
Weaknesses in two group Diffie-Hellman key

exchange protocols

Qiang Tang
Information Security Group

Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

qiang.tang@rhul.ac.uk
Liqun Chen

Hewlett-Packard Laboratories, Bristol, UK
liqun.chen@hp.com

2nd July 2005

Abstract

In this paper we show that the password-based Diffie-Hellman key exchange
protocols due to Byun and Lee suffer from dictionary attacks.

1 Introduction

Recently, Byun and Lee proposed two password-based Diffie-Hellman key
exchange protocols [2] which are claimed to be provably secure based on
Diffie-Hellman problems. For simplicity of description, we refer to the two
protocols as the EKE-U and EKE-M protocols, following the notation used
in [2].

Byun and Lee claim that the protocols are secure against dictionary attacks,
especially insider dictionary attacks. However, we show that the EKE-U
protocol suffers from offline dictionary attacks, and the EKE-M protocol
suffers from undetectable online dictionary attacks which can be mounted
by any malicious participant.

The rest of this paper is organised as follows. In Section 2 we review both
the EKE-U and the EKE-M protocols. In section 3 we demonstrate security
vulnerabilities in both protocols. In the final section, we conclude this paper.

1

2 Review of the EKE-U and the EKE-M protocols

The following assumptions are made in both the EKE-U and the EKE-M
protocols. Suppose that g is the generator of a multiplicative cyclic group
of prime order q, the server S independently shares a unique password pwi

with user Ui (1 ≤ i ≤ n), and (ε,D) is an ideal cipher [1], where ε is the
encryption algorithm and D is the decryption algorithm. Additionally, h is
a full-domain hash function [3], h1 and h2 are one-way hash functions, and
|| is the string concatenation operator.

For simplicity of description, we assume that n ≥ 3 in the rest of this paper.
It is straightforward to verify that our results also apply to the case where
n = 2.

2.1 Description of the EKE-U protocol

The EKE-U protocol is designed for use in a unicast network. The users Ui

(1 ≤ i ≤ n) and S perform the following steps.

1. U1 selects two random numbers v1 and x1 (1 ≤ v1, x1 ≤ q − 1), and
computes T1 = {gv1 , gv1x1}. U1 then sends M1 = εpw1(T1) to U2.

2. After receiving M1 from U1, U2 forwards it to S.

3. After receiving M1 from U2, S first decrypts it using the password
pw1 to obtain T1 = {gv1 , gv1x1}. S then selects a random number v2

(1 ≤ v2 ≤ q − 1), and computes T ′
1 = {gv1v2 , gv1v2x1}. Finally, S sends

M ′
1 = εpw2(T

′
1) to U2.

4. After receiving M ′
1 from S, U2 first decrypts it using his password

pw2 to obtain T ′
1 = {gv1v2 , gv1v2x1}. U2 then selects a random number

x2 (1 ≤ x2 ≤ q − 1), and computes T2 = {gv1v2x1 , gv1v2x2 , gv1v2x1x2}.
Finally, U2 sends M2 = εpw2(T2) to U3.

5. Recursively, Uj (3 ≤ j ≤ n− 1) and S perform the following steps.

(a) After receiving Mj−1 from Uj−1, where

Mj−1 = εpwj−1(Tj−1),

Tj−1 = {gVj−1·(Xj−1/x1), gVj−1·(Xj−1/x2), · · · , gVj−1·(Xj−1/xj−1), gVj−1·Xj−1},

Vj−1 = v1 · v2 · · · vj−1, Xj−1 = x1 · x2 · · ·xj−1,

Uj forwards it to S.

2

(b) After receiving Mj−1 from Uj , S first decrypts it using the pass-
word pwj−1 to obtain Tj−1. S then selects a random number vj

(1 ≤ vj ≤ q − 1), and computes T ′
j−1, where

T ′
j−1 = {gVj ·(Xj−1/x1), gVj ·(Xj−1/x2), · · · , gVj ·(Xj−1/xj−1), gVj ·Xj−1},

Vj = v1 · v2 · · · vj , Xj−1 = x1 · x2 · · ·xj−1.

Finally, S sends M ′
j−1 = εpwj (T

′
j−1) to Uj .

(c) After receiving M ′
j−1 from S, Uj first decrypts it using his pass-

word pwj to obtain T ′
j−1. U2 then selects a random number xj

(1 ≤ xj ≤ q − 1), and computes Tj as

Tj = {gVj ·(Xj/x1), gVj ·(Xj/x2), · · · , gVj ·(Xj/xj), gVj ·Xj},

Vj = v1 · v2 · · · vj , Xj = x1 · x2 · · ·xj .

Finally, Uj sends Mj = εpwj (Tj) to Uj+1.

6. After receiving Mn−1 from Un−1, Un forwards it to S.

7. After receiving Mn−1 from Un, S first decrypts it using the password
pwn−1 to obtain Tn−1. S then selects a random number vn (1 ≤ vn ≤
q − 1), and computes T ′

n−1, where

T ′
n−1 = {gVn·(Xn−1/x1), gVn·(Xn−1/x2), · · · , gVn·(Xn−1/xn−1), gVn·Xn−1},

Vn = v1 · v2 · · · vn, Xn−1 = x1 · x2 · · ·xn−1.

Finally, S sends M ′
n−1 = εpwn(T ′

n−1) to Un.

8. After receiving M ′
n−1 from S, Un first decrypts it using his password

pwn to obtain T ′
n−1. Un then selects a random number xn (1 ≤ xn ≤

q − 1), and computes Tn as

Tn = {gVn·(Xn/x1), gVn·(Xn/x2), · · · , gVn·(Xn/xn)},

Vn = v1 · v2 · · · vn, Xn = x1 · x2 · · ·xn.

Finally, Un sends Mn = εpwn(Tn) to S.

It should be noted that Tn is computed differently from Tj (1 ≤ j ≤
n− 1) in order to prevent S from computing the ultimate session key.

9. After receiving Mn from Un, S first decrypts it using the password pwn

to obtain Tn. S then selects a random number vn+1 (1 ≤ vn+1 ≤ q−1),
and computes and sends Ei = εpwi(g

Vn+1·(Xn/xi)) to Ui (1 ≤ i ≤ n),
where

Vn+1 = v1 · v2 · · · vn+1, Xn = x1 · x2 · · ·xn.

3

10. After receiving Ei from S, Ui (1 ≤ i ≤ n) decrypts it using his pass-
word pwi to obtain gVn+1·(Xn/xi), and then computes the key material
and session key as K = (gVn+1·(Xn/xi))xi and sk = h(clients||K), where
clients is the concatenation of the identifiers of Ui (1 ≤ i ≤ n).

If key confirmation is required, then Ui computes and broadcasts
Authi = h(i||sk).

11. After receiving every Authj (1 ≤ j ≤ n−1, j 6= i), Ui checks whether it
equals h(i||sk). If all the checks succeed, Ui confirms that the protocol
has succeeded. Otherwise, Ui terminates the protocol as a failure.

2.2 Description of the EKE-M protocol

The EKE-M protocol is designed for use in a multicast network. Ui (1 ≤
i ≤ n) and S perform the following steps.

1. S selects q − 1 random numbers si (1 ≤ si ≤ q − 1), and then sends
εpwi(g

si) to Ui. Concurrently, Ui selects a random number xi (1 ≤
xi ≤ q − 1), and then broadcasts εpwi(g

xi).

2. After receiving every εpwi(g
xi) (1 ≤ i ≤ n − 1), S decrypts each of

them to obtain gxi . S then computes the shared ephemeral key with
Ui as ski = h1(sid′||gxisi), where

sid′ = εpw1(g
x1)||εpw2(g

x2)|| · · · ||εpwn−1(g
xn−1)

Finally, S selects a random secret N , and broadcasts mi = N ⊕ ski,
where, as throughout this paper, ⊕ denotes the bit-wise exclusive-or
operator.

3. After receiving all the messages from S, Ui first constructs sid′ in the
same way as S, decrypts εpwi(g

si), computes ski = h1(sid′||gsixi), and
then computes N = mi ⊕ ski. Finally, Ui computes the session key as
sk = h2(SIDS||N), where

SIDS = sid′||sk1 ⊕N ||sk2 ⊕N || · · · ||skn−1 ⊕N

If key confirmation is required, then Ui computes and broadcasts
Authi = h(i||sk).

4. After receiving every Authj (1 ≤ j ≤ n−1, j 6= i), Ui checks whether it
equals h(i||sk). If all the checks succeed, Ui confirms that the protocol
has succeeded. Otherwise, Ui terminates the protocol as a failure.

4

3 Security vulnerabilities in the EKE-U and the
EKE-M protocols

3.1 Security vulnerability in the EKE-U protocol

In the EKE-U protocol, a malicious participant Uj (1 ≤ j ≤ n − 1) can
mount offline dictionary attacks against Uj+1.

To mount the attack, Uj selects t1 and t2, and then sends M ′
j to Uj+1 instead

of Mj , where
M ′

j = εpwj (T
′
j),

T ′
j = {gt1 , gt1t2 , gVj ·(Xj/x3), · · · , gVj ·(Xj/xj), gVj ·Xj},

Vj = v1 · v2 · · · vj , Xj = x1 · x2 · · ·xj .

After receiving Mj , Uj+1 will forward it to S. The attack succeeds based on
the following lemma.

Lemma 3.1. As a result of the above attack, Ui can mount an offline dic-
tionary attack against Ui+1.

Proof. After receiving Mj from Uj+1, S first decrypts it using the password
pwj to obtain T ′

j . S then selects a random number vj+1 (1 ≤ vj+1 ≤ q − 1),
and computes T ′

j , where

T ′
j = {gt1vj+1 , gt1t2vj+1 , gVj+1·(Xj/x3), · · · , gVj+1·(Xj/xj), gVj+1·Xj ,

Vj+1 = v1 · v2 · · · vj+1, Xj = x1 · x2 · · ·xj .

Finally, S sends M ′
j = εpwj+1(T

′
j) to Uj+1.

Ui then intercepts M ′
j , and mounts an offline dictionary attack as follows.

1. Ui guesses a possible password pw∗
j+1, and decrypts M ′

j as

Dpw∗
j+1(M ′

j)
= {α1, α2, α3, · · · , αj+1}

2. Ui checks that (α1)t2 = α2. If the check succeeds, then Ui confirms
that pw∗

j+1 = pwj+1 because (ε,D) is an ideal cipher. Otherwise, go
to step 1.

In fact, to mount an attack, Uj only needs to intercept M ′
j = εpwi(T

′
j) which

is sent to Uj+1 by S. It is clear that the following facts hold: T ′
j contains

gVj+1·(Xj/xj) and gVj+1·Xj , Uj knows xj , and (ε,D) is an ideal cipher. Then
it is straightforward that Uj can mount an offline dictionary attack to search
pwj+1.

5

3.2 Security vulnerability in the EKE-M protocol

In the EKE-M protocol, a malicious participant Uj (1 ≤ j ≤ n) can mount an
online dictionary attack against any other participant Ui (1 ≤ i ≤ n, i 6= j)
without being detected by any entity (it is clear that simultaneously the
adversary can try at most n− 1 passwords).

To mount the attack, Uj initiates an instance of the protocol, and blocks
all messages sent to Ui. In the first step, Uj guesses a possible password
pw∗

i possessed by Ui, and impersonates Ui to broadcast εpw∗
i
(gxi). In the

third step, Uj impersonates Ui to broadcast the key confirmation message
Authi = h(i||N). The attack succeeds based on the following lemma.

Lemma 3.2. As a result of the above attack, Uj can test whether pw∗
i = pwi,

the protocol instance will successfully end, and all participants except Ui

compute the same session key.

Proof. In the EKE-M protocol, the session key material N is independently
sent to each participant and the session key is computed based on N and
other public information. So, it is straightforward to verify that the protocol
instance will successfully end and all participants except Ui compute the
same session key.

After intercepting εpwi(g
si) and mi = ski ⊕N sent by S, Uj first computes

the guessed ephemeral session key between Ui and S as

sk∗
i = h(sid′||(Dpw∗

i
(εpwi(g

si)))xi)

Uj then checks whether N = mi ⊕ sk∗
i . Based on the properties of the ideal

cipher (ε,D), if the check succeeds then Uj can confirm that pw∗
i = pwi;

otherwise pw∗
i 6= pwi.

Obviously, this attack also demonstrates that a malicious participant to
impersonate any other honest participants in an protocol instance. It is
clear that these security vulnerabilities exist because the server S does not
require the clients to authenticate themselves in the protocol execution.

4 Conclusions

In this paper we have demonstrated certain security vulnerabilities in two
password-based Diffie-Hellman key exchange protocols.

6

Acknowledgements

The author would like to express their deep appreciation for the valuable
comments provided by Chris J. Mitchell.

References

[1] J. Black and P. Rogaway. Ciphers with arbitrary finite domains. In
B. Preneel, editor, Proceedings of the Cryptographer’s Track at the RSA
Conference 2002, volume 2271 of Lecture Notes in Computer Science,
pages 114–130. Springer, 2002.

[2] J. Byun and D. Lee. N-Party encrypted Diffie-Hellman key exchange
using different passwords. In J. Ioannidis, A. D. Keromytis, and M. Yung,
editors, Applied Cryptography and Network Security, Third International
Conference, ACNS 2005, New York, NY, USA, volume 3531 of Lecture
Notes in Computer Science, pages 75–90. Springer-Verlag, 2005.

[3] D. Stinson. Cryptography Theory and Practice. CRC Press, Inc., second
edition, 2002.

7

