
The Impossibility of Realizable Ideal Functionality

Anupam Datta
Stanford University

danupam@cs.stanford.edu

Ante Derek
Stanford University

aderek@cs.stanford.edu

John C. Mitchell
Stanford University
jcm@cs.stanford.edu

Ajith Ramanathan
Stanford University
ajith@cs.stanford.edu

Andre Scedrov
University of Pennsylvania
scedrov@math.upenn.edu

Abstract

A cryptographic primitive or a security mechanism can be specified in a variety of ways, such
as a condition involving a game against an attacker, construction of an ideal functionality, or a
list of properties that must hold in the face of attack. One reason that an ideal functionality
is appealing is that if an implementation cannot be distinguished from an ideal functionality,
by any feasible attack in any environment, then the mechanism is therefore secure in any larger
system that uses it. We make accepted aspects of ideal functionality precise by relating ideal
functionality to game specifications, and show that bit commitment, group signatures, and other
cryptographic concepts do not have any realizable ideal functionality. This suggests that in order
to develop composable security conditions, either alternative notions of ideal functionality must
be developed, or another specification method must be used.

1 Introduction

Generally, asserting that a system is secure involves identifying a set of properties that are preserved
in the face of a set of attacks. Many such security conditions about cryptographic primitives
are expressed using a form of game. For example, the condition that an encryption scheme is
semantically secure against chosen ciphertext attack (ind-cca2) [5] may be expressed naturally by
saying that no adversary has better than negligible probability to win a certain game against a
challenger. In this definition, the game itself clearly identifies the information and actions available
to the adversary, and the condition required to win the game identifies the properties that are
preserved in the face of attack. Another way of specifying security properties, advanced in the
work on Universal Composability (UC) [7,8,11,14] and relevant to systems such as spi-calculus [1]
based on process equivalence, uses ideal functionalities. In this approach, an idealized way of
achieving some goal is presented, possibly using mechanisms such as private channels and trusted
third parties that are not available in practical deployment. An implementation is then considered
secure if no feasible attacker can distinguish the implementation from the ideal functionality, in any
environment. An advantage of this approach is that indistinguishability from an ideal functionality
leads to composable notions of security [1,7]. In contrast, if a mechanism satisfies a game condition,
there is no guarantee about how the mechanism will respond to interactions that do not arise in
the specified game.

1

In this paper, we develop a framework for comparing game specifications and ideal-functionality
specifications and show that games specify more primitives than ideal functionalities. In particular,
we provide a precise definition of ideal functionality and prove that while bit-commitment may be
specified using games, there is no realizable ideal functionality for bit-commitment. This is a
negative result about ideal functionality, since there are constructions of bit-commitment protocols
that are provably correct under reasonable assumptions (see, e.g., [17]). We also show that there is
no realizable ideal functionality for other reasonable and implementable cryptographic conditions,
including a form of group signatures and symmetric encryption, under certain conditions that allow
the encryption key to be revealed after it is used.

In order to state and prove these results, we must give a precise definition of the ideal function-
ality corresponding to a game specification. Since the purpose of giving an ideal functionality is
to provide a point of reference for judging potential implementations (generally presented as high-
level algorithms rather than executable source code), an ideal functionality must be “secure by
construction,” or at least secure in a stronger sense than would be required of a sample implemen-
tation. Based on standard practice in the literature, and the absence of any compelling examples
to the contrary, we believe that an ideal functionality must be a process or set of processes that
satisfy the game specifications in an information-theoretic sense. Applied to encryption, for exam-
ple, this means that an ideal functionality for encryption must not provide any information about
the plaintext to the adversary. Since an implementation of the ideal functionality need only be
computationally indistinguishable, a realization of this ideal functionality may depend in some way
on the plaintext, but not in a way that is recognizable by a computationally bounded adversary.

The intuition behind our impossibility result is relatively simple. Illustrated using bit-commit-
ment, a good commitment scheme must have two properties: the commitment token must not
reveal any information about the chosen bit, while subsequent decommitment must reveal a ver-
ifiable relationship between the chosen bit and the commitment token. These are contradictory
requirements because the first condition suggests that tokens must be chosen randomly, while the
second implies that they are not. Similar “decommitment” issues arise in symmetric encryption or
keyed hash, if the encryption key is revealed after some messages using the key have been sent on
the visible network. At a more technical level, our proof by contradiction works by showing that if
there was a realization of the ideal functionality for bit-commitment, it could be transformed into a
protocol for bit-commitment that achieves perfect hiding and binding without using a trusted third
party. However, it is well known that such a protocol does not exist [17]. Except for this final step,
all steps in this proof rely on a hybrid argument and can be applied to any cryptographic primitive
and corresponding ideal functionality with conflicting games. Other concrete examples considered
in this paper include forms of group signatures and symmetric encryption. While impossibility
results for these primitives could be proved by instantiating the general proof method, we present
simpler proofs by reducing bit-commitment to these primitives.

From a technical perspective, our results strengthen and generalize Canetti and Fischlin’s proof
that a particular ideal functionality for bit-commitment is not realized by any protocol without
a trusted third party [9]. We strengthen this result by defining ideal functionality in general by
reference to game conditions, and then showing that no ideal functionality for bit-commitment can
be realized. In other words, Canetti and Fischlin leave open the possibility that some other ideal
functionality for bit-commitment is realizable, while our results show that this is not possible. Pre-
vious investigators have also proved negative results for specific ideal functionalities. For example,
in addition to a giving a number of positive results, Canetti [7] shows that particular functionalities

2

for ideal coin tossing, zero-knowledge, and oblivious transfer are not realizable. Canetti et al [12]
show that a class of specific functionalities for secure multi-party computation are not realizable,
while Canetti and Krawczyk [10] compare indistinguishability-based and simulatability-based defi-
nitions of security in the context of key-exchange protocols. Some of these papers also modify UC
in order to present realizable ideal functionalities. We regard the technical results in the present
paper as an explanation of why these alternatives to UC are needed.

While our general proof could be carried out using a number of computational models, we adopt
a setting based on a form of process calculus. One advantage of this setting over interacting Turing
machines [7,17,18] is a straightforward way of modularizing games that use a functionality. In the
ind-cca2 game, for example, the encryption and decryption primitives could be simple functions
on bit strings. However, in defining bit-commitment by games, we wish to impose conditions
on protocols. Therefore, we define games that use “protocol subroutines,” invoked by a form of
function call that is definable using sends and receives on a dedicated communication channel. In
principle, the same construction could be done using Turing machines, using a separate function-
call-and-return tape similar to an oracle tape, and additional sequential machines and tapes.

One of the primary reasons to specify security properties using an ideal functionality is the
composition property which implies that a primitive remains secure when used in any larger sys-
tem [1, 4, 7, 14]. Since composability is highly desirable, our negative results suggest that either
some variant of ideal functionality is needed, or a completely different approach is required. The
difficulties encountered in formulating an ideal functionality for signatures [2, 8, 14], and the need
in previous work to assume that a symmetric key is not transmitted or revealed after it is used [3],
motivate investigation of alternative approaches, such as the widely accepted assume-guarantee
paradigm for reasoning about distributed systems [22]. Intuitively, we see no reason to believe
that all useful cryptographic primitives, or security mechanisms built from them, will compose in
any sort of universal way. Most protocols, for example, work only under assumptions about the
environment in which they are used. For example, a protocol in which signatures are used for
authentication may only work properly if the signing principal does not also concurrently execute
another protocol that produces similar signatures. Therefore, we believe it may be much more
fruitful to develop methods for stating and proving conditional composability, guaranteeing that
primitives and protocols will operate securely in any environment that satisfies certain conditions.

2 Preliminaries

2.1 Probabilistic Process Calculus

Process calculus is a standard framework for studying concurrency [21,31] that has proved useful for
reasoning about security protocols [1,29]. Two main organizing ideas in process calculus are actions
and channels. Actions occur on channels and are used to model communication flows. Channels
provide an abstraction of the communication medium. In practice, channels might represent the
communication network in a distributed system environment or the shared memory in a parallel
processor.

A probabilistic polynomial-time process calculus (PPC) for security protocols is developed in [19,
23,24] and updated in more recent papers [28,29]. It consists of a set of terms that do not perform
any communications and that represent probabilistic polynomial-time computation, expressions
that can communicate with other expressions, and, channels that are used for communication.

3

Terms contain variables that receive values over channels. There is also a special variable η called
the security parameter. Each expression defines a set of processes, one for each choice of value for
the security parameter. Each channel name has a bandwidth polynomial in the security parameter
associated with it. The bandwidth ensures that no message gets too large and, thus, ensures that
any expression can be evaluated in time polynomial in the security parameter.

Syntax of PPC Expressions of PPC are constructed from the following grammar.

P ::= � | ν(c)P | in(c, x).(P) | out(c,T).(P) | [T].(P) | (P | P) | !q(η)(P)

Intuitively, � is the empty process taking no action. An input operator in(c, x).P waits until
it receives a value on the channel c and then substitutes that value for the free variable x in
P. Similarly, an output out(c,T).P evaluates the term T, transmits that value on the channel
c, and then proceeds with P. Channel names that appear in an input or an output operation
can be either public or private, with a channel being private if it is bound by the private-binding
operator, ν and public otherwise. Actions on a private channel bound by a ν are not observable
outside the scope of the ν operator. Hence private channels can be used to model secure and/or
authenticated channels. For convenience, we always α-rename channel names so that they are
all distinct. The match operator [T] executes the expression bound to the match iff T evaluates
to 1. The parallel composition operator, |, applied to two expressions allows them to evaluate
concurrently, or communicate with one another over a shared channel. The bounded replication
operator has bound determined by the polynomial q affixed as a subscript. The expression !q(η)(P)
is expanded to the q(η)-fold parallel composition P | · · · | P before evaluation. There is also a
syntactic notion of context in PPC. A context C[·] is an expression with a hole [·] such that we
can substitute any expression into the hole and obtain a well-formed expression.

Evaluating PPC expressions To evaluate an expression in PPC we choose a probabilistic
scheduler that selects communication steps. We then evaluate every term and match that is not in
the scope of an input expression. When we can no longer evaluate terms and matches, we select
a pair of input and output expressions on the same channel according to the scheduler, erase the
output expression and substitute the value transmitted by the output (truncated suitably by the
bandwidth of the channel) for the variable bound by the input. We repeat this procedure until no
communication steps are possible. We note that there are subtleties involved with the choice of
scheduler. For a full exposition of these issues we refer the reader to [removed].

Equivalence relations over PPC Two equivalence relations over PPC will prove useful for
studying security issues. The first relation, computational observational equivalence, written ∼=,
relates two expressions just when, in any context, the difference between the distributions they
induce on observable behavior (messages over public channels) is negligible in the security parameter
η. Formally P ∼= Q just when ∀ contexts C[·].∀ observables o :

Prob [evaluating C[P] produces o]− Prob [evaluating C[Q] produces o] is negligible in η

Since the evaluation of all expressions and contexts in PPC are guaranteed to terminate in polyno-
mial-time, ∼= is a natural way to state that two expressions are computationally indistinguishable to
a poly-time observer. The second relation, information-theoretic observational equivalence, written

4

=, relates two expressions just when they induce exactly the same distribution on observable
behavior in all contexts. Formally P = Q just when ∀ contexts C[·].∀ observables o :

Prob [evaluating C[P] produces o]− Prob [evaluating C[Q] produces o] = 0

As a consequence, we can use = to state that two expressions are indistinguishable even to un-
bounded attackers.

2.2 Function calls and returns

Process calculus allows processes to be built in a modular way, with one process relying on another
for certain computations or actions. For example, one process P might wish to send a number
bit-by-bit on a channel c. This can be done by writing another process Q that receives a number
n on channel d and then sends the bits of n on a channel c. The interaction between P and Q
can be structured so that P initiates the actions by Q by sending a message Send(n) on channel d
dedicated for this purpose. If P wants a return value, such as an indication that Q has completed
sending the message, then P can execute an input action on channel d immediately after sending
Send(n). This pattern of sends and received corresponds to an ordinary function call and return,
implemented by communication actions on a dedicated channel between processes. To provide
useful intuition, and to simplify terminology, we will refer to such communication between P and
Q as a function call and return. To emphasize that this hides the structure of Q from the calling
process P , we sometimes refer to this as a black-box call. Function calls and returns turn out to
be a very useful concept in structuring games that specify properties of cryptographic primitives.
Since PPC provides private channels, a function call and return will always be done on a private
channel to avoid exposing the parameters or return values to an adversary. However, the process
implementing the function call may perform observable actions as a result of the call, including
sending messages on public channels.

A function call in PPC will be written Callη(〈params〉, C) returns 〈vars〉.P, which may be
regarded as syntactic sugar for a combination of PPC sends and receives. This syntax indicates the
invocation of the function Call with security parameter η and parameters params. The execution of
Call will occur over the channels in C. The variables vars are assumed to be free variables of P that
are bound by the call. On return from the execution of the blackbox call, values will be substituted
into the free variables of P bound by the call. We write Impl[C, D] to denote an implementation
of a blackbox call that communicates with the caller using the channels in C, and implements the
call with a protocol that executes over the channels in D.

2.3 Interfaces and cryptographic primitives

In this paper, a cryptographic primitive is defined by an interface and a set of required security or
correctness conditions that are expressible using the interface. The interface is the set of actions
defined and applicable to the primitive, expressed as a set of function calls and returns. For
example, the interface to an encryption primitive consists of calls to three probabilistic functions:
key-generation, encryption, and decryption. A correctness condition for encryption is that the
decryption of an encryption under the correct key returns the message encrypted. A semantically-
secure encryption primitive must also satisfy a security condition stating that no probabilistic
polynomial-time adversary can win a game that involves guessing which of two messages has been

5

encrypted. We assume that the interface of any primitive provides enough operations to allow the
primitive to be defined and used. For example, if calls to a key generation function are not allowed
by the interface, then we cannot use the encryption scheme (since there is no way to get keys) and
we cannot state semantic security properly.

A protocol for a primitive is process that responds to a set of function calls and supplies the
associated returns, without any additional assumptions such as a trusted third party (TTP). For
example, RSA can be formulated as an encryption protocol that implements key-generation, en-
cryption, and decryption. A functionality for a primitive similarly supports the given interface,
but may use a trusted third party (see Section 3.3) or other mechanisms not normally available in
practice. An ideal functionality is a functionality that satisfies the correctness conditions with high
probability and satisfies the security conditions in an information-theoretic way (i.e., against an
unbounded adversary). In addition to implementing the interface of the primitive, a functionality
may communicate with the attacker in an arbitrary way. For example, an ideal functionality for
signatures [8] will let the attacker choose the bitstrings for signatures.

2.4 Universal Composability

Universal composability [7,9,11–13] involves a protocol to be evaluated, an ideal functionality, two
adversaries, and an environment. The protocol realizes the ideal functionality if, for every attack
on the protocol, there exists an attack on the ideal functionality, such that the observable behavior
of the protocol under attack is the same as the observable behavior of the idealized functionality
under attack. Each set of observations is performed by the same environment. The intuition here
is that the ideal functionality ‘obviously’ possess a desired security property, possibly because the
ideal functionality is constructed using a central authority, trusted third party, or private channels.
Therefore, if a protocol is indistinguishable from an ideal functionality, the protocol must have
the desired security property. In previous work, that which makes an ideal functionality “ideal”
appears not to have been characterized precisely.

Universal composability can be expressed as a relation in process calculus [15, 16]. To give a
form appropriate for the present paper, let P1, . . . ,Pn be n principals. We will assume that for
some k, every principal Pi (i ≥ k) is in collusion with the adversary. Given an expression P,
we will write P[C] to denote an instance of P running over the channels in C. We say that an
implementation Impl securely realizes a functionality F just when for any real world adversary A,
there exists a simulator S such that for any environment E :

ν(C1, . . . , Ck)(P1[C1, D] | · · · | Pn[Cn, D] | Impl[C1, D] | · · · | Impl[Ck, D]) | A[Ck+1, . . . , Cn, D] | E
∼= ν(C1, . . . , Ck)(P1[C1, D] | · · · | Pn[Cn, D] | F [C1, . . . , Ck, D]) | S[Ck+1, . . . , Cn, D] | E

Here the first k principals are assumed to be honest, and the remainder are assumed to be dishonest
and acting in collusion with the adversary. To prevent the adversary/simulator from unfairly inter-
fering with communications between the honest principals and the implementations (real or ideal),
we make the links between the honest principals and the implementations private. Specifically,
participant Pi uses private channels Ci to communicate with the implementation (real or ideal).
The set of network channels D is used for communication between different participants. Both the
adversary and the simulator have access to these channels.

Secure realisability requires that if we replace the real implementations Impl with an ideal
implementation F (the functionality), there exists a simulator (that can interact with F) which

6

E

I

Impl

R

Impl

A

E

I R

F

S∼=

Figure 1: Real and ideal configurations with two honest participants

makes the ideal and real configurations are indistinguishable. Another way to state this is that
every real attack can be translated, using the simulator, into an attack on the functionality. We
note that the principals that act in collusion with the attacker execute arbitrary programs and,
in the ideal world, interact directly with the simulator (which mounts the ideal attack). Example
configurations with two honest participants I and R are given in Figure 1.

3 Functionalities for Bipartite Bit-Commitment

A bipartite bit-commitment protocol allows a principal A to commit on a bit b to the principal
B. However, B gains no information about the bit b until A later opens the commitment. We
therefore formulate bit-commitment using four function calls, one call for each principal in each
phase of the commitment. After defining the interface for bipartite bit-commitment, we define the
game conditions for bit commitment and prove that no ideal functionality for these game conditions
is realizable. We stress that the game conditions for bit-commitment as formulated in this paper
are equivalent to standard security notions [17, 25], and that they can be realized using standard
cryptographic assumptions such as the existence of pseudorandom functions [25].

3.1 Commitment interface

A bipartite bit-commitment scheme provides four function calls:

SendCommitη(b, C) returns 〈σ〉 GetCommitη(C) returns 〈σ〉
Openη(σ, C) returns ∅ Verifyη(σ, C) returns 〈r〉

The initiator A commits to a bit using the call SendCommitη(b, C) returns 〈σ〉, which communicates
the commitment value over the channels in C. Some state information σ is generated that can,
amongst other things, be used to open the commitment. A responder B may receive a commitment
from A by executing a call GetCommitη(C) returns 〈σ〉 over the channels in C, which may also
returns some state information σ.

In the decommitment phase, the initiator A may open the commitment using the function
call Openη(σ, C) returns ∅, which uses the state information from the initial call to indicate which
commitment is to be opened. The responder B can then verify the committed value by making
the call Verifyη(σ, C) returns 〈r〉. If verification succeeds, r contains the value of the committed bit.
Otherwise, r is a symbol ⊥ indicating failure.

7

3.2 Commitment correctness and security conditions

There are three conditions—correctness, hiding, and binding—on bit-commitment [17, 25]. After
explaining each condition, we show that each can be stated as an equivalence. The equivalences are
written using ∼=, which give the game condition required of any implementation. With ∼= replaced
by =, the same equivalences can be used to state the information-theoretic properties required
for an ideal functionality. More precisely, an ideal functionality for bipartite bit-commitment is an
implementation for the four function calls listed in the interface above such that the correctness
property below is satisfied with high probability, and the hiding and binding properties of bipartite
bit-commitment below are satisfied with an information-theoretic equivalence. It is easy to verify
that the concrete functionality considered in [9] is an instance of the ideal functionality for bipartite
bit-commitment.

Given a game condition, there is a canonical way of writing it as an indistinguishability between
expressions. The basic idea is that, since ∼= quantifies over all contexts, any successful attack on the
game condition can be translated into a similarly successful context that distinguishes between the
two sides of the equivalence. Conversely, since all expressions and contexts in PPC are guaranteed
to evaluate in polynomial time and since the class of terms is precisely the class of probabilistic
poly-time functions, every successfully distinguishing context can be translated into a successful
attack on the corresponding game conditions.

Hiding An implementation Impl is hiding if for an honest initiator, no adversary (acting as a
responder or otherwise) can gain, with non-negligible advantage, information about the commit-
ted bit. The probability PAdv that an attacker Adv successfully extracts information about the
committed bit from interaction with an honest initiator is the probability it successfully guesses
the value of an honest commitment given a commitment to a randomly chosen bit. Writing this
property as an equivalence yields:

ν(C, c).(Impl[C, D] | out(c, rand) | in(c, b).SendCommitη(b, C) returns 〈σ〉.in(d, b′).out(dec, b′
?= b))

∼= ν(C, c).(Impl[C, D] | out(c, rand) | in(c, b).SendCommitη(b, C) returns 〈σ〉.in(d, b′).out(dec, rand))

Both expressions select a random bit and commit to it. They then wait for an adversary (expressed
as a context) to guess the committed-to value. The difference between the two expressions is that
the LHS tests, over the channel dec, whether the adversary’s guess matches the chosen bit, while
the RHS assumes, again over the channel dec, that the adversary fails with probability 1/2. Clearly,
any successfully distinguishing context must guess the bit with non-negligible advantage, thereby
proving the existence of an adversary that violates the hiding property. Hence, we can naturally
express the hiding condition that for all Adv, the probability PAdv− 1

2 is negligible in η as a process
calculus equivalence.

We note that in order to prevent the adversary from unfairly interfering with the communication
between the challenger and the implementation Impl, we make the channels between the challenger
and Impl private. To say that an implementation is perfectly or information-theoretically secure we
require that ∀Adv : PAdv − 1

2 = 0, which is the same as replacing ∼= by = in the equivalence above.

Binding The binding property is that no adversary can open a commitment to an arbitrary value.
This condition can be restated using a game in which the adversary commits to a challenger (an

8

honest responder), who then picks a random b and challenges the adversary to open the commitment
to b. As an equivalence, it is stated as:

ν(C, d)(GetCommitη(C) returns 〈σ〉.out(d, rand) |
in(d, b).out(c, b).Verifyη(σ, C) returns 〈r〉.out(dec, r ?= b) | Impl[C, D])

∼= ν(C, d)(GetCommitη(C) returns 〈σ〉.out(d, rand) |
in(d, b).out(c, b).Verifyη(σ, C) returns 〈r〉.out(dec, if r ?= ⊥ then false else rand) | Impl[C, D])

Here both expressions wait for a commitment, and then challenge the adversary to open the com-
mitment to a randomly chosen bit. The LHS tests whether the adversary successfully does so,
whilst the RHS assumes that if the attempt to open does not fail (i.e., the result of Verify is not
⊥) the adversary fails with probability 1/2. Perfect binding is expressed by replacing ∼= with = in
the equivalence above.

Correctness An implementation Impl is correct if an honest responder is able to verify an opened
commitment by an honest initiator with overwhelming probability. This correctness property may
be expressed as the process calculus equivalence.

ν(C, c)(out(c, rand) | in(c, b).
SendCommitη(b, C) returns 〈σI〉.Openη(σI , C) returns ∅.in(d, b′).out(dec, b

?= b′) | Impl[C, D]) |
ν(C′)(GetCommitη(C′) returns 〈σR〉.Verifyη(σR, C′) returns 〈r〉.out(d, r) | Impl[C′, D])

∼= ν(C, c)(out(c, rand) | in(c, b).
SendCommitη(b, C) returns 〈σI〉.Openη(σI , C) returns ∅.in(d, b′).out(dec, true) | Impl[C, D]) |
ν(C′)(GetCommitη(C′) returns 〈σR〉.Verifyη(σR, C′) returns 〈r〉.out(d, r) | Impl[C′, D])

Here, both expressions pick a random bit, commit to it, and then try to open it. The LHS checks
whether the verifier obtained the correct value for the bit, whilst the RHS assumes that the verifier
gets the right value all the time.

3.3 Impossibility of Bit-Commitment

In this section, we show that no ideal functionality for bit-commitment can be realized. Given a
real protocol P that realizes an ideal functionality F for bit-commitment, we construct another
real protocol Q which provides the same correctness guarantee. However, in protocol Q all calls
to the bit-commitment interface by principals are handled by copies of F . As a consequence, Q
provides perfect hiding and binding, which is a contradiction.

In order to state the theorem formally, we require some definitions. We say that P is a real
protocol just when it does not act as a trusted third party. This means that a given copy of P
only communicates with one principal over a set of private channels, in addition to any public
communication it may perform. We say that a protocol P for bit-commitment is terminating when
the following expression will, with high probability, produce the messages “go” and “done”, if the
function calls are implemented with P.

ν(C)(SendCommitη(b, C) returns 〈σI〉.in(c, z).Openη(σI , C) returns ∅.in(d, z) | P[C, D] |
ν(C′)(GetCommitη(C′) returns 〈σR〉.out(c, “go”).Verifyη(σR, C′) returns 〈r〉.out(d, “done”) | P[C′, D])

9

E1

I1 PI

PR

E1

I1 F

PR

S

∼=

Figure 2: Configurations for the first step

Intuitively, if we see both synchronization messages in a run which synchronizes after commitment,
on the message “go”, and then synchronizes after decommitment, on the message “done”, then
each phase must consist of two roles (initiator and responder) that are implemented by expressions
that run for only a finite time.

Theorem 1. If F is an ideal functionality for bilateral bit-commitment, then there does not exist
a terminating real protocol P that securely realizes F .

Before giving the proof, the following two lemmas will be useful. The first lemma states the well
known fact [17] that perfect hiding and binding protocols for bit-commitment do not exist without
a trusted third party. We omit the proof here. The second lemma states that any realization of
F will also be correct for bit-commitment. The proof sketch is in Appendix A. Similarly, any
realization of F will enjoy complexity-theoretic hiding and binding guarantees; however, we do not
require this fact for the impossibility result.

Lemma 2. There does not exist a terminating real protocol P which is correct with high probability,
and both perfectly hiding and perfectly biding.

Lemma 3. If P is a terminating real protocol that securely realizes F , then P is correct with high
probability.

Proof of Theorem 1. We assume that P securely realizes F . It follows that for any configuration
involving principals making use of P, there exists a simulator S such that replacing the calls to
P with calls to the simulator in conjunction with the functionality yields an indistinguishable
configuration.

Consider the following real configuration when the environment plays the role of the responder
honestly. It selects a bit and sends that bit to the initiator. The initiator then commits to
that bit using a copy of the implementation PI . The responder is corrupted by the adversary
to simply forward messages to the environment. After corrupting the responder, the adversary
simply forwards messages. The environment then honestly plays the responder’s role using a copy
of the real implementation PR. At the conclusion of the commitment phase, the environment
initiates decommitment by instructing the initiator to open. The environment then verifies the
initiator’s attempt to open, and then decides if the bit the initiator opened to was the bit the
environment selected at the start of the run. The programs of the four principals are given below,

10

where Forward(C ↔ D) is an expression that forwards in an order-preserving way messages received
on the channels C to channels D and vice versa:

E1 ≡ ν(C, c)(out(c, rand) | in(c, b).out(IOI , b).GetCommitη(C) returns 〈σ〉.out(IOI , open).

Verifyη(r, C) returns 〈σ〉.out(dec, b
?= r) | P[C, IOR])

I1 ≡ ν(C′)(in(IOI , b).SendCommitη(b, C′) returns 〈σ′〉.in(IOI , x).
Openη(σ′, C′) returns ∅ | P[C′,NetI])

A1 ≡ Forward(NetI ↔ NetR)
R1 ≡ Forward(IOR ↔ NetR)

This real configuration and its corresponding ideal configuration are shown in Figure 2 on
the left and right, respectively (omitting the forwarders for clarity). Let us consider the ideal
configuration. Here, the uncorrupted principal, the initiator, uses the ideal functionality, F , whilst
the environment continues using the real protocol. A simulator S must exist such that it can
“convert” the messages of the functionality into messages that PR understands and vice versa.
This simulator sits between PR and F and is connected to F via the bit-commitment interface and
the unspecified interface of F . Since P securely realizes F , it follows that the configurations are
indistinguishable. Furthermore, by Lemma 3 the environment in the real configuration must register
success with high probability, since the adversary does nothing (after corrupting the responder to
be a forwarder). Whence the expression Q consisting of F and S wired in the way that they are
must be able to commit to PR and, then, successfully open the commitment.

Let us now consider another real configuration (Figure 3) where the initiator is corrupted to be
a forwarder but the responder is honest. As before, the adversary, after corrupting the initiator,
does nothing. The environment selects a bit and then runs the initiator’s role directly. However,
instead of using P to implement the initiator’s role, the environment uses the expression Q from
the first part of the argument. To commit, the environment sends the bit to the functionality
whose messages are then translated by the simulator into messages suitable for the copy of the
implementation PR used by the honest responder. After committing, the environment waits for a
receipt from the responder, before decommiting. It then waits for the responder to send the bit
it believes the initiator committed to and the environment checks that the bit it received was the
same as the bit to which it committed. The responder, for its part, receives a commitment, sends a
receipt to the environment, then verifies a commitment, and forwards the result to the environment.
The programs are given below:

E2 ≡ ν(C, c)(out(c, rand) | in(c, b).SendCommitη(b, C) returns 〈σ〉.in(IOR, x).

Openη(σ, C) returns ∅.in(IOR, b′)out(dec, b
?= b′) | Q[C, IOR])

R2 ≡ ν(C′)(GetCommitη(C′) returns 〈σ′〉.out(IOR, receipt).
Verifyη(r, C′) returns 〈σ′〉.out(IOR, r) | P[C′,NetR])

A2 ≡ Forward(NetI ↔ NetR)
I2 ≡ Forward(IOI ↔ NetI)

In this scenario, the simulator S ′ sits between the expression Q (consisting of simulator S and
functionality) and the functionality F . Again, from secure realizability, Lemma 3, and the fact

11

E2

R2PR

F
S

E2

F
S

R2F

S ′

∼=

Figure 3: Configurations for the second step

that Q looks like an initiator running the implementation P, we know that in the real configura-
tion, the environment will, with high probability, register a success. Therefore, so must the ideal
configuration, whence the expression Q′ consisting of F and S ′ must correctly play the role of the
responder running the implementation P.

If we look at the ideal configuration, we notice that the functionality is no longer working as
a trusted third party. Every message is run through the simulators S and S ′. Thus, we have an
implementation of bit-commitment that is a real protocol. The initiator executes the code given by
the expression Q while the responder executes the code given by the expression Q′. From the above
argument it follows that the implementation Q | Q′ is a correct implementation. Furthermore, the
Q | Q′ has to be information-theoretically hiding and binding because of the way they make use
of the functionality. For example, to commit to a bit, the caller passes the bit to the functionality
which, by definition, reveals no information about the bit regardless of the other parties in the
configuration until the open step. Thus, we have a correct with high probability, and information-
theoretically hiding and binding implementation of the bit-commitment interface that does not
make use of trusted third parties. This contradicts Lemma 2.

4 Generalization of the Impossibility Result and Other Examples

In this section we state a more general impossibility result: if G is a functionality and P is a protocol
which uses G to achieve bit-commitment with perfect hiding and binding, then the functionality G
cannot be realized. Intuitively, the functionality G together with protocol P constitutes an ideal
functionality for bit-commitment F , and any realization of G will lead to the realization of F .
Therefore, we would expect that all primitives that can be used to build bit-commitment are not
realizable as functionalities. We illustrate this by showing that certain variants of symmetric en-
cryption and group signatures cannot have realizable ideal functionalities. Due to space constrains,
the security definitions are mostly informal and proof sketches have been moved to Appendix A.

Hybrid Protocols For the purpose of stating a general theorem, we will consider implementa-
tions of primitives which, in addition to public channels, may use a particular functionality. Let G
be any functionality, a G-hybrid protocol P for a primitive is an implementation of the primitive’s
interface which does not make use of the trusted third party except maybe by making calls to G’s
interface. We will write P [Q] to denote an instance of P where are calls to G’s interface are handled

12

by the implementation Q (real or ideal).

Theorem 4. If G is a functionality and P is a terminating G-hybrid protocol for bit-commitment
which is correct with high probability and provides perfect hiding and perfect binding, then no protocol
realizes functionality G.

Symmetric Encryption Symmetric encryption primitive is defined by the standard interface
for key generation, encryption and decryption.

KeyGenη(C) returns 〈K〉 Encryptη(K, p, C) returns 〈c〉 Decryptη(K, c, C) returns 〈p〉

In addition to the obvious correctness property, we assume, as in [3], that the encryption scheme is
CCA-secure and that it provides ciphertext integrity. Provably secure schemes with respect to these
two properties exist under reasonable assumptions [30]. Informally, we can describe the properties
as follows:

• CCA-security means that it hard for an adaptive attacker with access to the decryption oracle
to distinguish the plaintext from a random value of the same length given the ciphertext.
Perfect CCA-security means that the probability of success is exactly half.

• Integrity of ciphertexts means that it is hard for an attacker to find a ciphertext c which will
successfully decrypt unless that ciphertext has been produced by the encryption algorithm
for some key and plaintext. Perfect integrity of ciphertexts means that the probability of an
attacker finding such a ciphertext is zero.

Corollary 5. If F is a functionality for symmetric encryption providing perfect CCA-security and
perfect integrity of ciphertext then F cannot be realized.

Group Signatures Group signature primitive is defined by the interface for key generation,
group signing, group signature verification and opening. For simplicity we will assume that the
group is always of size two.

GKeyGenη(C) returns 〈gpk, gmsk, gsk0, gsk1〉 GSignη(m, gsk, C) returns 〈sig〉
GVerifyη(gpk,m, sig, C) returns 〈result〉 GOpenη(gmsk,m, sig, C) returns 〈identity〉

In addition to the obvious correctness properties, we assume that the group signature scheme
provides anonymity and traceability even against dishonest group managers. This is a stronger
security requirement than the version principally considered in [6] (though [6] does briefly discuss
this variant); [6] also shows that schemes with these properties exist if trapdoor permutations exist.
Informally, we can describe the properties as follows:

• Anonymity means that it is hard for an adaptive attacker with access to an opening oracle
to recover the identity of the signer given a signature and a message, even if the attacker has
all the signing keys. Perfect anonymity means that the probability of success is exactly half
(assuming, as we do, only two possible signers).

• Traceability means that it is hard for an attacker that adaptively corrupts a coalition of signers
and has access to a signing oracle to produce a valid message-signature pair that opens to
a signer not in the coalition, even when the group manager is dishonest. Perfect traceability
means that the probability of an attacker forging such a signature is zero.

13

Corollary 6. If F is a functionality for group signatures providing perfect anonymity and perfect
traceability then F cannot be realized.

5 Conclusion and Future Directions

We articulate accepted practice in the literature by giving a precise definition of the ideal function-
ality associated with any given game specification: An ideal functionality must be a process or a
set of processes that realize the game conditions in an information-theoretic, rather than compu-
tational complexity, sense. Using this definition we show that bit commitment, group signatures,
and other cryptographic concepts that are definable using games do not have any realizable ideal
functionality. The proof appears applicable to other primitives, which we expect to explore in the
near future.

Since universal composability has this inherent limitation, there are two possible directions for
further work. One possibility is to modify the UC framework. For example, it could be fruitful to
investigate a more general version of ideal functionality obtained by replacing information-theoretic
equivalence with the indistinguishability of random systems in the sense of [20]. This would allow
adaptive, computationally unbounded distinguishers to query the system at most polynomially
many times in the security parameter. Another possible direction involves the modification of the
Universal Composability framework recently considered in [26, 27], which allows a commitment
functionality. In the modified framework, parties are typed in a certain way, and the typing must
be respected by the simulator. On the other hand, since the intuition for some of these directions
is not clear, it may be more productive to develop methods for stating and proving conditional
composability. In conditional composability, primitives and protocols would be guaranteed to
operate securely only in environments that satisfies certain conditions. At present, this seems the
more promising general research direction.

References

[1] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: the spi calculus. In-
formation and Computation, 143:1–70, 1999. Expanded version available as SRC Research Report 149
(January 1998).

[2] Michael Backes and Dennis Hofheinz. How to break and repair a universally composable signature
functionality. In Information Security, 7th International Conference, ISC 2004, Proceedings, volume
3225 of Lecture Notes in Computer Science, pages 61–72. Springer-Verlag, 2004.

[3] Michael Backes and Birgit Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style crypto-
graphic library. In CSFW ’04: Proceedings of the 17th IEEE Computer Security Foundations Workshop,
pages 204–218. IEEE Computer Society, 2004.

[4] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryptographic library with
nested operations. In CCS ’03: Proceedings of the 10th ACM conference on Computer and communi-
cations security, pages 220–230. ACM Press, 2003.

[5] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user setting:
Security proofs and improvements. In Advances in Cryptology - EUROCRYPT 2000, International
Conference on the Theory and Application of Cryptographic Techniques, Proceeding, volume 1807 of
Lecture Notes in Computer Science, pages 259–274. Springer-Verlag, 2000.

14

[6] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assumptions. In Advances in
Cryptology - EUROCRYPT 2003, International Conference on the Theory and Applications of Cryp-
tographic Techniques, Proceedings, volume 2656 of Lecture Notes in Computer Science, pages 614–629.
Springer-Verlag, 2003.

[7] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS
’01: Proceedings of the 42nd IEEE symposium on Foundations of Computer Science, page 136, 2001.
Full version available at http://eprint.iacr.org/.

[8] Ran Canetti. Universally composable signature, certification, and authentication. In CSFW ’04: Pro-
ceedings of the 17th IEEE Computer Security Foundations Workshop, pages 219–233. IEEE Computer
Society, 2004.

[9] Ran Canetti and Marc Fischlin. Universally composable commitments. In Advances in Cryptology -
CRYPTO 2001, 21st Annual International Cryptology Conference, Proceedings, volume 2139 of Lecture
Notes in Computer Science, pages 19–40. Springer-Verlag, 2001.

[10] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building secure
channels. In Advances in Cryptology - EUROCRYPT 2001, International Conference on the Theory
and Application of Cryptographic Techniques, Proceeding, volume 2045 of Lecture Notes in Computer
Science, pages 453–474. Springer-Verlag, 2001.

[11] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure channels.
In Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Proceeding, volume 2332 of Lecture Notes in Computer Science,
pages 337–351. Springer-Verlag, 2002.

[12] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable
two-party computation without set-up assumptions. In Advances in Cryptology - EUROCRYPT 2003,
International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings,
volume 2656 of Lecture Notes in Computer Science, pages 68–86. Springer-Verlag, 2003.

[13] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and
multi-party secure computation. In STOC ’02: Proceedings of the 34th annual ACM symposium on
Theory of computing, pages 494–503. ACM Press, 2002.

[14] Ran Canetti and Tal Rabin. Universal composition with joint state. In Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference, Proceedings, volume 2729 of Lecture
Notes in Computer Science, pages 265–281. Springer-Verlag, 2003.

[15] Anupam Datta, Ralf Küsters, John C. Mitchell, and Ajith Ramanathan. On the relationships between
notions of simulation-based security. In TCC ’05: Proceedings of the 2nd Theory of Cryptography
Conference, volume 3378 of Lecture Notes in Computer Science, pages 476–494. Springer-Verlag, 2005.

[16] Anupam Datta, Ralf Küsters, John C. Mitchell, Ajith Ramanathan, and Vitaly Shmatikov. Unifying
equivalence-based definitions of protocol security. In 2004 IFIP WG 1.7, ACM SIGPLAN and GI
FoMSESS Workshop on Issues in the Theory of Security (WITS 2004), 2004.

[17] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2000.

[18] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[19] Patrick D. Lincoln, John C. Mitchell, Mark Mitchell, and Andre Scedrov. Probabilistic polynomial-time
equivalence and security protocols. In Formal Methods World Congress, vol. I, number 1708 in Lecture
Notes in Computer Science, pages 776–793. Springer-Verlag, 1999.

15

[20] Ueli M. Maurer. Indistinguishability of random systems. In Advances in Cryptology - EUROCRYPT
2002, International Conference on the Theory and Application of Cryptographic Techniques, Proceeding,
volume 2332 of Lecture Notes in Computer Science, pages 110–132. Springer-Verlag, 2002.

[21] Robin Milner. Communication and Concurrency. International Series in Computer Science. Prentice
Hall, 1989.

[22] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE Transactions on Software
Engineering, 7(4):417–426, 1981.

[23] John C. Mitchell, Mark Mitchell, and Andre Scedrov. A linguistic characterization of bounded oracle
computation and probabilistic polynomial time. In FOCS ’98: Proceedings of the 39th Annual IEEE
Symposium on the Foundations of Computer Science, pages 725–733. IEEE Computer Society, 1998.

[24] John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague. A probabilistic polynomial-
time calculus for the analysis of cryptographic protocols (preliminary report). In 17th Annual Conference
on the Mathematical Foundations of Programming Semantics, volume 45. Electronic notes in Theoretical
Computer Science, 2001.

[25] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–158, 1991.

[26] Manoj Prabhakaran and Amit Sahai. New notions of security: Achieving universal composability
without trusted setup. In STOC ’04: Proceedings of the 36th annual ACM symposium on Theory of
computing, pages 242–251. ACM Press, 2004.

[27] Manoj Prabhakaran and Amit Sahai. Relaxing environmental security: Monitored functionalities. In
TCC ’05: Proceedings of the 2nd Theory of Cryptography Conference, volume 3378 of Lecture Notes in
Computer Science, pages 104–127. Springer-Verlag, 2005.

[28] Ajith Ramanathan, John C. Mitchell, Andre Scedrov, and Vanessa Teague. Probabilistic bisimulation
and equivalence for security analysis of network protocols. Unpublished, see http://www-cs-students.
stanford.edu/~ajith/, 2003.

[29] Ajith Ramanathan, John C. Mitchell, Andre Scedrov, and Vanessa Teague. Probabilistic bisimulation
and equivalence for security analysis of network protocols. In Foundations of Software Science and
Computation Structures, 7th International Conference, FOSSACS 2004, Proceedings, volume 2987 of
Lecture Notes in Computer Science, pages 468–483. Springer-Verlag, 2004.

[30] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-cipher mode of operation
for efficient authenticated encryption. In CCS ’01: Proceedings of the 8th ACM Conference on Computer
and Communications Security, pages 196–205. ACM Press, 2001.

[31] Robert J. van Glabbeek, Scott A. Smolka, and Bernhard Steffen. Reactive, generative, and stratified
models of probabilistic processes. International Journal on Information and Computation, 121(1),
August 1995.

A Proof Sketches

Proof sketch of Lemma 3. Consider a configuration consisting of an honest initiator running the
implementation P, an honest responder running the implementation P, and an adversary that
does nothing. The initiator waits for a bit from the environment and then commits to that bit. It
then waits for a message from the environment and then opens its commitment. The responder,
after receiving a commitment, sends a receipt to the environment. After a successful verification
of an attempt to open the commitment, it sends the opened-to value to the environment. The
environment selects a bit, sends it to the initiator and waits for a receipt from the responder.

16

Once it gets this message, it instructs the initiator to open its commitment, and then waits for
the responder to reveal the bit to which the initiator committed. If that bit matches the bit the
environment selects at the start of the run, the environment registers success. Otherwise it registers
failure.

By the terminating property of P, we know that this run will complete. The ideal configuration
has the initiator talking to the functionality which talks directly to the responder. Though a
simulator exists in the ideal configuration, it can do nothing since both the initiator and responder
are connected directly to the functionality. By virtue of the functionality’s correctness, we know
that in the ideal configuration the environment will register success with high probability. Since
P securely realizes F , the environment must register success in the real configuration with high
probability. Whence the correctness of P is established.

Proof sketch of Theorem 4. Assume that P is a terminating G-hybrid protocol for bit-commitment,
which is correct with high probability and provides perfect hiding and binding. A functionality
F = P [G] is clearly an ideal functionality for bit-commitment. Let Q be a real protocol which is a
realization of G, consider a real protocol R = P [Q] in which all the calls of P to the functionality G
are implemented with Q. We claim that R is a secure realization of F . Choose any real configuration
for R, consisting of an attacker A, and parties P1, . . . , Pn. We need to show that there is a simulator
S such that for any environment E this configuration is indistinguishable from one where parties
call functionality F instead of R. This configuration is also a real configuration for the protocol Q.
Therefore, there is a simulator such that when all calls to Q are replaced with calls to G, the two
configurations are indistinguishable for any environment. Since this ideal configuration is exactly
the ideal configuration for F we are done with the proof, because by Theorem 1 there can be no
protocol realizing any ideal functionality for bit-commitment.

Proof sketch of Corollary 5. Assume that F is an ideal functionality for symmetric encryption and
construct a F-hybrid protocol for bit-commitment providing perfect hiding and binding. The
initiator can commit to b by generating a new key, encrypting b and sending the ciphertext via
public channel. To open the commitment, initiator sends the key. This protocol provides perfect
hiding because of the perfect CCA-security provided F , and provides perfect binding because of
the perfect integrity of ciphertexts provided by F . By Theorem 4, functionality F cannot be
realized.

Proof sketch of Corollary 6. Construct a F-hybrid protocol for bit-commitment providing perfect
hiding and binding. The initiator can commit to b by generating all the group keys, signing a
random message with b’s signing key, and then sending, as the signature, the tuple consisting of the
b’s signature, the message, the group public key, and all the signing keys. To open the commitment,
the initiator sends the group manager’s secret key. This protocol provides perfect hiding because of
the perfect anonymity provided F , and provides perfect binding because of the perfect traceability
provided by F . By Theorem 4, functionality F cannot be realized.

17

