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Abstract

For any integer n, some side information exists that allows roots of certain polynomials
modulo n to be found efficiently (in polynomial time). The quartics qu,a,b(x) = x4 − 4ux3 −
2ax2−(8b+4ua)x+a2−4ub, where a and b are some fixed integers, can be solved with probability
approximately 1

4 over integers u chosen randomly from in {0, 1, . . . , n−1}. The side information
depends on a and b, and is derivable from the factorization of n. The side information does
not necessarily seem to reveal the factorization of n. For certain other polynomials, such as
pu(x) = x3 − u, it is an important unsolved problem of theoretical cryptology whether there
exists an algorithm for finding roots that does not also reveal the factorization of n. Cheng’s
special-purpose factoring algorithm is also reviewed and some extensions suggested.

1 Introduction

Given a composite n, it is well known that an elliptic curve E : y2 = x3 + ax + b can be made to
form group over the ring Zn = Z/nZ. If n is a product of distinct primes, such as n = pq, then, in
terms of group structure:

E(Zn) ∼= E(Fp)× E(Fq), (1)

which is seen by using the Chinese Remainder Theorem. These groups are used in the elliptic curve
method (ECM) of factoring integers introduced by Lenstra [Len87]. This paper applies (1) in a
slightly different way: to solve certain polynomial equation module a composite without knowing
the factorization.

Similar techniques led to Cheng’s special-purpose factoring algorithm [Che02]. Prime factors of
the form p = (4r − 1)(s2 + s) + r, where r ∈ {1, 3, 5, 11, 17, 41} and s is an integer, can be found
efficiently (in polynomial-time) with Cheng’s algorithm. It is unclear, however, if this algorithm
can be made into a general-purpose factoring algorithm. Nevertheless, implementations of RSA
that use private keys of special form should check that they are not vulnerable to this factoring
algorithm or its variants.

Mathematically speaking, the two main ideas underlying these observations are:

• The function δ : E(Zn) → E(Zn) : P 7→ dP is invertible given |E(Zn)|. The function δ and
its inverse can also be computed using the x-coordinate only.
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• Complex multiplication can be used to find a curve over the rationals that has trace one when
reduced modulo certain primes p.

The interpretations and implications to factoring and the RSA public key cryptosystem are why
such trivialities may be interesting. Because of their triviality and lack of practical impact, it is
highly likely that all or most of the ideas in this paper have been considered before. Indeed, it
may have already proven that the factoring algorithm does not generalize or that the root-finding
algorithm cannot be extended to the polynomials used in RSA.

2 On Finding Roots Without Factoring

In this section, a small amount of side information that allows certain classes of polynomials to
be solved efficiently modulo a composite is shown to exist. The side information does not seem to
reveal the factorization of the composite modulus. An unsolved theoretical problem in cryptology is
whether there exists an algorithm for finding cube (or other odd degree) roots modulo a composite
that cannot also be used to factor the composite. This section presents a solution to a variant of
this problem, namely that of finding roots of certain other kinds of polynomials.

Suppose |E(Fp)| = r and |E(Fq)| = s for some primes r and s distinct from from p and q. Let
m = rs. The side information is (m,a, b). Let u ∈ Zn. There is roughly a 1

4 chance that u is the
x-coordinate of some point P = (u, v) in E(Zn). If P exists, then there is a point Q = (x, y) such
that 2Q = P . Given x, the point doubling formula gives u as:

u = λ2 − 2x =
(

3x2 + a

2y

)2

− 2x =
(3x2 + a)2 − 8xy2

4y2

=
9x4 + 6ax2 + a2 − 8x4 − 8ax2 − 8bx

4(x3 + ax+ b)
=
x4 − 2ax2 − 8bx+ a2

4(x3 + ax+ b)
(2)

The value of u is a rational function of x, but x may also be expressed as the solution to a quartic
equation:

0 = qu(x) = (x4 − 2ax2 − 8bx+ a2)− 4u(x3 + ax+ b)

= x4 − 4ux3 − 2ax2 − (8b+ 4ua)x+ a2 − 4ub. (3)

On the other hand, x can be computed from u via the following computation. First observe that:

(x, y) = Q = (1/2 mod m)P = (1/2 mod m)(u, v). (4)

The computation of (1/2 mod m)P is possible given the side information (m,a, b) and (u, v). As v
is not given in (3), the computation of x in (4) should be done using Montgomery’s exponentiation
algorithm. (See §A.2.)

The relationship P = 2Q can be replaced with P = dQ for almost any integer d. This resulting
polynomials have degree proportional to d2, rather than being quartics.

Given the factorization of n, the group size m can be determined from (a, b) using the efficient
Schoof-Elkies-Atkin (SEA) point-counting algorithm. Without the factorization, however, it seems
to be harder problem, at least as hard as finding roots of polynomials such as (3). In fact, it is
known that finding m for random (a, b) is as hard as factoring n, because for random (a, b) and large
smooth integers s, computing sP reveals a factor p of n if |Ea,b(Fp)| | s, which occurs non-negligible
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probability. More generally, if m can be factored, even if it is not smooth, then it may reveal the
factorization of n. To avoid the the side information (m,a, b) revealing the factorization of n, it
must be chosen to avoid |Ea,b(Fp)| is not smooth for a factor p of n and preferably so that m is not
easy to factor. In this section, the property m = rs avoids smoothness and helps to make factoring
m difficult.

2.1 Non-Triviality

The root solving algorithm in this section would be moot if the roots could be found by some trivial
algorithm. For example, if roots could found among the rational numbers, then the problem could
be regarded as trivial. Generally, however, the polynomials considered do not have rational roots.

For example, consider the elliptic curve E : y2 = x3 − 1
4 . Then (3) can be simplified to:

0 = qu(x) = x4 − 4ux3 + 2x+ u. (5)

where u is again an integer in {1, . . . , n − 1}. A rational root x must be an integer dividing u.
Therefore u = cx for some integer c, and

x4(1− 4c) + x(2 + c) = 0. (6)

Since u 6= 0, clearly x can factored:

x3 =
c+ 2
4c− 1

(7)

Since x is an integer, 4c− 1 | c+ 2, which can only hold for c ∈ {−2, 0, 1}. More generally for (3),
there are many u such that c = a2−4ub is prime, so that a rational root must have x ∈ {−c,−1, 1, c}.
Substitute each such choice of x into qu(x) = 0 to get an equation for u. The equation can be seen
to be linear if x ∈ {−1, 1} and quartic in u if x ∈ {−c, c}. At most ten such u can have qu(x) with
a rational root. So, when a2 − 4ub is prime, then qu(x) has no rational roots, except in at most 10
cases, and should be non-trivial to find roots of modulo n.

2.2 Other Root Finding Algorithms

There also exist lattice-based algorithms to find roots of certain polynomials modulo a composite,
such as the algorithms of Coppersmith [Cop96]. These algorithms also find nontrivial roots, in
the sense the roots do not exist in the rational numbers, and they are also quite efficient. The
lattice-based algorithms are more powerful than the algorithm in this section in a few respects:

• They only require the modulus n, so they do not require any side information.

• They can find roots of certain polynomials such as x3 − u that are of greater importance of
the RSA cryptosystem.

• They extend, at least heuristically, to bivariate polynomials.

On the other, these algorithms are more limited than the algorithm of this section is two respects:

• They are limited to low-degree polynomials.

• They only find roots of low absolute value.
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The two families special-purpose root-finding algorithms are somewhat incomparable. The most
important difference is that the lattice-based algorithms actually lead to some attacks, albeit easily
preventable ones. Both classes of algorithms suggest that the problem of finding roots of polyno-
mials modulo a composite, especially inverting the RSA public function, is potentially an easier
problem than factoring the composite.

2.3 On the Gap Between Finding Roots and Factoring

Algorithms for solving certain polynomial equations modulo a composite, such as finding square
roots, are known to yield factoring algorithms. This is why the Rabin cryptosystem is as secure as
factoring. For certain other kinds of polynomial equations, this is not known, such as computing
cube roots when gcd(3, φ(n)) = 1. The polynomials qu introduced have not yet been widely studied
in this context, so it is not yet clear which class of the two classes it would fall into.

A specific algorithm for finding cube roots modulo n is known to reveal the factorization of n.
The algorithm x 7→ xd mod n where d ≡ 3−1 mod φ(n), or more specially the integer d, reveals
the factorization of n. The idea is to write 3d = 2ef where f is odd, choose random x and compute
y0 ≡ xf mod n. Then compute yi ≡ y2i

0 mod n. The hope is that some yi ≡ 1 mod p and
yi ≡ −1 mod q. In theory, however, it is possible to present an algorithm that is an obfuscated
version of x 7→ xd mod n. Obfuscation may prevent d from being revealed. Then it is not known
how to use the algorithm as an oracle to factor n.

The algorithm for finding roots of qu(x) presented in this section can be regarded as giving a
rational function r(u) such that qu(r(u)) = 0 for any u corresponding to the x-coordinate of a point
on the elliptic curve E(Fp). If the rational function could be expanded symbolically, then it may
potentially lead to a factoring algorithm, much like how the symbolic expansion xd for finding cube
roots reveals the factorization of n.

It may be the case that an oracle for finding roots of qu can be used to factor n. If so, any
(m,a, b) reveals the factorization of n, which slightly surprising if m itself cannot be factored. If a
qu root-finding oracle cannot be used to reveal the factorization of n, then there is a potential gap
between the hardness of factoring and of finding roots of qu: it is possible that the latter is easier.
Generalizing, this suggests that finding roots polynomial modulo a composite is potentially easier
problem than factoring. Just to be clear, however, this does not demonstrate that finding roots is
easier, just that it could be easier.

The factor that qu(x) is a only quartic may have some significance in that quartics can be solved
by radicals. Specifically, square roots, cube roots and rational operations can be used to solve any
quartic. This suggests that, potentially, the quartic qu(x) can be arranged that its solution provides
a cube root, namely the cube root that would be used to solve it. Even if this could work, it seems
unlikely to be able to solve an arbitrary cube root.

3 Conclusion

A class of polynomial equations, some of whose roots can be found modulo a composite n has been
given. The roots do not exist in rationals, and are not small roots. The algorithm to find the roots
uses some side information, an elliptic curve Ea,b and its order m = Ea,b(Zn) over Zn. Provided
that m is not easily factored, it is unclear if the side information can be used to factor n. This
demonstrates that finding roots of certain polynomials can potentially be easier than factoring.
(This was already known for small and rational roots.)
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A Cheng’s Special-Purpose Factoring Algorithm

This section reviews Cheng’s [Che02] factoring algorithm1 The algorithm is highly specialized to
find prime factors of a certain form quite quickly. The class of prime factors that can be found is so
narrow that the algorithm is mainly of theoretical interest to cryptology. The two main points of
interest are (a) whether it can be extended to a more general-purpose factoring algorithm, which
seems unlikely, and (b) a new class of weak RSA keys that secure RSA key generation algorithms
need to avoid with overwhelming probability, which is most important for special purpose RSA
keys.

A.1 How to Use Trace One Curves to Factor

The trace of an elliptic curve E over a finite field Fp is the integer t such that |E(Fp)| = p+ 1− t.
A trace one curve therefore has the property that

|E(Fp)| = p. (8)

Generally, for any prime p, there are integer coefficients a and b such that the curve E = Ea,b :
y2 = x3 + ax+ b has trace one over Fp. More generally, there exist find rational numbers a and b
and a certain class of primes of p, such that Ea,b has trace one for half the p in the class.

Consider the integer n = pq. Suppose an elliptic curve E has trace one modulo p. Suppose also
that |E(Fq)| 6= q and p - |E(Fq)|. Given any finite point P on E(Zn), the point nP will be the
point at infinity modulo p and will be a finite point modulo q. The calculation of nP will therefore
involve a step of division by zero modulo p. When computing modulo n, the division by zero step
will correspond to an Euclidean algorithm step for computing an inverse where the resulting GCD
is p instead of 1.

1Cheng’s description uses division polynomials, while the description here uses Montgomery’s algorithm, which
are essentially the same.
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Finding a finite point P = (x, y) on E(Zn) is nontrivial, because one has to solve a polynomial
equation modulo a composite. However, using Montgomery’s method (see [HMV04], for example),
the x-coordinate of nP can be efficiently computed given only the x-coordinate of P . For a random
x ∈ {0, 1, . . . , n−1}, there is approximately a 1

4 chance that x is the coordinate of a point on E(Zn)
because there is approximately a 1

2 chance modulo each of p and q.

A.2 Example Algorithm

Some of the ideas are illustrated by providing an algorithm that finds a prime factor p that is
special in the sense that the elliptic curve y2 = x3− 1

4 has trace one over Fp. (This includes primes
of the form p = 432s2 + 108s+ 7.) Write the binary expansion n = nl2l +nl−12l−1 + · · ·+n0 where
ni ∈ {0, 1} and nl = 1. (For simplicity, it is also assumed that n is odd.)

1. Pick a random integer x ∈ [0, n− 1].

2. Set p← gcd(n, 4x3 − 1).

3. If p = 1, then

(a) Set (x1, x2)← (x, x
4+2x

4x3−1
mod n).

(b) For i from l − 1 downto 0 do:

i. Set p← gcd(n, x1 − x2).
ii. If p = 1 then

A. If ni = 1 then set (x1, x2)← (x2, x1).

B. Set (x1, x2)←
(
x4

1+2x1

4x3
1−1

mod n,
2(x3

1+x3
2)−1

(x1−x2)2 − x− 2(x1 + x2) mod n
)

.

C. If ni = 1 then set (x1, x2)← (x2, x1).

4. If p = 1, go back to Step 1.

5. Output p.

This algorithm has been implemented in Maple. The implementation found the special factor p of
a 1017-bit number pq in about 100 seconds.

A.3 Constructions of Trace One Curves

Miyaji proposed [Miy93] using trace one elliptic curves for cryptography to avoid the MOV attacks,
and gave some constructions using the complex multiplication (CM) method of Atkin and Morain.
Semaev [Sem98] and various others then showed that using trace one curves in cryptography is
insecure because the discrete logarithm problem (DLP) can be efficiently solved in these groups.
Miyaji’s construction of trace one curves was geared to the case where p was known. In the context
of factoring, of course, p is unknown, which is an obstacle to the general construction. Some special
cases of the construction work, however, as outlined below. Consider the ring

RD = Z

[
1 +
√
−D

2

]
(9)

of algebraic integers. The parameter D is often called the discriminant of the ring. An elliptic
curve E has complex multiplication by the ring RD if End(E) ∼= RD, which is essentially equivalent
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to there being a rational function θ : E → E that has the same minimal equation as 1+
√
−D

2 .
The type of complex multiplication can depend on the field being considered. When p is known,
then the field Fp is known. All elliptic curves over Fp have complex multiplication. When p is
unknown, however, one can still consider the field Q of rationals. Rarely do elliptic curves over Q
have complex multiplication. One advantage of working over rationals, however, is that complex
multiplication is usually inherited by the curve over any Fp, even if p is non known. Recall that the
trace t of elliptic curve E over the field Fp is defined by |E(Fp)| = p+ 1− t. When E has complex
multiplication by RD, the trace satisfies:

4p = t2 +Du2 (10)

for some integer u. The trace also satisfies |t| < 2
√
p. These conditions are enough to limit t to a

small set of values. In the ring RD, the prime p splits into two primes:

p =
(
t+ u

√
−D

2

)(
t− u

√
−D

2

)
(11)

If D ∈ {3, 11, 19, 43, 67, 163}, then RD has unique factorization, so the factorization (11) is unique
up to units. For such D, the units of the ring RD are {1,−1}, except for the R3 whose units are
the sixth roots of unity. If

p =
1 +Du2

4
(12)

for some integer u, then the possible solutions for t in (10) are {1,−1} if D ∈ {11, 19, 43, 67, 163}.
If D = 3, there are six solutions: {1,−1} and four others corresponding to the other sixth roots
of unity in Fp. To summarize, an elliptic curve with complex multiplication by RD has its trace
confined to a set of size two or six, including the critical case t = 1, when D ∈ {3, 11, 19, 43, 67, 163}.

Finding an elliptic curve with complex multiplication by RD, without knowing p, can be done
by working over Q. The following elliptic curves have complex multiplication by RD:

y2 = x3 + 1, (13)

y2 = x3 − 264x + 1694, (14)

y2 = x3 − 152x + 722, (15)

y2 = x3 − 3440x + 77658, (16)

y2 = x3 − 29480x + 1948226, (17)

y2 = x3 − 8697680x + 9873093538, (18)

for D = 3, 11, 19, 43, 67, 163, respectively. For random p satisfying (12), the trace is one with
probability about 1

2 or 1
6 if D = 3. If the trace is not one, however, the curve can modified into

its twist to obtain a curve with trace one. If D 6= 3, a twist of y2 = x3 + ax + b is the curve
y2 = x3 + ac2x+ bc3 for some c such that

(
c
p

)
= −1. If D = 3, six curves form a collective twist,

all of the form y2 = x3 + b. One of the curves has trace one, given (12). Setting u = 2s + 1 and
D = 4r−1 gives r = 1, 3, 5, 11, 17, 41, respectively, and (12) becomes p = r+(4r−1)(s2 +s). When
factoring n = pq, one therefore tries enough different c until the trace is one modulo one factor but
not the other factor. If D 6= 3, one can first compute nP on the curve above. Either nP reveals
the factorization, or the trace is the same modulo p and q, in which case one chooses a c such that(
c
n

)
= −1 to make the traces opposite. If D = 3, then one just tries various b until nP reveals a

factor. The average number of random b that will be tried is about 3.6.
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A.4 Other Values of D

The ring RD has unique factorization for other values of D, but these do not admit trace one elliptic
curves. When RD does not have unique factorization, if one knows p one can construct an elliptic
curve E : y2 = x3 +ax+ b with complex multiplication by RD by finding a root of the Hilbert class
polynomial HD(t) over Fp. The degree of HD(t) is the class number h(D) of RD, which is 1 if and
only if RD has unique factorization. Given n = pq, one cannot find a root of HD(t) if the h(D) > 1,
because that finding roots of nonlinear polynomials modulo a composite n of unknown factorization
is generally difficult. Perhaps a curve E that has a complex multiplication by RD can be defined
over the ring Zn[t]/(HD(t)) instead of Zn. If so, then one would still need p =

(
1 +Du2

)
/4 for

some u to ensure a trace one curve, so the factoring algorithm will remain a very special-purpose
algorithm.

To illustrate, consider D = 35. If p =
(
1 + 35u2

)
/4, then u must be odd, so u = 2s + 1, for

some s. Then p = 9 + 35s(s+ 1). Now h(35) = 2 and

H35(X) = X2 + 117964800X − 13427728000. (19)

In algebraic numbers, the solutions to H35(X) = 0 are:

X = −58982400± 26378240
√

5. (20)

These give some j invariants of elliptic curves with complex multiplication by R35. Elliptic curves
can be constructed from the j by choosing a = − (3j) / (1728− j) and b = (2j) / (1728− j).
Because these values of j are irrational, it may not be the case that j ∈ Fp in general, but when

the curves have trace, we saw that p = 9 + 35s(s+ 1) so p ≡ 4 mod 5. Therefore
(

5
p

)
=
(

4
5

)
= 1

and thus
√

5 ∈ Fp and thus j ∈ Fp.
Working in Zn, we do not know the value of

√
5. In fact, for other factors q of n, it may not be

the case that
√

5 ∈ Fq. To get around this, one can work over the ring A = Zn[X]/(X2 − 5). The
reduction of A modulo p is isomorphic to Fp×Fp. An element y+ zX corresponds to (y+ z

√
5, y−

z
√

5). The elliptic curve Ea,b splits into a product two elliptic curves, with j invariants given by
the two roots of H35(X) mod p. Scaling a and b if necessary, we can arrange that at least one
of these elliptic curve factors has trace one. Computing the point nP then gives an x-coordinate
whose reduction modulo p corresponds division by an element y + zX corresponding to zero p in
at least one coorindates. If y + z

√
5 = 0 or y − z

√
5 = 0, then y2 − 5z2 = 0, all in Fp. Working in

Zn, we get p = gcd(n, y2 − 5z2).
For other values of D and p, it may not be the case that j ∈ Fp. The condition that 4p−1 = Du2

need not necessarily be replaced by 4ph(D) − 1 = Du2, which is satisfied much more rarely. If E
has trace one over Fp, then one can check |E(Fph(D))| ≡ 0 mod p, which suffices to find the factor
p.

A.5 Conjectures and Generalizations

A general-purpose factoring algorithm would result from a better construction of trace one elliptic
curves, that is if following can be solved:

Problem 1. Find rational numbers a and b such that for a random prime p the curve Ea,b : y2 =
x3 + ax+ b has trace one over Fp with probability π such that both π and 1− π are non-negligible.
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In practice, a and b also need to have small enough numerator and denominators to be manip-
ulable and only primes p of a size that one want to factor need to be considered. Theoretically,
for any finite set of primes, one can use the CRT to find integers a and b, albeit arbitrarily large
integers, such that Ea,b has trace one for any prime in the set.

More generally, one can try to construct hyperelliptic curves of genus g whose Jacobians have
pg points exactly. Indeed, one might try to generalize to other kinds of algebraic groups where the
order has a chance of being a power of p. (Singular elliptic curves with additive reduction have
order p, but do not help in factoring.)

This paper does not provide any justifiable speculation as to whether or not Problem 1, or its
generalizations, are feasible. However, the trace satisfies |t| < 2

√
p and it is not unreasonable to

speculate that for most pairs (a, b) that t varies somewhat uniformly in this range. (Studies have
shown that t varies somewhat uniformly in this range when p is fixed and (a, b) is random.)

B Insecure Variants of the RSA Public-Key Cryptosystem

Some insecure variants of RSA:

• Complement the public key n with side information on an elliptic curve E = Ea,b and its twist
E′ including their orders. Create a ciphertext x̂ from a plaintext x by considering x as the
x-coordinate of a point P on one of the elliptic curves and x̂ computed as the x-coordinate
of a scalar multiple eP of P , where e is a public parameter. A condition on x,(

x3 + ax+ b

n

)
= 1, (21)

ensures that x corresponds to the one of the two elliptic curves. To determine whether x
belongs to the main curve or the twist, the encryptor can scalar multiply by the curve orders.
A message or symmetric key can be embedded in a valid plaintext by appropriately padding
the message or key with various values until it is valid.

• Choose the public key n = pq such that a certain elliptic curve over the rationals, such as
y2 = x3− 1

4 , has trace one over p. More generally, choose one or both of the primes in one of
the special forms listed in §A.

These schemes are clearly insecure. The first scheme is insecure because the polynomial equation
for the plaintext x can be solved given the ciphertext x̂, as shown in §2. The second scheme is
insecure because n can be factored, as shown in §A. These schemes are clearly artificial, however,
so this work is mainly of theoretical interest to the security of RSA.
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