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Abstract. In this paper we are interested in algebraic immunity of
several well known highly-nonlinear vectorial Boolean functions (or S-
boxes), designed for block and stream ciphers. Unfortunately, ciphers
that use such S-boxes may still be vulnerable to so called “algebraic at-
tacks” proposed recently by Courtois, Pieprzyk, Meier, Armknecht, et
al. These attacks are not always feasible in practice but are in general
very powerful. They become possible, if we regard the S-boxes, no longer
as highly-nonlinear functions of their inputs, but rather exhibit (and ex-
ploit) much simpler algebraic equations, that involve both input and the
output bits. Instead of complex and “explicit” Boolean functions we
have then simple and “implicit” algebraic relations that can be com-
bined to fully describe the secret key of the system.
In this paper we look at the number and the type of relations that do exist
for several well known components. We wish to correct or/and complete
several inexact results on this topic that were presented at FSE 2004.
We also wish to bring a theoretical contribution. One of the main prob-
lems in the area of algebraic attacks is to prove that some systems of
equations (derived from some more fundamental equations), are still lin-
early independent. We give a complete proof that the number of linearly
independent equations for the Rijndael S-box (derived from the basic
equation XY = 1) is indeed as reported by Courtois and Pieprzyk. It
seems that nobody has so far proven this fundamental statement.

Key Words: Boolean functions, Power functions, highly non-linear func-
tions S-boxes, design of block and stream ciphers, algebraic attacks, mul-
tivariate systems of equations, XL algorithm, Gröbner bases, XSL attack.

1 Introduction
Algebraic attacks are attacks in which a cryptosystem is broken (for exam-
ple the key, the plaintext, or a signature is computed) by solving a system
of multivariate equations over a finite field (e.g. GF (2)) that describes the
whole cryptosystem. The main idea goes in fact back to Shannon, and the
main contributions in the area are (starting from the oldest) [39, 35, 27,
16, 38, 17, 12, 13, 29, 2]. We refer to [20] for a comprehensive survey that
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outlines respective contributions and (importantly) shows how much in
common all these attacks do have.

Algebraic attacks are very successful in cryptanalysis of LFSR-based
stream ciphers, see among others [13, 14, 2] as well as for many public
key schemes based on multivariate polynomials, for example see [16, 29].
However an essential problem still remains widely open: can an algebraic
attack such as XSL or similar break modern block ciphers such as AES
faster that the exhaustive search of key space ? - Courtois and Pieprzyk
contend it should be possible, see [17, 32, 33], but nobody was so far able
to neither prove nor disprove it.

2 How to Measure Algebraic Vulnerability
The notion of algebraic immunity that is used in the literature [4, 20, 1,
5–7] (and can be defined in several meaningful ways, not only as in [4])
is meant to quantify the security of some cryptosystems (mostly stream
ciphers for the notion of [4]) against some algebraic attacks. It does not
assure any ”immunity”, i.e. cannot guarantee security of all ciphers w.r.t.
to all algebraic attacks. In this paper we wish to study algebraic immunity
in a broader perspective: for Boolean components with several outputs
(S-boxes), and for both block and stream ciphers. Our motivation lies in
numerous recent proposals of algebraic attacks. A large variety of attacks
(cf. among others [20, 1, 13, 14, 2, 15, 17, 19, 11]), and for stream and block
ciphers alike, has a commun feature. They all depend on the existence of
some ”simple” algebraic relations that relate input and output bits of the
non-linear components (S-boxes and Boolean functions alike). Thus we
will not define a formal notion of algebraic immunity, but will simply look
at the critical parameters of the most commonly used algebraic relations
of low degree.

In fact, all the S-boxes we study here, are quite weak in this respect,
therefore this paper is in fact about algebraic non-immunity or algebraic
vulnerability. This term also reflects the fact that though some algebraic
attacks on ciphers using such weak components are very fast and practical,
yet some extremely slow and that may never pose a practical threat (in
particular AES has not been shown to be really broken), see [20] for an
overview.

Having the aforementioned attacks in mind, the main parameters that
do determine algebraic [non-]immunity of an S-box are in general:
1. The size s in bits of the S-box (s stands for size). In this paper we

only consider bijective components GF (2)s → GF (2)s.
2. The type of equations we consider (is usually determined by the kind

of monomials we allow, for example quadratic equations).
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3. The degree of the monomials that do appear in the equations.
4. The dimension of the space of equations r, (r stands for relations).
5. The sparsity of these equations measured by the number of monomials

t (t stands for terms) that do appear in these equations.
6. From (r, s, t) we can compute the number Γ , conjectured by Courtois

and Pieprzyk to measure the resistance against the XSL attack. We
note that Γ has two different definitions, depending on the version
of the XSL attack, see [17]. In this paper we will call Γ the value
Γ (r, s, t) = (t/s)dt/re from the eprint.iacr.org version of the XSL
attack. This version is claimed to be more powerful in practice but
requires the internal key scheduling of the block cipher to be built
with the same S-box (and otherwise only linear components).

7. Similarly we will call Γ ′ the definition Γ ′(r, s, t) = ((t− r)/s)d(t−r)/se

published in the proceeding of Asiacrypt 2002. This version of the
XSL attack is more of a theoretical interest: it is simpler to study,
does not make any assumption on the key scheduling, but gives in
general (but not always) much bigger systems of equations to solve.

In the future, it is possible that a better understanding of the hardness
of the problem of solving special systems of multivariate equations will
force us to enrich and maybe re-define our notions of algebraic [non-
]immunity. The easiest cases may be not the ones that we think, and we
may even use totally different types of equations, see for example Section
6.2. in [18]. Nevertheless the types of equations and their main parameters
r, s, t that we study in this paper will remain important to look at when
studying algebraic attacks on block and stream ciphers.

3 S-boxes Based on Power Functions over a Finite Field

In this paper we look at various types of exponent functions X 7→ Xα in
a finite field GF (2s) (we restrict ourselves to the characteristic 2). These
functions can be classified according to the exponent α and some expo-
nents are recommended for usage in ciphers on the criteria of satisfying
(to some degree) the following two requirements:

1. It is better to use bijective S-boxes (though it is not an obligation
for Feistel ciphers). X 7→ Xα is bijective when gcd(α, 2s − 1) = 1.
For example when α = 3 it is known that the function X 7→ Xα is
bijective if and only if s is odd.

2. The exponent function should be non-linear, which excludes all α be-
ing a power of 2. Non-linearity is not sufficient, and exponents should
rather be very highly non-linear, but maybe not optimal in this re-
spect, as we explain below.
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3.1 High Nonlinearity versus Algebraic Immunity

Non-linearity can be defined in many meaningful ways, depending on the
metrics with respect to which we wish the cryptographic components to
be ”far part” from linear components. Highly non-linear components has
been widely studied in the literature.

In particular, for power S-boxes, several classes of special exponents
have been studied: Gold, Kasami, Dobbertin, Welch, Niho and Inverse, see
[8, 3]. These exponents are known to have a very good, optimal or very
close to optimal resistance against differential and linear cryptanalysis
that is formalised respectively by the notions of Almost-Perfect Nonlinear
functions (APN), and [maximally] non-linear functions. We refer to [8, 3]
for a bibliography on this topic.

Unfortunately, it turns out that all these “very good” exponents and
many other known highly-nonlinear components, are frequently somewhat
“very bad” in terms of algebraic immunity, cf. [8, 13, 14, 17, 20, 19]. Yet,
research on algebraic attacks and resulting algebraic immunity does not
invalidate the previously studied “non-linearity criteria” (such as being
an APN) that have been defined for S-boxes and Boolean functions. It
rather does complement them, as already suggested in [20, 13, 5]. The
new ”algebraic relation-related” non-linearity notion, is expected to be
related to the other notions and though using (sufficiently large) random
S-boxes should be a good idea to avoid all algebraic attacks one can think
of, it is also possible to exhibit special components that are reasonably
highly non-linear, and at the same time immune to algebraic attacks.
For Boolean functions (one output) such constructions have already been
studied by Carlet [5] and by Dalai, Gupta and Maitra in [6, 7].

3.2 The FSE 2004 Paper by Cheon and Lee

This paper is meant to be a follow-up to the paper published by Cheon
and Lee at FSE 2004 [8]. The authors follow the Patarin and Courtois-
Pieprzyk methodology of deriving the existence of algebraic equations
for a power S-box (see [35, 17]). They do it for 5 other S-boxes known
from the literature, find some equations and present to the effect that
some specified equations exist and are linearly independent. In fact as we
will see later, 2 of their 6 theorems are simply false all the other being
incomplete (i.e. they do not to take into account all existing equations).

4 Inverse Exponents

The AES so called Inverse S-box, and in fact the power X 7→ 22s−2 is non-
linear for s > 2. According to Courtois and Pieprzyk [17], it usually gives
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3s− 1 bi-affine equations (and 5s− 1 quadratic). This S-box is not at all
the same thing that the inverse function in a finite field, 0 is mapped onto
itself, and this singularity has surprising and non-trivial consequences, see
[19]. One of them is that the number of linearly independent equations
is one less than the results incorrectly given in [8] - Theorem 1 of [8] is
false.

In the appendix of this paper we give (for a first time) a complete proof
that for s > 2 the number of linearly independent bi-affine equations is
exactly 3s− 1, and for s > 4 the dimension of the set of fully quadratic
equations is exactly 5s − 1. Our proof uses the powerful Trace Form
representation of Boolean functions and reduces a complex problem of
existence and independence of multivariate polynomials into a simpler
problem with bivariate polynomials over GF (2n). The result is confirmed
by computer simulations below.

Table 1. Predictions and simulations for the number of linearly independent equations
and resulting algebraic immunity for the AES-type S-box X 7→ X2s−2 over GF (2s).

equation type size s = 2 3 4 5 7 8 9 15 16 17

bi-affine
equations

t = s(s + 2) + 1

Rijndael Inv S-box X 7→ X−1, 0 7→ 0

r obtained 5 8 11 14 20 23 26 44 47 50
expected=3s− 1 8 11 14 20 23 26 44 47 50

Γ = (t/s)dt/re 24.3 24.8 27.9 28.5 212.8 213.4 213.9 224.6 229.2 229.8

Γ ′ =
(

t−r
s

)d t−r
s

e
22 24.2 27.2 210.7 218.6 222.9 227.3 257.3 262.7 268.2

fully
quadratic

t = s(2s+1)+1

r obtained 7 14 21 24 34 39 44 74 79 84
expected=5s− 1 24 34 39 44 74 79 84

Γ = (t/s)dt/re 25.4 26.1 26.7 210.8 216 216.7 221.6 235 235.6 241.4

Γ ′ =
(

t−r
s

)d t−r
s

e
24.7 27.5 211.6 223.1 242 252.2 262.8 2133 2146 2159
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Table 2. Comparing simulations to expectations on the number of linearly independent
equations and resulting algebraic immunity Γ and Γ ′, for selected permutation Gold

polynomials X 7→ X2k+1, gcd(k, s) = 1, gcd(2k + 1, 2s − 1) = 1, 1 ≤ k ≤ s/2 (for
completeness we also indicate between parentheses r obtained when these conditions
are not all satisfied, e.g. polynomials that are not permutations).

equation type size s = 2 3 4 5 7 8 9 15 16 17

bi-affine
equations

t = s(s + 2) + 1

Gold-type S-box X 7→ X3, k = 1

r obtained (6) 8 (10) 10 14 (16) 18 30 (32) 34
compare to 2s 6 10 14 18 30 34

Γ = (t/s)dt/re 24.8 211.4 216 220.8 236.8 242.5

Γ ′ =
(

t−r
s

)d t−r
s

e
24.2 214.3 222.7 231.9 262.6 275.7

fully
quadratic

t = s(2s+1)+1

r obtained (7) 14 (21) 25 35 (40) 45 75 (80) 85
predicted in [8] 15 25 35 45 75 85

Γ = (t/s)dt/re 26.1 210.8 216 221.6 235 241.4

Γ ′ =
(

t−r
s

)d t−r
s

e
27.5 222.8 241.7 262.7 2133 2159

bi-affine
equations

t = s(s + 2) + 1

Gold-type S-box X 7→ X5, k = 2

r obtained (5) (8) (10) 10 7 (8) 9 15 (16) 17
compare to s 5 7 9 15 17

Γ = (t/s)dt/re 211.4 231.9 241.7 273.7 285

Γ ′ =
(

t−r
s

)d t−r
s

e
214.3 227.2 236.7 268.1 279.3

fully
quadratic

t = s(2s+1)+1

r obtained (7) (14) (21) 25 28 (34) 36 60 (64) 68
predicted in [8] 15 21 27 45 51

Γ = (t/s)dt/re 210.8 220 226 245 251.7

Γ ′ =
(

t−r
s

)d t−r
s

e
222.8 246.8 268.2 2140 2165

bi-affine
equations

t = s(s + 2) + 1

Gold-type S-box X 7→ X9, k = 3

r obtained (6) (9) (10) (10) 14 (12) (6) (15) (16) 17
compare to s 7 17

Γ = (t/s)dt/re 216 285

Γ ′ =
(

t−r
s

)d t−r
s

e
222.7 279.3

fully
quadratic

t = s(2s+1)+1

r obtained (7) (15) (21) (25) 35 (32) (42) (60) (64) 68
predicted in [8] 21 51

Γ = (t/s)dt/re 216.1 251.7

Γ ′ =
(

t−r
s

)d t−r
s

e
241.7 2165

bi-affine
equations

t = s(s + 2) + 1

Gold-type S-box X 7→ X17, k = 4

r obtained (5) (8) (14) (10) (14) (36) 18 15 (16) 17
compare to s 9 15 17

Γ = (t/s)dt/re 220.8 275.7 285

Γ ′ =
(

t−r
s

)d t−r
s

e
231.9 268.1 279.3

fully
quadratic

t = s(2s+1)+1

r obtained (7) (14) (26) (25) (35) (70) 45 60 (68) 68
expected 27 45 51

Γ = (t/s)dt/re 221.6 245 251.7

Γ ′ =
(

t−r
s

)d t−r
s

e
262.7 2140 2165
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5 Gold Exponents

Gold exponents (cf. [34, 26, 8]) are functions of type X 7→ X2k+1 with
gcd(k, s) = 1. In [8] we read that these functions are APN, which is not
quite true in general, for example when s = 2, k = 1. The real result is
that all permutation polynomials of this type are APN, i.e. when also
gcd(2k + 1, 2s − 1) = 1, see [34]. As S-boxes these exponents were first
studied by Pieprzyk [37] and Nyberg [34]. Permutation Gold powers are
also used in the Matsumoto-Imai multivariate public key scheme and the
equations we study below, are precisely the equations that Patarin uses
to break this cryptosystem, see [35] for details.

From Theorem 2 of [8] we expect that for every Gold exponent α =
2k + 1 we obtain 3s equations for k 6= 1 and 5s for k = 1. Another theorem
of FSE 2004 that is false: for s = 3, the S-box X 7→ X3 gives 14 quadratic
equations, instead of 15 expected. In all other cases we studied, looking
at Theorem 2 of [8] seems to provide a lower bound for the number of
equations found, but this bound is frequently not tight.

For example, for s = 8, the S-box X 7→ X5 (that is not bijective)
gives 34 quadratic equations, instead of 24 expected (which is not even
a multiple of s). We also get more equations than expected from this
theorem for many permutation polynomials, for example X 7→ X5 for
s = 5 and for s = 7 we get respectively 25 and 28 quadratic equations
instead of 15 and 21 expected from Theorem 2 of [8]. Moreover we do
not see any regularity here: in the fist case we get 5s, in the second case
4s equations. The algebraic behaviour of Gold exponents is much more
complex to understand that the authors of [8] have expected, and their
results on Γ algebraic immunity of S-boxes are only upper bounds.

Observations on Algebraic Immunity: In Table 2 we see that for
XSL attacks both types of equations are interesting. For some S-boxes
bi-linear equations give a lower Γ , for other S-boxes, better attacks will
be obtained with fully quadratic equations. We also observe, as expected,
that usually Γ ′ is much larger than Γ , but in some cases it isn’t.

6 Dobbertin Exponents

Dobbertin exponents are following [8, 23] the power functions of the form
X 7→ X24k+23k+22k+2k−1 over GF (2s) with s = 5k. From Theorem 6 of
[8] we expect that there should give s quadratic equations. Again there
are conter-examples for this: for example X 7→ X4679 over GF (215) is a
Dobbertin permutation that gives only 12 quadratic equations instead of
s = 15 expected. We note that the Theorem 6 of [8] is neither a lower
bound nor an upper bound, and it seems that the correct lower bound
for Dobbertin exponents would be 4s/5 = 4k and not s = 5k.
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7 Niho Exponents

Niho exponents are defined in [24, 8] as functions of type X 7→ X2m+2m/2−1

over GF (2s) with s = 2m + 1 and m even, or X 7→ X2m+2(3m+1)/2−1 over
GF (2s) with s = 2m + 1 and m odd. Though from Theorem 5 of [8] we
learn that there should be s linearly independent quadratic equations,
again we have found that there are more of them.

For example X 7→ X39 is a Niho permutation polynomial over GF (27),
and it gives as many as 21 = 3s quadratic equations, instead of s = 7
expected.

8 Welch Exponents

Welch exponents are following [23, 8] functions of type X 7→ X2m+3 over
GF (2s) with s = 2m + 1. From Theorem 4 of [8] we learn that for these
functions there are as many as 9s or 10s quadratic equations. Unfortu-
nately these are obtained at the cost of introducing additional variables
zi, and we may still compute Γ but it does not pertain exactly to the
XSL attack anymore. However we may deduce from Table 6 that among
these there are s equations (and 2s when m = 2) that do not use these
additional variables.

This prediction is not at all confirmed by our simulations. For example
X 7→ X5 is a Welch permutation over GF (23), and it gives 14 = 5s − 1
quadratic equations, instead of s = 3 expected. Other examples are
X 7→ X7 over GF (25), and X 7→ X11 over GF (27), that are Welch permu-
tations, and give respectively 25 = 5s and 21 = 3s quadratic equations,
instead of 2s = 10 and s = 7 we expect.

Only some examples confirm what we expect from Theorem 4 and
Table 6 of [8]. For example X 7→ X19 over GF (29) and X 7→ X131 over
GF (215) are Welch permutations and in both cases there are indeed s
quadratic equations.

9 Kasami Exponents

Kasami exponents are defined in [30, 8] as functions of type X 7→ X22m−2m+1

over GF (2s) with gcd(m, s) = 1 and 1 ≤ m ≤ s/2. From Theorem 3 of [8]
we learn that for these functions there are as many as 7s or 10s quadratic
equations (but again they introduce additional variables). Out of them s
quadratic equations do not involve additional variables.

Again, this is not at all confirmed by our simulations. For example
X 7→ X13 is a Kasami permutation over GF (27), GF (29) and GF (211)with
k = 2, and it gives respectively 21 = 3s, 18 = 2s and 22 = 2s quadratic
equations instead of s expected. Another example is X 7→ X57 which
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is a Kasami function (not a permutation) over GF (28), GF (210) and
GF (214)with k = 3, and in all these cases we get 2s quadratic equations,
instead of s expected.

10 Which S-box has the Lowest Algebraic Immunity

In this paper we see that in most cases the algebraic behaviour of power
functions over finite fields is far from being simple and predictable. For
many results of [8] up to 5 times more equations do exist which results in
a much lower algebraic immunity than expected.

Which S-box is the worse ? During the Asiacrypt 2002 presentation,
Courtois conjectured (based on some early comparisons) that there is no
non-linear S-box that allows to write more multivariate relations that
for the AES S-box (i.e. in terms of algebraic immunity AES uses the
worst S-box that exists). In this paper we show that strictly speaking
this conjecture is not true.

We found that if s is odd, the function X 7→ X3 over GF (2s) is an
APN permutation S-box and gives usually (but not always as claimed in
[8], see simulations in Table 2) as many as 5s equations instead of 5s− 1
for the inverse S-box. Yet, in an algebraic attack on AES such as in [17]
it is still possible to use 5s equations for all S-boxes of AES and this with
pretty good probability. Therefore, arguably, an S-box based on X 7→ X3

is in fact only very slightly worse than the AES S-box. In some sense the
Courtois conjecture remains valid.

Remark: For one s = 4 (and only for this s) we can even do better
than 5s, and we have 21 = 5s + 1 quadratic equations for the AES S-box
itself on 4 bits. This is due to the following fact proven by Courtois and
Pieprzyk in [17]: there is no S-box on 4 bits for which there would be
less than 21 equations. From this one can conjecture that, when s > 4,
there (maybe) is no non-linear S-box that would give strictly more than
5s quadratic equations.
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11 Conclusion

Algebraic attacks work by creating algebraically dependent but linearly
independent sets of equations, derived from some given initial set of equa-
tions. The complexity of algebraic attacks on block ciphers does greatly
depend on whether there are sufficiently many linearly independent equa-
tions compared to some evaluation. In this paper we showed that this
problem is complex and not trivial even for tiny systems of equations
resulting in a finite field from one single power-function S-box.

At FSE 2004 a paper was published with 6 theorems that determine
the number of linearly independent multivariate quadratic equations and
resulting algebraic immunity for 6 different highly non-linear power S-
boxes known from the literature. In this paper we showed that all these
6 results are false and in some cases heavily underestimate the number of
linearly independent algebraic relations (up to 5 times). For Inverse and
Dobbertin, the actual dimension may also be lower than claimed.

For the time being, computer simulations rather than extant theory,
are the only way known to determine correctly the number of linearly in-
dependent equations, even for one single S-box. Nevertheless, we managed
to solve the problem completely for the AES S-box: we give a complete
proof using the Trace Form of Boolean functions that the number of lin-
early independent equations is indeed what it have been established by
heuristic derivation combined with computer simulations by Courtois and
Pieprzyk. It seems that it is the first time such an exact result have been
proved. Moreover, our proof methodology should be of independent inter-
est and might help to prove the independence of more complex systems
of equations that arise in algebraic attacks.

Acknowledgments: We thank the anonymous referees of FSE 2005
for many very valuable comments.
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A Proof of the Main Theorem

Let S : GF (2)s −→ GF (2)s be the S-box function. Let Hk be the set of
Boolean functions h : GF (2)2s −→ GF (2) of degree ≤ k such that for
every x ∈ GF (2)s, h(x, S(x)) = 0. Hk is a vector space over GF (2). Let
Dk denote its dimension. Dk is the exact number of linearly independent
equations h(x, y) = 0 of multivariate degree ≤ k that hold for all couples
x and y such that y = S(x).

We are here interested in the case k = 2 when S is the inverse fonction
Inv of the AES. In order to define it we need to identify GF (2s) and
GF (2)s. Let this be done once for all via a fixed arbitrary basis of the
vector space GF (2s). Then we define the AES S-box as S(x) = x−1 when
x 6= 0 and S(0) = 0, with the inverse being computed in GF (2s). This
function can also be written as S(x) = x2s−2 for every x in GF (2s).

Given our identification of GF (2s) and GF (2)s we recall that there
is a bijection Λ between the set R(s) of multivariate vector Boolean
functions GF (2)s −→ GF (2)s and the set P (s) of univariate functions
GF (2s) −→ GF (2s) via the same basis of the vector space GF (2s). Every
function in P (s) is a univariate polynomial and has a unique polynomial
representation. This bijection can be reduced to the sets R(s, k) of func-
tions of R(s) of multivariate degree ≤ k to which correspond bijectively
sets P (s, d) defined as sets of univariate polynomial functions of P (s)
whose powers have binary Hamming weights ≤ k.

Moreover, this bijection Λ implies also a bijection between the set
of Boolean functions from GF (2)s to GF (2) and the set of functions
GF (2s) −→ GF (2). We are going to give more precisions about this
bijection when the Boolean functions are quadratic forms. First we recall
that to every linear form f : GF (2)s −→ GF (2) corresponds a unique
β ∈ GF (2s) such that the image of f by Λ is the function Tr(βx), with
Tr(x) = x + x2 + · · ·+ x2s−1

.
First we are going to prove few classical results on Boolean functions.

Specialists may want to directly skip to Theorem A.4.
Lemma A.1. : Every bilinear (or strictly bi-affine) Boolean function
g(x, y) =

∑
i,j ai,jxiyj has a unique polynomial representation in GF (2s)

of the form:
Tr

(
y · (c0x

20
+ c1x

21
+ . . . + cs−1x

2s−1
)
)

.

Now we will characterize the quadratic Boolean functions with respect to
univariate polynomials of GF (2s). Beforehand we recall that the set of in-
tegers 0 ≤ i ≤ 2s−2 can be partitioned in cyclotomic classes. Those classes
correspond to cycles generated by the multiplication by 2 on the elements
of ZZ2s−1. The cyclotomic class containing i has the form {i, 2i, . . . , 2d−1i},
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where d is the smallest integer such that 2di = i modulo 2s − 1. If we
consider the binary representation of every element of ZZ2s−1, we see that
the multiplication by two corresponds to a circular rotation of the bits.
This implies that the length of the cyclotomic classes is always s or a
divisor of s, because it corresponds to the minimal number of circular
shift necessary to recover the initial binary representation.
Theorem A.2. Every function f : GF (2s) −→ GF (2) can be written
as: f(x) =

∑
c∈(C)

Trd(a(c) · xic)

with:
– (C) is the set of the cyclotomic classes plus the class containing only

one element {2s − 1}.
– for every cyclotomic class c = {i, 2i, ...}, ic is an arbitrary element of

the class, and d the length of its cycle.
– a(c) are some coefficients a(c) ∈ GF (2d).
– Trd(x) is the polynomial x + x2 + . . . + x2d−1

corresponding to the
trace operator from GF (2d) → GF (2).

This representation is unique and is called Trace Form representation.
Proof. This result is well known and widely used (see for example Section
B.1 of [41]). Every function f : GF (2s) −→ GF (2s) has all its output
values in GF (2) if and only if

∀x ∈ GF (2s), f(x) = f(x)2.
This leads to a characterization of the coefficients a(i) of the associated
polynomial f(x) =

∑
0≤i≤2s−1 a(i)xi. Then ∀x ∈ GF (2s), we have∑

0≤i≤2s−1

a(i)xi =
∑

0≤i≤2s−1

a(i)2x2i

where:
– For every 0 ≤ i < 2s − 1, ∀x ∈ GF (2s), x2i = x[2i], where [2i] is the

integer < 2s − 1 that represents 2i modulo 2s − 1.
– If i = 2s − 1, ∀x ∈ GF (2s), (x2s−1)2 = x2s−1.

Then we can say that f has its output values in GF (2) if and only if
– for every i < 2s − 1, a([2i]) = a(i)2

– a(2s − 1)2 = a(2s − 1).
This implies that

a(2i) = a(i)2

a(22i) = a(i)2
2

...
a(2d−1i) = a(i)2

d−1

a(2di) = a(i)

= a(i)2
d
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and we always have a(i) ∈ GF (2d) ⊆ GF (2s). Finally, by reorganiz-
ing the powers xi with respect to the cyclotomic classes, we obtain the
formulae of the theorem (and the unicity of the Trace Form follows from
the unicity of the polynomial representation, here the terms are collected
w.r.t. the cyclotomic classes). ut

From this theorem we directly deduce a characterization of the Boolean
quadratic functions:

Lemma A.3. : To every Boolean function on GF (2)s of (multivariate)
degree ≤ 2 corresponds a function Q over GF (2s):

1. if s is even, s = 2m :

Q(x) = a + Tr(a0x) +
∑

1≤k≤m−1

Tr(akx
2k+1) + Tr∗(amx2m+1)

where
– Tr∗(x) = Trm(x) = x + x2 + . . . + x2m−1

,
– a is 0 or 1,
– a0, . . . , am−1 are in GF (2s),
– am is in GF (2m).

2. if s is odd s = 2m + 1 :

Q(x) = a + Tr(a0x) +
∑

1≤k≤m

Tr(akx
2k+1)

where
– a is 0 or 1,
– a0, a1, . . . , am are in GF (2s)

With Lemma A.1 and Lemma A.3, we can now prove our main result:

Theorem A.4. We consider a natural identification of elements of GF (2s)
to GF (2)s via a fixed arbitrary basis of GF (2s) over GF (2). Let S de-
note the Rijndael-type S-box function GF (2s) −→ GF (2s) such that
S(x) = x2s−2, which is equivalent to x−1 for x 6= 0, and is 0 when x = 0.
Let x = (x1, . . . , xs) and y = (y1, . . . , ys) be respectively the binary input
and output of S.

1. If s > 2, the number of linearly independent bi-affine equations of the
form : ∑

i,j

aijxiyj +
∑

i

uixi +
∑
j

vjyj + a = 0

is 3s− 1.
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2. If s > 4, the number of linearly independent equations of the form
Q(x, y) where the degree of Q is ≤ 2, i.e. of the form :∑

i,j

ai,jxiyj +
∑
i≤j

bi,jxixj +
∑
i≤j

ci,jyiyj +
∑

i

dixi +
∑

i

eiyi + a = 0

is 5s− 1.

Proof. 1. Let g(x, y) be a function of the form:

g(x, y) =
∑
i,j

ai,jxiyj +
∑

i

biyj .

We know by Lemma A.1 that it has also the form:

g(x, y) = Tr(y(c0x
20

+ c1x
21

+ . . . + cs−1x
2s−1

)) + Tr(ay)
Our goal is to find the number of such functions that are affine forms
when y = S(x). It is also the number of elements of the vector space of
the bi-affine functions h(x, y) such that h(x, S(x)) = 0, and we deduce
from it the dimension of this vector space. We have:

g(x, x2s−2) = Tr(c0)x2s−1 +
∑

0<k<s

Tr(ckx
2k−1) + Tr(ax2s−2)

% garrido :OK avec la remarque : il s’agit du regroupement suivant
des classes ctyclotomique distinctes
Because 2s − 2 is in the same cyclotomic class as 2s−1 − 1 we have :

g(x, x2s−2) = Tr(c0)x2s−1 +
s−2∑
k=1

Tr(ckx
2k−1) + +Tr(x2s−2(a + c2

s−2))

This polynomial is a Trace Form as defined in theorem A.4, because
(a) all the cyclotomic classes encountered are distinct, because the

binary weights corresponding to each class are distinct.
(b) The trace operator used here corresponds to the operator Trs de-

fined in Theorem A.4. As a matter of fact, the cyclotomic classes
of integers of the form 2k − 1, 0 < k < s have all length s because
there are s binary words obtained by circular shift of the word
0s−k1k.

The degree of the Boolean function corresponding to g is the maximal
binary weight of the powers of x of its polynomial representation. For
every k ≥ 0, the binary weight of 2k − 1 is k. Then when s > 2,
g(x, x2s−2) is a linear form if and only if :
– Tr(c0) = 0,
– ck = 0 for k > 1, k 6= (s− 1),
– a = c2

s−1 (because 2s−2 is in the same cyclotomic class as 2s−1−1).
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The number of solutions is then 2s−1+s+s, that corresponds to a vector
space of dimension 3s− 1.

2. To demonstrate the second assertion of the theorem, we search the
number of functions of the form:

g′(x, y) =
∑
i,j

ai,jxiyj +
∑
i<j

bi,jyiyj +
∑

i

ciyj

that are quadratic forms when y = S(x). We use the lemma A.3 to
describe the second part of this function, that is a Boolean quadratic
function of y. Therefore we have to consider two cases: s odd and s
even. When s is 2m + 1 we obtain:

g′(x, x2s−2) = Tr(c0)x2s−1 +
∑

0<k<s Tr(ckx
2k−1)

+Tr(a0x
2s−2) +

∑
1≤k≤m Tr(akx

2s−1−(2k+1))
All the integers of the form 2s − 1 − (2k + 1), 0 < k ≤ m have a
binary weight s− 2. Among the integers of the form 2k − 1, the only
one to have a binary weight s− 2 is 2s−2 − 1. Actually 2s−2 − 1 is in
the same cyclotomic class as 2s − 1− (21 + 1). Besides 2s−2 is in the
same cyclotomic class as 2s−1 − 1.
By reorganizing the terms according to their cyclotomic class we find:

g′(x, x2s−2) = Tr(c0)x2s−1 +

+
∑

0<k<s−2

Tr(ckx
2k−1) +

∑
2≤k≤m

Tr(akx
2s−1−(2k+1)) +

+ Tr((cs−2 + a2s−2

1 )x2s−2−1) + Tr((cs−1 + a2s−1

0 )x2s−1−1)

Then g′(x, x2s−2) is a quadratic form if and only if:
(a) Tr(c0) = 0,
(b) ck = 0, 3 ≤ k ≤ s− 3,
(c) ak = 0, 3 ≤ k ≤ m,
(d) cs−2 = a2s−2

1 .
(e) cs−1 = a2s−1

0 .
The number of solutions is 2(s−1)+2s+2s = 25s−1. We have a vector
space of dimension 5s− 1.
When s is even, the demonstration is very similar. Let s = 2m. We
obtain a final expression:
g′(x, x2s−2) = Tr(c0)x2s−1 +

∑
0<k<s−2

Tr(ckx
2k−1)

+
∑

2≤k≤m−1

Tr(akx
2s−1−(2k+1)) + Tr∗(amx2s−1−(2m+1))

+ Tr((cs−2 + a2s−2

1 )x2s−2−1) + Tr((cs−1 + a2s−1

0 )x2s−1−1)

and the conditions for g(x, x2s−2) to be a quadratic form are:
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(a) Tr(c0) = 0,
(b) ck = 0, 3 ≤ k ≤ s− 3,
(c) ak = 0, 3 ≤ k ≤ m,
(d) cs−2 = a2s−2

1 ,
(e) cs−1 = a2s−1

0 .

The number of solutions is still 2(s−1)+2s+2s = 25s−1. This ends the
proof. ut


