
On Security Proof of McCullagh-Barreto’s Key
Agreement Protocol and its Variants

Zhaohui Cheng1 and Liqun Chen2

1School of Computing Science, Middlesex University
White Hart Lane, London N17 8HR, UK

m.z.cheng@mdx.ac.uk
2Hewlett-Packard Laboratories, Bristol, UK

liqun.chen@hp.com

Abstract. McCullagh and Barreto presented an identity-based authen-
ticated key agreement protocol in CT-RSA 2005. Their protocol was
found to be vulnerable to a key-compromise impersonation attack. In
order to recover the weakness, McCullagh and Barreto, and Xie pro-
posed two variants of the protocol respectively. In each of these works,
a security proof of the proposed protocol was presented. In this paper,
we revisit these three security proofs and show that all the reductions
in these proofs are invalid, because the property of indistinguishability
between their simulation and the real world was not held. As a replace-
ment, we present a new reduction for the McCullagh and Barreto modi-
fied protocol in the weaker Bellare-Rogaway key agreement model. Our
reduction is based on a new assumption, which is at least as weak as
some well-explored assumptions in the literature.

1 Introduction

An identity-based authenticated key agreement protocol is a key agreement pro-
tocol where each of two (or more) parties uses an identity-based asymmetric
key pair instead of a traditional public/private key pair for authentication and
determination of the established key, which at the end of the protocol is shared
by these parties.

The concept of identity-based cryptography was first formulated by Shamir
in 1984 [23] in which a public key is the identity (an arbitrary string) of a user,
and the corresponding private key is created by binding the identity string with
a master secret of a trusted authority (called key generation center). In the same
paper, Shamir provided the first identity-based key setting that was based on
the RSA problem, and presented an identity-based signature scheme. By using
varieties of the Shamir key setting, a number of identity-based key agreement
schemes were proposed (e.g., [13, 14, 19, 26]).

In 2000, Sakai et al. introduced an identity-based key agreement scheme
based on bilinear pairings over elliptic curves [21]. Their protocol made use of
an interesting identity-based key setting with pairings, in which an identity string
is mapped to a point on an elliptic curve and then the corresponding private key
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is computed by multiplying the mapped point with the master private key that
is a random integer. A similar key setting is also used by Boneh and Franklin
in their well-known provable identity-based encryption scheme [7]. After that,
many other identity-based key agreement schemes using this key setting were
presented, such as [9, 22, 24, 27]. The security of these key agreement schemes
were scrutinized (although some errors in a few reductions have been pointed
out recently but fixed as well, e.g., [11]).

In 2003, Sakai and Kasahara presented a new identity-based key setting using
pairings (SK key setting for short) [20], which can be tracked back to the work
in [18]. This key setting has the potential to improve performance, where an
identity string is mapped to an element h of the cyclic group Z∗q instead of a
point on an elliptic curve directly. The corresponding private key is generated
by first computing an inverse of the sum of the master secret (a random integer
from Z∗q) and the mapped value h, and then multiplying a point of the elliptic
curve (which is the generator of an order q subgroup of the group of points on
the curve) with the inverse.

Based on the SK key setting, McCullagh and Barreto (MB) presented an
identity-based authenticated key agreement protocol on CT-RSA 2005 [15], which
appears to be more efficient on computation than the above mentioned schemes [9,
22, 24, 27]. However, as pointed out by Cheng [10] and Xie [29], the scheme is vul-
nerable to a key-compromise impersonation attack, i.e., if an adversary knows a
party A’s long-term private key, the adversary can impersonate any other party
to A. In order to recover this security weakness, McCullagh and Barreto [16],
and Xie [30] proposed two fixes respectively. Meanwhile, they provided a se-
curity reduction for each protocol in a weaker model of Bellare-Rogaway’s key
agreement formulation [2, 4].

In this paper, we revisit the security proofs in [15, 16, 30] and show that
all these three proofs are problematic. More specifically, in their security re-
ductions, the property of indistinguishability between their simulation and the
real world was not held. We observe an interesting feature when simulating an
identity-based cryptographic world. In any identity-based cryptographic scheme,
given a certain identity string, system parameters and key generation center’s
master public key, it is universally verifiable whether a public/private key pair
corresponding to the identity string is correctly constructed or not. Therefore,
if a simulator is not able to offer an adversary necessary evidence, which allows
the adversary to verify the correction of a simulated key setting, the simulation
fails, because the adversary can immediately notice the inconsistency between
the simulation and the simulated real world. All the three proofs failed to provide
this feature.

As a replacement, we present a new reduction for the McCullagh and Barreto
modified protocol [16] in the weaker Bellare-Rogaway key agreement model. Our
reduction is based on a new assumption, which as shown in the paper is weaker
(or at least as weak as) some well-explored assumptions in the literature. Un-
fortunately, we can not find replacements to prove the MB original protocol [15]
and Xie’s modification [30]. We leave them as an open problem.
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The paper is organized as follows. First, we recall the existing primitive, some
related assumptions and the security model of a key agreement scheme in next
section. Then, in Section 3 we revisit the three protocols. In our specification, we
refer to these protocols as the MB protocol and its variants. We give a sketch of
the three security proofs and point out the flaws in the proofs in Section 4. After
that, in Section 5 we present a new reduction for McCullagh-Barreto’s modified
protocol. Before concluding the paper in Section 7, we give a few comments on
the new reduction in Section 6.

2 Preliminaries

Before revisiting the protocols and their proofs, we recall some related pairing
primitives, assumptions and the security model of an authenticated key agree-
ment (AK) scheme.

2.1 Bilinear groups and some assumptions

Definition 1 A pairing is a bilinear map ê : G1 × G1 → G2 with two cyclic
groups G1 and G2 of prime order q, which has the following properties [7]:

1. Bilinear: ê(sP, tR) = ê(P, R)st for all P, R ∈ G1 and s, t ∈ Zq.
2. Non-degenerate: For a given point Q ∈ G1, ê(Q, R) = 1G2 for all R ∈ G1 if

and only if Q = 1G1 .
3. Computable: There is an efficient algorithm to compute ê(P,Q) for any

P, Q ∈ G1.

Some researchers have recently worked on varieties of pairings, such as asym-
metric pairings [25], where two inputs from two (possibly) different groups are
mapped into an element in the third group, i.e., ê : G1 × G2 → G3. For the
purpose of analyzing security of the key agreement protocols based on the SK
key setting, in the remaining of this paper, we will focus on a symmetric pairing,
i.e., ê : G1 ×G1 → G2.

The following Bilinear Diffie-Hellman assumption has been used to construct
many exciting cryptography schemes.

Assumption 1 (BDH [7]) For x, y, z ∈R Z∗q , P ∈ G∗1, ê : G1 × G1 → G2,
given 〈P, xP, yP, zP 〉, to compute ê(P, P )xyz is hard.

In [15, 16, 30], the authors reduced the security of their protocols to the fol-
lowing Bilinear Inverse Diffie-Hellman assumption. The assumption was proved
to be equivalent to the BDH assumption [31].

Assumption 2 (BIDH [31]) For x, y ∈R Z∗q , P ∈ G∗1, ê : G1 × G1 → G2,
given 〈P, xP, yP 〉, to compute ê(P, P )y/x is hard.
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There are a few related assumptions which have been used in the literature
to construct cryptography systems (see [8] for a summary and relations among
these assumptions). The following decision k-BDHI assumption was used in [5]
to construct a selective identity-based encryption without random oracles, and
in [8] to prove the security of Sakai et al.’s identity-based encryption scheme [20].

Assumption 3 (k-BDHI [5]) For an integer k, and x ∈R Z∗q , P ∈ G∗1, ê :
G1 ×G1 → G2, given 〈P, xP, x2P, . . . , xkP 〉, to compute ê(P, P )1/x is hard.

Assumption 4 (k-DBDHI [5]) For an integer k, and x, r ∈R Z∗q , P ∈ G∗1,
ê : G1×G1 → G2, to distinguish between the distributions 〈P, xP, x2P, . . . , xkP ,
ê(P, P )1/x〉 and 〈P, xP, x2P, . . . , xkP, ê(P, P )r〉 is hard.

Assumption 5 (k-BCAA1 [8]) For an integer k, and x ∈R Z∗q , P ∈ G∗1, ê :
G1 ×G1 → G2, given 〈P, xP, h0, (h1,

1
h1+xP ), . . . , (hk, 1

hk+xP )〉 where hi ∈R Z∗q
and different from each other for 0 ≤ i ≤ k, to compute ê(P, P )1/(x+h0) is hard.

The relationship between k-BDHI and k-BCAA1 has been proved in [8] by
the following theorem.

Theorem 1 ([8]) If there exists a polynomial time algorithm to solve (k-1)-
BDHI, then there exists a polynomial time algorithm for k-BCAA1. If there
exists a polynomial time algorithm to solve (k-1)-BCAA1, then there exists a
polynomial time algorithm for k-BDHI.

Assumption 6 (k-sCAA1 [31]) For an integer k, and x ∈R Z∗q , P ∈ G∗1, given
〈P, xP, (h1,

1
h1+xP ), . . . , (hk, 1

hk+xP )〉 where hi ∈R Z∗q and different from each
other for 1 ≤ i ≤ k, to compute (h, 1

h+xP ) for some h ∈ Z∗q but h /∈ {h1, . . . , hk}
is hard.

Here we propose a new assumption. We call it k-EBCAA1 which is the variant
of the k-BCAA1 assumption presented in [8].

Assumption 7 (k-EBCAA1) For an integer k, and x, y ∈R Z∗q , P ∈ G∗1, ê :
G1×G1 → G2, given 〈P, xP, h0, (h1,

1
h1+xP ), . . . , (hk, 1

hk+xP ), yP 〉 where hi ∈R

Z∗q and different from each other for 0 ≤ i ≤ k, to compute ê( 1
h0+xP, yP ) is

hard.

We argue that the assumption k-EBCAA1 is weaker or at least as weak as
the k-BDHI assumption (we note here that a weaker assumption implies a harder
problem). The relation can be easily established from Theorem 1 and the fact
that if there exists a polynomial time algorithm to solve k-EBCAA1, then there
exists a polynomial time algorithm for k-BCAA1. This fact follows obviously.
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2.2 Security model of key agreement

In this paper, we use Blake-Wilson et al.’s key agreement formulation which
extends the Bellare-Rogaway (BR) model [2] to public key setting to test the
security strength of a protocol. In the BR model [2], each party involved in a
session is treated as an oracle. An adversary can access the oracle by issuing
some specified queries. An oracle Πs

i,j denotes an instance s of a party i involved
with a partner party j in a session where the instance of the party j is Πt

j,i .
The oracle Πs

i,j executes the prescribed protocol Π and produces the output as
Π(1k, i, j, Si, Pi, Pj , convs

i,j , r
s
i,j , x)= (m, δs

i,j , σ
s
i,j) where x is the input message;

m is the outgoing message; Si and Pi are the private/public key pair of party i;
Pj is the public key of j; δs

i,j is the decision of the oracle (accept or reject the
session or no decision yet) and σs

i,j is the generated session key (please see [2, 4]
for the details). At the end of Π, the conversation transcript convs

i,j is updated as
convs

i,j .x.m (where “a.b” denotes the result of the concatenation of two strings,
a and b).

The security of a protocol is tested by a game with two phases. In the first
phase, an adversary E is allowed to issue queries as follows in any order.

1. Send a message query: Send(Πs
i,j , x). Πs

i,j executes Π(1k, i, j, Si, Pi, Pj , convs
i,j ,

rs
i,j , x) and responds with m and δs

i,j . If the oracle Πs
i,j does not exist, it will

be created. Note that x can be λ in the query which causes an oracle to be
generated as an initiator, otherwise as a responder.

2. Reveal a session’s agreed session key: Reveal(Πs
i,j). Πs

i,j reveals the session’s
private output σs

i,j if the oracle accepts.
3. Corrupt a party: Corrupt(i). The party i responds with the private key Si.

Here, the adversary is not allowed to replace a party’s private key because
the attack is impossible in the identity-based schemes.

Once the adversary decides that the first phase is over, it starts the second
phase by choosing a fresh oracle Πs

i,j and issuing another query: Test(Πs
i,j).

Oracle Πs
i,j , as a challenger, randomly chooses b ∈ {0, 1} and responds with

σs
i,j , if b = 0; otherwise it returns a random sample generated according to the

distribution of the session secret σs
i,j . If the adversary guesses the correct b, we

say that it wins. Define

AdvantageE(k) = max{0,Pr[E wins]− 1
2}.

The fresh oracle in the game is defined as below, which is particularly defined
to address the key-compromise impersonation resilience property [11].

Definition 2 (fresh oracle) An oracle Πs
i,j is fresh if (1) Πs

i,j has accepted; (2)
Πs

i,j is unopened (not being issued the Reveal query); (3) j is not corrupted (not
being issued the Corrupt query); (4) there is no opened oracle Πt

j,i , which has
had a matching conversation to Πs

i,j .

We stress that in this paper, it is required that i 6= j for the chosen fresh oracle
in the game (note that the model allows a party to engage in a session with
itself).
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We use session ID [1], which is the concatenation of the messages in a ses-
sion (the transcript of an oracle), to define matching conversations. Two oracles
Πs

i,j and Πt
j,i have the matching conversations if both of them derive the same

session ID from (each own) conversation transcript.
A secure authenticated key (AK) agreement protocol is defined as below.

Definition 3 [4] Protocol Π is a secure AK if:

1. In the presence of the benign adversary, which faithfully conveys the mes-
sages, on Πs

i,j and Πt
j,i , both oracles always accept holding the same session

key σ, and this key is distributed uniformly at random on {0,1}k;

and if for every adversary E:

2. If two oracles Πs
i,j and Πt

j,i have matching conversations and both i and j
are uncorrupted, then both accept and hold the same session key σ;

3. AdvantageE(k) is negligible.

3 The MB Protocol and its Variants

In this section, we recall McCullagh and Barreto’s protocol and its variants.
These protocols use the same key setting (the SK key setting) and exchange the
same message flows. However, in the last step of the protocols, each protocol has
a different scheme to compute an established session key.

Setup. Given the security parameter k, the algorithm randomly chooses s ∈ Z∗q
and generates the system params 〈G1,G2, ê, q, P, sP, H1,H2〉 where P ∈ G∗1
and H1 : {0, 1}∗ → Z∗q , H2 : G2 → {0, 1}n for some integer n. The master key
is s which is kept secret by the center.

Extract. The schemes employ the SK key setting [20]. Given an identity IDA,
the master key s, and the system params, the algorithm computes H1(IDA) =
α ∈ Z∗q and the corresponding private key dA = 1

s+αP for IDA. αP + sP will
be used as the public key corresponding to IDA.

Note that the result of the SK key setting is a short signature dA on the iden-
tity string IDA signed under the private signing key s. As proved in Theorem
3 of [31], this short signature is secure against adaptive chosen message attacks
in the secure signature notation by Bellare and Rogaway [3] provided that the
k-sCAA1 assumption is sound.

Protocol. Suppose H1(A) = α and H1(B) = β. Party A and B randomly choose
x and y from Z∗q respectively. The protocol proceeds as follow.

A → B : T1 = x(βP + sP )
B → A : T2 = y(αP + sP )
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On completion of the protocol, there are three ways to compute the agreed
secret which have different security strength (here we slightly change the proto-
cols in [15, 16, 30] by employing an extra hash function on the agreed secret to
generate the session keys).

Scheme 1 (McCullagh-Barreto’s original scheme [15]). A computes K =
ê(T2, dA)x = ê(P, P )xy and B computes K = ê(T1, dB)y = ê(P, P )xy. The agreed
session key is SK = H2(ê(P, P )xy). This scheme appears to provide two inter-
esting security properties: the perfect forward secrecy (i.e., if the private keys of
both parties are compromised, the agreed session keys between these two parties
cannot be recovered by the adversary) and the master-key forward secrecy (i.e.,
even if the master-key is compromised, the session keys of previous sessions are
still safe). However, this scheme does not achieve the key-compromise imper-
sonation resilience [10, 29]. To defeat this attack, Xie and McCullagh-Barreto
proposed the following two fixing variants respectively.

Scheme 2 (McCullagh-Barreto’s modified scheme [16]). A computes
K = ê(T2, dA)·ê(P, P )x =ê(P, P )x+y and B computes K = ê(T1, dB)·ê(P, P )y =
ê(P, P )x+y. The agreed session key is SK = H2(ê(P, P )x+y). Although now the
protocol appears to achieve the key-compromise impersonation resilience prop-
erty, this scheme looses two other desirable security attributions obtained in
Scheme 1: the perfect forward secrecy and the master-key forward secrecy.

Scheme 3 (Xie’s scheme [30]). A computes K = ê(T2, dA)x+1 · ê(P, P )x =
ê(P, P )xy+x+y and B computes K = ê(T1, dB)y+1 · ê(P, P )y = ê(P, P )xy+x+y.
The agreed session key is SK = H2(ê(P, P )xy+x+y). This scheme appears to be
the strongest among three schemes and achieves the key-compromise imperson-
ate resilience property, the perfect forward secrecy and the master-key forward
secrecy as well.

Note that in the original schemes described in [15, 16, 30], the use of H2 is
not clearly required. It will result in a potential security problem, which will be
discussed in the security proof of Section 4.2.

4 Their Security Proofs

4.1 A sketch of their proofs

In this subsection, we give a sketch of three security proofs from [15, 16, 30]
respectively, each for one variant of the MB protocol as described in Section 3.
The proofs were intended to adopt the security model proposed by Bellare and
Rogaway [2] and extended by Blake-Wilson et al. [4].

All of the three proofs are based on the bilinear inverse Diffie-Hellman (BIDH)
problem, described in Assumption 2, i.e., given 〈P , αP, βP 〉, to compute ê(P, P )β/α

is computationally infeasible. Each proof involves two algorithms: an adversary
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A and a challenger (i.e., a simulator of the real world) B. A’s goal is to break a
specified protocol, and B’s goal is to solve the BIDH problem with the help of
A.

Each proof includes a set of parties, each modeled by an oracle. The notation
Πs

i,j denotes an oracle i believing that it is participating in the s-th run of the
protocol with another oracle j. A can access any oracle by issuing the queries
of Create, Corrupt, Send, and Test. All queries by A pass through B. Before
the game starts, B randomly selects a pair of oracles, Πs

i,j and Πt
j,i. B expects

that A is going to attack the oracle Πs
i,j by playing the role of Πt

j,i. In the three
proofs, A and B play the game described in Section 2.2 in the following three
slightly different ways.

Proof 1 (for Scheme 1 [15]). To answer a Create/Corrupt query for any or-
acle m where m 6= j, B chooses a random integer ym ∈ Z∗q , and answers ymP
as m’s public key and y−1

m P as m’s private key. B answers αP as j’s public key
and does not know j’s private key α−1P . To answer a Send query for any oracle
except Πs

i,j , B follows the protocol properly. To answer a Send query for Πs
i,j ,

B chooses a random integer xi ∈ Z∗q and answers xiP . The proof relies on that
an input from A as Πt

j,i’s response is exactly the value of βP . After a Test query
for Πs

i,j , if A successfully breaks Scheme 1 by distinguishing the established key,
K = ê(P, P )xiβ/yiα, from a random number, B can get ê(P, P )β/α by computing
Kyi/xi .

Proof 2 (for Scheme 2 [16]). B answers Create/Corrupt queries in the same
way as it did in Proof 1. To answer a Send query for any oracle except Πs

i,j ,
B follows the protocol properly. To answer a Send query for Πs

i,j , B answers βP .
The input from A as Πt

j,i’s response is an arbitrary value δP . After a Test query
for Πs

i,j , if A successfully breaks Scheme 2 by distinguishing the established key,
K = ê(P, P )β/α+δ/yi , from a random number, B can get ê(P, P )β/α by comput-
ing K/ê(P, P )δ/yi .

Proof 3 (for Scheme 3 [30]). To answer a Create/Corrupt query for any
oracle m where m /∈ {i, j}, B chooses a random integer ym ∈ Z∗q , and answers
ymP as m’s public key and y−1

m P as m’s private key. B answers αP as i’s public
key and does not know i’s private key α−1P . B answers βP as j’s public key
and does not know j’s private key β−1P . To answer a Send query for any oracle
except Πs

i,j , B follows the protocol properly. To answer a Send query for Πs
i,j ,

B chooses a random integer xi ∈ Z∗q and answers xiβP . The proof relies on that
an input from A as Πt

j,i’s response is exactly the value of βP (i.e. yjαP = βP
for some yj). After a Test query for Πs

i,j , if A successfully breaks Scheme 3
by distinguishing the established key, K = ê(P, P )(xi+1)β/α · ê(P, P )xi , from a
random number, B can get ê(P, P )β/α by computing (K/ê(P, P )xi)1/(xi+1).
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4.2 Analysis of their proofs

We now show that all the three reductions described in the last subsection are
invalid. More specifically, the reductions have following three problems.

Problem 1: From A’s point view, the simulation offered by B is distinguishable
from the real world of an identity-based authenticated key agreement protocol.

In any identity-based cryptographic world, the correctness of a public/private
key pair derived from a chosen identity string, ID, is verifiable, given system
parameters and the key generation center’s master public key. In those security
reductions based on a standard model (e.g., [5, 6, 28]), an adversary can use ID
directly as the public key to verify the result of a private key generation query
(i.e., Corrupt query). In those security reductions based on a random oracle
model, such as [7, 9], to verify a correct key deriving can be done with a query of
ID to the random oracle. This is acceptable in the random oracle model based
reductions, although it is not as ideal as the first case.

It is addressed in [15, 16, 30] that the identity map function H1 in the MB
protocol and its variants is by means of the random oracle model. However,
how to respond to the H1 query is not specified in these three proofs. Another
related missing part is that these three proofs do not specify either which entity
has the access to the value of s, or what the system parameters that A would
get access to should be. We can see that B is not able to answer the H1 query
by following the Create and Corrupt queries specified in these three proofs. As
a result, A cannot verify correctness of either Create or Corrupt query result
from ID and the system parameters. A can then immediately notice that B is
a simulator, instead of the real world. We discuss this issue in the following two
cases, dependent on whether or not B knows the value of s.

1. The value s is not known to B. Following the three proofs, to answer the Cre-
ate/Corrupt query to an oracle with the identity IDm, B assigns a random
element pair, ymP , y−1

m P ∈ G∗1, as the public/private key pair. However, B is
not able to give the value of um = H1(IDm), satisfying umP = ymP − sP ,
because to solve the discrete logarithm problem in G1 is computational in-
feasible, which is implied by the used BIDH assumption. Therefore, B is
not able to answer the oracle query H1(IDm), and A then cannot verify
correctness of the received ymP and y−1

m P from IDm and sP .
2. The value s is chosen by B . Following the reductions, to answer the Create

query to an oracle with the identity IDj in Proof 1 and Proof 2 (or IDi

in Proof 3), B assigns αP ∈ G∗1, as the public key to the party j (or i).
However, again B is not able to give the value of uj (or ui), satisfying ujP
(or uiP ) = αP − sP , because to solve the discrete logarithm problem in G1

is supposed to be computational infeasible. Therefore B is not able to answer
the oracle query H1(IDj) = uj (or H1(IDi) = ui) and A then cannot verify
correctness of the received public key αP for IDj (or IDi) under the master
public key sP .
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In conclusion, since B cannot answer the H1 query, A can immediately notice
the inconsistency between the simulation and the real world.

Problem 2: B in Proof 1 and Proof 3 requires that A provides an expected value
as a response to a specific oracle. This is not a reasonable requirement.

This is because A is not controlled by B . Even the assumption that the ad-
versary would follow the protocol strictly to generate messages is too strong to
cover many dangerous attacks. A sound reduction can only require that mes-
sages from the adversary are in the specified message space.

Problem 3: H2 is not clearly required in the MB protocol and its variants. This
results in that the reduction to the computational BIDH assumption does not
follow.

The simulation B cannot be created based on the BIDH assumption for the
original protocols in [15, 16, 30]. Instead, even if both Problem 1 and 2 are solved,
a simulation could only be created based on the decision BIDH for the original
protocols if they are secure. Otherwise, the adversary can win the game with the
probability to differentiate a random element of G2 from the true value. This
is the reason why we employ an extra hash function on the agreed secret to
generate a session key SK.

5 A New Proof

Although the reduction for the MB’s modified protocol (Scheme 2) in [16] is
invalid, this does not mean the protocol is insecure. Instead, we can present a
new reduction based on the k-EBCAA1 assumption which reflects the security
strength of this protocol. Now we present a new proof for Scheme 2 based on
the k-EBCAA1 assumption but with the Reveal query disallowed. Obviously the
reduction can be based on any assumption stronger than k-EBCAA1, including
k-BDHI. A discussion on effect from disallowing the reveal query will be given
in the next section.

Theorem 2 McCullagh-Barreto’s protocol using Scheme 2 as the session key
generation function is a secure AK with respect to the Bellare-Rogaway’s model
with the Reveal query disallowed, provided that H1,H2 are random oracles and
the k-EBCAA1 assumption is sound.

Proof: The conditions 1 and 2 directly follow from the protocol specification.
In the sequel we prove that the protocol satisfies the condition 3 if the Reveal
query is disallowed.

Suppose that there is an adversary A against the protocol with non-negligible
probability. Let q1 and q2 be the number of the distinct queries to H1 and H2

respectively (note that H1 could be queried directly by an H1-query or indirectly
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by a Corrupt query or a Send query). With the help of A , we can construct an
algorithm B to solve a q1-EBCAA1 problem with non-negligible probability.

Given an instance of the q1-EBCAA1 problem (G1,G2, ê, q, 〈P, sP, h0, (h1,
1

h1+sP ), . . . , (hq1−1, 1
hq1−1+sP ), yP 〉 where hi ∈R Z∗q for 0 ≤ i ≤ q1 − 1),

B simulates the Setup algorithm to generate the system params 〈G1,G2, ê, q, P,
sP, H1,H2〉 (i.e., using s as the master key which it does not know). H1 and
H2 are two random oracles controlled by B . Suppose, in the game, there are
T1 oracles created by the engaged parties and A . Here, we slightly abuse the
notation Πs

i,j as the s-th oracle among all the oracles created during the attack,
instead of the s-th instance of i. This change does not affect the soundness of the
model because s originally is just used to uniquely identify an instance of party
i. B randomly chooses u ∈R {1, . . . , T1} and I ∈R {1, . . . , q1} and interacts with
A in the following way:

H1-queries (IDi): B maintains a list of tuples 〈IDj , hj , dj〉 as explained below.
We refer to this list as H list

1 . The list is initially empty. When A queries the
oracle H1 at a point IDi, B responds as follows:

1. If IDi already appears on the H list
1 in a tuple 〈IDi, hi, di〉, then B responds

with H1(IDi) = hi.
2. Otherwise, if the query is on the I-th distinct ID, then B stores 〈IDI , h0,⊥〉

into the tuple list and responds with H1(IDI) = h0.
3. Otherwise, B selects a random integer hi(i > 0) from the q1-EBCAA1 in-

stance which has not been chosen by B and stores 〈IDi, hi,
1

hi+sP 〉 into the
tuple list. B responds with H1(IDi) = hi.

H2-queries (Xi): At any time A can issue queries to the random oracle H2. To
respond to these queries B maintains a list of tuples called H list

2 . Each entry in
the list is a tuple of the form 〈Xi,Hi〉 indexed by Xi. To respond to a query on
Xi, B does the following operations:

1. If on the list there is a tuple indexed by Xi, then B responds with Hi.
2. Otherwise, B randomly chooses a string Hi ∈ {0, 1}n and inserts a new tuple
〈Xi,Hi〉 to the list. It responds to A with Hi.

Corrupt(IDi): B looks through list H list
1 . If IDi is not on the list, B queries

H1(IDi). B checks the value of di: if di 6= ⊥, then B responds with di; otherwise,
B aborts the game (Event 1).

Send(Πt
j,i,M): B first looks through the list H list

1 . If IDi is not on the list,
B queries H1(IDi). After that, B checks the value of t. If t 6= u, B responds the
query by honestly following the protocol. If t = u, B further checks the value of
di, and then responds the query differently as below dependending on this value.

– If di 6= ⊥, B aborts the game (Event 2). We note that there is only one
party’s private key is represented as ⊥ in the whole simulation.

– Otherwise, B responds with yP obtained from the q1-EBCAA1 instance.
Note that Πt

j,i can be the initiator (if M = λ) or the responder (if M 6= λ).
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Test(Πt
j,i): If t 6= u, B aborts the game (Event 3). Otherwise, B randomly

chooses a number ζ ∈ {0, 1}n and gives it toA as the response. WhenA responds,
B randomly chooses a tuple from H list

2 with value X`. B responds to the q1-
EBCAA1 challenger with the value of X`/ê(dj ,M) where M is the incoming
message to oracle Πt

j,i.
Note that if the game did not abort, the adversary cannot find the incon-

sistency between the simulation and the real world. The agreed secret in oracle
Πt

j,i should be K = ê(dj , M)·ê(P, P )r where r(h0P +sP ) = yP (recall that party
i’s public key is h0P + sP and the private key is unknown to B and represented
by ⊥), i.e., r = y

h0+s and K = ê(dj ,M) · ê(yP, 1
h0+sP ).

Now let us evaluate the probability that B did not abort the game. B aborts
the game only when at least one of following events happens: (1) Event 1,
denoted as H1: A corrupted party i whose private key is represented by ⊥ at
some point; (2) Event 2, denoted as H2: in the u-th session, if A impersonated
a party, it did not impersonate party i whose private key is represented by ⊥
(recall that oracle Πu

j,i was simulated by B in the game. It is not important who
sent the message M to Πu

j,i. It could be the adversary who impersonated party
i or an oracle Πv

i,j for some v); (3) Event 3, denoted as H3: A did not choose
the u-th oracle as the challenge fresh oracle. Note that according to the rules of
the game, the adversary would not corrupt party i if it chose Πt

j,i as the fresh
oracle. Hence ¬H3∧¬H2 implies ¬H1 (recall that in this report, we require that
j 6= i for the chosen fresh oracle Πt

j,i, i.e., in the attacked session the victim
party establish the session with itself. This is not an unusual requirement in real
environments). Let F be the event that B did not abort the game. Then, we
have

Pr[F ] = Pr[¬H1 ∧ ¬H2 ∧ ¬H3] = Pr[¬H2 ∧ ¬H3] ≥ 1
q1
· 1
T1

.

Let H be the event that ê(dj ,M)·ê(yP, 1
h0+sP ) has been queried to H2. Since

H2 is a random oracle and all the oracles are unopened, Pr[A wins|¬H] = 1
2 +ε(k)

for some negligible function ε(k). Suppose A wins the game with non-negligible
advantage n(k). Then we have

n(k) + 1
2 = Pr[A wins] ≤ Pr[A wins|H]Pr[H] + 1

2 + ε(k) ≤ Pr[H] + 1
2 + ε(k).

So, Pr[H] ≥ n(k)− ε(k) > n′(k) which is non-negligible. Let E be the event that
B finds the correct ê(dj ,M) · ê(yP, 1

h0+sP ) on the list H list
2 , and so computes

the correct ê(yP, 1
h0+sP ). Overall, we have

Pr[B wins] = Pr[F ∧H ∧ E ] ≥ 1
q1 · T1

· n′(k) · 1
q2

.

¤

6 Discussions about the Reduction

The reduction presented in the previous section does not allow the adversary to
query the session keys generated in other sessions (different from the challenge
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session). Obviously, such reduction cannot guarantee that the scheme is secure
against the known-session key attacks in general (see [11] for some examples).
However, in the scheme H2, which is treated as a random oracle in the game,
is employed to generate the real session key (for later communication) from the
agreed secret K. H2 should be replaced by some cryptographic hash function
which should at least achieve the preimage resistance property (Chapter 9 [17]).
Hence, even given a session key H2(K) (which could possibly be recovered by
some means from the later communication using the key), the adversary still
cannot recover K. That means, the adversary cannot make use of its knowledge
of H2(K) to launch any attack requiring the knowledge of K. Moreover, in the
protocol, one party cannot totally control the generation of K in a session, and
so, K and H2(K) will vary on each session because at least one party will behave
honestly following the protocol.

So, intuitively, the Reveal query (in one session) does not help the adversary
guess the session key of another session to win the game. Meanwhile, as suggested
in [11] and employed in [27], to include the exchanged messages in a session or
the identity of the engaged parties, known-session key attacks can be defeated.

Claim 1 If the session key in Scheme 2 is generated in the following way:

SK = H2(A,B, T1, T2, ê(P, P )x+y),

and H2 is modelled as a random oracle, the Reveal query does not help the
adversary win the game.

Proof (sketch): Suppose in the game, the chosen fresh oracle for the Test query
is Πt

j,i. Then to win the game through the Reveal query, the adversary has to
at least reveal the session key of an oracle Πu

i,j or Πv
j,i because two parties’

identifiers are used in H2, and H2 supposes to be a random oracle. If Πu
i,j is

revealed, then it must not have the identical transcript with Πt
j,i because the

rule of the game requires that Πu
i,j is not an oracle with a matching conversation

with Πt
j,i (recall that a matching conversation is determined by the session ID

which is the transcript of the oracle). Hence, an allowed reveal query on Πu
i,j

does not help the adversary either, because the transcript is used in H2. As
Πv

j,i would have the same transcript with Πt
j,i (it requires at least that both

oracles randomly choose the same integer rj to generate the outgoing message
rj(H1(i)P +sP )) with only negligible probability, the reveal query on this oracle
does not provide any advantage to the adversary.

We have only provided a reduction for McCullagh-Barreto’s modified protocol
(Scheme 2). It seems that the reduction cannot be adapted for Xie’s modifi-
cation (Scheme 3). A formal reduction is still required for Xie’s protocol, even
though Xie’s protocol seems stronger than McCullagh-Barreto’s, which appears
to achieve the perfect forward secrecy and the master-key forward secrecy.
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7 Conclusion

In this paper, we have revisited the security proofs of three identity-based au-
thenticated key agreement schemes using the SK key setting and pointed out
the flaws in the reductions. We have also provided a new reduction for one of
the three schemes. Our reduction is based on the k-EBCAA1 assumption in a
weaker model of Bellare-Rogaway’s key agreement formulation. We leave the
formal security analysis of the other two schemes as an open problem.
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