
Constant Round Dynamic Group Key Agreement

Ratna Dutta and Rana Barua
Cryptology Research Group

Stat-Math Unit
203, B.T. Road, Kolkata

India 700108
e-mail:{ratna r,rana}@isical.ac.in

Abstract

We present a fully symmetric constant round authenticated group key agreement protocol in dynamic
scenario. Our proposed scheme achieves forward secrecy and is provably secure under DDH assumption
in the security model of Bresson et al. providing, we feel, better security guarantee than previously
published results. The protocol is efficient in terms of both communication and computation power.
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1 Introduction

A group key agreement protocol allows a group of users communicating over an untrusted, open network
to come up with a common secret value called a session key. This session key can be used to facilitate
desirable security services, such as confidentiality and data integrity.

Authenticated group key agreement allows two or more parties to agree upon a common secret key even
in the presence of active adversaries. These protocols are designed to deal with the problem to ensure users
in the group that no other principals aside from members of the group can learn any information about
the session key. The design of secure and efficient authenticated group key agreement protocols gets much
attention in current research with increasing applicability in numerous group-oriented and collaborative
applications [13, 17, 5, 18, 11, 19, 25, 31].

Constructing forward secure authenticated key agreement scheme in a formal security model has re-
cently received much importance. Efficiency is another critical concern in designing such protocols for
practical applications. In particular, number of rounds may be crucial in an environment where quite
a large number of users are involved and the group-membership is dynamic. In a dynamic group key
agreement, the users can join or leave the group at any time. Such schemes must ensure that the session
key is updated upon every membership change, so that the subsequent sessions are protected from leaving
members and the previous sessions are protected from joining members. The cost of updates associated
with group membership changes should be minimum. There are quite a number of dynamic group key
agreement protocols [14, 15, 16, 28, 26, 27, 31]. In this paper, we study the problem of dynamic authenti-
cated group key agreement. We design our algorithm for join and leave to ensure minimum modification
to the computation already precomputed when a pool of users join or leave the group and the session key
is updated.
Our Contribution : The main contribution of this paper is to obtain a provably secure constant round

1This is a preliminary version of the paper that will be presented in ISC 2005.
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authenticated group key agreement protocol in dynamic scenario where a user can join or leave the group
at his desire with updated key. We propose in Section 3 a scheme that is proven to be secure against passive
adversary assuming the intractability of decision Diffie-Hellman (DDH) problem. Then we authenticate
this unauthenticated protocol by incorporating digital signature and provide a concrete security analysis
against active adversaries in the model as formalized by Bresson et al. [15]. We appropriately modify the
Katz-Yung [25] technique to achieve authentication in our protocol. Finally, we extend this static authen-
ticated protocol to dynamic authenticated protocol by introducing algorithms for join and leave. We prove
(Section 4) that the security of both the static and dynamic authenticated protocols rely on that of the
unauthenticated protocol. The security model of Bresson et al. [15] is adopted for the security analysis of
the dynamic case. Our protocol achieves forward secrecy, is fully symmetric and being of constant round,
is more efficient as compared to the protocol of Bresson et al. [15] (whose round complexity is linear in
the number of group members). Our security result holds in the standard model and thus provides better
security guarantees than previously published results in the random oracle model.

More recently, Kim et al. [28] proposed a very efficient constant round dynamic authenticated group key
agreement protocol and provide a security analysis of their static authenticated protocol which is shown
to be secure under computation Diffie-Hellman (CDH) assumption using random hash oracle. They did
not consider the security analysis of their dynamic authenticated protocol. Unlike [28], we have achieved
the security of our dynamic scheme in the standard model under standard DDH assumption without
using any random oracle. We separately analyze the security of our static unauthenticated protocol,
static authenticated protocol and dynamic authenticated protocol and reduce the security of the static
authenticated protocol and dynamic authenticated protocol to that of the unauthenticated protocol.

Our proposed scheme considers the users U1, U2, . . . , Un participating in the protocol on a ring where
Ui−1, Ui+1 are respectively the left and right neighbors of Ui for 1 ≤ i ≤ n with U0 = Un, Un+1 = U1.
Only 2 rounds are required in our protocol which makes our protocol efficient from communication point
of view. User Ui, 1 ≤ i ≤ n, sends a message in first round only to its neighbors Ui−1, Ui+1 and a message
in second round to the rest of the n− 1 users. Each user sends one message in each round with bit length
at most 2|q|+ 2|s| where |q| is the length of q, the order of the underlying group on which DDH problem
is assumed to be hard and |s| is the length of signature. Each group member computes at most 3 modular
exponentiations (1 in round 1 and 2 in round 2), 2n− 2 modular multiplications (n− 1 multiplications for
recovery of all right keys and n − 1 multiplications for session key computation), 1 division, 2 signature
generation and n + 1 signature verification.

Our protocol is more efficient as compared to the protocol of Burmester and Desmedt [18] (BD) in terms
of both communication and computation power. Moreover, we emphasize that our protocol is dynamic.
The authentication in BD protocol was introduced by Katz and Yung [25] (KY) that requires 3 rounds.
Table 1 analyzes the efficiency of our static authenticated protocol and authenticated protocol KY [25]
where both the schemes are forward secure, achieve provable security under DDH assumption in standard
model. We use the following notations:

n total number of users in a group
R total number of rounds
PTP maximum number of point-to-point communication per user
Exp maximum number of modular exponentiations computed per user
Mul maximum number of modular multiplications computed per user
Div maximum number of divisions computed per user
Sig maximum number of signatures generated per user
Ver maximum number of signature verification per user
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Protocol Communication Computation Hardness Remarks
R PTP Exp Mul Div Sig Ver Assumption

KY [25] 3 3(n− 1) 3 n2

2 + 3n
2 − 3 1 2 2(n− 1) DDH static

Our protocol 2 n + 1 3 2n− 2 1 2 n + 1 DDH dynamic

Table 1: Protocol comparison

In each round of authenticated BD protocol, a user sends message to the rest of the users (although
the communication in the second round can be reduced). In contrast, each user in our protocol sends a
message only to its two neighbors in the first round and a message to the rest of the users in the second
round. Our protocol differs from the BD protocol in the way the session key is computed after the rounds
are over. Each user computes n2

2 + 3n
2 − 3 modular multiplications in BD protocol. On a more positive

note, each user in our protocol requires to compute at most 2n modular multiplications. This makes our
protocol much more efficient as compared to BD protocol. Besides, our protocol has the ability to detect
the presence of a corrupted group member, although we cannot detect who among the group members are
behaving improperly. If an invalid message is sent by a corrupted member, then this can be detected by
all legitimate members of the group and the protocol execution may be stopped instantly. This feature
makes our protocol interesting when the adversarial model no longer assumes that the group members are
honest.

2 Preliminaries

In this section, we define the Decision Diffie-Hellman (DDH) problem and describe the security model in
which we prove the security of our group key agreement protocol. We use the notation a←− S to denote
that a is generated randomly from S.

2.1 Decision Diffie-Hellman (DDH) problem

Let G = 〈g〉 be a multiplicative group of some large prime order q. Then Decision Diffie-Hellman (DDH)
problem on G is defined as follows:

Instance : (ga, gb, gc) for some a, b, c ∈ Z∗
q .

Output : yes if c = ab mod q and output no otherwise.
We consider two distributions as:

∆Real = {a, b←− Z∗
q , A = ga, B = gb, C = gab : (A,B, C)}

∆Rand = {a, b, c←− Z∗
q , A = ga, B = gb, C = gc : (A,B, C)}.

The advantage of any probabilistic, polynomial-time, 0/1-valued distinguisher D in solving DDH problem
on G is defined to be : AdvDDH

D,G = |Prob[(A,B, C)←− ∆Real : D(A,B, C) = 1]−Prob[(A,B, C)←− ∆Rand :
D(A,B, C) = 1]|. The probability is taken over the choice of logg A, logg B, logg C and D’s coin tosses. D
is said to be a (t, ε)-DDH distinguisher for G if D runs in time at most t such that AdvDDH

D,G (t) ≥ ε.
DDH assumption : There exists no (t, ε)-DDH distinguisher for G. In other words, for every probabilistic,
polynomial-time, 0/1-valued distinguisher D, AdvDDH

D,G ≤ ε for sufficiently small ε > 0.
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2.2 Security Model

We describe below the adversarial model following Bresson et al.’s [15] formal security model that we
adopt for the security analysis of our protocols. This model is more general in the sense that it covers
authenticated key agreement in group setting and suited for dynamic groups.

Let P = {U1, . . . , Un} be a set of n (fixed) users or participants. At any point of time, any subset of
P may decide to establish a session key. Thus a user can execute the protocol for group key agreement
several times withdifferent partners, can join or leave the group at his desire by executing the protocols for
Join or Leave. We identify the execution of protocols for key agreement, member(s) join and member(s)
leave as different sessions. The adversarial model consists of allowing each user an unlimited number of
instances with which it executes the protocol for key agreement or inclusion or exclusion of a user or a
set of users. We assume adversary never participates as a user in the protocol. This adversarial model
allows concurrent execution of the protocol. The interaction between the adversary A and the protocol
participants occur only via oracle queries, which model the adversary’s capabilities in a real attack. Let
S, S1, S2 be three sets defined as:

S = {(V1, i1), . . . , (Vl, il)}, S1 = {(Vl+1, il+1), . . . , (Vl+k, il+k)}, S2 = {(Vj1 , ij1), . . . , (Vjk
, ijk

)}

where {V1, . . . , Vl} is any non-empty subset of P. We will require the following notations.

Πi
U : i-th instance of user U .

ski
U : session key after execution of the protocol by Πi

U .
sidi

U : session identity for instance Πi
U . We set sidi

U = S = {(U1, i1), . . . , (Uk, ik)}
such that (U, i) ∈ S and Πi1

U1
, . . . ,Πik

Uk
wish to agree upon a common key.

pidi
U : partner identity for instance Πi

U , defined by pidi
U = {U1, . . . , Uk},

such that (Uj , ij) ∈ sidi
U for all 1 ≤ j ≤ k.

acci
U : 0/1-valued variable which is set to be 1 by Πi

U upon normal termination of
the session and 0 otherwise.

We will make the assumption that in each session at most one instance of each user participates. Further, an
instance of a particular user participates in exactly one session. This is not a very restrictive assumption,
since a user can spawn an instance for each session it participates in. On the other hand, there is an
important consequence of this assumption. Suppose there are several sessions which are being concurrently
executed. Let the session ID’s be sid1, . . . , sidk. Then for any instance Πi

U , there is exactly one j such
that (U, i) ∈ sidj and for any j1 6= j2, we have sidj1 ∩ sidj2 = ∅. Thus at any particular point of time, if
we consider the collection of all instances of all users, then the relation of being in the same session is an
equivalence relation whose equivalence classes are the session IDs.

We assume that the adversary has complete control over all communications in the network. All
information that the adversary gets to see is written in a transcript. So a transcript consists of all the
public information flowing across the network. The following oracles model an adversary’s interaction with
the users in the network:

– Send(U, i,m) : This query models an active attack, in which the adversary may intercept a message
and then either modify it, create a new one or simply forward it to the intended participant. The
output of the query is the reply (if any) generated by the instance Πi

U upon receipt of message m.
The adversary is allowed to prompt the unused instance Πi

U to initiate the protocol with partners
U2, . . . , Ul, l ≤ n, by invoking Send(U, i, 〈U2, . . . , Ul〉).
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– Execute(S) : This query models passive attacks in which the attacker eavesdrops on honest execution of
group key agreement protocol among unused instances Πi1

V1
, . . . ,Πil

Vl
and outputs the transcript of the

execution. A transcript consists of the messages that were exchanged during the honest execution of
the protocol.

– Join(S, S1) : This query models the insertion of user instances Πil+1

Vl+1
, . . . ,Πil+k

Vl+k
in the group {V1, . . . , Vl} ⊂

P for which Execute have already been queried. The output of this query is the transcript generated
by the invocation of algorithm Join. If Execute(S) has not taken place, then the adversary is given
no output.

– Leave(S, S2) : This query models the removal of user instances Π
ij1
Vj1

, . . . ,Π
ijk
Vjk

from the group {V1, . . . Vl} ⊂
P. If Execute(S) has not taken place, then the adversary is given no output. Otherwise, algorithm
Leave is invoked. The adversary is given the transcript generated by the honest execution of procedure
Leave.

– Reveal(U, i) : This outputs session key ski
U . This query models the misuse of the session keys, i.e known

session key attack.

– Corrupt(U) : This outputs the long-term secret key (if any) of player U . The adversarial model that we
adopt is a weak-corruption model in the sense that only the long-term secret keys are compromised,
but the ephemeral keys or the internal data of the protocol participants are not corrupted. This
query models (perfect) forward secrecy.

– Test(U, i) : This query is allowed only once, at any time during the adversary’s execution. A bit
b ∈ {0, 1} is chosen uniformly at random. The adversary is given ski

U if b = 1, and a random session
key if b = 0. This oracle computes the adversary’s ability to distinguish a real session key from a
random one.

An adversary which has access to the Execute, Join, Leave, Reveal, Corrupt and Test oracles, is considered
to be passive while an active adversary is given access to the Send oracle in addition. (For static case,
there is no Join or Leave queries as a group of fixed size is considered.)

The adversary can ask Send, Execute, Join, Leave, Reveal and Corrupt queries several times, but Test
query is asked only once and on a fresh instance. We say that an instance Πi

U is fresh unless either the
adversary, at some point, queried Reveal(U, i) or Reveal(U ′, j) with U ′ ∈ pidi

U or the adversary queried
Corrupt(V ) (with V ∈ pidi

U ) before a query of the form Send(U, i, ∗) or Send(U ′, j, ∗) where U ′ ∈ pidi
U .

Finally adversary outputs a guess bit b′. Such an adversary is said to win the game if b = b′ where b is
the hidden bit used by the Test oracle.

Let Succ denote the event that the adversary A wins the game for a protocol XP. We define

AdvA,XP := |2 Prob[Succ]− 1|

to be the advantage of the adversary A in attacking the protocol XP.
The protocol XP is said to be a secure unauthenticated group key agreement (KA) protocol if there is no

polynomial time passive adversary with non-negligible advantage. In other words, for every probabilistic,
polynomial-time, 0/1 valued algorithm A, AdvA,XP < 1

ML for every fixed L > 0 and sufficiently large
integer M . We say that protocol XP is a secure authenticated group key agreement (AKA) protocol if there
is no polynomial time active adversary with non-negligible advantage. Next we define
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AdvKA
XP(t, qE) := the maximum advantage of any passive adversary attacking protocol XP,

running in time t and making qE calls to the Execute oracle.
AdvAKA

XP (t, qE , qS) := the maximum advantage of any active adversary attacking protocol XP,
running in time t and making qE calls to the Execute oracle and qS calls
to the Send oracle.

AdvAKA
XP (t, qE , qJ , qL, qS) := the maximum advantage of any active adversary attacking protocol XP,

running in time t and making qE calls to the Execute oracle, qJ calls to
Join oracle, qL calls to the Leave oracle and qS calls to the Send oracle.

3 Protocol

Suppose a set of n users P = {U1, . . . , Un} wish to establish a common session key among themselves.
Quite often, we identify a user Ui with it’s instance Πdi

Ui
(for some integer di that is session specific) during

a protocol execution. We consider the users U1, . . . , Un participating in the protocol are on a ring and
Ui−1, Ui+1 are respectively the left and right neighbors of Ui for 1 ≤ i ≤ n, U0 = Un, Un+1 = U1 and Un+i

is taken to be Ui. As mentioned earlier, we consider a multiplicative group G of some large prime order q
with g as a generator. We also consider a hash function H : {0, 1}∗ → Z∗

q .

3.1 Unauthenticated Key Agreement Protocol

U1 U2 U3 U4 U5

• • • • •
x1 x2 x3 x4 x5

gx1 gx2 gx3 gx4 gx5 : Round-1

Communications −→ Ui sends gxi to Ui−1, Ui+1, 1 ≤ i ≤ 5, U0 = U5, U6 = U1.

Ui computes KL
i = gxi−1xi , KR

i = gxixi+1 , 1 ≤ i ≤ 5, x0 = x5, x6 = x1

KR
1

KL
1

KR
2

KL
2

KR
3

KL
3

KR
4

KL
4

KR
5

KL
5

: Round-2

Communications −→ Ui, 1 ≤ i ≤ 5 sends KR
i

KL
i

to Uj , 1 ≤ j ≤ 5, j 6= i

Ui, 1 ≤ i ≤ 5 recovers KR
j , 1 ≤ j ≤ 5, j 6= i

The session key sk = KR
1 KR

2 KR
3 KR

4 KR
5 = gx1x2+x2x3+x3x4+x4x5+x5x1

Figure 1: The unauthenticated group key agreement among n = 5 users.

First we informally describe our unauthenticated protocol KeyAgree that involves two rounds and a
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key computation phase. At the start of the session, each user Ui = Πdi
Ui

chooses randomly a private key
xi ∈ Z∗

q . In the first round, Ui computes Xi = gxi and sends Xi to its neighbors Ui−1, Ui+1. After this
communication is over, Ui receives Xi−1 from Ui−1 and Xi+1 from Ui+1. Ui then computes it’s left key
KL

i = Xxi
i−1, right key KR

i = Xxi
i+1, Yi = KR

i /KL
i and sends Yi to the rest of the users in the second round.

Finally in the key computation phase, Ui computes K
R
i+1,K

R
i+2, . . . ,K

R
i+(n−1) as follows making use of his

own right key KR
i : K

R
i+1 = Yi+1K

R
i ,K

R
i+2 = Yi+2K

R
i+1, . . . ,K

R
i+(n−1) = Yi+(n−1)K

R
i+(n−2). Then Ui verifies

if K
R
i+(n−1) is same as that of his left key KL

i (= KR
i+(n−1)). If verification fails, then Ui aborts. Otherwise,

Ui has the correct right keys of all the users. Ui computes the session key skdi
Ui

= K
R
1 K

R
2 . . .K

R
n which is

equal to gx1x2+x2x3+···+xnx1 . Ui also computes and stores x = H(skdi
Ui

) for a join operation and stores his left
key and right key KL

i , KR
i respectively for a leave operation as we will see in the subsequent subsections.

We refer x as the seed which is common to all users involved in the session. Figure 1 illustrates the protocol
with n = 5 users.

Observe that each user computes 3 exponentiations (1 in round 1 and 2 in round 2) and at most 2n− 2
multiplications (n−1 multiplications for recovery of all right keys and n−1 multiplications for session key
computation). The formal description of the protocol is given below.

procedure KeyAgree(U [1, . . . , n], x[1, . . . , n])
(Round 1):

1. for i = 1 to n do in parallel
2. Ui(= Πdi

Ui
) computes Xi = gxi and sends Xi to Ui−1 and Ui+1 ;

3. end for
4. Note that X0 = Xn and Xn+1 = X1.

(Round 2):
5. for i = 1 to n do in parallel
6. Ui computes the left key KL

i = Xxi
i−1, the right key KR

i = Xxi
i+1 and Yi = KR

i /KL
i ;

7. Ui sends Yi to the rest of the users;
8. end for
9. Note that KR

i = KL
i+1 for 1 ≤ i ≤ n− 1, KR

n = KL
1 and KR

i+(n−1) = KL
i .

(Key Computation):
10.for i = 1 to n do in parallel
11.Ui computes K

R
i+1 = Yi+1K

R
i ;

12. for j = 2 to n− 1 do
13. Ui computes K

R
i+j = Yi+jK

R
i+(j−1);

14. end for
15. Ui verifies if KR

i+(n−1) = K
R
i+(n−1) (i.e. if KL

i = K
R
i+(n−1));

16. if verification fails, then Ui sets accdi
Ui

= 0, skdi
Ui

= NULL and aborts the protocol;
17. else Ui computes the session key skdi

Ui
= K

R
1 K

R
2 . . .K

R
n , the seed x = H(skdi

Ui
) and stores KL

i ,KR
i ;

18. end if
19.end for
end KeyAgree
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3.2 Authenticated Key Agreement Protocol

We authenticate the unauthenticated protocol of Section 3.1 by incorporating a standard digital signature
scheme DSig = (K,S,V) where K is the key generation algorithm, S is the signature generation algorithm
and V is the signature verification algorithm. As part of this signature scheme, K generates a signing
and a verification key ski (or skUi) and pki (or pkUi) respectively for each user Ui. Session identity is an
important issue of our authentication mechanism which uniquely identifies the session and is same for all
instances participating in the session.

Suppose instances Πd1
Ui1

, . . . ,Πdk
Uik

wish to agree upon a common key in a session. Then according to

our definition, sid
dj

Uij
= {(Ui1 , d1), . . . , (Uik , dk)}. Note that the instance numbers can be easily generated

using counter. We make the assumption that in each session at most one instance of each user participates
and an instance of a particular user participates in exactly one session. As mentioned earlier, this is a
reasonable assumption to avoid collisions in the session identities.

At the start of the session, Πdj

Uij
need not to know the entire set sid

dj

Uij
. This set is built up as the

protocol proceeds. We use a variable partial session-identity psidd
U for instance Πd

U involved in a session
to keep the partial information about it’s session identity. Initially, psid

dj

Uij
is set to be {(Uij , dj)} by Πdj

Uij

and finally after completion of the session, psid
dj

Uij
grow into full session identity sid

dj

Uij
. We assume that

any instance Πdj

Uij
knows it’s partner identity pid

dj

Uij
i.e. the set of users with which it is partnered in the

particular session. We describe below the algorithm AuthKeyAgree that is obtained by modifying algorithm
KeyAgree by introducing signatures in the communication.

procedure AuthKeyAgree(U [1, . . . , n], x[1, . . . , n])
(Round 1):

1. for i = 1 to n do in parallel
2. Ui(= Πdi

Ui
) sets its partial session-identity psiddi

Ui
= {(Ui, di)};

3. Ui chooses randomly xi ∈ Z∗
q and computes Xi = gxi and σi = S(skUi ,Mi) where Mi = Ui|1|Xi;

4. Ui sends Mi|σi to Ui−1 and Ui+1;
5. end for
6. Note that M0|σ0 = Mn|σn and Mn+1|σn+1 = M1|σ1.

(Round 2):
7. for i = 1 to n do in parallel
8. Ui, on receiving Mi−1|σi−1 from Ui−1 and Mi+1|σi+1 from Ui+1, verifies σi−1 on Mi−1 and σi+1 on Mi+1

using the verification algorithm V and the respective verification keys pkUi−1 , pkUi+1 ;
9. if verification fails, then Ui sets accdi

Ui
= 0, skdi

Ui
= NULL and aborts;

10. else Ui computes the left key KL
i = Xxi

i−1, the right key KR
i = Xxi

i+1, Yi = KR
i /KL

i

and signature σi = S(skUi ,M i) where M i = Ui|2|Yi|di;
11. Ui sends M i|σi to the rest of the users;
12. end if
13.end for
14.Note that KR

i = KL
i+1 for 1 ≤ i ≤ n− 1, KR

n = KL
1 and KR

i+(n−1) = KL
i .

(Key Computation):
15.for i = 1 to n do in parallel
16. for j = 1 to n, j 6= i do
17. Ui, on receiving M j |σj from Uj verifies σj on M j using

8



the verification algorithm V and the verification key pkUj ;
18. if verification fails, then Ui sets accdi

Ui
= 0, skdi

Ui
= NULL and aborts;

19. else Ui extracts dj from M j and sets psiddi
Ui

= psiddi
Ui
∪ {(Uj , dj)};

20. end for
21. Ui computes K

R
i+1 = Yi+1K

R
i ;

22. j = 2 to n− 1 do
23. Ui computes K

R
i+j = Yi+jK

R
i+(j−1);

24. end for
25. Ui verifies if KR

i+(n−1) = K
R
i+(n−1) (i.e. if KL

i = K
R
i+(n−1));

26. if verification fails, then Ui sets accdi
Ui

= 0, skdi
Ui

= NULL and aborts;
27. else Ui computes the session key skdi

Ui
= K

R
1 K

R
2 . . .K

R
n , the seed x = H(skdi

Ui
) and stores KL

i ,KR
i ;

28. end if
29. end if
30.end for
end AuthKeyAgree

3.3 Dynamic Key Agreement Protocol

3.3.1 Join

Suppose U [1, . . . , n] be a set of users with respective secret keys x[1, . . . , n] and an execution of AuthKeyA-
gree among the instances Πt1

U1
, . . . ,Πtn

Un
has already been done. So all these instances Πti

Ui
, 1 ≤ i ≤ n, have

a common session key and also a common seed x ∈ Z∗
q resulting from this execution of AuthKeyAgree. Let

the set of users U [n + 1, . . . , n + m] with secret keys x[n + 1, . . . , n + m] want to join the group U [1, . . . , n].
The new instances involved in the procedure Join are Πd1

U1
, . . . ,Πdn+m

Un+m
.

We consider a ring of l = m + 3 users V1 = U1, V2 = U2, V3 = Un, Vi = Un+i−3 for 4 ≤ i ≤ l
with V2 now using the seed x as it’s private key. We set y1 = x1, y2 = x, y3 = xn, yi = xn+i−3 and
d̂1 = d1, d̂2 = d2, d̂3 = dn, d̂i = dn+i−3. The left and right neighbors of Vi are respectively Vi−1 and
Vi+1 for 1 ≤ i ≤ l with V0 = Vl and Vl+1 = V1. We take Vl+i to be Vi and V2 is the representative
of the set of users U [2, . . . , n− 1]. We invoke KeyAgree (for unauthenticated version of join algorithm)
or AuthKeyAgree (for authenticated version of join algorithm) for l users V [1, . . . , l] with respective keys
y[1, . . . , l]. For simplicity, we describe the unauthenticated version of the precedure Join and mention the
additional modifications required for it’s authenticated version.

Let for 1 ≤ i ≤ l, X̂i = gyi ; X̂0 = X̂l, X̂l+1 = X̂1; K̂L
i = X̂yi

i−1; K̂
R
i = X̂yi

i+1; Ŷi = K̂R
i /K̂L

i . In round 1,
Vi sends X̂i to both Vi−1 and Vi+1. Additionally, V1 sends X̂1 and V3 sends X̂3 to all users U [3, . . . , n− 1]
in this round. In the second round, Vi computes it’s left key K̂L

i , right key K̂R
i and sends Ŷi to the rest

of the users in V [1, . . . , l]. Additionally, Vi sends Ŷi to all users in U [3, . . . , n − 1]. If the protocol does
not abort, Vi computes the session key skd̂i

Vi
in the key computation phase which is the product of l right

keys corresponding to l users V [1, . . . , l]. Vi also computes the seed H(skd̂i
Vi

) and stores K̂L
i , K̂R

i that can
be used for subsequent dynamic operations. Although active participations of the users U [3, . . . , n − 1]
are not required during the protocol execution, these users should be able to compute the common session
key, the seed, the left key and the right key. Fortunately, these users have x, X̂1 = gy1 and X̂3 = gy3 . So
each can compute and store U2’s left key K̂L

2 = gy1x, right key K̂R
2 = gy3x and proceeding in the same way

as V2 does, recover right keys of l users V [1, . . . , l], computes the session key and the common seed. The
joining algorithm Join is fomally described below.

9



procedure Join(U [1, . . . , n + m], x[1, . . . , n + m])
1. Set l = m + 3; V1 = U1, V2 = U2, V3 = Un; d̂1 = d1, d̂2 = d2, d̂3 = dn; y1 = x1, y2 = x, y3 = xn;

and for 4 ≤ i ≤ l, Vi = Un+i−3; d̂i = dn+i−3; yi = xn+i−3;
2. We consider a ring of l users V [1, . . . , l] with respective instance numbers d̂[1, . . . , l]

and secret keys y[1, . . . , l];
3. call KeyAgree(V [1, . . . , l], y[1, . . . , l]);
4. Let for 1 ≤ i ≤ l, X̂i = gyi ; X̂0 = X̂l, X̂l+1 = X̂1; K̂L

i = X̂yi
i−1; K̂

R
i = X̂yi

i+1; Ŷi = K̂R
i /K̂L

i ;
5. V1 and V3, in round 1, additionally send X̂1 and X̂3 respectively to all users in U [3, . . . , n− 1];
6. Vi, in round 2, additionally sends Ŷi to all users in U [3, . . . , n− 1];
7. for i = 3 to n− 1 do
8. Ui computes K̂R

3 = Ŷ3K
R
2 ;

9. j = 2 to l − 1 do
10. Ui computes K̂R

2+j = Ŷ2+jK̂
R
2+(j−1);

11. end do
12. Ui computes skdi

Ui
= K̂R

1 K̂R
2 . . . K̂R

l ;
13.end for
end Join

If we invoke procedure AuthKeyAgree instead of KeyAgree in line 3 of the above algorithm, then messages
transmitted during the protocol execution are properly structured with signatures appended to them
generated and verified according to the algorithm AuthKeyAgree. At the end of the session, if the protocol
terminates normally without abort, then each user Vi, 1 ≤ i ≤ l additionally has a common session identity
sidd̂i

Vi
= {(V1, d̂1), . . . , (Vl, d̂l)} apart from the common session key, the seed, the left and the right keys.

Users U [3, . . . , n − 1] are also able to compute this session identity from the messages received by them
during the protocol execution.

3.3.2 Leave

Suppose U [1, . . . , n] is a set of users with respective secret keys x[1, . . . , n] and an execution of AuthKeyAgree
among the instances Πt1

U1
, . . . ,Πtn

Un
has already been done. Let KL

i ,KR
i , 1 ≤ i ≤ n are the left and right keys

respectively of Ui computed and stored in this session. Let the set of users {Ul1 , . . . , Ulm} wants to leave
the group U [1, . . . , n]. Then the new user set is U [1, . . . , l1−L]∪U [l1 +R, . . . , l2−L]∪ . . .∪U [lm +R, . . . , n]
where Uli−L and Uli+R are respectively the left and right neighbours of the leaving user Uli , 1 ≤ i ≤ m.
Then for any leaving user Ul, l − L = l − i if the consecutive users Ul, Ul−1, . . . , Ul−(i−1) are all leaving
and Ul−i is not leaving the group. Similarly, l + R = l + i if consecutive users Ul, Ul+1, . . . , Ul+(i−1) are all
leaving and Ul+i is not leaving the group. We reindex these n−m remaining users and denote the new user
set by V [1, . . . , n−m]. We also reindex the left and right keys and denote by two arrays K̂L[1, . . . , n−m]
and K̂R[1, . . . , n − m] respectively the left and right keys of users V [1, . . . , n − m]. The new instances
involved in the procedure Leave are Πd1

V1
, . . . ,Πdn−m

Vn−m
.

We consider a ring of n−m users V [1, . . . , n−m]. For a leaving user Uli , it’s left neighbor Uli−L and
right neighbor Uli+R respectively choose new secret keys xj1 , xj2 ∈ Z∗

q where j1 = li − L and j2 = li + R,
computes Xj1 = gxj1 , Xj2 = gxj2 . Note that in the ring, the left and right neighbors of Uj1 are respectively
Uj1−1 and Uj2 and that of Uj2 are respectively Uj1 and Uj2+1. Uj1 sends Xj1 (properly structured with
corresponding signature as in AuthKeyAgree) to it’s neighbors Uj1−1, Uj2 and Uj2 sends Xj2 (properly
structured) to it’s neighbors Uj1 , Uj2+1. This is the first round. In the second round, each user Vi, after
proper verification of the received messages, computes Yi = K̂R

i /K̂L
i and sends Yi (properly structured
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associating signature) to the rest of the users in V [1, . . . , n−m]. The key computation phase is exactly the
same as in the procedure AuthKeyAgree among n−m users V1, . . . .Vn−m. The algorithm Leave is formally
described below.

procedure Leave(U [1, . . . , n], x[1, . . . , n], {Ul1 , . . . , Ulm})
(Round 1):
Let KL

i ,KR
i be respectively the left and right keys of user Ui, 1 ≤ i ≤ n, computed and stored

in a previous session among instances Πt1
U1

, . . . ,Πtn
Un

.
1. for i = 1 to m do in parallel
2. Let j1 = li − L; j2 = li + R;
3. Uj1 , Uj2 respectively choose randomly new secret keys xj1 , xj2 ∈ Z∗

q and computes Xj1 = gxj1 ,
Xj2 = gxj2 and σj1 = S(skUj1

,Mj1), σj2 = S(skUj2
,Mj2) where Mj1 = Uj1 |1|Xj1 , Mj2 = Uj2 |1|Xj2 ;

4. Uj1 sends Mj1 |σj1 to Uj1−1 and Uj2 ;
5. Uj2 sends Mj2 |σj2 to Uj1 and Uj2+1 (Un+1 = U1);
6. end for

(Round 2):
7. for i = 1 to m do in parallel
8. Let j1 = li − L, j2 = li + R;
9. We set W = {j1 − 1, j1, j2, j2 + 1};
10. Uj1−1, Uj2 , on receiving Mj1 |σj1 from Uj1 , verifies σj1 on Mj1 using the verification key pkUj1

;
11. Uj1 , Uj2+1, on receiving Mj2 |σj2 from Uj2 , verifies σj2 on Mj2 using the verification key pkUj2

;
12. if any of these verifications fail, then Uw, w ∈W , sets accdw

Uw
= 0, skdw

Uw
= NULL and aborts;

13. else
14. Uj1 modifies its left key KL

j1
= X

xj1
j1−1 and right key KR

j1
= X

xj1
j2

;
15. Uj2 modifies its left key KL

j1
= X

xj2
j1

and right key KR
j2

= X
xj2
j2+1;

16. Uj1−1 modifies its right key KR
j1−1 = X

xj1−1

j1
;

17. Uj2+1 modifies its left key KL
j2+1 = X

xj2+1

j2
;

18. end if
19.end for

We reindex the n−m users U [1 . . . n] \ {Ul1 , . . . , Ulm}. Let U [1 . . . n−m] be the new user set and
K̂L[1 . . . n−m], K̂R[1 . . . n−m] respectively be the set of corresponding left and right keys.

20.for i = 1 to n−m do in parallel
21. Vi computes Yi = K̂R

i /K̂L
i and signature σ̂i = S(skVi , M̂i) where M̂i = Vi|2|Yi|di;

22. Vi sends M̂i|σ̂i to the rest of the users in V [1, . . . , n−m];
23.end for
24.Note that K̂R

i = K̂L
i+1 for 1 ≤ i ≤ n−m− 1, K̂R

n = K̂L
1 and K̂R

i+(n−m−1) = K̂L
i .

(Key Computation):
25.for i = 1 to n−m do in parallel
26. for j = 1 to n−m, j 6= i do
27. Vi, on receiving M j |σj from Vj verifies σj on M j using

the verification algorithm V and the verification key pkVj ;
28. if verification fails, then Vi sets accdi

Vi
= 0, skdi

Vi
= NULL and aborts;

29. else Vi extracts dj from M j and sets psiddi
Vi

= psiddi
Vi
∪ {(Vj , dj)};

30. end for
31. Vi computes K

R
i+1 = Yi+1K̂

R
i ;
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32. j = 2 to n−m− 1 do
33. Vi computes K

R
i+j = Yi+jK

R
i+(j−1);

34. end for
35. Vi verifies if K̂R

i+(n−m−1) = K
R
i+(n−m−1) (i.e. if K̂L

i = K
R
i+(n−m−1));

36. if verification fails, then Vi sets accdi
Vi

= 0, skdi
Vi

= NULL and aborts;
37. else Vi computes the session key skdi

Vi
= K

R
1 K

R
2 . . .K

R
n−m, the seed x = H(skdi

Vi
) and stores K̂L

i , K̂R
i ;

38. end if
39. end if
40.end for
end Leave

4 Security Analysis

4.1 Security of the Unauthenticated Protocol

We will show that our unauthenticated protocol UP is secure against passive adversary under DDH as-
sumption. We state the security result of UP in Theorem 4.1. The proof, although not exactly same, is
quite similar to Katz-Yung [25] proof of security against passive adversary of the unauthenticated BD [18]
protocol under DDH assumption.

Theorem 4.1 The unauthenticated protocol UP described in Section 3.1 is secure against passive adversary
under DDH assumption, achieves forward secrecy and satisfies the following:

AdvKA
UP(t, qE) ≤ 4 AdvDDH

G (t′) +
8qE

|G|

where t′ = t+O(|P| qE texp), texp is the time required to perform exponentiation in G and qE is the number
of Execute query that an adversary may ask.

Proof : Let A be an adversary for the unauthenticated protocol UP. Using this, we can construct an
algorithm D which solves the DDH problem with non-negligible advantage. We first consider that the
adversary A makes a single Execute query. The number of parties n (≥ 3) among which the adversary
A asks Execute query is chosen by A itself. Moreover, since we do not use any long term secret key in
our protocol UP, Corrupt query may simply be ignored for A and the protocol trivially achieves forward
secrecy. The adversary A has access to three oracles: Execute, Reveal and Test. To deal with the Execute
and Reveal query, we define distributions Real and Fake′ for transcript, session key pair (T, sk) as follows
where Real is the real execution scenario of the protocol UP and prove the Claim 1 stated below.

Real :=



x1, . . . xn ←− Z∗
q ;

X1 = gx1 , X2 = gx2 , . . . , Xn = gxn ;
KR

1 = KL
2 = gx1x2 ,KR

2 = KL
3 = gx2x3 , . . . ,KR

n = KL
1 = gxnx1 ; : (T, sk)

Y1 = KR
1 /KL

1 , Y2 = KR
2 /KL

2 , . . . , Yn = KR
n /KL

n ;
T = (X1, . . . , Xn;Y1, . . . , Yn); sk = KR

1 KR
2 . . .KR

n



Fake′ :=



x1, . . . xn ←− Z∗
q ;

X1 = gx1 , X2 = gx2 , . . . , Xn = gxn ;
KR

1 = KL
2 = gx1x2 ,KR

2 = KL
3 = gx2x3 , . . . ,KR

n−1 = KL
n = gxn−1xn ; : (T, sk)

KR
n = KL

1 ←− G;
Y1 = KR

1 /KL
1 , Y2 = KR

2 /KL
2 , . . . , Yn = KR

n /KL
n ;

T = (X1, . . . , Xn;Y1, . . . , Yn); sk = KR
1 KR

2 . . .KR
n
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Claim 1 : For any algorithm A running in time t, we have |Prob[(T, sk) ←− Real : A(T, sk) = 1] −
Prob[(T, sk)←− Fake′ : A(T, sk) = 1]| ≤ AdvDDH

G (t′′) + 1
|G| .

Proof : We construct a distinguisher D for DDH problem using A, which on an input (A,B, C) ∈ G3, first
generates a pair (T, sk) according to the distribution Dist′ described below (which depends on A,B, C),
then runs A on (T, sk) and outputs whatever A outputs.

Dist′ :=



x1, . . . xn ←− Z∗
q ;

X1 = Ax1 , X2 = gx2 , . . . , Xn−1 = gxn−1 , Xn = Bxn ;
KR

1 = KL
2 = Ax1x2 ,KR

2 = KL
3 = gx2x3 , . . . ,KR

n−2 = KL
n−1 = gxn−2xn−1 ; : (T, sk)

KR
n−1 = KL

n = Bxn−1xn ,KR
n = KL

1 = Cxnx1 ;
Y1 = KR

1 /KL
1 , Y2 = KR

2 /KL
2 , . . . , Yn = KR

n /KL
n ;

T = (X1, . . . , Xn;Y1, . . . , Yn); sk = KR
1 KR

2 . . .KR
n


The distribution Real and the distribution {a, b←− Z∗

q , A = ga, B = gb, C = gab; (T, sk)←− Dist′ : (T, sk)}
are statistically equivalent as long as the exponents xj used in Dist′ are random. On the other hand, the dis-
tribution Fake′ and the distribution {a, b←− Z∗

q , c←− Z∗
q \{ab}, A = ga, B = gb, C = gc; (T, sk)←− Dist′ :

(T, sk)} are statistically equivalent but for a factor of 1
|G| . In distribution Fake′, the value of KR

n (= KL
1 )

is chosen uniformly at random from G whereas in Dist′, this value is chosen uniformly from G \ {gab}.
These two dristributions are statistically equivalent by the self reducibility property of DDH problem.
Hence |Prob[(T, sk) ←− Real : A(T, sk) = 1] − Prob[(T, sk) ←− Fake′ : A(T, sk) = 1]| ≤ |Prob[a, b ←− Z∗

q :
D(ga, gb, gab) = 1]− Prob[a, b ←− Z∗

q , c ←− Z∗
q \ {ab} : D(ga, gb, gc) = 1]|+ 1

|G| ≤ AdvDDH
G (t′′) + 1

|G| as the
time of D is dominated by the time t′′ of A. (of Claim 1)

Next we define the final distribution Fake as follows and prove the Claim 2 stated below:

Fake :=



x1, . . . xn ←− Z∗
q ;

X1 = gx1 , X2 = gx2 , . . . , Xn = gxn ;
KR

1 = KL
2 ,KR

2 = KL
3 ,KR

3 = KL
4 , . . . ,KR

n = KL
1 ←− G; : (T, sk)

Y1 = KR
1 /KL

1 , Y2 = KR
2 /KL

2 , . . . , Yn = KR
n /KL

n ;
T = (X1, . . . , Xn;Y1, . . . , Yn); sk = KR

1 KR
2 . . .KR

n


Claim 2: For any algorithm A running in time t, we have |Prob[(T, sk) ←− Fake′ : A(T, sk) = 1] −
Prob[(T, sk)←− Fake : A(T, sk) = 1]| ≤ AdvDDH

G (t′′) + 1
|G| .

Proof : Given an adversary, we construct an algorithm D that takes (A,B, C) ∈ G3 as input, generates
a pair (T, sk) according to the distribution Dist described below (which depends on A,B, C), runs A on
(T, sk) and outputs whatever A outputs.
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Dist :=



x1, . . . xn ←− Z∗
q ;

if n is even then
for i = 1 (2) n do

Xi = Axi , Xi+1 = Bxi+1 ;
end for

end if
if n is odd then

for i = 1 (2) n− 2 do : (T, sk)
Xi = Axi , Xi+1 = Bxi+1 ;

end for
Xn = Axn

end if
for i = 1 (2) n− 2 do

KR
i = KL

i+1 = Cxixi+1 ,KR
i+1 = KL

i+2 = Cxi+1xi+2 ;
end do
KR

n−1 = KL
n = Cxn−1xn ,KR

n = KL
1 ←− G;

Y1 = KR
1 /KL

1 , Y2 = KR
2 /KL

2 , . . . , Yn = KR
n /KL

n ;
T = (X1, . . . , Xn;Y1, . . . , Yn); sk = KR

1 KR
2 . . .KR

n


The distribution Fake′ and the distribution {a, b←− Z∗

q , A = ga, B = gb, C = gab; (T, sk)←− Dist : (T, sk)}
are statistically equivalent as long as the exponents xj used in Dist are random. On the other hand, the dis-
tribution Fake and the distribution {a, b←− Z∗

q , c←− Z∗
q \ {ab}, A = ga, B = gb, C = gc; (T, sk)←− Dist :

(T, sk)} are statistically equivalent but a factor of 1
|G| . In distribution Fake, the values of KR

i (= KL
i+1)

for 1 ≤ i ≤ n are chosen uniformly at random from G and in Dist, these value are chosen uniformly
from G \ {gab}. Then by the self reducibility property of DDH problem, we have |Prob[(T, sk) ←− Fake′ :
A(T, sk) = 1]−Prob[(T, sk)←− Fake : A(T, sk) = 1]| ≤ |Prob[a, b←− Z∗

q : D(ga, gb, gab) = 1]−Prob[a, b←−
Z∗

q , c←− Z∗
q \ {ab} : D(ga, gb, gc) = 1]|+ 1

|G| ≤ AdvDDH
G (t′′) + 1

|G| as the time of D is dominated by that of
A (which is t′′). (of Claim 2)

Now we provide the proof of the following claim which deals with the Test query of A.

Claim 3: For any computationally-unbounded adversary A, we have Prob[(T, sk0) ←− Fake; sk1 ←−
G; b←− {0, 1} : A(T, skb) = b] = 1

2 .

Proof : In Fake, let vR
i := logg KR

i , 1 ≤ i ≤ n. Then we have the following system of equations:
logg Y1 = −vR

n + vR
1 ; logg Y2 = −vR

1 + vR
2 ; . . . ; logg Yn = −vR

n−1 + vR
n . Besides sk = gvR

1 +vR
2 +···+vR

n gives
the equation logg sk = vR

1 +vR
2 + · · ·+vR

n which is linearly independent from the above system of equations.
This implies that the session key sk is independent of the transcript T in Fake. Hence for any computa-
tionally unbounded adversary A, Prob[(T, sk0)←− Fake; sk1 ←− G, b←− {0, 1} : A(T, skb) = b] = 1

2 . (of
Claim 3)

Now AdvKA
UP,A(t, 1) := |2Prob[Succ] − 1| = 2|Prob[(T, sk0) ←− Real, sk1 ←− G, b ←− {0, 1} : A(T, skb) =

b]− 1
2 | = 2|Prob[(T, sk0) ←− Real, sk1 ←− G, b ←− {0, 1} : A(T, skb) = b]− Prob[(T, sk0) ←− Fake, sk1 ←−

G, b ←− {0, 1} : A(T, skb) = b]| by Claim 3 and using Claim 1 and Claim 2, we obtain AdvKA
UP(t, 1) ≤

4AdvDDH
G (t′′) + 4

|G| . Then by applying the self-reducibility property of DDH problem, we get the result
stated in the Theorem.
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Consider the case for qE(> 1) Execute query. The adversary first generates qE tuples (Ai, Bi, Ci), 1 ≤ i ≤ qE

with the following properties from the tuple (A,B, C) ∈ G3 given to the adversary.

1. If (A,B, C) ←− ∆Real, then (Ai, Bi, Ci) ←− ∆Real for all i, 1 ≤ i ≤ qE with (Ai, Bi) randomly
distributed in G2 (independently of anything else).

2. If (A,B, C) ←− ∆Rand, then (Ai, Bi, Ci) ←− ∆Rand for all i, 1 ≤ i ≤ qE (independently of anything
else) with all but a probability qE

|G| it will be the case that logg Ci 6= logg Ai logg Bi for all i.

Then proceeding in the similar way as above of defining distributions Real, Fake’, Dist’, Fake, Dist, we may
define distributions RealqE , Fake′qE

, Dist′qE
, FakeqE and DistqEwhich simply consist of qE independent copies

of each of the corresponding distributions. In case of Dist′qE
and DistqE , we use the corresponding tuple

(Ai, Bi, Ci) for the i-th copy. We use notation (~T , ~sk) to denote the transcript/session key pair generated
by these distributions. Then similar to the claims 1, 2 and 3, we can prove the following claims:

Claim 4 : For any algorithm A running in time t, we have |Prob[(~T , ~sk) ←− RealqE : A(~T , ~sk) =
1] − Prob[(~T , ~sk) ←− Fake′qE

: A(~T , ~sk) = 1]| ≤ AdvDDH
G (t′) + 2qE

|G| . where t′ is as in the statement of
the Theorem.

Claim 5 : For any algorithm A running in time t, we have |Prob[(~T , ~sk) ←− Fake′qE
: A(~T , ~sk) =

1] − Prob[(~T , ~sk) ←− FakeqE : A(~T , ~sk) = 1]| ≤ AdvDDH
G (t′) + 2qE

|G| where t′ is as in the statement of
the Theorem.

Claim 6: For any computationally-unbounded adversary A, we have Prob[(~T , ~sk0) ←− Fake; ~sk1 ←−
GqE ; b←− {0, 1} : A(~T , ~skb) = b] = 1

2 .
These three claims yield the result stated in the theorem.

Note : If n is even, then we need not to define the intermediate (T, sk) distribution Fake′. In this case,
we can obtain a smaller upper bound of AdvKA

UP(1, qE) considering only the distributions Real and Fake and
defining Dist as in the proof of Claim 2. Consequently, we get a more tighter upper bound for AdvKA

UP(t, qE).

4.2 Security of the Authenticated (Static) Protocol

We prove that the security of our static authenticated protocol AP (subsection 3.2) relies on that of UP
under the assumption that the underlying signature scheme DSig is secure. In fact, given any active
adversary attacking AP, we can construct a passive adversary attacking UP of subsection 3.1. We state
the security result of AP below in Theorem 4.2. Our proof technique is based on the proof technique used
by Katz and Yung [25]. However, there are certain technical differences of our proof from that of [25].

1. The Katz-Yung technique is a generic technique for converting any unauthenticated protocol into an
authenticated protocol. On the other hand, we concentrate on one particular protocol. Hence we
can avoid some of the complexities of the Katz-Yung proof.

2. Katz-Yung protocol uses random nonces whereas our protocol does not.

3. In our unauthenticated protocol, there are no long term secret keys. Thus we can avoid the Corrupt
oracle queries and can trivially achieve forward secrecy.
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Theorem 4.2 The authenticated protocol AP described in section 3.2 is secure against active adversary
under DDH assumption, achieves forward secrecy and satisfies the following:

AdvAKA
AP (t, qE , qS) ≤ AdvKA

UP(t′, qE +
qS

2
) + |P| AdvDSig(t′)

where qE and qS are respectively the maximum number of Execute and Send query an adversary may ask.

Proof : Let A′ be an adversary which attacks the authenticated protocol AP. Using this we construct an
adversary A which attacks the unauthenticated protocol UP. We first have the following claim.

Claim : Let Forge be the event that a signature of DSig is forged by A′. Then Prob[Forge] ≤ |P| AdvDSig(t′).

Proof of Claim: Suppose the event Forge occurs. Then A′ makes a query of the type Send(V, i, Y ) where Y
is either of the form Y = Uk|1|Xk|σk with V(pkUk

, Uk|1|Xk, σk) = 1 or of the form Y = Uk|2|Xk|dk|σk with
V(pkUk

, Uk|2|Xk|dk|, σk) = 1 for some instance Πdk
Uk

with Xk ∈ G and σk was not output by any instance
of Uk on the respective messages. Using A′, we construct an algorithm F that forges a signature for DSig
as follows: Given a public key pk, algorithm F chooses a random U ∈ P and sets pkU = pk. The other
public keys and private keys for the system are generated honestly by F . The forger F simulates all oracle
queries of A′ by executing protocol AP itself, obtaining the necessary signatures with respect to pkU , as
needed, from its signing oracle. Thus F provides a perfect simulation for A′. If A′ ever outputs a new
valid message/signature pair with respect to pkU = pk, then F outputs this pair as its forgery. The success
probability of F is equal to Prob[Forge]

|P| and hence Prob[Forge] ≤ |P| AdvDSig(t′). (of Claim)

Now we describe the construction of the passive adversary A attacking UP that uses adversary A′

attacking AP. Adversary A uses a list tlist. It stores pairs of session IDs and transcripts in tlist.
Adversary A generates the verification/signing keys pkU , skU for each user U ∈ P and gives the verifi-

cation keys to A′. If ever the event Forge occurs, adversary A aborts and outputs a random bit. Otherwise,
A outputs whatever bit is eventually output by A′. Note that since the signing and verification keys are
generated by A, it can detect occurrence of the event Forge.
A simulates the oracle queries of A′ using its own queries to the Execute oracle. The idea is that the

adversary A queried its Execute oracle to obtain a transcript T of UP for each Execute query of A′ and also
for each initial send query Send0(U, i, ∗) of A′. A then patches appropriate signatures with the messages
in T to obtain a transcript T ′ of AP and uses T ′ to answer queries of A′. Since by assumption, A′ can not
forge, A′ is ‘limitted’ to send messages already contained in T ′. This technique provides a good simulation.
We discuss details below.
Execute queries: Suppose A′ makes a query Execute((Ui1 , d1), . . . , (Uik , dk)). This means that instances
Πd1

Ui1
, . . . ,Πdk

Uik
are involved in this session. A defines S = {(Ui1 , d1), . . . , (Uik , dk)} and sends the execute

query to its Execute oracle. It receives as output a transcript T of an execution of UP. It appends (S, T )
to tlist. Adversary A then expands the transcript T for the unauthenticated protocol into a transcript T ′

for the authenticated protocol according to the modification described in Section 3.2. It returns T ′ to A′.
Send queries: The first send query that A′ makes to an instance is to start a new session. We will denote
such queries by Send0 queries. To start a session between unused instances Πd1

Ui1
, . . . ,Πdk

Uik
, the adversary

has to make the send queries: Send0(Uij , dj , 〈Ui1 , . . . , Uik〉\Uij ) for 1 ≤ j ≤ k. Note that these queries may
be made in any order. When all these queries have been made, A sets S = {(Ui1 , d1), . . . , (Uik , dk)} and
makes an Execute query to its own execute oracle. It receives a transcript T in return and stores (S, T ) in
the list tlist.
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Assuming that signatures cannot be forged, any subsequent Send query (i.e., after a Send0 query) to an
instance Πi

U is a properly structured message with a valid signature. For any such Send query, A verifies the
query according to the algorithm of Section 3.2. If the verification fails, A sets acci

U = 0 and ski
U = NULL

and aborts Πi
U . Otherwise, A performs the action to be done by Πi

U in the authenticated protocol. This
is done in the following manner: A first finds the unique entry (S, T ) in tlist such that (U, i) ∈ S. Such a
unique entry exists for each instance by assumption. Now from T , A finds the appropriate message which
corresponds to the message sent by A′ to Πi

U . From the transcript T , adversary A finds the next public
information to be output by Πi

U and returns it to A′.
Reveal/Test queries : Suppose A′ makes the query Reveal(U, i) or Test(U, i) to an instance Πi

U for which
acci

U = 1. At this point the transcript T ′ in which Πi
U participates has already been defined. Now A finds

the unique pair (S, T ) in tlist such that (U, i) ∈ S. Assuming that the event Forge does not occur, T is the
unique unauthenticated transcript which corresponds to the transcript T ′. Then A makes the appropriate
Reveal or Test query to one of the instances involved in T and returns the result to A′.

As long as Forge does not occur, the above simulation for A′ is perfect. Whenever Forge occurs,
adversary A aborts and outputs a random bit. So ProbA′,AP[Succ|Forge] = 1

2 . Now

AdvA,UP := 2 |ProbA,UP[Succ]− 1/2|
= 2 |ProbA′,AP[Succ ∧ Forge] + ProbA′,AP[Succ ∧ Forge]− 1/2|
= 2 |ProbA′,AP[Succ ∧ Forge] + ProbA′,AP[Succ|Forge] ProbA′,AP[Forge]− 1/2|
= 2 |ProbA′,AP[Succ ∧ Forge] + (1/2)ProbA′,AP[Forge]− 1/2|
= 2 |ProbA′,AP[Succ]− ProbA′,AP[Succ ∧ Forge] + (1/2)ProbA′,AP[Forge]− 1/2|
≥ |2 ProbA′,AP[Succ]− 1| − |ProbA′,AP[Forge]− 2 ProbA′,AP[Succ ∧ Forge]|
≥ AdvA′,AP − Prob[Forge]

The adversary A makes an Execute query for each Execute query of A′. Also A makes an Execute query
for each session started by A′ using Send queries. Since a session involves at least two instances, such an
Execute query is made after at least two Send queries of A′. The total number of such Execute queries is
at most qS/2, where qS is the number of Send queries made by A′. The total number of Execute queries
made by A is at most qE + qS/2, where qE is the number of Execute queries made by A′.
Also since AdvA,UP ≤ AdvKA

UP(t′, qE + qS/2) by assumption, we obtain:

AdvAKA
AP ≤ AdvKA

UP(t′, qE + qS/2) + Prob[Forge].

This yields the statement of the theorem.

4.3 Security of the Dynamic Authenticated Protocol

In this subsection, we will show that the modifications described in Section 3.3 converts the protocol UP of
Section 3.1 into a dynamic authenticated key agreement protocol DAP. Assuming that the signature scheme
DSig is secure, we can convert any adversary attacking the protocol DAP into an adversary attacking the
protocol UP. We ignore Corrupt queries since our protocol DAP does not use any long-term secret keys. Thus
the protocol DAP trivially achieves forward secrecy. We state below our security result in Theorem 4.3.

Theorem 4.3 The dynamic authenticated key agreement protocol DAP described in Section 3.3 satifies
the following:

AdvAKA
DAP(t, qE , qJ , qL, qS) ≤ AdvKA

UP(t′, qE + (qJ + qL + qS)/2) + |P| AdvDSig(t′)
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where t′ ≤ t+(|P|qE + qJ + qL + qS)tDAP, where tDAP is the time required for execution of DAP by any one
of the users.

Proof : Let A′ be an adversary which attacks the dynamic authenticated protocol DAP. Using this we
construct an adversary A which attacks the unauthenticated protocol UP. As in the previous proof, we
have the following claim.
Claim : Let Forge be the event that a signature is forged by A′. Then Prob[Forge] ≤ |P| AdvDSig(t′).

Now we describe the construction of the passive adversary A attacking UP that uses adversary A′ attacking
DAP. Adversary A can execute the unauthenticated protocol UP several times among any subset of P
and also can obtain the session key of the protocol execution by making Reveal queries to any instances
involved in the session. We will show that A itself simulates the Join and Leave queries of A′ using its own
Execute and Reveal oracle. Adversary A maintains a list Tlist to store pairs of session IDs and transcripts.
It also uses two lists Jlist and Llist to be specified later.

Adversary A generates the verification/signing keys pkU , skU for each user U ∈ P and gives the verifi-
cation keys to A′. If ever the event Forge occurs, adversary A aborts and outputs a random bit. Otherwise,
A outputs whatever bit is eventually output by A′. Note that since the signing and verification keys are
generated by A, it can detect occurrence of the event Forge. A simulates the oracle queries of A′ using its
own queries to the Execute and Reveal oracles. We provide details below.
Execute queries: These queries are simulated as in the proof of Theorem 4.2.
Send queries: Apart from the usual send queries, there are two special type of send queries, SendJ and
SendL.

If the set S1 = {(Uik+1
, dk+1), . . . , (Uik+l

, dk+l)} of unused instances wants to join the group S =
{(Ui1 , d1), . . . , (Uik , dk)}, then A′ will make SendJ(Uij , dj , 〈Ui1 , . . . , Uik〉) query for all j, k + 1 ≤ j ≤ k + l.
These queries initiate Join(S, S1) query . Note that the instances in S might have already executed either
the unauthenticated (a) key agreement protocol or (b) join protocol or (c) leave protocol. Accordingly, A
first finds any one of the following form of a unique entry: (1) (S, T ) in Tlist or (2) (S′, S′′, T ) in Jlist with
S = S′ ∪ S′′ or (3) (S′, S′′, T ) in Llist with S = S′ \ S′′. If no such entry, A makes an execute query to its
own execute oracle on S, gets a transcript T and stores (S, T ) in Tlist.

In case (S, T ) ∈ Tlist, A first makes a Reveal query to any instance in S to obtain the session key sk
corresponding to T , computes the seed x = H(sk) and simulates the algorithm for Join by querying its
Execute oracle (making appropriate changes). Then patching up signature in each message, A obtains a
transcript T ′ and stores (S, S1, T

′) in Jlist. A thus simulates the transcript T ′ of Join using its own Execute
and Reveal oracles. In the remaining cases (2) and (3), T is generated by A itself and so A can simulate
transcript T ′ of Join from T .

Similarly, when a set S2 = {(Ul1 , dl1), . . . , (Ulm , dlm)} of unused instances wants to leave the group S =
{(Ui1 , d1), . . . , (Uik , dk)}, then A′ will make SendL(Uij , dj , 〈Ui1 , . . . , Uik〉) query for all j, j ∈ {l1, . . . , lm}.
These queries initiate Leave(S, S2) query. As mentioned above in case of member join, A first finds a
unique entry of the form (S, T ) in Tlist or a unique entry of the form (S′, S′′, T ) in Jlist with S = S′ ∪ S′′

or a unique entry of the form (S′, S′′, T ) in Llist with S = S′ \ S′′. If no such entry, then A makes a query
to its own execute oracle on S, gets a transcript T and stores (S, T ) in Tlist.
A then simulates the algorithm for Leave by itself and gets a modified transcript T ′ from T as follows:

A first detects the positions in T where the new messages are to be injected or the old messages are to be
replaced by new messages. A do these modifications in T according to the algorithm Leave described in
Section 3.3.1 and gets a modified transcript T ′ by patching up appropriate signature with each message.
Thus A expands T into a transcript T ′ for Leave algorithm. A stores (S, S2, T

′) in Llist.
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Send0 queries are answered as in Theorem 4.2. The usual send queries are simulated as in Theorem 4.2
with the following modifications.

Suppose A′ makes a Send query to instance Πi
U . After proper verification, A finds a unique entry (S, T )

in Tlist such that (U, i) ∈ S. The answer to this query is as in Theorem 4.2. If no such entry is found, then
A finds a unique entry (S, S1, T

′) in Jlist such that (U, i) ∈ S1. This means that the session for Join has
already been initiated. A then obtains the next public information for T ′ to be output by Πi

U (provided
all necessary information has been received by Πi

U by send queries from A′) and sends it to A′. If A finds
a unique entry (S, S2, T

′) in Llist such that (U, i) ∈ S2, then as above, the appropriate answer to the query
is found from T ′.
Join queries : Suppose A′ makes a query Join(S, S1) where S = {(Ui1 , d1), . . . , (Uik , dk)} and S1 =
{(Uik+1

, dk+1), . . . , (Uik+l
, dk+l). The instances Πdk+1

Uik+1
, . . . ,Πdk+l

Uik+l
want to join in the group Πd1

Ui1
, . . . Πdk

Uik
.

A finds an entry of the form (S, S1, T
′) in Jlist. If no such entry, then the adversary A′ is given no output.

Otherwise, A returns T ′ to A′

Leave queries : Suppose A′ makes a query Leave(S, S2) where S = {(Ui1 , d1), . . . , (Uik , , dk)} and
S2 = {(Ul1 , dl1), . . . , (Ulm , dlm)} where (Ulj , dlj ) ∈ S for 1 ≤ j ≤ m. The instance Π

dl1
Ul1

, . . . Πdlm
Ulm

want

to leave the group Πd1
Ui1

, . . . ,Πdk
Uik

where Ulj ∈ {Ui1 , . . . , Uik} for 1 ≤ j ≤ m. A finds an entry of the form
(S, S2, T

′) in Llist. If no such entry, then the adversary A′ is given no output. Otherwise, A returns T ′ to
A′.
Reveal/Test queries : Suppose A′ makes the query Reveal(U, i) or Test(U, i) for an instance Πi

U for
which acci

U = 1. At this point the transcript T ′ in which Πi
U participates has already been defined. If T ′

corresponds to the transcript of the authenticated protocol, then A finds the unique pair (S, T ) in Tlist
such that (U, i) ∈ S. Assuming that the event Forge does not occur, T is the unique unauthenticated
transcript which corresponds to the transcript T ′. Then A makes the appropriate Reveal or Test query to
one of the instances involved in T and returns the result to A′. Otherwise, T ′ is the transcript for Join or
Leave, as the case may be. Since T ′ has been simulated by A, A is able to compute the modified session
key and hence send an appropriate reply to A′.

As long as Forge does not occur, the above simulation for A′ is perfect. Whenever Forge occurs,
adversary A aborts and outputs a random bit. So ProbA′,AP[Succ|Forge] = 1

2 . Using this, one can show

AdvA,UP ≥ AdvA′,DAP − Prob[Forge]

The adversary A makes an Execute query for each Execute query of A′. A′ makes qJ Join queries and
qL Leave queries. These queries are initialized respectively by SendJ and SendL queries of A′. Now each
of SendJ and SendL query of A′ makes at most one Execute query of A. Thus there are at most qJ + qL

execute query made by A to respond all the SendJ and SendL queries of A′.
Also A makes an Execute query for each session started by A′ using Send queries. Since a session

involves at least two instances, such an Execute query is made after at least two Send queries of A′. Thus
there are (qS − qJ − qL)/2 execute queries of A to respond all other Send queries of A′, where qS is the
number of Send queries made by A′. Hence the total number of Execute queries made by A is at most
qE + qJ + qL + (qS − qJ − qL)/2 = qE + (qJ + qL + qS)/2, where qE is the number of Execute queries made
by A′. Also since AdvA,UP(t, qE , qJ , qL, qS) ≤ AdvKA

UP(t′, qE + qJ/2+ qL/2+ qS/2) by assumption, we obtain:

AdvAKA
DAP ≤ AdvKA

UP(t′, qE + (qJ + qL + qS)/2) + Prob[Forge].

This yields the statement of the theorem.
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5 Conclusion

We present and analyze a simple and elegant constant round group key agreement protocol and enhance it
to dynamic setting where a set of users can leave or join the group at any time during protocol execution
with updated keys. The emphasis of this work is to achieve provable security of our scheme under DDH
assumption. We provide a concrete security analysis of our protocol against active adversary in the standard
security model of Bresson et al. [15] adapting Katz-Yung [25] technique. The protocol is forward secure,
efficient and fully symmetric.
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