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Abstract We propose a formal model for security of verifiable shuffles
and a new verifiable shuffle system based on the Paillier encryption scheme,
and prove its security in the proposed model. The model is general, so it
can be extended to verifiable shuffle decryption and provides a direction for
provable security of mix-nets.
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1 Introduction

A shuffle takes an input list of ciphertexts and outputs a permuted and
re-encrypted version of the input list. Re-encryption of a ciphertext can be
defined for encryption systems such as the El Gamal and Paillier encryption
systems, and allows generation of ciphertexts c′ from a given ciphertext c
such that both ciphertexts correspond to the same plaintext m under the
same public key.

The main application (motivation for the study) of shuffles is to con-
struct mix-nets, a cryptographic system introduced by Chaum [8] for pro-
viding communication unlinkability and anonymity. Mix-nets are among
the most widely used systems for providing communication privacy, and
have found applications in anonymous email systems [8], Web browsing
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[15], electronic voting [40,32,26], anonymous payment systems [21,9], loca-
tion privacy for mobile networks [28] and mobile IP [9], secure multiparty
computation [24] and privacy in advertisements [27].

A mix-net consists of a number of mix-centres that collectively permute
and decrypt the mix-net’s input list. Shuffles are used to implement mix-
centres. A basic shuffle permutes its input list of ciphertexts through re-
encryption. Mix-centres may also partially decrypt the list [2], hence called
shuffle decryption. Mix-nets that use shuffle decryption could be more effi-
cient but in case a mix-centre fails, they need more computation to recover
[14].

The main security objective of shuffle systems is to provide unlinkability
between its input elements and its output elements for outsiders, and so
effectively keeping the permutation secret. It is referred to as shuffle privacy.
Another important property of shuffles is verifiability : that is providing a
proof that the output is correctly constructed. Verifiability of shuffles is
used to provide robustness for the mix-net: that is ensuring that the mix-
net works correctly even if a number of mix-servers are malicious. This is an
important property of mix-nets and so verifiability of shuffles has received
much attention. Shuffles must be efficient and the cost is measured in terms
of computation and communication that is required to provide privacy for
n users.

In this paper, we focus on verifiable shuffles. Privacy of shuffles has tra-
ditionally been equated to the zero-knowledge property of the proof system
used for verifying correctness. Recently a number of efficient constructions
for verifiable shuffles have been proposed [1–3,23,37]. In Crypto’01, Fu-
rukawa and Sako [12] gave a characterisation of permutation matrices in
terms of two equations that can be efficiently proved, hence proposing an
efficient (3 round proof system) verifiable shuffle scheme. However, in a
subsequent paper [13], they noted that the proof system was not correctly
proved to be zero-knowledge. They however gave a definition of privacy for
shuffles and showed that their shuffle scheme satisfied this definition. The
definition requires that the verifier cannot learn anything about the ’rela-
tion’ between the shuffle’s output and its input using the transcript of the
proof system. Neff [32,33] and later Groth [19] proposed shuffles that provide
zero-knowledge property for their proofs. However, like the Furukawa-Sako
scheme, the zero-knowledgeness of Neff’s protocol has not been correctly
proved and still remains an open problem [36].

As noted above, the notion of privacy varies among shuffles and no formal
model for verifiable shuffles has been suggested so far. Such a formalisation
could also be important for formalising security of mix-nets. Recently pro-
posed attacks [4,34,46] against mix-nets clearly demonstrate the need for
such a model.

The first contribution of this paper is to give a formal model for shuffles
that allows us to have a unified approach for assessment of shuffle systems.
Our definition of shuffle privacy is motivated by observing the similarity
between a shuffle hiding the permutation, and an encryption system hiding
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the input message. We consider adaptive attacks by an active adversary
that uses a chosen permutation attack (CPAS) (similar to chosen plaintext)
and a chosen transcript attack (CTAS) (similar to chosen ciphertext). A
difference between this model and the model of a traditional encryption
system is that in this case the adversary does not only specify distribution
of the challenge permutation (i.e. plaintext) but also another input, the list
of input ciphertexts. We allow the adversary to choose this input ciphertext
list adaptively and also know the corresponding plaintext list. Using this
approach, notions of privacy can be defined in line with semantic security
and indistinguishability. We prove that these two notions of privacy are
equivalent and can be interchangeably used. The definition of verifiability
is based on the notion of completeness and soundness of the proof system.
This is the first complete model for shuffle security with an active adver-
sary and under CPAS and CTAS . The model can be extended to verifiable
shuffle decryption. Our future work is to extend it to a formal model of
mix-nets, and so providing a unified framework for security evaluation of
these systems.

A second contribution of this paper is proposing a new 3-round verifi-
able shuffle scheme based on the Paillier encryption system [39] and using
the shuffle scheme to construct a robust mix-net. The Paillier encryption
system provides semantic security against adaptive chosen plaintext attacks
(CPA) in the standard model and similar to the El Gamal cryptosystem,
it is possible to define a re-encryption algorithm for it. The shuffle uses
Furukawa-Sako’s approach for characterisation of permutation matrices but
has computations over a composite modulus which complicates security
proofs (We have to prove Theorem 5 and Theorem 8). We prove in our
proposed model that the shuffle provides verifiability and privacy against
chosen permutation attacks, but not chosen transcript attacks. Similar to
Groth’s scheme, our shuffle scheme’s security relies on assumptions (Com-
putational Composite Residuosity and Decisional Composite Residuosity)
different from assumptions (Discrete Log and Decisional Diffie-Hellman)
underlying security of the Furukawa-Sako and Neff schemes.

Related Works
Furukawa et al. [13] gave a definition of privacy for security evaluation

of their shuffle but this definition is for a passive adversary and does not
model corruption of input messages by senders or a-priori partial informa-
tion about the permutation. Wikstrom [45] proposed a notion of privacy for
non-verifiable shuffles for an adversary who has access to an input and an
output of the shuffle. None of the above formally defines verifiability of shuf-
fles. Furukawa [14] provided a formal security model for shuffle decryption
systems. In [4], a formalisation of mix-nets and their security requirements
was proposed.

An efficient verifiable shuffle construction was given by Neff [32]. This
construction is based on a generalisation of Chaum-Pedersen knowledge
proof of equality of discrete logarithms and uses the fact that a polynomial
of degree n has at most n roots. An improved version of this scheme is
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given later [33]. Based on Neff’s method, Groth [19] proposed a very efficient
scheme that uses homomorphic commitments. The input ciphertexts in this
scheme can be encrypted by any homomorphic cryptosystem. The above
schemes guarantee privacy using the zero-knowledge property of the proof
system. A recent direction in designing mix-nets has been to trade off some
privacy or correctness for efficiency [6,18,26].

The organization of the paper is as follows. In section 2, we recall some
background on public-key encryption schemes and shuffles. Section 3 pro-
vides our formal definitions of verifiable shuffles and its security require-
ments. Section 4 gives a verifiable shuffle scheme based on the Paillier
public-key system, its security proofs and efficiency analysis. The next sec-
tion constructs a robust mix-net from the verifiable shuffle scheme. Section
6 concludes the paper.

2 Background

2.1 Notations and Terminology

Let lcm and gcd stand for ‘least common multiple’ and ‘greatest com-
mon divisor’, respectively. For a set S, |S| denotes the number of ele-
ments in the set and “x ← S” denotes an element x uniformly chosen
from S. {Element|Conditions} denotes the set of Elements satisfying the
Conditions. Let “Pr[Predicate]” denote the probability that Predicate is
true. For a list L, |L| denotes the size of the list, L[i] denotes the ith element
of the list and π(L) denotes the list of elements in L permuted by a permu-
tation π. Let Sn denote the set of all permutations on {1, ..., n}. Let poly(n)
refer to some fixed but unspecified polynomial and Un denote a random
variable uniformly distributed over {0, 1}n. Let PT denote polynomial-time,
PPT denote probabilistic PT and DPT denote deterministic PT.

An algorithm A can simply be viewed as a machine that takes as input
a string x, performs some operations and outputs a string y. We write
y ← A(x) and denote Cx,y

A the probabilistic input (sequence of internal
random coin tosses) of A. For example, in subsection 2.3 below, if Paillier
ciphertext g = rN (1+mN), then C

(N,m),g
E = r. We can abuse this notation

for algorithms in subsection 2.2 by writing Cm,c
Epk

instead of C
(pk,m),c
E for an

encryption algorithm E and similar for a decryption algorithm Dsk and a re-
encryption algorithm Rpk. We use C

Lx,Ly

A to denote the list of probabilistic
inputs of A where the ith element of the list is the probabilistic input that
takes the ith element of the list Lx to the ith element of the list Ly. The
set of possible outputs of A on input x is denoted by [A(x)]. For a function
f : N→ R+, if for every positive number α, there exists a positive integer l0
such that for every integer l > l0, it holds that f(l) < l−α, then f is said to
be negligible. A problem is said to be computationally difficult if for every
PT algorithm, the probability that the PT algorithm can solve the problem
is a negligible function.
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The adversary is modelled by an oracle machine which is a Turing ma-
chine with additional tapes and states allowing access to some oracles that
provide answers to queries of defined types. An interactive proof system
(P,V) consists of two parties: a prover P and a verifier V. Each party can
be modelled by an interactive machine, which is a Turing machine with
additional tapes and states allowing joint communication and computation
with another interactive machine. Formal descriptions of oracle machines
and interactive machines can be found in [16]. For a proof system (P,V),
the verifier’s view V iewPV (x) denotes all that V can see from the execution of
the proof system on input x (in other words, all input tapes of the verifier).

2.2 Public-key Encryption Schemes

2.2.1 Syntax A public-key encryption scheme consists of a key generation
algorithm G, an encryption algorithm E and a decryption algorithm D. It
is denoted by (G,E,D).

– Key generation: The PPT algorithm G on input 1l outputs (pk, sk) where
pk is the public key, sk is the secret key and l is a security parameter.
It is denoted by (pk, sk) ← G(1l).

– Encryption: The PPT algorithm E takes as input the public key pk and
a plaintext m and outputs a ciphertext c. It is denoted by c ← E(pk, m)
or c ← Epk(m).

– Decryption: The DPT algorithm D takes as input the secret key sk and
a ciphertext c and outputs a plaintext such that if c ← Epk(m) then
Dsk(c) = m, where Dsk(c) (or D(sk, c)) denotes the output of D on
input sk and c.

A public-key encryption scheme, such as the El Gamal and Paillier
schemes, may have a re-encryption algorithm. Following the definition in
[45], this means there is a PPT algorithm R that takes as input the public
key pk and a ciphertext and outputs another ciphertext such that for every
plaintext m and its ciphertexts c and c′:

Pr[c′ = Rpk(c)] = Pr[c′ = Epk(m)] (1)

where Rpk(c) (or R(pk, c)) denotes the output of R on input pk and c. A
public-key encryption scheme with a re-encryption algorithm is denoted by
(G,E, D,R).

2.2.2 Security We briefly recall definitions and notions of security used in
this paper and more details can be found in [17]. There are two equivalent
notions of security for encryption against chosen plaintext attacks, semantic
security (SS-CPA) and indistinguishability (IND-CPA). A chosen plaintext
attack means that the adversary can obtain ciphertexts corresponding to
plaintexts that he adaptively chooses. Semantic security intuitively means
that whatever the adversary is able to compute about the plaintext from
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a challenge ciphertext, can also be computed without the ciphertext. In-
distinguishability means that it is computationally infeasible to distinguish
encryptions of two plaintexts of the same length.

There are also two equivalent definitions of encryption security against
chosen ciphertext attacks, semantic security (SS-CCA) and indistinguisha-
bility (IND-CCA). A chosen ciphertext attack means that the adversary can
obtain plaintexts corresponding to ciphertexts that he adaptively chooses,
even after the challenge ciphertext is given. Another type of security re-
quirement is non-malleability which means that given a ciphertext, it is
computationally infeasible to generate a different ciphertext such that the
corresponding plaintexts are related in a known manner. It has been proved
[17] that non-malleability against chosen ciphertext attacks (NM-CCA) is
equivalent to SS-CCA and IND-CCA.

2.3 Paillier Public-key System

Key generation: Let N = pq, where p and q are large primes, and λ =
lcm(p − 1, q − 1). The public key is pk = N and the secret key is sk = λ.
Hereafter, unless stated otherwise, we assume all modular computations are
in modulo N2.
Encryption: Plaintext m ∈ ZN can be encrypted by choosing r ← Z∗N and
computing the ciphertext g = rN (1 + mN).
Re-encryption: A Paillier ciphertext g for a plaintext m can be re-encrypted
as g′ = r′Ng for the same plaintext m, where r′ ← Z∗N . The re-encryption
algorithm satisfies the condition (1) above.
Decryption: Ciphertext g ∈ Z∗N2 can be decrypted as m = L(gλ mod N2)/λ
mod N , where the function L takes its input from the set {u ∈ ZN2 |u =
1 mod N} and is defined as L(u) = (u− 1)/N .
Computational Composite Residuosity (CCR) Assumption: Suppose z ← Z∗N2

is given, the Computational Composite Residuosity problem is to find x ∈
ZN such that there exists r ∈ Z∗N satisfying z = rN (1 + xN) mod N2. The
CCR assumption states that the CCR problem is computationally difficult.
Decisional Composite Residuosity (DCR) Assumption: A number z ∈ Z∗N2

is said to be a wth residue mod N2 if there exists a number y ∈ Z∗N2

such that z = yw. Let WN denote the set of N th residues modulo N2.
The Decisional Composite Residuosity problem is to distinguish between
an element uniformly chosen from the set WN and an element uniformly
chosen from the set Z∗N2 . The DCR assumption states that the DCR problem
is computationally difficult.
Security: Theorem 1 states security of the Paillier scheme and its proof can
be found in [39].

Theorem 1 The Paillier encryption scheme provides SS-CPA if and only
if the DCR assumption holds.

NM-CCA robust threshold encryption scheme: Using the twin encryption
paradigm [31], the Shamir secret sharing scheme [43], the proof of equality of
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discrete logs and a simulation-sound proof of equality of plaintexts, Fouque
and Pointcheval [11] proposed an NM-CCA robust threshold encryption
scheme based on the Paillier public-key system that is proved secure in the
random oracle model. We use this encryption system to construct a robust
mix-net.

2.4 Furukawa-Sako Shuffle

Furukawa and Sako [12] proposed an efficient verifiable shuffle scheme based
on the El Gamal public-key system. In their scheme, a permutation is rep-
resented as a permutation matrix, which is defined in Definition 1. Their
proof system is based on Theorem 2, which states two conditions to achieve
a permutation matrix.

Definition 1 A matrix (Aij)n×n is a permutation matrix modulo k if it
satisfies the following for some permutation π

Aij =
{

1 mod k if π(i) = j
0 mod k otherwise

Theorem 2 A matrix (Aij)n×n is a permutation matrix modulo q, where q
is a prime, if and only if for all i, j and k, both

n∑

l=1

AliAlj =
{

1 mod q if i = j
0 mod q otherwise

n∑

l=1

AliAljAlk =
{

1 mod q if i = j = k
0 mod q otherwise

hold.

3 Security of Verifiable Shuffles

3.1 Syntax of Shuffles

First, we define a language to describe that a list of ciphertexts is a permuted
and re-encrypted version of another ciphertext list.

Definition 2 Suppose RP = (G,E,D, R) is a public key encryption scheme
with a re-encryption algorithm. Define a language LRP of tuples (pk, L1, L2)
such that pk is a public key generated by G and L2 is a permutation of re-
encryptions of ciphertexts in L1 produced by Rpk. The witness w(pk, L1, L2)
includes the permutation and the list of probabilistic inputs of Rpk.

LRP = {(pk, L1, L2) | (|L1| = |L2|) ∧
(∃π ∈ S|L1|, ∀i ∈ {1, ..., |L1|} : L2[π(i)] ∈ [Rpk(L1[i])])}

w(pk, L1, L2) = (π, C
π(L1),L2
Rpk

)
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A shuffle takes a list of ciphertexts and outputs a permuted list of their
re-encryptions. If being verifiable, it then runs a proof system for the lan-
guage LRP to prove that the output is really a permutation of the re-
encryptions of the input ciphertexts. This can be formally defined as fol-
lows.

Definition 3 A shuffle is a pair, (RP, S), such that:

– RP is a public-key encryption scheme with a re-encryption algorithm
(G,E, D,R). Suppose the key generation algorithm G generates a pair
(pk, sk).

– The PPT algorithm S takes as input a public key pk, a list of n input
ciphertexts Lin and a random permutation π ∈ Sn, and outputs a list
of n output ciphertexts Lout. S performs correctly if Lout is a list of
re-encryptions of ciphertexts in Lin permuted by π.

Definition 4 A verifiable shuffle is a tuple, (RP, S, (P,V)), such that:

– RP and S are defined as in Definition 3.
– The proof system (P,V) takes input pk, Lin and Lout from S and proves

that (pk, Lin, Lout) ∈ LRP . The private input to P includes only the
witness w(pk, Lin, Lout) and does not include the private key sk.

3.2 Security Definitions

There are 2 security requirements. Privacy requires an honest shuffle to pro-
tect its secret permutation whereas verifiability requires that any attempt
by a malicious shuffle to produce an incorrect output must be detectable.

We assume an honest verifier for the proof system (P,V).

3.2.1 Verifiability The proof system proves that the shuffle output is a
permutation of re-encryptions of the input ciphertexts. In other words, it is
a proof system for the language LRP . The proof system should satisfy two
conditions, completeness and soundness. The completeness condition states
that for all x ∈ LRP , the proof system accepts with overwhelming probabil-
ity. The soundness condition means that for all x /∈ LRP , the proof system
accepts with negligible probability. In both definitions of completeness and
soundness, we capture the non-uniform capability of the adversary by using
a (nonuniform) auxiliary input t.

In the soundness definition, A can be cooperative with B and passes
its internal state information δ to B. The private input y of the prover
includes information about the lists of plaintexts L

(p)
in and L

(p)
out and the

corresponding probabilistic inputs C
L

(p)
in ,Lin

Epk
and C

L
(p)
out,Lout

Epk
.

Definition 5 A shuffle (RP, S, (P,V)) is verifiable if its proof system
(P,V) has a polynomial-time V and satisfies two conditions:
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– Completeness: For every PPT algorithm A and every positive number
α, there exists a positive integer l0 such that for every integer l > l0 and
t ∈ {0, 1}poly(l), it holds that

Pr




〈P(y),V〉(pk, Lin, Lout) = 1 given (pk, Lin, Lout) ∈ LRP
where (pk, sk) ← G(1l),

(Lin, Lout) ← A(pk, t),
y ← w(pk, Lin, Lout)




> 1− l−α

The probability is taken over the internal coin tosses of G, A, P and V.
– Soundness: For every interactive machine B, every PPT algorithm A

and every positive number α, there exists a positive integer l0 such that
for every integer l > l0 and t ∈ {0, 1}poly(l), it holds that

Pr




〈B(y),V〉(pk, Lin, Lout) = 1 given (pk, Lin, Lout) /∈ LRP
where (pk, sk) ← G(1l),

(π, Lin, Lout, δ) ← A(pk, t),

y ← (δ, π, L
(p)
in , C

L
(p)
in ,Lin

Epk
, L

(p)
out, C

L
(p)
out,Lout

Epk
)


 < l−α

The probability is taken over the internal coin tosses of G, A, B and V.

We also define strong-soundness, where the private input y of the prover
includes the private key sk. This condition intuitively requires that even if a
malicious shuffle knows the private key, it can not produce an incorrect out-
put without being detected by the proof system. A shuffle, which provides
completeness and strong-soundness, is said to provide strong-verifiability. In
the strong-soundness definition, B may also know sk as A can include sk
in its state information δ.

Definition 6 A shuffle (RP, S, (P,V)) provides strong-verifiability if its
proof system (P,V) has a polynomial-time V and satisfies two conditions:

– Completeness: As in Definition 5
– Strong-soundness: For every interactive machine B, every PPT algo-

rithm A and every positive number α, there exists a positive integer l0
such that for every integer l > l0 and t ∈ {0, 1}poly(l), it holds that

Pr




〈B(y),V〉(pk, Lin, Lout) = 1 given (pk, Lin, Lout) /∈ LRP
where (pk, sk) ← G(1l),

(π, Lin, Lout, δ) ← A(pk, sk, t),

y ← (δ, π, L
(p)
in , C

L
(p)
in ,Lin

Epk
, L

(p)
out, C

L
(p)
out,Lout

Epk
)


 < l−α

The probability is taken over the internal coin tosses of G, A, B and V.



10 Lan Nguyen et al.

3.2.2 Privacy The shuffle can be considered as a public key transforma-
tion that hides the permutation through re-encryption. This can be viewed
as ‘encryption’ of permutation through the process of re-encryption hence
notions of ‘concealment’ of plaintexts in encryption systems can be used to
model privacy. We consider 2 types of adaptive attacks by active adversaries.
Chosen permutation attack (CPAS) is similar to chosen plaintext attacks
and the adversary can obtain transcripts of the shuffle executions corre-
sponding to permutations that the adversary adaptively chooses. Chosen
transcript attack (CTAS) is similar to chosen ciphertext attacks and the
adversary can obtain permutations that correspond to valid shuffle tran-
scripts that the adversary adaptively chooses. The transcript of a verifiable
shuffle’s execution consists of the lists of input ciphertexts and output ci-
phertexts and the verifier’s view of the proof system. An adaptive attack
has 4 steps.

1. Key generation: A trusted party generates the keys (pk, sk) ← G(1l).
The adversary is given (1l, pk). (sk is used for decryption and is not
given to the shuffle.)

2. Oracle queries: The adversary adaptively uses the information obtained
so far to make queries to some oracles. Different sets of oracles determine
different types of attacks (CPAS and CTAS). After making a number of
such queries, the adversary moves to the next stage.

3. Challenge generation: Using the information obtained so far, the adver-
sary specifies a challenge template, according to which an actual chal-
lenge will be generated.

4. Additional oracle queries: Based on the information obtained so far, the
adversary makes additional queries as in Step 2 and then, produces an
output and halts.

The adversary’s strategy consists of two stages, each represented by a PPT
oracle machine, and corresponding to its action before and after generation
of the actual challenge. The first part, denoted by A1, captures the adver-
sary’s behavior during Step 2 and 3. A1 is given the public key pk, and its
output is a pair (τ, δ), where τ is the challenge template generated at the
beginning of Step 3 and δ is the state information passed to the second part
of the adversary. The second part of the adversary, denoted by A2, captures
the adversary’s behavior during Step 4. A2 is given the state information δ
and the actual challenge o generated in Step 3, and produces the adversary’s
output v. We let each oracle machine to have a (nonuniform) auxiliary input
t. This is to capture the nonuniform power of the adversary. It suffices to give
t to only the first machine as A1 can pass this input to the second machine
as part of the state information δ. A similar argument shows that it suffices
to provide the public key pk only to A1. We write (τ, δ) ← AOracles

1 (pk, t),
and v ← AOracles

2 (δ, o), where Oracles specify oracles that are available to
the adversary.

Notions of Privacy: We consider two notions of privacy. Semantic privacy
formalizes the intuition that whatever is computable about the permutation
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from a shuffle execution’s transcript must be also computable without the
transcript. In formalising this notion under CPAS and CTAS , we consider
the following challenge templates. The challenge template includes a PPT
algorithm Πn, two polynomially bounded functions hn and fn, a list of n

ciphertexts Lin, the list of n corresponding plaintexts L
(p)
in and the list of

probabilistic inputs C
L

(p)
in ,Lin

Epk
. Πn specifies a distribution on the set Sn (of

all permutations on {1, ..., n}): it takes a poly(l)-bit input (l is the security
parameter) and outputs a permutation π ∈ Sn. The information regard-
ing the permutation that the adversary tries to obtain is captured by fn,
whereas the a-priori partial information about the permutation is captured
by hn. The actual challenge includes the list of output ciphertexts Lout, the
verifier’s view of the proof system V iewPV (pk, Lin, Lout), the list of n input
ciphertexts Lin, the list of n corresponding plaintexts L

(p)
in , the list of prob-

abilistic inputs C
L

(p)
in ,Lin

Epk
and the partial information hn(π). The inclusion

of L
(p)
in and C

L
(p)
in ,Lin

Epk
models the fact that the adversary can somehow know

all the plaintexts of the input ciphertexts to the shuffle. The adversary’s
goal is to guess fn(π).

The second notion of privacy is indistinguishability and means that it
is infeasible to distinguish transcripts of two shuffle executions that corre-
spond to two permutations of the same size. In the definitions of IND-CPAS

and IND-CTAS , the challenge template consists of a pair of permutations
π(1), π(2) ∈ Sn, a list of n ciphertexts Lin, the list of n corresponding plain-

texts L
(p)
in and the list of probabilistic inputs C

L
(p)
in ,Lin

Epk
. The actual challenge

is the transcript of the shuffle execution corresponding to one of the permu-
tations and consists of the list of output ciphertexts Lout, the verifier’s view
of the proof system V iewPV (pk, Lin, Lout), the lists of input ciphertexts Lin

and the corresponding plaintexts L
(p)
in , and the probabilistic inputs C

L
(p)
in ,Lin

Epk

of the input ciphertexts. The adversary’s goal is to distinguish the two pos-
sible cases.

Attacks: We consider two attacks.
(Chosen permutation attack) The adversary can do the following experiment
for many times. It takes a permutation and a list of input ciphertexts and
simulates a ciphertext list output by the algorithm S and corresponding
to the input list, and the verifier’s view of the proof system (P,V) when
the shuffle interacts with an honest verifier. The adversary does not have
access to an oracle. We provide the definitions of SP-CPAS and IND-CPAS

as follows.

Definition 7 A verifiable shuffle (RP, S, (P,V)) is said to provide semantic
privacy under chosen permutation attacks (SP-CPAS) if for every pair of PPT
algorithms, A1 and A2, there exists a pair of PPT algorithms, A′1 and A′2,
such that the following two conditions hold:
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1. For every positive number α, there exists a positive integer l0 such that
for every integer l > l0 and t ∈ {0, 1}poly(l), it holds that

Pr




v = fn(π) where
(pk, sk) ← G(1l),

((Πn, hn, fn, Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
), δ) ← A1(pk, t),

Lout ← S(pk, Lin, π) where π ← Πn(Upoly(l)),
o ← (Lout, V iewPV (pk, Lin, Lout), Lin, L

(p)
in ,

C
L

(p)
in ,Lin

Epk
, hn(π)),

v ← A2(δ, o)




< Pr




v = fn(π) where
((Πn, hn, fn), δ) ← A′1(1

l, t),
π ← Πn(Upoly(l)),
v ← A′2(δ, hn(π))


 + l−α

2. For every l and t above, the parts (Πn, hn, fn) generated from A1(pk, t)
and A′1(1

l, t) are identically distributed.

Definition 8 A verifiable shuffle (RP, S, (P,V)) is said to provide indistin-
guishability under chosen permutation attacks (IND-CPAS) if for every pair
of PPT algorithms, A1 and A2, for every positive number α, there exists a
positive integer l0 such that for every integer l > l0 and t ∈ {0, 1}poly(l), it
holds that

|p(1)
l,t − p

(2)
l,t | < l−α

where

p
(i)
l,t

4
= Pr




v = 1 where
(pk, sk) ← G(1l),

((π(1), π(2), Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
), δ) ← A1(pk, t),

Lout ← S(pk, Lin, π(i)),

o(i) ← (Lout, V iewPV (pk, Lin, Lout), Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
),

v ← A2(δ, o(i))




where π(1), π(2) ∈ Sn.

The following theorem shows the equivalence of SP-CPAS and IND-
CPAS . The proof is similar to the proof of the equivalence between SS-CPA
and IND-CPA [17] and is shown in Appendix A.

Theorem 3 A verifiable shuffle (RP, S, (P,V)) provides SP-CPAS if and
only if it provides IND-CPAS.

(Chosen transcript attack) In this attack, in addition to the experiment in
chosen permutation attacks, the adversary also has access to an oracle OT ,
that takes a transcript of a shuffle execution and returns the corresponding
permutation if the transcript is valid, and an error symbol, otherwise. The
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adversary is adaptive and queries are chosen by taking the results of all
previous queries into account. We assume that in step 4, the adversary can
not use the transcript in the actual challenge as a query to OT .

We note that for shuffles without proof systems, i.e. not providing veri-
fiability, the adversary with access to OT can always learn the permutation.
This is because the shuffle transcript consists of an input ciphertext list
and an output ciphertext list and the adversary can use re-encryption to
generate another input ciphertext list and another output ciphertext list
that he can present to OT and obtain the permutation. For verifiable shuf-
fles, the attack can be prevented by using the verifiability proof systems.
For example, informally, by adding proofs of knowledge to the proof sys-
tem, construction of new valid transcripts from old ones could be prevented.
Definitions of SP-CTAS and IND-CTAS are given as follows.

Definition 9 A verifiable shuffle (RP, S, (P,V)) is said to provide semantic
privacy under chosen transcript attacks (SP-CTAS) if for every pair of PPT
oracle machines, A1 and A2, there exists a pair of PPT algorithms, A′1 and
A′2, such that the following two conditions hold:

1. For every positive number α, there exists a positive integer l0 such that
for every integer l > l0 and t ∈ {0, 1}poly(l), it holds that

Pr




v = fn(π) where
(pk, sk) ← G(1l),

((Πn, hn, fn, Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
), δ) ← AOT

1 (pk, t),
Lout ← S(pk, Lin, π) where π ← Πn(Upoly(l)),
o ← (Lout, V iewPV (pk, Lin, Lout), Lin, L

(p)
in ,

C
L

(p)
in ,Lin

Epk
, hn(π)),

v ← AOT
2 (δ, o)

(A2 must not send (Lout, V iewPV (pk, Lin, Lout), Lin)
to OT )




< Pr




v = fn(π) where
((Πn, hn, fn), δ) ← A′1(1

l, t),
π ← Πn(Upoly(l)),
v ← A′2(δ, hn(π))


 + l−α

2. For every l and t above, the parts (Πn, hn, fn) generated from AOT
1 (pk, t)

and A′1(1
l, t) are identically distributed.

Definition 10 A verifiable shuffle (RP, S, (P,V)) is said to provide indis-
tinguishability under chosen transcript attacks (IND-CTAS) if for every pair of
PPT oracle machines, A1 and A2, for every positive number α, there exists
a positive integer l0 such that for every integer l > l0 and t ∈ {0, 1}poly(l),
it holds that

|p(1)
l,t − p

(2)
l,t | < l−α
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where

p
(i)
l,t

4
= Pr




v = 1 where
(pk, sk) ← G(1l),

((π(1), π(2), Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
), δ) ← AOT

1 (pk, t),
Lout ← S(pk, Lin, π(i)),

o(i) ← (Lout, V iewPV (pk, Lin, Lout), Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
),

v ← AOT
2 (δ, o(i))

(A2 must not send (Lout, V iewPV (pk, Lin, Lout), Lin)
to OT )




where π(1), π(2) ∈ Sn.

The following theorem shows the equivalence of SP-CTAS and IND-
CTAS . The proof is similar to the proof of the equivalence between SS-CCA
and IND-CCA [17] and is shown in Appendix A.

Theorem 4 A verifiable shuffle (RP, S, (P,V)) provides SP-CTAS if and
only if it provides IND-CTAS.

4 Paillier-based Verifiable Shuffle scheme

4.1 Description

The verifiable shuffle scheme is a tuple (RP, S, (P,V)), where the public-key
encryption scheme with a re-encryption algorithmRP is the Paillier scheme.
The public key is pk = N , where N = pq with primes p and q, and the secret
key is sk = λ, where λ = lcm(p − 1, q − 1). The algorithm S takes pk, a
list of Paillier ciphertexts g1, ..., gn ∈ Z∗N2 and a permutation π and outputs
another list of Paillier ciphertexts g′1, ..., g

′
n ∈ Z∗N2 . The proof system (P,V),

which is described below, must prove the existence of a permutation π and
r1, ..., rn ∈ Z∗N such that g′i = rN

i gπ−1(i) mod N2, i = 1, ..., n.

4.1.1 Outline of the proof system The proof system is based on ideas un-
derlying the Furukawa-Sako proof system [12]. A permutation is also repre-
sented as a permutation matrix, which is defined in Definition 1.

Representing the permutation π used in the shuffle as a permutation
matrix, the shuffle’s proof system, which proves the correctness of the shuffle,
must show the knowledge of a permutation matrix modulo N (Aij)n×n

and {ri|i = 1, ..., n} satisfying the following relationship between input and
output items:

g′i = rN
i

n∏

j=1

g
Aji

j , i = 1, ..., n (2)

Theorem 5 states conditions to achieve a permutation matrix modulo N .
Then the proof system needs to prove the knowledge of a matrix (Aij)n×n
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and {ri|i = 1, ..., n} satisfying equation (2) and the conditions on the matrix,
as stated in Theorem 5. Theorem 5 is similar to Theorem 2 for a permuta-
tion matrix modulo prime in the Furukawa-Sako scheme. As Theorem 5 is
for a permutation matrix modulo composite N , it has one more condition
“gcd(Aij , N) is different from p and q”. The theorem’s proof is shown in
Appendix B.

Theorem 5 A matrix (Aij)n×n is a permutation matrix modulo N , where
N = pq with primes p and q, if for all i, j and k, gcd(Aij , N) is different
from p and q and both of the following equations hold:

n∑

l=1

AliAlj =
{

1 mod N if i = j
0 mod N otherwise (3)

n∑

l=1

AliAljAlk =
{

1 mod N if i = j = k
0 mod N otherwise (4)

In the proof system, based on the CCR assumption, it is computationally
difficult for the prover to compute p and q. Hence, for any matrix (Aij)n×n

the prover can generate, “gcd(Aij , N) is different from p and q”. There-
fore, based on Theorem 5, the proof system needs to prove the following
statements:

– Given {gi} and {g′i}, {g′i} can be expressed as equation (2) using {ri}
and a matrix that satisfies equation (3).

– Given {gi} and {g′i}, {g′i} can be expressed as equation (2) using {ri}
and a matrix that satisfies equation (4).

– The matrix and {ri} in the above two statements are the same.

4.2 Proof System

The proof system (P,V) proves that the prover P knows permutation π and
r1, ..., rn ∈ Z∗N such that g′i = rN

i gπ−1(i), i = 1, ..., n. The input to the proof
system is N, {gi}, {g′i}, i = 1, ..., n. Suppose there is a publicly known set,
{g̃i}n

i=1, of elements uniformly generated from Z∗N2 . Let the permutation π
be represented by a permutation matrix modulo N (Aij)n×n. The protocol
is as follows:

1. P generates: αi ← ZN and α, r̃i, α̃, δi, ρ, ρi, τ, τi ← Z∗N , i = 1, ..., n.
2. P computes:

g̃i
′ = r̃i

N
n∏

j=1

g̃j
Aji , i = 1, ..., n

g̃′ = α̃N
n∏

j=1

g̃j
αj ; g′ = αN

n∏

j=1

g
αj

j
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ṫi = δN
i (1 + N

n∑

j=1

3αjAji); v̇i = ρN
i (1 + N

n∑

j=1

3α2
jAji), i = 1, ..., n

ẇi = τN
i (1 + N

n∑

j=1

2αjAji), i = 1, ..., n

v̇ = ρN (1 + N

n∑

j=1

α3
j ); ẇ = τN (1 + N

n∑

j=1

α2
j )

3. P −→ V: {g̃i
′}, g̃′, g′, {ṫi}, {v̇i}, v̇, {ẇi}, ẇ, i = 1, ..., n

4. P ←− V: challenge {ci}, ci ← ZN , i = 1, ..., n
5. P −→ V: the following responses

si =
n∑

j=1

Aijcj + αi mod N, i = 1, ..., n (5)

s̃ = α̃

n∏

i=1

r̃i
ci g̃i

di mod N

s = α

n∏

i=1

rci
i gdi

i mod N ; u = ρ

n∏

i=1

ρci
i δ

c2
i

i mod N ; v = τ

n∏

i=1

τ ci
i mod N

where di = (
∑n

j=1 Aijcj +αi− si)/N, i = 1, ..., n (so di can only be 0 or
1)

6. V verifies:

s̃N
n∏

j=1

g̃j
sj = g̃′

n∏

j=1

g̃j
′cj (6)

sN
n∏

j=1

g
sj

j = g′
n∏

j=1

g
′cj

j (7)

uN (1 + N

n∑

j=1

(s3
j − c3

j )) = v̇

n∏

j=1

v̇j
cj ṫj

c2
j (8)

vN (1 + N

n∑

j=1

(s2
j − c2

j )) = ẇ

n∏

j=1

ẇj
cj (9)

4.3 Security

Theorem 6 and Theorem 7 show that the proposed shuffle provides Verifia-
bility under the Computational Composite Residuosity (CCR) assumption,
and SP-CPAS under the Decisional Composite Residuosity (DCR) assump-
tion. Proofs of these theorems are shown in Appendix B.

Theorem 6 The shuffle achieves Verifiability if the CCR assumption holds.

Theorem 7 The shuffle achieves SP-CPAS if the DCR assumption holds.
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4.4 Comparison

Most of other shuffle schemes rely on the Discrete Log and Decisional Diffie-
Hellman assumptions and often lack security proofs, whereas our shuffle
scheme relies on the Computational Composite Residuosity and Decisional
Composite Residuosity assumptions with provable security. The proposed
proof system has the round efficiency of the Furukawa-Sako protocol (3
rounds) whereas both Neff’s system and Groth’s system require 7 rounds.
Compared to the Furukawa-Sako and Groth proof systems, our proposed
proof system has a more efficient set-up. In both those systems for El Gamal
ciphertexts, a set of subgroup elements is used. Construction of these ele-
ments in general is computationally expensive [33]. Our proof system also
relies on a set ({g̃1, ..., g̃n}) of elements in Z∗N2 that are just uniformly gen-
erated.

Our proof system requires 18n exponentiations in modulo N2, whereas
the Neff, Furukawa-Sako and Groth systems require 23n, 18n and 12n ex-
ponentiations in a modulo prime p, respectively. However, at a comparable
level of security, where the sizes of N and p are the same and the Neff,
Furukawa-Sako and Groth systems have exponents whose size is k times
smaller than p, an exponentiation in our system takes 4k times longer than
an exponentiation the other systems. So the computation cost of our sys-
tem is much more expensive. For the same reason, verifiable decryption of
output ciphertexts of our shuffle system is more expensive and a trusted
party is needed to generate keys N and λ.

5 A Robust Mix-net based on the Paillier Public-key System

5.1 Overview

The main motivation for analysing and constructing verifiable shuffles is
constructing robust mix-nets that consist of the following polynomially
bounded participants. Users send ciphertexts to the mix-net. Each mix-
server (also mix-centre) is implemented as a verifiable shuffle. It takes as
input a list of ciphertexts and outputs a permuted list of re-encrypted ci-
phertexts to the next mix server. Decryption servers collaboratively decrypt
the list of ciphertexts output by the last mix-server. A verifier verifies cor-
rectness of the mix-net’s operation. The verifier can be replaced by a collab-
oration of all servers, where each verification result is decided by a majority
vote of all servers and each random challenge is jointly generated by all
servers. All communication is assumed accessible by all servers.

Robustness ensures that the probability of producing correct output is
close to 1. If mix-centres are implemented as verifiable shuffles, correctness
of their outputs can be verified and in the case that a proof does not succeed,
the corresponding mix-centre is excluded from the mix-net operation. Inputs
to a mix-net must be encrypted by an NM-CCA encryption scheme [20].
Otherwise, an adversary can trace an input ciphertext ci by creating another
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input ciphertext ci′ whose plaintext is related to ci’s plaintext in a known
manner and checking the mix-net’s output for plaintexts that satisfy the
relationship. An example of this attack is shown in [41] against the mix-net
in [40]. It is also desirable to distribute the decryption ability, so that a
minimum number of decryption servers, the threshold, is needed to decrypt
the ciphertexts. The decryption process should also be robust that means
the corrupted decryption servers should not be able to prevent uncorrupted
ones from correctly decrypting the ciphertexts. In short, an NM-CCA robust
threshold encryption scheme is required. Our mix-net uses the NM-CCA
robust threshold version of the Paillier encryption scheme [11].

5.2 Description

(Set up) There are t mix servers, V S1, · · · , V St, one or more decryption
servers and a verifier V. Each mix server is implemented by as a verifiable
shuffle proposed in section 4, that shuffles its input list and proves the
correctness of its operation. If the proof succeeds, the output of the shuffle
will be used as the input of the next shuffle. Otherwise, the next shuffle
uses the input of the previous shuffles. And all verifiable shuffles of the mix
servers share the same public key.

The input ciphertexts to the mix-net are encrypted by the NM-CCA
robust threshold version of the Paillier encryption scheme [11]. A ciphertext
encrypted using this scheme has the form (e, aux), where e is the normal
Paillier ciphertext and aux allows the ciphertext to be NM-CCA-robust-
threshold.
(Operations)

1. The key generation algorithm of the NM-CCA robust threshold encryp-
tion scheme generates a public key and a set of secret keys and each
decryption server is given a secret key. After that, several mix sessions
can be executed and each mix session can be described as follows.

2. Users send the first mix-server ciphertexts encrypted by the public key
of the mix-net. An input ciphertext (e, aux) needs to pass NM-CCA test
by the verifier before the sub-ciphertext e is taken to the first mix-server.
Suppose L0 = (c1, · · · , cn) is a list of those sub-ciphertexts taken to the
first mix-server.

3. Each V Si in turn computes a randomly permuted and re-encrypted
list Li = (a′τi(1)

, · · · , a′τi(n)) from Li−1 = (a1, · · · , an), where a′i is a
re-encryption of ai and τi is a secret random permutation on {1, · · · , n},
and then outputs Li. V Si runs the proof system (P,V) to prove that Li

is a permutation of re-encryptions of elements in Li−1.
In case that the proof does not succeed, V Si is excluded from the mix-
net operation. If i 6= t, the mix-centre V Si+1 that receives the output
of the corrupted mix-centre V Si, will instead use V Si’s input list as its
input, effectively disregarding V Si. If i = t, V Si’s input list will be sent
to the decryption servers.
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4. The decryption servers jointly decrypt ciphertexts, which are sent from
the mix-centres, in a robust way and output a list of messages Lout =
(mφ(1), · · · ,mφ(n)), where φ = τt · · · τ1 and mi is a plaintext of ci.

5.3 Security

Extending our formal security model for verifiable shuffles to a formal se-
curity model for robust mix-nets would require significant efforts. First,
verifiable shuffles are mainly used for one type of robust mix-nets, where
each mix server behaves as a verifiable shuffle, whereas there are other types
of mix-nets. There are mix-nets where each input element is a multiple-layer
encryption of a message and each mix-server decrypts one layer of encryp-
tion. And there are hybrid mix-nets, which use both asymmetric and sym-
metric encryptions. Second, in the type of mix-nets where verifiable shuffles
are applicable, there are multiple mix-servers and decryption servers. Cor-
ruption among these servers would be much more complicated than just
a single malicious shuffle. A formal security model for mix-nets has been
proposed [4] but no robust mix-net scheme has been proved secure in this
model and proving our mix-net construction secure in this model would
not be easy. Therefore, providing a formal security model for mix-nets and
proving our mix-net construction secure in a formal security model remain
to be our future work.

At present, we can only informally state that the mix-net achieves pri-
vacy, robustness and public verifiability. Robustness and public verifiability
of the mix-net depends on verifiability of its shuffles (mix-centres). As any
honest party can be the verifier, the mix-net achieves public verifiability.
Privacy of the mix-net can be concluded from SP-CPAS of the shuffles.

6 Conclusion

In this paper, we proposed a formalization of verifiable shuffles and their
security requirements under adaptive chosen permutation attacks and adap-
tive chosen transcript attacks. This provides a general framework for secu-
rity assessment of shuffle systems. We proposed a verifiable shuffle system
based on the Paillier public-key encryption system and proved its security in
our proposed model. We also used the shuffle scheme to construct a robust
mix-net.
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A Proofs of Theorems on Privacy Notions

A.1 Proof of Theorem 3

IND-CPAS implies SP-CPAS . Suppose that (RP, S, (P,V)) provides IND-
CPAS . We will show that (RP, S, (P,V)) provides SP-CPAS by construct-
ing, for every pair of PPT algorithms A1 and A2, a pair of PPT algorithms
A′1 and A′2, such that the two conditions stated in Definition 7 hold. Specif-
ically, A′1 and A′2 are constructed as follows:

1. A′1(1
l, t) returns ((Πn, hn, fn), δ′), where ((Πn, hn, fn), δ′) is generated

as follows. First, A′1 generates an instance of the shuffle scheme by letting
(pk, sk) ← G(1l). Next, A′1 invokes A1 and gets ((Πn, hn, fn, Lin, L

(p)
in ,

C
L

(p)
in ,Lin

Epk
), δ) ← A1(pk, t). Finally, A′1 sets δ′ = (pk, Lin, L

(p)
in , C

L
(p)
in ,Lin

Epk
,

δ).

2. On input ((pk, Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
, δ), 1n, γ) where γ = hn(π) for some

permutation π ∈ Sn, A′2 generates output as follows. It selects some fixed
permutation π0 ∈ Sn, simulates the shuffle algorithm S by generating a
list L′out of re-encrypted ciphertexts in Lin permuted by π0. It then simu-
lates an execution of the proof system (P,V) on input (pk, Lin, L′out) and
gets V iewPV (pk, Lin, L′out). Let o0 ← (L′out, V iewPV (pk, Lin, L′out), Lin,

L
(p)
in , C

L
(p)
in ,Lin

Epk
, γ), A′2 outputs the value returned by AOS ,OE

2 (δ, o0).

Since A′1 merely simulates the generation of a key pair and the actions
of A1 with respect to such a pair, the equal distribution condition (i.e., Item
2 in Definition 7) holds. Using the (corresponding) IND-CPAS property, we
show that the distributions (δ, o0) and (δ, o) are computationally indistin-

guishable, where (pk, sk) ← G(1l); ((Πn, hn, fn, Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
), δ) ←

A1(pk, t); π ← Πn(Upoly(l)); Lout ← S(pk, Lin, π); o ← (Lout,

V iewPV (pk, Lin, Lout), Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
, hn(π)); L′out ← S(pk, Lin, π0)

and o0 ← (L′out, V iewPV (pk, Lin, L′out), Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
, hn(π)).

– Details: Suppose that given (Πn, hn, fn) generated by A1(pk, t), there
exists a PPT algorithm to distinguish between (δ, o0) and (δ, o), where
o and o0 are generated as above. Then we obtain a distinguisher as in
Definition 8 as follows. The first part of the distinguisher invokes A1 and

obtains ((Πn, hn, fn, Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
), δ) ← A1(pk, t). It sets π(1) ←

Πn(Upoly(l)) and π(2) = π0, and outputs ((π(1), π(2), Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
),

(δ, hn(π(1)))). That is, (π(1), π(2), Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
) is the challenge

template, and a challenge o(i) is generated as in Definition 8, where
i is either 1 or 2. The second part of the new distinguisher, gets as input
the challenge o(i) and the state generated by the first part (δ, hn(π(1))),
and invokes the distinguisher of the contradiction hypothesis with input
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(δ, (o(i), hn(π(1)))). Thus, the new distinguisher violates the condition
in Definition 8, in contradiction to the hypothesis that (RP, S, (P,V))
provides IND-CPAS .

It follows that IND-CPAS (as in Definition 8) implies SP-CPAS (as in Def-
inition 7).

SP-CPAS implies IND-CPAS . We now turn to the opposite direction. Suppose
that (RP, S, (P,V)) provides SP-CPAS but does not provide IND-CPAS .

Consider the challenge template (π(1), π(2), Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
) produced by

the distinguishing adversary and o(1) and o(2) are generated as in Defini-
tion 8. We construct a SP-CPAS adversary by generating a corresponding

challenge template (Πn, hn, fn, Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
) such that.

– Πn uniformly outputs either π(1) or π(2).
– The function fn satisfies fn(π(1)) = 1 and fn(π(2)) = 0.
– The function hn is defined arbitrarily subject to hn(π(1)) = hn(π(2)).

We can see that the SP-CPAS adversary has a noticeable advantage in
guessing fn(Πn(Upoly(l))) (by using the distinguishing gap between o(1) and
o(2)), whereas no algorithm that only gets hn(Πn(Upoly(l))) can have any
advantage in such a guess. We derive a contradiction to the hypothesis
that (RP, S, (P,V)) provides SP-CPAS as in Definition 7, and the theorem
follows.

A.2 Proof of Theorem 4

This theorem can be proved similar to the proof of Theorem 3. In order
to show that IND-CTAS implies SP-CTAS , given an adversary (A1, A2) we
construct the following matching algorithm (A′1, A

′
2):

1. A′1(1
l, t) returns ((Πn, hn, fn), δ′), where ((Πn, hn, fn), δ′) is generated

as follows. First, A′1 generates an instance of the shuffle scheme by letting
(pk, sk) ← G(1l). Next, A′1 invokes A1, while simulating the oracle OT

(as A′1 knows (pk, sk)), and gets ((Πn, hn, fn, Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
), δ) ←

AOT
1 (pk, t). Finally, A′1 sets δ′ = (pk, Lin, L

(p)
in , C

L
(p)
in ,Lin

Epk
, δ).

2. On input ((pk, Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
, δ), 1n, γ) where γ = hn(π) for some

permutation π ∈ Sn, A′2 generates output as follows. It selects some fixed
permutation π0 ∈ Sn, simulates the shuffle algorithm S by generating a
list L′out of re-encrypted ciphertexts in Lin permuted by π0. It then simu-
lates an execution of the proof system (P,V) on input (pk, Lin, L′out) and
gets V iewPV (pk, Lin, L′out). Let o0 ← (L′out, V iewPV (pk, Lin, L′out), Lin,

L
(p)
in , C

L
(p)
in ,Lin

Epk
, γ), A′2 outputs the value returned by AOT

2 (δ, o0). The
generated key pair (pk, sk) allows A′2 to simulate the oracle OT .
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Again, since A′1 merely simulates the generation of a key pair and the
actions of A1 with respect to such a pair, the equal distribution condi-
tion (i.e. the second item in Definition 9) holds. Using the (corresponding)
IND-CTAS property, we show that (even in the presence of the oracle OT )
the distributions (δ, o0) and (δ, o) are indistinguishable, where (pk, sk) ←
G(1l); ((Πn, hn, fn, Lin, L

(p)
in , C

L
(p)
in ,Lin

Epk
), δ) ← AOT

1 (pk, t); π ← Πn(Upoly(l));

Lout ← S(pk, Lin, π); o ← (Lout, V iewPV (pk, Lin, Lout), Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
,

hn(π)); L′out ← S(pk, Lin, π0) and o0 ← (L′out, V iewPV (pk, Lin, L′out), Lin,

L
(p)
in , C

L
(p)
in ,Lin

Epk
, hn(π)). The main thing to notice is that the oracle queries

made by a possible distinguisher of the above distributions can be han-
dled by a distinguisher of transcripts (as in Definition 10), by passing these
queries to its own oracle. It follows that IND-CTAS (as in Definition 10)
implies SP-CTAS (as in Definition 9).

We now turn to the opposite direction. Here the construction of a chal-
lenge template (as in Definition 9) is exactly as the corresponding construc-
tion in the proof of Theorem 3. Again, the thing to notice is that the oracle
queries made by a possible distinguisher of transcripts (as in Definition 10)
can be handled by the SP-CTAS adversary, by passing these queries to its
own oracle. We derive a contradiction to the hypothesis that (RP, S, (P,V))
satisfies Definition 9, and the theorem follows.

B Security Proofs for the Paillier-based Verifiable Shuffle scheme

B.1 Proof of Theorem 5

Suppose a matrix (Aij) satisfies equations (3) and (4) and for all i and j,
gcd(Aij , N) is different from p and q. As (Aij) satisfies equations (3) and
(4), based on Theorem 2, (Aij) is a permutation matrix mod p and also a
permutation matrix mod q. Thus, there exists a permutation π such that
for all i and j:

Aij =
{

1 mod q if π(i) = j
0 mod q otherwise

We now show that for all i and j, if Aij = 1 (or 0, respectively) mod q,
then Aij = 1 (or 0, respectively) mod N .

Suppose there exist i′ and j′ such that Ai′j′ = 1 mod q but Ai′j′ 6= 1
mod N . As (Aij) is a permutation matrix mod p, Ai′j′ = 0 or 1 mod p. But
Ai′j′ = 1 mod q and Ai′j′ 6= 1 mod N , so Ai′j′ = 0 mod p. That means
gcd(Ai′j′ , N) = p, which contradicts the condition “gcd(Aij , N) is different
from p and q”.

Suppose there exist i′ and j′ such that Ai′j′ = 0 mod q but Ai′j′ 6= 0
mod N . As (Aij) is a permutation matrix mod p, Ai′j′ = 0 or 1 mod p. But
Ai′j′ = 0 mod q and Ai′j′ 6= 0 mod N , so Ai′j′ = 1 mod p. That means
gcd(Ai′j′ , N) = q, which contradicts the condition “gcd(Aij , N) is different
from p and q”.
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Therefore, for all i and j, if Aij = 1 (or 0, respectively) mod q, then
Aij = 1 (or 0, respectively) mod N . That means (Aij)n×n is a permutation
matrix modulo N .

B.2 Proof of Theorem 6 for Verifiability

To prove Theorem 6, we need Theorem 5 and Theorem 8, which are not re-
quired in the proofs for the Furukawa-Sako scheme. We observe that knowl-
edge of Ai′j′ satisfying gcd(Ai′j′ , N) = p or q allows factorization of N and
reveals the secret key λ. So, from Theorem 5, the objective of the proof
system can be re-stated as follows.

The common input to the proof system includes N, {gi}, {g′i}, i = 1, ..., n.
The auxiliary input to the prover P includes permutation π and r1, ..., rn ∈
Z∗N satisfying g′i = rN

i gπ−1(i) and does not include the secret key sk = λ. The
proof system (P,V) proves P knows a matrix (Aij)n×n and r1, ..., rn ∈ Z∗N
such that equations (3) and (4) hold and

g′i = rN
i

n∏

j=1

g
Aji

j , i = 1, ..., n (10)

Based on Definition 5 of Verifiability, Theorem 6 can be concluded from
Theorem 9 and Theorem 10, which state the Completeness and Soundness
properties of the proof system. The role of Theorem 8 will be explained in
the proof of Theorem 10. Theorems 8, 9 and 10 are presented and proved
as follows.

Theorem 8 For a set of vectors S, let 〈S〉k denote the vector space spanned
by S over Zk (so the coordinates of a vector in 〈S〉k are in Zk). And let
|S| denote the number of elements in S. Consider a set of vectors Tn =
{(1, c1, ..., cn) | (c1, ..., cn ∈ ZN ) ∧ (@Qn ⊆ Tn : |Qn| = n + 1 ∧ 〈Qn〉p =
Zn+1

p ∧ 〈Qn〉q = Zn+1
q )} (that means Tn is the set of vectors (1, c1, ..., cn),

where c1, ..., cn ∈ ZN and there does not exist any subset Qn ⊆ Tn of size
n + 1 such that Qn spans Zn+1

p and Zn+1
q ). Then |Tn| ≤ (p + q)Nn−1.

Proof This is proved by induction.

– n = 1: Consider a set of vectors T1 ⊆ {(1, c)|c ∈ ZN} satisfying |T1| >
(p+q); and a vector (1, c1) ∈ T1. Consider a set R1 = {(1, c1+kp mod N)
|k ∈ Zq} ∪ {(1, c1 + kq mod N)|k ∈ Zp}. As |R1| = p + q − 1, there
exists c′1 ∈ ZN such that (1, c′1) ∈ T1 but (1, c′1) /∈ R1. Then Q1 =
{(1, c1), (1, c′1)} satisfies |Q1| = 2 ∧ 〈Q1〉p = Z2

p ∧ 〈Q1〉q = Z2
q.

– Suppose the theorem holds for n. We prove it is also true for n + 1.
Let a set Tn+1 = {(1, c1, ..., cn+1)|(c1, ..., cn+1 ∈ ZN ) ∧ (@Qn+1 ⊆ Tn+1 :
|Qn+1| = n + 2 ∧ 〈Qn+1〉p = Zn+2

p ∧ 〈Qn+1〉q = Zn+2
q )}. Consider T ′n =

{(1, c1, ..., cn)|∃cn+1 ∈ ZN : (1, c1, ..., cn, cn+1) ∈ Tn+1}, there are two
possibilities:
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1. If @Q′n ⊆ T ′n : |Q′n| = n + 1 ∧ 〈Q′n〉p = Zn+1
p ∧ 〈Q′n〉q = Zn+1

q , then
|T ′n| ≤ (p+q)Nn−1, as the theorem holds for n. So |Tn+1| ≤ |T ′n|N ≤
(p + q)Nn.

2. If ∃Q′n ⊆ T ′n : |Q′
n| = n + 1∧ 〈Q′n〉p = Zn+1

p ∧ 〈Q′n〉q = Zn+1
q , select a

set T of n + 1 vectors (1, ci1, ..., ci(n+1)) ∈ Tn+1, i = 1, ..., n + 1 such
that Q′n = {(1, ci1, ..., cin)}

Let d = det




1 c11 ... c1n

.. .. .. ..
1 c(n+1)1 ... c(n+1)n


 mod N , then gcd(d,N) = 1, so

d−1 mod N exists.
For each vector x = (1, x1, ..., xn+1) ∈ Tn+1 (including those in T ),
let

dx = det




1 c11 ... c1(n+1)

.. .. .. ..
1 c(n+1)1 ... c(n+1)(n+1)

1 x1 ... xn+1


 = dxn+1−F (x1, ..., xn) mod N

for some function F. The conditions of Tn+1 lead to either dx = 0
mod p or dx = 0 mod q.
Suppose dx = 0 mod p, then xn+1 = d−1F (x1, ..., xn) mod p, so the
number of possible vectors x = (1, x1, ..., xn+1) is no more than qNn.
Similar for the case dx = 0 mod q, the number of possible vectors
x = (1, x1, ..., xn+1) is no more than pNn. So |Tn+1| ≤ (p + q)Nn.

Before presenting Theorems 9 and 10, it is necessary to recall properties
of the Paillier public-key system.
Properties of the Paillier encryption scheme: The security proofs need the
following properties of the Paillier cryptosystem. For w ∈ Z∗N2 , we call N th

residuosity class of w the unique integer x ∈ ZN for which there exists
y ∈ Z∗N such that w = yN (1 + xN) [39]. The class of w is denoted c(w).
Note that the plaintext of a Paillier ciphertext is the class of that ciphertext.
We have the following properties.

– c(w) = 0 ⇔ w is a N th residue mod N2 (N th residues mod N2 are
defined in the definition of the DCR assumption).

– c(w1w2) = c(w1) + c(w2) mod N
– c(w1) = c(w2) ⇔ ∃r ∈ Z∗N : w1 = w2r

N

Theorem 9 (Completeness) If P knows a matrix (Aij) and r1, ..., rn ∈ Z∗N
satisfying (3), (4) and (10), and performs correctly in the protocol, then V
always accepts.

Proof Suppose P knows a matrix (Aij) and r1, ..., rn ∈ Z∗N satisfying equa-
tions (3), (4) and (10); and {g̃i

′}, g̃′, g′, {ṫi}, {v̇i}, v̇, {ẇi}, ẇ, {ci}, {si}, s̃, s,
u, v for i = 1, ..., n are generated as specified in the protocol. Then the
verifier outputs accept, as the following equations hold.

– s̃N
∏n

j=1 g̃j
sj = (α̃

∏n
i=1 r̃i

ci g̃i
di)N

∏n
j=1 g̃j

Pn
i=1 Ajici+αj

= (α̃N
∏n

j=1 g̃j
αj )

∏n
j=1(r̃j

N ∏n
i=1 g̃i

Aij )cj = g̃′
∏n

j=1 g̃j
′cj
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– sN
∏n

j=1 g
sj

j = (α
∏n

i=1 rci
i gdi

i )N
∏n

j=1 g
Pn

i=1 Ajici+αj

j

= (αN
∏n

j=1 g
αj

j )
∏n

j=1(r
N
j

∏n
i=1 g

Aij

i )cj = g′
∏n

j=1 g
′cj

j .

– uN (1+N
∑n

j=1(s
3
j−c3

j )) = (ρ
∏n

i=1 ρci
i δ

c2
i

i )N (1+N
∑n

j=1((
∑n

i=1 Ajici +
αj)3 − c3

j )) = ρN (1 + N
∑n

j=1 α3
j )

∏n
j=1(ρ

N
j (1 + N

∑n
i=1 3α2

i Aij))cj

∏n
j=1(δ

N
j (1 + N

∑n
i=1 3αiAij))c2

j = v̇
∏n

j=1 v̇j
cj ṫj

c2
j .

– vN (1 + N
∑n

j=1(s
2
j − c2

j )) = (τ
∏n

i=1 τ ci
i )N (1 + N

∑n
j=1((

∑n
i=1 Ajici +

αj)2 − c2
j )) = τN (1 + N

∑n
j=1 α2

j )
∏n

j=1(τ
N
j (1 + N

∑n
i=1 2αiAij))cj =

ẇ
∏n

j=1 ẇj
cj .

Theorem 10 (Soundness) Under the CCR assumption, if V accepts with
nonnegligible probability, then P knows a matrix (Aij) satisfying equations
(3), (4) and the following equation with overwhelming probability.

c(g′i) = c(
n∏

j=1

g
Aji

j ), i = 1, ..., n (11)

Proof This is proved using Theorem 8 and the following lemmas.

– Lemma 1 shows that if the CCR assumption holds, then it is computa-
tionally difficult for P to obtain {ai} ⊂ ZN such that c(

∏n
i=1 g̃i

ai) = 0
and at least one element of {ai} is not 0.

– Lemma 2 and Theorem 8 show that if V accepts with non-negligible
probability, then P knows a matrix {Aij} satisfying

c(g̃i
′) = c(

n∏

j=1

g̃j
Aji), i = 1, ..., n

– Lemmas 3 and 4 show that either this matrix {Aij} satisfies equation
(3) or P can compute {ai} ⊂ ZN such that c(

∏n
i=1 g̃i

ai) = 0 and at least
one element of {ai} is not 0.

– Lemmas 3 and 5 show that either this matrix {Aij} satisfies equation
(4) or P can compute {ai} ⊂ ZN such that c(

∏n
i=1 g̃i

ai) = 0 and at least
one element of {ai} is not 0.

– Lemma 6 shows that this matrix {Aij} satisfies equation 11.

So these lemmas and Theorem 8 show that if the CCR assumption holds
and V accepts with non-negligible probability, then P knows a matrix (Aij)
satisfying equations (3), (4) and (11) with overwhelming probability.

Lemma 1 If the CCR assumption holds, then it is computationally difficult
for P to obtain {ai} ⊂ ZN such that c(

∏n
i=1 g̃i

ai) = 0 and at least one
element of {ai} is not 0.

Proof Suppose, with non-negligible probability, P can compute {ai} ⊂ ZN

such that c(
∏n

i=1 g̃i
ai) = 0 and at least one element of {ai} is not 0. We

construct a PPT algorithm A that can break the CCR assumption as fol-
lows. Suppose A is given a product N of two l/2-bit primes and z ← Z∗N2 ,
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we show that A can compute x ∈ ZN with non-negligible probability such
that there exists r ∈ Z∗N satisfying rN (1 + xN) = z mod N2, or in other
words, c(z) = x.

A simulates an instance of the verifiable shuffle scheme, where the public
key is pk = N . A then generates {g̃i}n

i=1 as follows. A chooses i0 ← {1, ..., n}
and generates r′i ← Z∗N , x′i ← ZN for i = 1, ..., n. Then for i = 1, ..., n and
i 6= i0, A computes g̃i = r′Ni (1 + x′iN). A computes g̃i0 = r′Ni0 (1 + x′i0N)z.
The set {g̃i}n

i=1 is then given to P. As the distribution of {g̃i}n
i=1 is the

same as the distribution of a set of n elements uniformly generated from
Z∗N2 , P can compute {ai} ⊂ ZN such that c(

∏n
i=1 g̃i

ai) = 0 and at least one
element of {ai} is not 0, with non-negligible probability ε. As i0 is chosen
uniformly from {1, ..., n}, the probability that ai0 6= 0 is ε/n.

As c(
∏n

i=1 g̃i
ai) = 0, we have ai0x +

∑n
i=1 aix

′
i = 0 mod N . So A can

compute x = −a−1
i0

∑n
i=1 aix

′
i mod N and breaks the CCR assumption.

Lemma 2 If V accepts with non-negligible probability, then P knows a ma-
trix {Aij} and {αi} satisfying

c(g̃i
′) = c(

n∏

j=1

g̃j
Aji), i = 1, ..., n (12)

c(g̃′) = c(
n∏

j=1

g̃j
αj ) (13)

Proof Consider the set Tn of all vectors (1, c1, ..., cn) constructed from all
the challenges {ci} generated by V, for which P can compute responses
{si} such that V accepts. As V accepts with non-negligible probability, we
have |Tn|/|Zn

N | is non-negligible, that means |Tn| > (p + q)Nn−1. Based
on Theorem 8, P can find a set Qn of n + 1 vectors so that Qn ⊆ Tn,
< Qn >p= Zn+1

p and < Qn >q= Zn+1
q . Then P can obtain {Aij}n

i,j=1 ⊂ ZN

and {αi}n
i=1 ⊂ ZN , such that for every (1, c1, ..., cn) ∈ Qn and corresponding

response {si}, we have:

si =
n∑

j=1

Aijcj + αi mod N, i = 1, ..., n

Replace these values of si into equation (6), we have:

c(
n∏

i=1

g̃i

Pn
j=1 Aijcj+αi) = c(g̃′

n∏

j=1

g̃j
′cj ) mod N, ∀(1, c1, ..., cn) ∈ Qn

⇒ c(

∏n
j=1 g̃j

αj

g̃′
) +

n∑

i=1

cic(

∏n
j=1 g̃j

Aji

g̃i
′ ) = 0 mod N, ∀(1, c1, ..., cn) ∈ Qn

So equations (12) and (13) hold.
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Lemma 3 Assume that P knows {Aij} and {αi} satisfying equations (12)
and (13). If P knows {si} and s̃ which satisfy equation (6), then either
equations (5) hold, or P can generate {ai} with overwhelming probability
such that c(

∏n
i=1 g̃i

ai) = 0 and at least one element of {ai} is not 0.

Proof Consider the case when P knows {si} and s̃ satisfying equation (6);
and there exists i0 ∈ {1, ..., n} satisfying si0 6=

∑n
j=1 Ai0jcj + αi0 mod N .

Then P can find ai =
∑n

j=1 Aijcj + αi − si mod N , i = 1, ..., n such that
c(

∏n
i=1 g̃i

ai) = 0 and ai0 6= 0. This can be shown by replacing the values of
c(g̃i

′) and c(g̃′) from equations (12) and (13) into equation c(
∏n

j=1 g̃j
sj ) =

c(g̃′) +
∑n

j=1 cjc(g̃j
′) mod N , which is a result of equation (6).

Consider the other case when P knows {si} and s̃ satisfying equation
(6); and every i ∈ {1, ..., n} satisfies si =

∑n
j=1 Aijcj + αi mod N . In this

case, equations (5) hold.

Lemma 4 Assume that P knows {Aij} and {αi} satisfying equations (12)
and (13). If equations (6) and (9) hold with non-negligible probability, then
either equation (3) holds, or P can generate {ai} with overwhelming prob-
ability such that c(

∏n
i=1 g̃i

ai) = 0 and at least one element of {ai} is not
0.

Proof As in Lemma 3, if equation (6) hold, then either equations (5) hold,
or P can generate non-trivial {ai} satisfying c(

∏n
i=1 g̃i

ai) = 0 with over-
whelming probability. For the former case, replace the values of si from
equations (5) into (9) and we have:

n∑

i=1

n∑

j=1

(
n∑

h=1

AhiAhj − δij)cicj +
n∑

i=1

(
n∑

j=1

2αjAji − c(ẇi))ci

+(
n∑

j=1

α2
j − c(ẇ)) = 0 mod N

where

δij =
{

1 mod N if i = j
0 mod N otherwise

So if equation (3) does not hold for some i and j, then the probability that
equation (9) holds is negligible.

Lemma 5 Assume that P knows {Aij} and {αi} satisfying equations (12)
and (13). If equations (6) and (8) hold with non-negligible probability, then
either equation (4) holds, or P can generate {ai} with overwhelming prob-
ability such that c(

∏n
i=1 g̃i

ai) = 0 and at least one element of {ai} is not
0.

Proof As in Lemma 3, if equation (6) hold, then either equations (5) hold,
or P can generate non-trivial {ai} satisfying c(

∏n
i=1 g̃i

ai) = 0 with over-
whelming probability. For the former case, replace the values of si from
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equations (5) into (8) and we have:

n∑

i=1

n∑

j=1

n∑

k=1

(
n∑

h=1

AhiAhjAhk − δijk)cicjck +
n∑

i=1

(
n∑

j=1

3αjA
2
ji − c(ṫi))c2

i +

n∑

i=1

(
n∑

j=1

3α2
jAji − c(v̇i))ci + (

n∑

j=1

α3
j − c(v̇)) = 0 mod N

where

δijk =
{

1 mod N if i = j = k
0 mod N otherwise

So if equation (4) does not hold for some i and j, then the probability that
equation (8) holds is negligible.

Lemma 6 Assume that P knows {Aij} and {αi} satisfying equations (12)
and (13), and {si} and s̃ satisfying equation (6). If equation (7) holds with
non-negligible probability, then either the equations

c(g′i) = c(
n∏

j=1

g
Aji

j ), i = 1, ..., n (14)

c(g′) = c(
n∏

j=1

g
αj

j ) (15)

hold or P can generate {ai} with overwhelming probability such that
c(

∏n
i=1 g̃i

ai) = 0 and at least one element of {ai} is not 0.

Proof As in Lemma 3, if equation (6) hold, then either equations (5) hold,
or P can generate non-trivial {ai} satisfying c(

∏n
i=1 g̃i

ai) = 0 with over-
whelming probability. For the former case, replace the values of si from
equations (5) into (7), we have:

c(
n∏

i=1

g
Pn

j=1 Aijcj+αi

i ) = c(g′
n∏

j=1

g
′cj

j ) mod N

⇒ c(

∏n
j=1 g

αj

j

g′
) +

n∑

i=1

cic(

∏n
j=1 g

Aji

j

g′i
) = 0 mod N

So equations (14) and (15) hold.

B.3 Proof of Theorem 7 for Privacy

Based on Theorem 3, proving Theorem 7 is equivalent to proving that the
shuffle provides IND-CPAS if the DCR assumption holds. We need Defini-
tion 11 and Lemma 7.
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Definition 11 Let Rm be the set of m-element tuples where all elements are
in Z∗N2 and let Dm ⊂ Rm be the set of m-element tuples where all elements
are N -th residues modulo N2. The DCRm problem is defined as the problem
of distinguishing instances uniformly chosen from Rm and those uniformly
chosen from Dm. The DCRm assumption states that the DCRm problem is
computationally difficult.

Lemma 7 For any m ≥ 1, the DCRm assumption holds if the DCR as-
sumption holds.

Proof We prove the lemma by induction. We prove that if either the DCR
assumption holds or the DCRm−1 assumption holds, then the DCRm as-
sumption holds.

We define the subset Mm of Rm to be the set of tuples I = (x1, ..., xm)
such that x1, ..., xm−1 are N -th residues modulo N2 and xm ∈ Z∗N2 . Hence,
Dm is a subset of Mm.

If the DCRm problem is easy, then we can either distinguish between
instances chosen uniformly from Rm and Mm or distinguish between in-
stances chosen uniformly from Mm and Dm. In the former case, it means
that the DCRm−1 problem is easy. In the following, we show that in the
latter case, the DCR problem is easy.

For any I1 = (x) ∈ R1, we generate a tuple Im ∈ Rm as Im =
(rN

1 , rN
2 , ..., rN

m−1, x) where ri ← Z∗N . If I1 is chosen uniformly from D1,
then Im is distributed uniformly in Dm. And if I1 is chosen uniformly from
R1, then Im is distributed uniformly in Mm. Therefore, if Dm and Mm are
distinguishable, then the DCR problem is easy.

¤
We now prove that the shuffle provides IND-CPAS if the DCR assump-

tion holds. Suppose there is a publicly known set, {g̃i}n
i=1, of elements uni-

formly generated from Z∗N2 . And suppose the challenge template includes
two permutations π(1), π(2) ∈ Sn, a list of ciphertexts Lin = (g1, ..., gn),
the list of corresponding plaintexts L

(p)
in and the corresponding probabilistic

inputs C
L

(p)
in ,Lin

Epk
. The actual challenge oπ(k) , which is randomly generated

by using π(k) (k = 1 or 2) and is given to the adversary, includes Lin, L
(p)
in ,

C
L

(p)
in ,Lin

Epk
, a list of re-encrypted ciphertexts Lout = (g′1, ..., g

′
n) and

V iewPV (pk, Lin, Lout) = ({g̃i}, {g̃i
′}, g̃′, g′, {ṫi}, {v̇i}, {ẇi}, v̇, ẇ, {ci}, {si}, s̃,

s, u, v)
Let Oπ(k) be the set of all possible oπ(k) .

Let Og be the set of all tuples og, each of which includes Lin, L
(p)
in ,

C
L

(p)
in ,Lin

Epk
, a list of random ciphertexts Lout = (g′1, ..., g

′
n), the set {g̃i}, a

tuple ({g̃i
′}n

i=1, {ṫi}n
i=1, {v̇i}n

i=1, {ẇi}n
i=1) of randomly generated elements

of Z∗N2 , a tuple ({ci}n
i=1, {si}n

i=1) of randomly generated elements of ZN ,
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a tuple (s̃, s, u, v) of randomly generated elements of Z∗N and g̃′, g′, v̇, ẇ
satisfying:

g̃′ = s̃N
n∏

j=1

g̃j
sj g̃j

′−cj (16)

g′ = sN
n∏

j=1

g
sj

j g
′−cj

j (17)

v̇ = uN (1 + N

n∑

j=1

(s3
j − c3

j ))
n∏

j=1

v̇j
−cj ṫj

−c2
j (18)

ẇ = vN (1 + N

n∑

j=1

(s2
j − c2

j ))
n∏

j=1

ẇj
−cj (19)

We first prove that if the DCR5n assumption holds, then the actual chal-
lenge oπ(k) uniformly chosen from Oπ(k) is computationally indistinguishable
from a tuple og uniformly chosen from Og.

We show that from an element I = (h1, .., hn, h̃1, .., h̃n, t1, .., tn, v1, .., vn,
w1, .., wn) of D5n or R5n (see Definition 11), we can generate a random
element or of Oπ(1) or Og as follows. Choose {ci}n

i=1 and {si}n
i=1 uniformly

from ZN and s̃, s, u, v uniformly from Z∗N . Compute

αi = si − cπ(1)(i) mod N , i = 1, ..., n

g′i = higπ−1
(1)(i)

, i = 1, ..., n

g̃i
′ = h̃ig̃π−1

(1)(i)
, i = 1, ..., n

ṫi = ti(1 + N3απ−1
(1)(i)

), i = 1, ..., n

v̇i = vi(1 + N3α2
π−1
(1)(i)

), i = 1, ..., n

ẇi = wi(1 + N2απ−1
(1)(i)

), i = 1, ..., n

And compute g̃′, g′, v̇, ẇ as in Equations (16), (17), (18) and (19). We have

or=(Lin, L
(p)
in , C

L
(p)
in ,Lin

Epk
, (g′1, ..., g

′
n), ({g̃i}, {g̃i

′}, g̃′, g′, {ṫi}, {v̇i}, {ẇi}, v̇, ẇ,

{ci}, {si}, s̃, s, u, v)).
Then or ∈ Oπ(1) if and only if I ∈ D5n, and or ∈ Og if and only if

I ∈ R5n. So, if the DCR5n assumption holds, then a random element of
Oπ(1) is computationally indistinguishable from a random element of Og,
and so is from a random element of Oπ(2) .

Therefore, if the DCR5n assumption holds, then a challenge generated
from π(1), which is a random element of Oπ(1) , is computationally indistin-
guishable from a challenge generated from π(2), which is a random element
of Oπ(2) (as both are computationally indistinguishable from a random el-
ement of Og). Based on Lemma 7, if the DCR assumption holds, then the
shuffle achieves IND-CPAS .


