some of its variations are presented in
Section 3. Section 4 describes a VSH-based randomised trapdoor hash function
and shows how to speed up the provably secure Cramer-Shoup signature scheme.
Section 5 concludes the paper with some implementation results.

2 Security Definitions

Notation. In this paper the following values and notation is used. Let c > 0 be a
fixed constant and let n be a hard to factor S-bit composite for an integer S > 0.
The ring of integers modulo n is denoted Zn, and its elements are represented
by {0, 1, . . . , n− 1} or {−n + 1,−n + 2, . . . , 0}. It will be clear from the context
which representation is being used. The ith prime is denoted pi: p1 = 2, p2 = 3,
. . ., and p0 = −1. An integer is pk-smooth if all its prime factors are ≤ pk.

Definition 1. An integer b is a very smooth quadratic residue modulo n if the
largest prime in b’s factorisation is at most (log n)c and there exists an integer
x such that b ≡ x2 mod n. The integer x is said to be a modular square root of b.

Definition 2. An integer x is said to be a trivial modular square root of an
integer b if b = x2, i.e. b is a perfect square and x is the integer square root of b.

Trivial modular square roots have no relation to the modulus n. Such identities
are easy to create, and therefore they are not allowed in the security reduction. A
sufficient condition for a very smooth integer b representing a quadratic residue
not to have a trivial modular square root is having some prime p such that p
divides b but p2 does not. Another sufficient condition is that b is negative.
Our new hardness assumption is that it is difficult to find a nontrivial modular
square root of a very smooth quadratic residue modulo n. Before formulating
our assumption, we give some relevant background on integer factorisation.

Background on general purpose integer factorisation. General purpose
factoring algorithms are used for the security evaluation of RSA, since they do
not take advantage of properties of the factors. They all work by constructing
nontrivial congruent squares modulo n since such squares can be used to factor n:
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if x, y ∈ Z are such that x2 ≡ y2 mod n and x 6≡ ±y mod n, then gcd(x ± y, n)
are proper factors of n. To construct such x, y a common strategy uses so-called
relations. An example of a relation would be an identity of the form

v2 ≡
∏

0≤i≤u

p
ei(v)
i mod n,

where u is some fixed integer, v ∈ Z, and (ei(v))u
i=0 is a (u + 1)-dimensional

integer vector. Given u + 1 + t relations, at least t linearly independent depen-
dencies modulo 2 among the u + 1 + t vectors (ei(v))u

i=0 can be found using
linear algebra. Each such dependency corresponds to a product of v2-values that
equals a product modulo n of pi’s with all even exponents, and thus a solution
to x2 ≡ y2 mod n. If x 6≡ ±y mod n, then it leads to a proper factor of n. A
relation with all even exponents ei(v) leads to a pair x, y right away, which has,
in our experience with practical factoring algorithms, never happened unless n
is very small. It may safely be assumed that for each relation found at least one
of the ei(v)’s is odd—actually most that are non-zero will be equal to 1.

For any u, relations are easily computed if n’s factorisation is known, since
square roots modulo primes can be computed efficiently and the results can be
assembled via the Chinese Remainder Theorem. If the factorisation is unknown,
however, relations in practical factoring algorithms are found by a determinis-
tic process that depends on the factoring algorithm used. It is sufficiently un-
predictable that the resulting x, y may be assumed to be random solutions to
x2 ≡ y2 mod n, implying that the condition x 6≡ ±y mod n holds for at least half
of the dependencies. Despite the lack of a rigorous proof, this heuristic argument
has not failed us yet. A few dependencies usually suffice to factor n.

The expected relation collection runtime is proportional to the product of u
(approximately the number of relations one needs) and the inverse of the smooth-
ness probability of the numbers that one hopes to be pu-smooth, since this prob-
ability is indicative for the efficiency of the collection process. For the fastest
factoring algorithms published so far, the Number Field Sieve (NFS, cf. [12, 4,
3]), the overall expected runtime (including the linear algebra) is minimized—
based on loose heuristic grounds—when, asymptotically for n → ∞, u behaves
as L[n, 0.96...]. Here

L[n, α] = e(α+o(1))(log n)1/3(log log n)2/3

for constant α > 0 and n → ∞, and where the logarithms are natural. The
overall NFS expected runtime asymptotically, and heuristically, behaves as the
square of the optimal u, i.e., L[n, 1.923...].

With the current state of the art of integer factorisation, one cannot expect
that, for any value of u, a relation can be found faster than L[n, 1.923...]/u
on average, asymptotically for n → ∞. For u-values much smaller than the
optimum, the actual time to find a relation will be considerably larger (cf. remark
below and [13]). For u ≈ (log n)c, it is conservatively estimated that finding a
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relation requires runtime at least

L[n, 1.923...]

(log n)c
= L[n, 1.923...],

asymptotically for n → ∞, because the denominator gets absorbed in the numer-
ator’s o(1). This observation that finding relations for very small u (i.e., u’s that
are bounded by a polynomial function of log n) can be expected to be asymp-
totically as hard as factoring n, is the basis for our new hardness assumption.

Before formulating it, we present two ways to use the hardness estimate
L[n, 1.923...]/u for small u in practice. One way is to use the asymptotics and
assume that finding a relation is as hard as factoring n. A more conservative
approach incorporates the division by u in the estimate. In theory this is a futile
exercise because, as argued, a polynomially bounded u disappears in the o(1) for
n → ∞. In practice, however, n does not go to infinity but actual values have
to be dealt with. If n′ is a hard to factor integer for which log n and log n′ are
relatively close, then it is widely accepted that the ratio of the NFS-factoring
runtimes for n and n′ approximates L[n, 1.923...]/L[n′, 1.923...] where the o(1)’s
are dropped. To assess the hardness estimate L[n, 1.923...]/u for very small u,
one therefore finds the least integer S ′ for which, after dropping the o(1)’s,

L[2S′

, 1.923...] ≥
L[n, 1.923...]

u
, (1)

and assumes that finding a relation for this n and u may be expected to be (at
least) as hard as NFS-factoring a hard to factor S ′-bit integer. Note that S ′ will
be less than S, the length of n. Examples of matching S, S ′, u values are given
in Section 5.

This factoring background provides the proper context for our new problem
and its hardness assumption.

Definition 3. (NMSRVS: Nontrivial Modular Square Root of Very Smooth num-
bers) Let n be the product of two unknown primes of approximately the same size
and let k ≤ (log n)c. The NMSRVS problem is the following: Given n, find x ∈ Z∗

n

such that x2 ≡
∏k

i=0 pei

i mod n and at least one of e0, . . . , ek is odd.

NMSRVS Assumption. The NMSRVS assumption is that there is no proba-
bilistic polynomial (in log n) time algorithm which solves the NMSRVS problem
with non-negligible probability (the probability is taken over the random choice
of the factors of n and the random coins of the algorithm).

One can contrive moduli where NMSRVS is not difficult, such as if n is very
close to a perfect square. However, such examples occur with exponentially small
probability assuming the factors of n are chosen randomly, as required. According
to proper security definitions [17], these examples do not even qualify as weak
keys since the time-to-first-solution is slower than factoring, and therefore are
not worthy of further consideration.

The NMSRVS Assumption is rather weak and useless in practice since it
does not tell us for what size moduli the NMSRVS problem would be sufficiently
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hard. This is similar to the situation in integer factorisation where the hardness
assumption does not suffice to select secure modulus sizes. We therefore make an
additional, stronger assumption that links the hardness of the NMSRVS problem
to the current state of the art in factoring. It is based on the conservative estimate
for the difficulty of finding a relation for very small u given above.

Computational NMSRVS Assumption. The computational NMSRVS as-
sumption is that solving the NMSRVS problem is as hard as factoring a hard to
factor S′-bit modulus, where S′ is the least positive integer for which equation (1)
holds (where, as in (1), the o(1)’s in the L[...]’s are dropped).
Remark. For existing factoring algorithms, the relation collection runtime in-
creases sharply for smoothness bounds that are too low, almost disastrously so if
the bound is taken as absurdly low as in the NMSRVS problem (cf. [13]). There-
fore, the Computational NMSRVS Assumption is certainly overly conservative.
Just assuming—as suggested above—that solving the NMSRVS problem is as
hard as factoring n may be more accurate. Nevertheless, the runtime estimates
for our new hash function will be based on the overly conservative Computational
NMSRVS Assumption.

Although our analysis is based on the average runtime to find a relation
using the NFS, it is very conservative (i.e., leads to a large n) compared to a
more direct analysis involving the relevant smoothness probability of squares
modulo n. The latter would lead to a hardness estimate more similar to the
runtime of the Quadratic Sieve integer factorisation algorithm, and thereby to
much smaller ‘secure’ modulus sizes. Thus, we feel more comfortable using our
NFS-based approach.

3 Very Smooth Hash Algorithm

The basic version of VSH follows below. More efficient variants of VSH are
discussed later in this section.

VSH Algorithm. Let k, the block length, be the largest integer such that
∏k

i=1 pi < n. Let m be an `-bit message to be hashed, consisting of bits m1, . . . , m`,
and assume that ` < 2k−2. To compute the hash of m perform steps 1 through 5:

1. Let ` =
∑k−2

i=1 `i2
i−1 with `i ∈ {0, 1} for 1 ≤ i ≤ k − 2 be the binary

representation of the message length `.
2. Compute x0 = pk+1×

∏k−2
i=1 p`i

i mod n (note that ` < 2k−2 implies x0 < n/2).
3. Let L = d `

ke (the number of blocks). Let mi = 0 for ` < i ≤ Lk (padding).
4. For j = 0, 1, . . . ,L − 1 in succession compute

xj+1 := x2
j ×

k
∏

i=1

p
mj·k+i

i mod n.

5. Return xL.

Compression function H. VSH applies the compression function H(x, m) :

Z∗
n × {0, 1}k → Z∗

n with H(x, m) = x2
∏k

i=1 pmi

i mod n, and applies a variant
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of the Merkle-Damg̊ard transformation [14, 7] to extend H to arbitrarily long
inputs. Other ways to implement this idea to improve efficiency and to deal with
the case where the length is not known ahead of time are treated in Section 4.

1024-bit n. For 1024-bit n, the value for k would be 131. The requirement
` < 2k−2 is therefore not a problem in any real application, and most of the
bits `i will be zero. The Computational NMSRVS Assumption with S = 1024
and k = u = 131 leads to S ′ = 840. The security level obtained by VSH using
1024-bit n is therefore at least the security level obtained by 840-bit RSA.

Efficiency. Because
∏

0<i≤K pi is asymptotically proportional to eK log K , the k

used in the basic version of VSH is proportional to log n
log log n . It follows that the

product
∏k

i=1 p
mj·k+i

i can be computed in time O((log n)2) using straightforward
multiplication without modular reduction. Therefore the cost of each iteration
is less than the cost of 3 modular multiplications. Since k bits are processed per
iteration, the basic version of VSH requires O( log log n

log n ) modular multiplications
per message-bit, with a small constant in the big-Oh.

Creating collisions. With ei =
∑L−1

j=0 mj·k+i2
L−j−1 for 1 ≤ i ≤ k, the

value calculated by the VSH algorithm is the same as the multi-exponentiation
∏k

i=1 pei

i mod n, except for powers of the initial factor x0. Given φ(n) and as-
suming large enough L, collisions can be generated by replacing ei by ei + tiφ(n)
for any set of i’s with 1 ≤ i ≤ k and positive integers ti (see also VSH-DL be-
low). Thus, parties that know n’s factorisation can create collisions at will. But
collisions of this sort immediately reveal φ(n) and thereby n’s factorisation. Cre-
ating collisions that cannot immediately be used to factor n is a harder problem,
involving discrete logarithms of very smooth numbers.

To avoid repudiation concerns if VSH would be used ‘globally’ with the same
modulus it would be advisable to generate n using the method from [2]. On the
other hand, it is conceivable—and may be desirable—to expand PKIs to allow
one to choose one’s own hash function, rather than using a ‘fixed target’ for all.
In this setting, one cannot allow the owner of a VSH-modulus to claim he did
not sign something by displaying a collision. Especially taking into considera-
tion that the only easy way the user can create a collision would also reveal the
factorisation of n, this would be analagous to somebody using RSA who anony-
mously posts the factorisation of their modulus in order to fraudulently claim
that he did not sign something. Thus, in such a situation the VSH-modulus
should be considered compromised and the user’s certificate should be revoked.

Short message inversion. The VSH algorithm described above allows easy
inversion of messages of length ` ≤ k: if the resulting hash is divided modulo n
by each of the k possibilities for x2

0, one of the k resulting values will equal
∏k

i=1 pmi

i mod n. But this value actually equals
∏k

i=1 pmi

i , since the product is
small enough so that there is no ‘wrap-around’ modulo n. Thus, the factorisation
of one of the resulting values reveals m. We emphasize that this type of invert-
ibility may be undesirable for some applications, but that other applications
require just collision resistance (cf. below). See [15] for a related application.

A solution to the short message invertibility problem that does not affect our
proof of security (cf. below) is to square the final output enough times to ensure
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wrap-around (no more than log2 log2 n times). Other, more efficient solutions
may be possible. Note that for all hashes the hash of an extremely short message
can always be ‘inverted’ by trial and error.
Multiplicative properties. It is easy to find messages for which the hashes
h and h ′ satisfy possibly undesirable multiplicative properties such as h = 2h ′.
Our solution to the invertibility problem addresses this issue as well.
Having stressed upfront in the last three remarks the disadvantages of VSH, we
turn to its most attractive property, namely its provable collision resistance.

3.1 Security Proof for VSH

We prove that VSH is (strongly) collision-resistant. Using proper security notions
[18], (strong) collision resistance also implies second preimage resistance.

Theorem 1. Finding a collision in VSH is as hard as solving the NMSRVS
problem (i.e., VSH is collision-resistant under the assumptions from Section 2).

Proof. We show that different colliding messages m and m′ lead to a solution
of the NMSRVS problem. We use x′

... for the x... values in the VSH algorithm
applied to m′. Let a, b be such that xa+1 ≡ x′

b+1 mod n but either xa 6≡ x′
b mod n

or ma·k+i 6= m′
b·k+i (for some i ∈ {1, . . . , k}) holds. If a > 0 and b > 0 then

(xa)2 ×
k

∏

i=1

p
ma·k+i

i ≡ (x′
b)

2 ×
k

∏

i=1

p
m′

b·k+i

i mod n . (2)

Let ∆ = {i : ma·k+i 6= m′
b·k+i, 1 ≤ i ≤ k} and ∆10 = {i ∈ {1, . . . , k} : ma·k+i =

1 and m′
b·k+i = 0}. Because all factors in Equation (2) are invertible modulo n,

it is equivalent to

[

(xa/x′
b) ×

∏

i∈∆10

pi

]2

≡
∏

i∈∆

pi mod n . (3)

If ∆ 6= ∅, Equation (3) solves the NMSRVS problem. If ∆ = ∅, then (xa)2 ≡
(x′

b)
2 mod n. With xa 6≡ ±x′

b mod n the NMSRVS problem can be solved by
factoring n. If xa ≡ ±x′

b mod n then xa ≡ −x′
b mod n, since by assumption

xa 6≡ x′
b mod n. But xa ≡ −x′

b mod n leads to (xa−1/x′
b−1)

2 being equal to
−1 times a very smooth number and thus solves the NMSRVS problem. This
completes the case of a > 0 and b > 0.

If both a and b are 0, then a similar argument to the above holds: The only
difference is that x0 ≡ −x′

0 mod n cannot hold because the restriction on ` forces
both values to be less than n

2 , and clearly x0 6≡ x′
0 mod n if the message lengths

differ (if the lengths are the same, then it is not a real collision).
Finally, assume one of a or b is 0. Without loss of generality let a = 0

and b > 0. The question is if we can have x0 ≡ ±x′
b mod n given (x0)

2 ≡

(x′
b)

2 mod n. But x0 ≡ ±x′
b mod n implies the congruence pk+1 ×

∏k−2
i=1 p`i

i ≡
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±(x′
b−1)

2 ×
∏k

i=1 p
m′

(b−1)·k+i

i mod n. Because of the odd number of occurrences
of pk+1 in this congruence, applying a transformation similar to the one above
gives a solution to the NMSRVS problem. ut

3.2 Example: A Related Algorithm that can be Broken

To emphasize the importance of the nontrivialness, consider a hash function
that works similarly to VSH, except breaks the message into blocks r1, r2, . . .
of K > 1 bits and uses the compression function xj+1 := x2

j × 2rj+1 mod n.
Because K > 1 collisions can simply be created. For example, for any e with
0 < e < 2K−1 the message blocks r1 = e and r2 = 2e collide with r′1 = 2e
and r′2 = 0. The colliding hashes are (x2

02
e)222e and (x2

02
2e)220 respectively, for

some x0, but the collision does not lead to a solution of the NMSRVS problem or
a possibility to factor n. Such trivial relations are useless, and thus the security
of this hash algorithm is not reducible to any hard problem. The fix is to replace

xj+1 := x2
j × 2rj+1 by the costlier variant xj+1 := x2K

j × 2rj+1 , but that is the
same as the function xm mod n from [16, 19].

3.3 Combining VSH and RSA

Since the output length of VSH is the length of a secure RSA modulus (thus
1024–2048 bits), VSH seems quite suitable in practice for constructing ‘hash-
then-sign’ RSA signatures for arbitrarily long messages. However, such a sig-
nature scheme must be designed carefully to ensure its security. To illustrate a
naive insecure scheme, let (n, e) be the signer’s public RSA key, where the modu-
lus n is used for both signing and hashing. The signing function σ : {0, 1}∗ → Zn

is σ(m) = V SHn(m)1/e mod n, where V SHn : {0, 1}∗ → Zn is VSH with mod-
ulus n. For a k-bit message m = (m1, . . . , mk) ∈ {0, 1}k, the signature is thus

σ(m) = (x2
0

∏k
i=1 pmi

i )1/e mod n, where x0 is the same for all k-bit messages.

This scheme is insecure under the following chosen message attack. After ob-
taining signatures on three k-bit messages: s0 = σ((0, 0, 0, . . . , 0)) = (x2

0)
1/e mod

n, s1 = σ((1, 0, 0, . . . , 0)) = (x2
0 · p1)

1/e mod n, and s2 = σ((0, 1, 0, . . . , 0)) =
(x2

0 ·p2)
1/e mod n, the attacker easily computes the signature s1s2

s0
mod n on the

new k-bit forgery message (1, 1, 0, . . . , 0). It is easy to see that the k+1 signatures
on k + 1 properly chosen messages suffice to sign any k-bit message.

To avoid such attacks, we suggest a more theoretically sound design approach
for using VSH with ‘hash-then-sign’ RSA signatures that does not rely on any
property of VSH beyond the collision resistance which it was designed to achieve:

Step 1. Let n̄ be an (S + 1)-bit RSA modulus, with n̄ and the S-bit VSH
modulus n chosen independently at random. So, n̄ > 2S. Specify a one-to-one
one-way encoding function f : {0, 1}S → {0, 1}S, and define the short-message
(S-bit) RSA signature scheme with signing function σn̄(m) = (f(m))1/e mod
n̄. The function f is chosen such that the short-message scheme with signing
function σn̄ is existentially unforgeable under chosen message attack. In the
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standard model no provable techniques are known to find f , but since f is one-
to-one, there are no collision resistance issues to consider when designing f .
Step 2. With (n̄, n, e) as the signer’s public key, the signature scheme for signing
arbitrary length messages is now constructed with signing function σn̄,n(m) =
σn̄(V SHn(m)). It is easy to prove that the scheme with signing function σn̄,n is
existentially unforgeable under chosen message attack, assuming that the scheme
with signing function σn̄ is and that V SHn is collision-resistant. We emphasize
that the proof no longer holds if n̄ = n: in order to make the proof work in that
case, one needs the stronger assumption that V SHn is collision-resistant even
given access to a signing oracle σn. However, it is worth remarking that if the
function f is modeled as a random oracle, then the proof of security works (under
the RSA and NMSRVS assumptions) even with a shared modulus (n̄ = n).

3.4 Variants of VSH

Cubing instead of squaring. Let H ′ : Z∗
n × {0, 1}k → Z∗

n with H ′(x, m) =

x3
∏k

i=1 pmi

i mod n be a compression function that replaces the squaring in H
by a cubing. If gcd(3, φ(n)) = 1 then thanks to the injectivity of the RSA cubing
map modulo n, the function H ′ is collision-resistant, assuming the difficulty of
computing a modular cube root of a very smooth cube-free integer of the form
∏k

i=1 pei

i 6= 1, where ei ∈ {0, 1, 2} for all i. This problem is related to RSA
inversion, and is also conjectured to be hard. Although H ′ requires about 4
modular multiplications per k message bits (compared to 3 for H), it has the
interesting property that H ′ itself is collision-resistant, while this is not quite
the case for H (because x2

∏

i pi
mi ≡ (−x)2

∏

i pmi

i mod n).
Increasing the number of small primes. A speed-up is obtained by allowing
the use of larger k than the largest one for which

∏k
i=1 pi < n. This does not

affect the proof of security and reduction to the NMSRVS problem, as long as k
is still polynomially bounded in log n. The Computational NMSRVS Assumption
implies that a larger modulus n has to be used to maintain the same level of
security. Furthermore, the intermediate products in Step 4 of the VSH algorithm
may get larger than n and may thus have to be reduced modulo n every so often.
Nevertheless, the resulting smaller L may outweigh these disadvantages.
Precomputing products of primes. An implementation speed-up may be
obtained by precomputing products of primes. Let b > 1 be a small integer,
and assume that k = k̄b for some integer k̄. For i = 1, 2, . . . , k̄ compute the
2b products over all subsets of the set of b primes {p(i−1)b+1, p(i−1)b+2, . . . , pib},

resulting per i in 2b moderately sized values vi,t for 0 ≤ t < 2b. The k message-
bits per iteration of VSH are now split into k̄ chunks m[0], m[1], . . . , m[k̄ − 1] of
b bits each, interpreted as non-negative integers < 2b. The usual product is then

calculated as
∏k̄

i=1 vi,m[i−1]. This has no effect on the number of iterations or
the modulus size to be used to achieve a certain level of security.
Fast VSH. Redefining the above vi,t as p(i−1)2b+t+1 and using i = 1, 2, . . . , k

instead of i = 1, 2, . . . , k̄, the block length increases from k to bk, the number of
iterations is reduced from d `

k e to d `
bk e, and the calculation in Step 4 of the VSH
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algorithm becomes

xj+1 := x2
j ×

k
∏

i=1

p(i−1)2b+m[jbk+i−1]+1 mod n,

where m[r] is the rth b-bit chunk of the message, with 0 ≤ m[r] < 2b. Because
the number of small primes increases from k to k2b, a larger modulus would,
conservatively, have to be used to maintain the same level of security. But this
change does not affect the proof of security and, as shown in the analysis below
and the runtime examples in the final section, it is clearly advantageous.

Analysis of Fast VSH. Since p(i−1)2b+m[jbk+i−1]+1 ≤ pi2b , each intermedi-
ate product in the compression function for Fast VSH will be less than n if
∏k

i=1 pi2b < n. If k is maximal such that
∏(k+1)2b

i=1 pi ≤ (2n)2
b

, then

(k+1)2b

∏

i=1

pi =

2b
∏

t=1

k
∏

i=0

pi2b+t ≤ (2n)2
b

,

so that
∏k

i=0 pi2b+1 ≤ 2n. With pi2b < pi2b+1 it follows that
∏k

i=1 pi2b < n. Thus,

for (k + 1)2b proportional to 2b log(2n)
log(2b log(2n))

and k to log(2n)
log(2b log(2n))

− 1, the cost of

Fast VSH is O( 1
bk ) modular multiplications per message-bit, with bk proportional

to b log(2n)
log(2b log(2n)) − b. Selecting 2b as any fixed positive power of log(2n), it follows

that bk is proportional to log n and thus that Fast VSH requires O( 1
log n ) modular

multiplications per message bit. It also follows that the number of small primes
k2b is polynomially bounded in log n so that, with S ′ the overly conservative RSA
security level obtained according to the Computational NMSRVS Assumption,
Fast VSH requires O( 1

S′ ) modular multiplications per message bit.

Zero chunks in Fast VSH. In Fast VSH a prime is always multiplied in, even
for a b-bit chunk of zero bits. In the original VSH, a chunk of zero bits does not
result in any primes multiplied in. A negligible speed-up and tiny saving in the
number of primes can be obtained in Fast VSH if for a particular b-bit pattern
(such as all zeros) no prime is multiplied in.

Fast VSH with increased block length. Fast VSH can be used in a straight-
forward fashion with a larger block length than suggested by the above analysis.
If, for instance, the number of small primes is taken almost w times larger, for
some integer w > 1, the small prime product can be split into w factors each less
than n. Per iteration this results in a single modular squaring, w − 1 modular
multiplications plus the time to build the w products. The best value for w is best
determined experimentally, and will depend on various processor characteristics
(such as cache size to hold a potentially rather large table of primes).

Generating collisions. For all variants given above knowledge of φ(n) can be
used to generate collisions, though displaying such a collision is not in the user’s
interest since it would give out a break to the user’s hash function (i.e. it would
be similar to someone giving out the factorisation of their RSA modulus).
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VSH-DL, a discrete logarithm variant. We present a discrete logarithm
(DL) variant of VSH that has no trapdoor. Its security depends on the following
problem and its hardness assumption.

Definition 4. (NDLVS: Nontrivial Discrete-Log of Very Smooth numbers) Let
p, q be primes with p = 2q + 1 and let k ≤ (log p)c. The NDLVS problem is the

following: given p, find integers e1, e2, . . . , ek such that 2e1 ≡
∏k

i=2 pei

i mod p
with |ei| < q for i = 1, 2, . . . , k, and at least one of e1, e2, . . . , ek is non-zero.

NDLVS Assumption. The NDLVS assumption is that there is no probabilistic
polynomial (in log p) time algorithm which solves the NDLVS problem with non-
negligible probability (the probability is taken over the random choice of the
prime p and the random coins of the algorithm).

A solution to an NDLVS instance produces the base 2 DL modulo p of a very
smooth number (the requirements on the exponents ei avoids trivial solutions
in which all exponents are zero modulo q). Given k random NDLVS solutions,
the base 2 DL of nearly all primes p1, . . . , pk can be solved with high probabil-
ity by linear algebra modulo q. The (hard) ‘precomputation’ stage of all known
index calculus DL algorithms [4] works in a similar way, but solves the DL for
subexponentially many small primes. Although computing the DLs of a poly-
nomial number of small primes is an impressive feat, it does not help to solve
arbitrary DL problems faster than via the usual subexponential-time detour, at
least not as far as we know. Nevertheless, there is a strong connection between
the hardness of NDLVS and the hardness of computing DLs modulo p. This con-
nection is analogous to, but seems to be somewhat weaker than, the connection
between NMSRVS and factorisation. As was the case for NMSRVS, moduli for
which NDLVS is not difficult are easily constructed. For the same reasons as for
NMSRVS, they are not worthy of further consideration.

Let p be an S-bit prime of the form 2q+1 for prime q, let k be a fixed integer
length (number of small primes, typically k ≈ S), and let L ≤ S−2. We define a
VSH-DL compression function HDL : {0, 1}Lk → {0, 1}S, where m is an Lk-bit
message consisting of bits m1, . . .mLk:

– Set x0 = 1. For j = 0, 1, . . . ,L−1, compute xj+1 = x2
j ×

∏k
i=1 p

mj·k+i

i mod p.

– Return HDL(m) = xL interpreted as a value in {0, 1}S.

If ei =
∑L−1

j=0 mj·k+i2
L−j−1 for 1 ≤ i ≤ k, then HDL(m) =

∏k
i=1 pei

i mod p.

A collision m, m′ ∈ {0, 1}Lk with m 6= m′ therefore implies that
∏k

i=1 pei

i ≡
∏k

i=1 p
e′

i

i mod p, where e′i =
∑L−1

j=0 m′
j·k+i2

L−j−1 and m′ consists of the bits

m′
1, . . . m

′
Lk. Rearranging this congruence, a solution 2e1−e′

1 ≡
∏k

i=2 p
e′

i−ei

i mod
p to the NDLVS problem follows, because |e′i − ei| < 2L ≤ 2S−2 ≤ q for all i
and e′i − ei 6= 0 for some i since m 6= m′. Hence the compression function HDL

is collision-resistant under the NDLVS assumption.

The compression function HDL uses the same iteration as the basic VSH
algorithm. Hence, for the same modulus length S and number of primes k it has
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the same throughput efficiency of about 3
k modular multiplications per message-

bit. By applying the Merkle-Damg̊ard transformation [14, 7], HDL can be used to
hash messages of arbitrary length in blocks of Lk−S message bits per evaluation
of HDL. This leads to a reduction in throughput by a factor of Lk−S

Lk (since only
Lk − S of the Lk bits processed in each HDL evaluation are new message bits)
relative to factoring based VSH. However, for long messages, this throughput
reduction factor can be made close to 1 by choosing a sufficiently large block
length Lk; indeed, the construction allows block lengths up to Lk = k(S − 2),
and for this choice the throughput reduction factor is 1 − S

k(S−2) ≈ 1 − 1
k ≈ 1.

Reducing the hash length. A possible drawback of VSH is its relatively large
length. We are currently investigating the possibility to reduce the hash length
by combining VSH-DL with elliptic curve, XTR, or torus-based techniques [9,
11, 21].

4 VSH Randomised Trapdoor Hash and Applications

Let M,R,H be a message, randomiser, and hash space, respectively. A ran-
domised trapdoor hash function [19] Fpk : M × R → H is a collision-resistant
function that can be efficiently evaluated using a public key pk, but for which
certain randomly behaving collisions can be found given a secret trapdoor key sk:
Collision Resistance in Message Input: Given pk, it is hard to find m, m′ ∈
M and r, r′ ∈ R for which m 6= m′ and Fpk(m, r) = Fpk(m′, r′).
Random Trapdoor Collisions: There exists an efficient algorithm that given
trapdoor (sk, pk), m, m′ ∈ M with m 6= m′, and r ∈ R, finds a randomiser
r′ ∈ R such that Fpk(m, r) = Fpk(m′, r′). Furthermore, if r is chosen uniformly
from R then r′ is uniformly distributed in R.
Randomised trapdoor hash functions have applications in provably strengthen-
ing the security of signature schemes [19], and constructing designated-verifier
proofs/signature schemes [10, 20]. The factorisation trapdoor of VSH suggests
that it can be used to build such a function. Here we describe a provably secure
randomised trapdoor hash family which preserves the efficiency of VSH.

Key Generation: Choose two S/2-bit random primes p, q with p ≡ q ≡ 3 mod 4
and S-bit product n. The public key is n with trapdoor key sk = (p, q). Let k

be as in the basic VSH algorithm, M = ∪2k−1
`=0 {0, 1}`, and R = Z∗

n.
Hash Function: Let m ∈ M of length ` < 2k and r ∈ R. Calculate the basic
VSH of m with x0 replaced by r to compute xL, let xL+1 = H(xL, `) where H
is the VSH compression function, and output Fn(m, r) = x2

L+1 mod n.

Theorem 2. The above construction satisfies the security requirements for ran-
domised trapdoor hash functions, under the NMSRVS assumption.

Proof. For (padded) m ∈ M and 0 ≤ j < L let m[j]i denote the ith bit of m’s

jth k-bit block m[j] = (mj·k+i)
k
i=1 and ` =

∑k
i=1 `i2

i−1 with `i ∈ {0, 1}.
Collision Resistance in Message Input. Let m, m′ ∈ M of lengths `, `′, re-
spectively, and r, r′ ∈ R, such that m 6= m′ and Fn(m, r) = Fn(m′, r′). De-
noting the intermediate values while computing Fn(m, r) and Fn(m′, r′) by

13



x... and x′
..., respectively, it follows that (xL+1)

2 ≡ (x′
L′+1)

2 mod n, where

L = d `
ke and L′ = d `′

k e. Assuming that xL+1 ≡ ±x′
L′+1 mod n—otherwise n

can be factored and the NMSRVS problem solved—it follows that (xL/x′
L′)2 ≡

±
∏k

i=1 p
`′i−1−`i−1

i mod n. If ` 6= `′, then |`′i − `i| = 1 for at least one i, thereby
solving the NMSRVS problem. Otherwise, if ` = `′, let t ≤ L+1 be the largest in-
dex such that (xt, m[t]) 6= (x′

t, m
′[t]) but (xj , m[j]) = (x′

j , m
′[j]) for j > t (where

we define m[L] = m′[L] = ` and m[j] = m′[j] = 0 for j > L). So (xt/x′
t)

2 ≡
∏k

i=1 p
m′[t]i−m[t]i
i mod n. If m[t] 6= m′[t], then |m′[t]i − m[t]i| = 1 for at least

one i, thereby solving the NMSRVS problem. Otherwise, if m[t] = m′[t], then
xt 6= x′

t. Combined with (xt)
2 ≡ (x′

t)
2 mod n it follows that n can be factored

and the NMSRVS problem solved if xt 6= −x′
t mod n, or that xt ≡ −x′

t mod n.
But with t ≥ 1 (because m 6= m′ and (xj , m[j]) = (x′

j , m
′[j]) for j ≥ t),

xt ≡ −x′
t mod n implies that (xt−1/x′

t−1)
2 ≡ −

∏k
i=1 p

m′[t−1]i−m[t−1]i
i mod n,

which solves the NMSRVS problem due to the −1 factor on the right hand side.
Random Trapdoor Collisions : Let m, m′ ∈ M with m 6= m′ and r ∈ R. Be-

cause Fn(m, r) = (r2L+1 ∏k
i=1 p

2ei+`i−1

i )2 mod n where ei =
∑L−1

j=0 m[j]i2
L−j−1,

finding r′ ∈ R with Fn(m, r) = Fn(m′, r′) amounts to finding r′ such that

(r′)2
L′+2

≡ r2L+2

· (
k

∏

i=1

p
2ei+`i−1−2e′

i−`′i−1

i )2 mod n,

i.e., finding an (L′ + 2)nd square root modulo n of the right hand side g of the

equation for (r′)2
L′+2

. Given the trapdoor key (p, q) this is achieved as follows.
Let QRn = {y ∈ Z∗

n : (y
p ) = (y

q ) = 1} denote the subgroup of quadratic
residues of Z∗

n. The choice p ≡ q ≡ 3 mod 4 implies that −1 is a quadratic non-
residue in Z∗

p and Z∗
q , so for each element of QRn exactly one of its 4 square

roots in Z∗
n belongs to QRn. Hence the squaring map on QRn permutes QRn and

given (p, q) it can be efficiently inverted by computing the proper square roots
modulo p and q and combining them by Chinese remaindering. Since g ∈ QRn,
its (L′ + 1)st square root d ∈ QRn can thus be computed, and r′ is then chosen
uniformly at random among the 4 square roots in Z∗

n of d.
If r is uniformly distributed in Z∗

n, then (since each element of QRn has 4
square roots in Z∗

n) the value r2 mod n is uniformly distributed in QRn. The
squaring map on QRn permutes QRn, so that g and d are also uniformly dis-
tributed in QRn. It follows that r′ is uniformly distributed in Z∗

n. ut

Length at end. A collision-resistant variant of VSH where the message length
is only needed at the end of the hashing process (rather than the beginning) is
obtained by fixing the random input r = 1. This variant may be better suited
for some applications than the versions presented in the previous section.
Efficiency. The function Fn is as efficient as VSH. For short fixed-length mes-
sages with ` ≤ k (i.e., 1 block), the message length can be omitted, so that

Fn(m, r) = (r2
∏k

i=1 pmi

i )2 mod n. Evaluation requires only about 4 compared
to at least k modular multiplications required by the trapdoor functions in [19].
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On the other hand, the trapdoor collision-finding algorithm for Fn is not very
fast, requiring a square root modulo n per message block. This is not a major
issue because in many applications of randomised hash functions, the collision-
finding algorithm is only used in the security proof of a signature scheme rather
than in the scheme itself. However, it reduces the efficiency of the reduction and
thus requires slightly increased security parameters.
‘Inversion’ trapdoor property. It follows from the proof of Theorem 2 that
Fn also satisfies the ‘inversion’ trapdoor property [19]. This is stronger than the
trapdoor collision property, and can be used to upgrade a signature scheme’s
resistance against random message attacks to chosen message attacks: Given the
trapdoor key, a random element d ∈ QRn in the range of Fn and an m ∈ M, it
is easy to find a randomiser r ∈ Z∗

n such that Fn(m, r) = d and r is uniformly
distributed in Z∗

n when d is uniformly distributed in QRn.
Why Merkle-Damg̊ard works. The function Fn applies a variant of the
Merkle-Damg̊ard transformation [14, 7] to hash arbitrary length messages us-
ing the VSH compression function H : Z∗

n × {0, 1}k → Z∗
n. The proof in [7]

shows that a sufficient condition for the Merkle-Damg̊ard function Fn to be
collision-resistant is that the compression function H is collision-resistant, i.e.
it is hard to find any (x, m) 6= (x′, m′) with H(x, m) = H(x′, m′). However,

our compression function H(x, m) = x2
∏k

i=1 pmi

i mod n is not strictly collision-
resistant (H(−x mod n, m) = H(x, m)), and yet we proved that H is still suf-
ficiently strong to make Fn collision-resistant. Therefore, one may ask whether
we can strengthen the result in [7] to state explicitly the security properties of a
compression function (which are weaker than full collision-resistance) that our
compression function satisfies and that are still sufficient in general to make the
Merkle-Damg̊ard function Fn collision-resistant. Indeed, these conditions can be
readily generalised from our proof of Theorem 2, so we only state them here:

(1) Collision Resistance in Second input: It is hard to find (x, m), (x′, m′) ∈
Z∗

n × {0, 1}k with m 6= m′ such that H(x, m) = H(x′, m′).
(2) Preimage Resistance for a collision in first input: It is hard to find (x, m) 6=

(x′, m′) ∈ Z∗
n × {0, 1}k and m∗ ∈ {0, 1}k such that H(y, m∗) = H(y′, m∗),

where y = H(x, m), y′ = H(x′, m′) and y 6= y′.

Our VSH compression function satisfies these properties, assuming the NMSRVS
Assumption.

Application. As an example application, we mention the Cramer-Shoup (CS)
signature scheme [5], which to our knowledge is the most efficient factoring-based
signature scheme provably secure in the standard model (under the strong-RSA
assumption). The CS scheme makes use of an RSA-based randomised trapdoor
hash function to achieve security against adaptive message attacks. Using Fn

instead cuts the signing and verification costs by about a double exponentiation
each, while preserving the proven security. The modified CS scheme is as follows:
Key Generation: Choose two safe random ≈ S/2-bit primes p̄, q̄ and two random
≈ S/2 bit primes p, q with p ≡ q ≡ 3 mod 4 that result in S-bit moduli n̄ = p̄q̄
and n = pq, and choose x, z ∈ QRn̄ at random. Let h : {0, 1}S → {0, 1}` be
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a collision-resistant hash function for a security parameter ` chosen such that
an `-bit hash and S-bit RSA offer comparable security (typically ` = 160 when
S = 1024). The public key is (x, z, n, n̄, h) and the secret key is (p̄, q̄).
Signing : To sign m ∈ {0, 1}∗, choose a random (`+1)-bit prime e and a random
r ∈ Z∗

n and compute y = (x · zh(Fn(m,r)))1/e mod n̄. The signature is (e, y, r).
Verifying : To verify message/signature pair (m, (e, y, r)), check that e is an odd
(` + 1)-bit integer and that yez−h(Fn(m,r)) ≡ x mod n̄.

The cost of verification in the original CS scheme is about two double exponen-
tiations with `-bit exponents. The modified scheme requires approximately one
such double exponentiation, so a saving in verification time of about 50% can
be expected. The relative saving in signing time is smaller. However, the length
of the public key is larger than in the original scheme by typically 25%.

Because VSH’s output length S is typically much larger than `, VSH cannot
be used for the `-bit collision-resistant hash function h above. To avoid the need
for an ad-hoc `-bit hash function, h may be dropped and e chosen as an (S +1)-
bit prime, making the scheme much less efficient. The variant below eliminates
the need for h and maintains almost the computational efficiency of the scheme
above, but has a larger public key and requires some precomputation.
Key Generation: Let p̄, q̄, p, q, n̄, n be as above, let s = dS

` e and choose x, z1, . . . , zs ∈
QRn̄ at random. The public key is (x, z1, . . . , zs, n, n̄) and the secret key is (p̄, q̄).
Signing : To sign m ∈ {0, 1}∗, choose a random (`+1)-bit prime e and a random
r ∈ Z∗

n, and compute Fn(m, r). Interpret Fn(m, r) as a value in {0, 1}s·` (possibly
after padding) consisting of s consecutive `-bit blocks Fn,1(m, r), . . . , Fn,s(m, r)

and compute y = (x ·
∏s

u=1 z
Fn,u(m,r)
u )1/e mod n̄. The signature is (e, y, r).

Verifying : To verify message/signature pair (m, (e, y, r)), check that e is an odd

(` + 1)-bit integer and that ye
∏s

u=1 z
−Fn,u(m,r)
u ≡ x mod n̄.

For typical parameter values such as S = 1024, ` = 171, s = 6, the 2s = 64 subset
products modulo n̄ of the zu’s may be precomputed. Using multi-exponentiation,
that would make the above scheme about as efficient as the previous variant. It
can be proved (cf. Appendix A) that the above CS signature variant is secure
assuming the strong-RSA and NMSRVS assumptions. Thus we have obtained
an efficient signature scheme proven secure without ad-hoc assumptions. This
is unlike the original CS scheme, which relied on a collision-resistance or uni-
versal one-wayness assumption regarding a 160-bit hash function—as far as we
are aware, the only practical provably secure design for such a function is an
inefficient discrete log based construction using an elliptic curve defined over a
160-bit order finite field. A disadvantage of our variant is that its public key
is somewhat long: typically 9 kbits, which is about 3 times more than in the
original CS scheme.

5 Efficiency of VSH in Practice

Let the cost of a multiplication modulo n be O((log n)1+ε) operations, where
ε = 1 if ordinary multiplication is used, and where ε > 0 can be made arbitrarily
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small if fast multiplication methods are used. Asymptotically the cost of the basic

VSH algorithm is O( (log n)1+ε

k ) = O((log n)ε log log n) operations per message-bit.
Given n’s factorisation one can do better for long messages by reducing the k
exponents of the pi’s modulo φ(n). Asymptotically, Fast VSH costs O((log n)ε)
operations per message-bit. It is faster in practice too, cf. below.

If the length of the message is not known ahead of time (streaming data),
the proper power of x0 can be ‘pasted on’ at the end of the computation at the
cost of modular exponentiation. Or better yet, using the variant described in
Section 4 with r = 1, the length can be pasted on at the end for the cost of less
than three modular multiplies.

The table below lists VSH runtimes obtained using a straightforward gmp-
based implementation on a 1GHz Pentium III. The two security levels conser-
vatively correspond to 1024-bit and 2048-bit RSA (based on the Computational
NMSRVS Assumption, where an S-bit VSH modulus leads to a lower RSA se-
curity level S′ depending on the number of small primes used). In the 2nd and
6th rows basic VSH is used with more small primes, in the 3rd and 7th rows
extended with precomputed prime products and message processing b = 8 bits
at a time. Fast VSH also processed b = 8 message-bits at a time. With S ′ = 1024
and S = 1516 (i.e., security at least as good as 1024-bit RSA, at the cost of a
1516-bit VSH modulus) Fast VSH is about 26 times slower than Wei Dai’s SHA-
1 benchmark [22]. Better throughput will be obtained under the more aggressive
assumption that VSH with an S-bit modulus achieves S-bit RSA security.

S′ Method # small primes S b # products Megabyte/second
1024 Basic VSH 152 1234 1 n/a 0.355

1024 1318 1 n/a 0.419
8 128 ∗ 256 0.486

Fast VSH 216 = 65536 1516 8 n/a 1.135
2048 Basic VSH 272 2398 1 n/a 0.216

1024 2486 1 n/a 0.270
8 128 ∗ 256 0.303

Fast VSH 218 = 262144 2874 8 n/a 0.705
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A Security Proof for CS Signature Variant in Section 4

We give the security proof for the second CS variant signature scheme in Section 4
(the proof of the first CS variant scheme is essentially a special case with s =
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1 and the collision-resistant function Fn(·, ·) replaced by the collision-resistant
function h(Fn(·, ·))).

Let A be an adaptive chosen message attacker, let (mi, (ei, yi, ri)) for 1 ≤
i ≤ t be the ith sign query/answer pair of A, and let (m, (e, y, r)) be the output
forgery message/signature pair of A. As in [5], there are three possible types
of attacks according to the output forgery. For each attacker type, we outline
how to use it to contradict either the collision-resistance of Fn (and hence the
NMSRVS assumption) or the strong-RSA assumption.

Type I. For some 1 ≤ j ≤ t, e = ej and Fn(m, r) = Fn(mj , rj). Given
VSH modulus n, we construct a collision finder for Fn as follows. Gener-
ate (x, z1, . . . , zs, n̄) and (p̄, q̄) as in key generation and run A on input
(x, z1, . . . , zs, n, n̄). Using the known (p̄, q̄), we efficiently answer (and store)
A’s sign queries. When A outputs its forgery (with m 6= mj), we output the
collision (m, r), (mj , rj) for Fn.

Type II. For some 1 ≤ j ≤ t, e = ej and Fn(m, r) 6= Fn(mj , rj); in particular,
with Fn,u(m, r) for 1 ≤ u ≤ s denoting the uth consecutive `-bit block of
Fn(m, r) (as in Section 4), let Fn,u∗(m, r) 6= Fn,u∗(mj , rj) for some u∗ ∈
{1, 2, . . . , s}. Given a strong-RSA instance (n̄, z̄) with z̄ ∈R Z∗

n̄, we compute
e > 1 and the eth root of z̄ mod n̄ as follows. We randomly guess the values
of j ∈ {1, . . . , t} and u∗ ∈ {1, . . . , s} (our guess is right with non-negligible
probability 1/(ts)). Then we generate a random VSH modulus n (keeping
its factors p, q for later use), t random (` + 1)-bit primes e1, . . . , et, a total
of s random elements {z̄u}u={1,...,s}\{u∗} and v from Z∗

n̄, and a random r̄ ∈

Z∗
n, and we compute (x, z1, . . . , zs), where zu = z̄

2
∏

i
ei

u mod n̄ for u 6= u∗,

zu∗ = z̄
2
∏

i6=j
ei mod n̄, and x = v2

∏

i
ei · (

∏s
u=1 z

Fn,u(m̄,r̄)
u )−1 mod n̄, where

m̄ is an arbitrary message.
Given this set-up, we run A on input (x, z1, . . . , zs, n, n̄). For i 6= j, we answer
the ith sign query of A with (ei, yi, ri), where ri is chosen uniformly from

Z∗
n and yi = (x ·

∏s
u=1 z

Fn,u(mi,ri)
u )1/ei mod n̄ is easy to compute since we

know the eith roots of x, z1, . . . , zs mod n̄. For answering the jth sign query
mj , we first use the ‘random trapdoor collision’ algorithm for Fn (which is
efficient since we know p, q) to compute rj ∈ Z∗

n such that Fn(mj , rj) =
Fn(m̄, r̄) (note rj is uniform since r̄ is uniform), and we answer (ej , yj , rj),

where yj = (x ·
∏s

u=1 z
Fn,u(m̄,r̄)
u )1/ej mod n̄ = v

2
∏

i6=j
ei mod n̄ is easy to

compute. Finally, if A’s output forgery (m, (e, y, r)) is valid, then, defining
∆ = Fn,u∗(mj , rj) − Fn,u∗(m, r) 6= 0, we have

yj

y
·

∏

u6=u∗

(z1/ej
u )Fn,u(m,r)−Fn,u(mj ,rj) ≡ (z

1/ej

u∗ )∆ mod n̄.

Using the known ejth roots of zu for u 6= u∗, we efficiently compute the
left hand side of the above congruence obtaining the result α. From the

right hand side we see that α ≡ (z̄1/ej )
2∆

∏

i6=j
ei mod n̄. Note we also know

β = (z̄1/ej )ej mod n̄ = z̄. Using the Euclidean algorithm we compute a and
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b such that d = gcd(2∆
∏

i6=j ei, ej) = a · 2∆
∏

i6=j ei + b · ej and hence we

can efficiently compute γ ≡ (z̄1/ej )d ≡ αaβb mod n̄. Since the ei’s are primes
greater than 2` (and are distinct with overwhelming probability when t is
small compared to 2`/2) while 0 < |∆| < 2`, it follows that d = 1 so the value
γ is the e = ejth root of z̄ mod n̄ and hence a solution to our strong-RSA
instance (n̄, z̄).

Type III. For all 1 ≤ i ≤ t, e 6= ei. Given strong-RSA instance (n̄, z̄) with
z̄ ∈R Z∗

n̄, we compute δ > 1 and the δth root of z̄ mod n̄ as follows. We
generate a VSH modulus n at random, t random (`+1)-bit primes e1, . . . , et,
a total of s integers a and a2, a3, . . . , as chosen uniformly at random from

ZB with B ≥ n̄2, and we compute (x, z1, . . . , zs), where z1 = z̄2
∏

i
ei mod n̄,

zu = zau
1 mod n̄ for u = 2, . . . , s and x = za

1 mod n̄.
We then run A on input (x, z1, . . . , zs, n, n̄). Here we use the fact that z1 is a
generator of QRn̄ with overwhelming probability, because n̄ is a product of
safe primes, and that z1, z2, . . . , zs, x are statistically indistinguishable from
independent uniformly random elements in QRn̄ because B/|QRn̄| ≥ n̄.
For i = 1, . . . , t, we answer the ith sign query of A with (ei, yi, ri), where

ri is chosen uniformly from Z∗
n and yi = (x ·

∏s
u=1 z

Fn,u(mi,ri)
u )1/ei mod n̄

is easy to compute since we know the eith roots of x, z1, . . . , zs mod n̄. If

A outputs a valid forgery (m, (e, y, r)) we have y ≡ (z̄1/e)2(c+a)
∏

i
ei mod n̄,

where c = Fn,1(m, r)+
∑

u≥2 Fn,u(m, r) ·au. Similary to the Type II case, we

can efficiently compute γ ≡ z̄1/(e/d) mod n̄, where d = gcd(e, 2(c +a)
∏

i ei).
To ensure that δ = e/d > 1, it suffices (since e is odd and e 6= ei for all i)
that (c + a) 6≡ 0 mod ρ for some prime divisor ρ of e. But, dividing a by the
order ord(z1) of z1 in Z∗

n̄, we have a = b a
ord(z1)

c · ord(z1) + (a mod ord(z1)).

Since B ≥ n̄2 and ord(z1) < n̄ the distribution of the quotient b a
ord(z1)

c

is statistically indistinguishable from uniform on Zb B
ord(z1)

c and essentially

independent of the attacker’s view (which is only a function of the remainder
a mod ord(z1)). It follows (using also the fact that gcd(ord(z1), ρ) = 1 since
n̄ is safe and ` < S/2) that (c + a) 6≡ 0 mod ρ occurs with non-negligible
probability very close to 1−1/ρ > 1/2, so that with non-negligible probability
δ > 1 and γ is a δth root of z̄ mod n̄, solving the strong-RSA instance (n̄, z̄).

This completes the proof of security. ut
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