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Abstract. Sakai et al. in 2000 produced a method of construction iden-
tity based public/private key pairs using pairings on elliptic curves. In
2001, using the same key construction as Sakai et al., Boneh and Franklin
presented the first efficient and provably secure identity-based encryption
scheme. In 2003 Sakai and Kasahara proposed another method of con-
structing identity based keys, also using pairings, which has the potential
to improve performance. Later, Chen and Cheng gave a provably secure
identity based scheme using this second construction. Both the Boneh–
Franklin scheme and the scheme based on the second construction are
not true hybrid encryption schemes following the KEM/DEM approach
of Cramer and Shoup. To address this issue, Bentahar et al. extended the
idea of key encapsulation mechanisms to the identity based setting and
presented three constructions in line with the original Sakai et al. method
of constructing identity based keys. In this paper we present another ID-
KEM based on the second method of constructing identity based keys
and prove its security. The new scheme has a number of advantages over
all previous ID-based encryption schemes.

1 Introduction

To simplify the management of public keys in public key based cryptosystems,
Shamir [13] proposed identity-based cryptography in which the public key of each



party is the party’s identity, that could be an arbitrary string. For a long while it
was an open problem to obtain a secure and efficient identity based encryption
(IBE) scheme. In 2000, Sakai et al. [16] presented an elegant identity-based key
construction, which then led to their IBE scheme [17] in 2001. Also in 2001
Boneh and Franklin [3], and Cocks [7] presented another two IBE solutions.
Among these three schemes, the Sakai et al. scheme and the Boneh-Franklin
scheme use bilinear pairings on elliptic curves.

In [3], Boneh and Franklin defined a well-formulated security model for IBE.
The Boneh-Franklin scheme (which we shall denote by BF-IBE) has received
much attention owing to the fact that it was the first IBE scheme to have a
proof of security in the appropriate model.

Using the same tool of elliptic curve pairings, in 2003, Sakai and Kasahara [15]
proposed another IBE system, which constructs keys in a different way to the
previous schemes. In particular the key construction has the potential to improve
performance over existing schemes. After employing the Fujisaki-Okamoto trans-
formation [9], as in the BF-IBE construction, Chen and Cheng [6] proved that the
security of the strengthened variant of Sakai-Kasahara scheme (which we shall
denote by SK-IBE) can be reduced to the well-exploited complexity assumption
q-BDHI.

Because both BF-IBE and SK-IBE make use of the Fujisaki-Okamoto trans-
formation, the two schemes have restricted message spaces. A natural way to
process arbitrarily long messages is to use hybrid encryption. A hybrid encryp-
tion scheme consists of two basic operations. One operation uses a public-key
encryption technique (a so called key encapsulation mechanism: KEM) to derive
a shared key; another operation uses the shared key in a standard symmetric-
key technique (a so called data encapsulation mechanism: DEM) to encrypt the
actual message. Cramer and Shoup [8] rigorously formalized the notion of hy-
brid encryption and presented the sufficient conditions for KEM and DEM to
construct an IND-CCA2 secure public key encryption. Recently, Bentahar et
al. [4] extended the KEM concept to the identity based setting and gave three
constructions of such an ID-KEM which when combined with a standard DEM
provides a hybrid identity based encryption scheme which is ID-IND-CCA2, as
defined by Boneh and Franklin [3].

One of the constructions of Bentahar et al. is a generic construction. It takes
any identity based encryption scheme that is one-way under chosen plaintext
attack (ID-OW-CPA) and transforms it into a ID-KEM that can easily be used
to construct encryption schemes that are semantically secure against adaptive
chosen ciphertext attack (ID-IND-CCA2). We shall present an ID-OW-CPA en-
cryption scheme based on the Sakai–Kasahara method of constructing keys, and
then via the generic construction of Bentahar et al. we shall produce an ID-IND-
CCA2 secure ID-KEM and hence an ID-IND-CCA2 hybrid encryption scheme.

The advantage of our technique is that the resulting encryption scheme is
more efficient than all previous schemes, and avoids many of the potential pitfalls
related to the exact choice of groups which are used to instantiate the pairing.
For more on these pitfalls consult [18].



The paper proceeds as follows. In the following section, we set up notation
and explain some of the concepts from other work which we shall require. In
particular we review the security definitions we require. In Section 3, we present
an ID-KEM following the SK-IBE construction (which we call SK-ID-KEM) and
prove its security. Then in Section 4 we compare our SK-ID-KEM’s security and
performance with some other ID based encryption schemes and ID-KEMs.

2 Preliminaries

We first present details on the bilinear groups we require and their underlying
hard problems, then in Section 2.2 we present what is meant by an ID-based
encryption scheme and we cover the basic security definitions. In Section 2.3
we present the extension of these ideas to the hybrid setting by recapping on
ID-KEMs and how one constructs a full IBE scheme by combining an ID-KEM
with a DEM.

2.1 Bilinear Groups

Our schemes will require groups equipped with a bilinear map. Here we review
the necessary facts about bilinear maps and the associated groups using the
notation of [5].

– G1, G2 and GT are (multiplicative) cyclic groups of prime order p.
– g1 is a generator of G1 and g2 is a generator of G2.
– ψ is an isomorphism from G2 to G1 with ψ(g2) = g1.
– ê is a map ê : G1 ×G2 → GT .

The map ê must have the following properties.

Bilinear: For all u ∈ G1, all v ∈ G2 and all a, b ∈ Z we have ê(ua, vb) =
ê(u, v)ab.

Non-degenerate: ê(g1, g2) 6= 1.
Computable: There is an efficient algorithm to compute ê(u, v) for all u ∈ G1

and v ∈ G2.

Note, the map ψ always exists, the issue is whether it can be efficiently com-
puted. For the purposes of defining our schemes we do not assume that ψ is
efficiently computable, however our security proofs require the simulator to be
able to compute ψ. Hence, following [18] we can either assume that ψ is effi-
ciently computable or make our security proofs relative to some oracle which
computes ψ. This property occurs for a number of pairing based cryptographic
schemes, but is very rarely pointed out by the authors.

Since the publication of [10] many hard problems pertaining to bilinear
groups have been suggested for use in the design of cryptosystems. We describe
two of these here.

Definition 1 (Bilinear Diffie-Hellman (BDH) [3])
Given group elements (g1, g2, gx

2 , g
y
2 , g

z
2) for x, y, z ∈R Z∗p, compute ê(g1, g2)xyz.



Definition 2 (q-Bilinear Diffie-Hellman Inverse (q-BDHI) [2])
Given group elements (g1, g2, gx

2 , g
x2

2 , . . . , gxq

2 ) with x ∈R Z∗p, compute ê(g1, g2)1/x.

It is the last of these problems on which our scheme’s security is based, however
we present the BDH problem for the purpose of subsequent comparisons between
various schemes.

2.2 ID-Based Encryption Schemes

For an IBE scheme we define the message, ciphertext and randomness spaces by
M ID(·), C ID(·), R ID(·). These spaces are parametrised by the master public key
Mpk, and hence by the security parameter t. The scheme itself is specified by
four polynomial time algorithms:

– GID(1t): A PPT algorithm which takes as input 1t and returns the master
public key Mpk and the master secret key Msk.

– XID(Mpk,Msk, IDA): A PPT private key extraction algorithm which takes as
input Mpk,Msk and IDA ∈ {0, 1}∗, an identifier string for A, and returns the
associated private key DIDA

.
– EID(Mpk, IDA,m; r): This is the PPT encryption algorithm. On input of an

identifier IDA, the master public keyMpk, a messagem ∈M ID(Mpk) and pos-
sibly some randomness r ∈ R ID(Mpk) this algorithm outputs c ∈ C ID(Mpk).

– DID(Mpk, IDA, DIDA
, c): This is the deterministic decryption algorithm. On

input of the master public key Mpk, the identifier IDA, the private key DIDA

and a ciphertext c this outputs the corresponding value of the plaintext m
or a failure symbol ⊥.

Following Boneh and Franklin [3] we can define various security notions for an
IBE scheme. All are based on one of the following two-stage games, between an
adversary A = (A1, A2) of the encryption algorithm and a challenger.

ID-OW Adversarial Game
1. (Mpk,Msk)←GID(1t).
2. (s, ID∗)←AOID

1 (Mpk).
3. m←M ID(Mpk).
4. c∗←EID(Mpk, ID∗,m; r).
5. m′←AOID

2 (Mpk, c
∗, s, ID∗).

ID-IND Adversarial Game
1. (Mpk,Msk)←GID(1t).
2. (s, ID∗,m0,m1)←AOID

1 (Mpk).
3. b←{0, 1}.
4. c∗←EID(Mpk, ID∗,mb; r).
5. b′←AOID

2 (Mpk, c
∗, s, ID∗,m0,m1).

In the above, s is some state information and OID are oracles to which the
adversary has access. There are various possibilities for these oracles depending
on the attack model for our game:

– CPA Model: In this model the adversary only has access to a private key
extraction oracle which on input of ID 6= ID∗ will output the corresponding
value of DID.

– CCA2 Model: In this model the adversary has access to the private key
extraction oracle as above, but it also has access to a decryption oracle with
respect to any identity ID of its choice, but with only one restriction that in
the second phase A is not allowed to call the decryption oracle with the pair
(c∗, ID∗).



If we let MOD denote the mode of attack, either CPA or CCA2, the adversary’s
advantage in the first game is defined to be

AdvID−OW−MOD
ID (A) = Pr[m′ = m],

while the advantage in the second game is given by

AdvID−IND−MOD
ID (A) = |2 Pr[b′ = b]− 1|.

An IBE algorithm is considered to be secure, in the sense of a given goal and
attack model (ID-IND-CCA2 for example) if, for all PPT adversaries, the ad-
vantage in the relevant game is a negligible function of the security parameter
t.

To cope with probabilistic ciphers, we will require that not too many choices
for r encrypt a given message to a given ciphertext. To formalise this concept
we let γ(Mpk) be the least upper bound such that

|{r ∈ R ID(Mpk) : EID(Mpk, ID,m; r) = c}| ≤ γ(Mpk) (1)

for every ID, m ∈ M PK(Mpk) and c ∈ C PK(Mpk). Our requirement is that the
quantity γ(Mpk)/|R PK(Mpk)| is a negligible function of the security parameter.

2.3 ID-Based Key Encapsulation Mechanisms

Following Cramer and Shoup’s formalization of hybrid encryption [8], Bentahar
et al. [4] extended the hybrid encryption concept to identity-based schemes. The
idea is to construct an ID-IND-CCA2 secure IBE scheme from an ID-IND-CCA2
secure ID-KEM and a secure DEM.

An ID-KEM scheme is specified by four polynomial time algorithms:

– GID−KEM(1t): The PPT master key generation algorithm which takes as input
1t. It outputs the master public key Mpk and the master secret key Msk.

– XID−KEM(Mpk,Msk, IDA): The PPT private key extraction algorithm which
takes as input Mpk,Msk and an identifier string for A, IDA ∈ {0, 1}∗. It
outputs the associated private key DIDA

.
– EID−KEM(Mpk, IDA): The PPT encapsulation algorithm which takes as input

IDA and Mpk. It outputs a pair (k, c) where k ∈ K ID−KEM(Mpk) is a key and
c ∈ C ID−KEM(Mpk) is the encapsulation of that key.

– DID−KEM(Mpk, IDA, DIDA
, c): The deterministic decapsulation algorithm which

takes as input Mpk, IDA, c and DIDA
. It outputs k or a failure symbol ⊥.

We shall only require one security definition for our ID-KEMs, although other
weaker definitions can be defined in the standard way. Consider the following
two-stage game between an adversary A = (A1, A2) of the ID-KEM and a chal-
lenger.



ID-IND Adversarial Game
1. (Mpk,Msk)←GID−KEM(1t).
2. (s, ID∗)←AOID

1 (Mpk).
3. (k0, c

∗)←EID−KEM(Mpk, ID∗).
4. k1←K ID−KEM(Mpk).
5. b←{0, 1}.
6. b′←AOID

2 (Mpk, c
∗, s, ID∗, kb).

In the above s is some state information and OID denotes oracles to which the
adversary has access. We shall be interested in the CCA2 attack model where
the adversary has access to two oracles. These are described below.

1. A private key extraction oracle which, on input of ID 6= ID∗, will output the
corresponding value of DID.

2. A decapsulation oracle which, on input an identity ID and encapsulation of
its choice, will return the encapsulated key. This is subject to the restriction
that in the second phase A is not allowed to call this oracle with the pair
(c∗, ID∗).

The adversary’s advantage is defined to be

AdvID−IND−CCA2
ID−KEM (A) = |2 Pr[b′ = b]− 1|.

An ID-KEM is considered to be secure, if for all PPT adversaries A, the ad-
vantage in the game above is a negligible function of the security parameter
t.

2.4 Hybrid IBE

A hybrid IBE E = (GID,XID,EID,DID) construction consists of combining an
ID-KEM E1 = (GID−KEM,XID−KEM,EID−KEM,DID−KEM) with a standard DEM E2 =
(ESK,DSK) as described below. For the formal definition of a DEM and its security
definition that we use in Theorem 1, refer to [8] and [4].

We assume that the keys output by the KEM are from the same key space
used by the DEM. To generate Mpk, for the hybrid IBE scheme, the algorithm
GID−KEM(1t) is run. The algorithms (ESK,DSK) are then added to the resulting
master public key. We denote the resulting full key Mpk below. Key extraction
for E just uses the key extraction of E1.

EID(Mpk, ID,m)
– (k, c1)←EID−KEM(Mpk, ID)
– c2←ESK(k,m)
– Return c = (c1, c2)

DID(Mpk, ID, DID, c)
– Parse c as (c1, c2)
– k←DID−KEM(Mpk, ID, DID, c)
– If k =⊥, return ⊥
– m← DSK(k, c2)
– Return m

Similar to the result of hybrid encryption in [8], Bentahar et al. obtained the
following theorem concerning the security of hybrid IBE.



Theorem 1. [Bentahar et al. [4]] Let A be a PPT ID-IND-CCA2 adversary
of the IBE scheme E above. There exists PPT adversaries B1 and B2, whose
running time is essentially that of A, such that

AdvID−IND−CCA2
ID (A) ≤ 2AdvID−IND−CCA2

ID−KEM (B1) + AdvFG−CCA
DEM (B2).

Some IND-CCA secure DEMs are readily available, see [14] and [1]. Bentahar
et al. presented two secure ID-KEMs using the same key format as that used
in the original BF-IBE scheme. In the following section, we introduce another
ID-KEM based on Sakai and Kasahara’s IBE proposal which has the potential
to achieve even better performance.

3 An SK-ID-KEM Construction

In this section we describe a new concrete construction for an ID-KEM. Our
construction is in two stages. In the first stage, Section 3.1, we present a concrete
instantiation of a new ID-OW-CPA secure IBE scheme. One should think of this
construction as analogous to the BasicIdent scheme in [3]. In the second stage,
Section 3.1, we use a generic construction from [4] which turns an ID-OW-CPA
secure IBE scheme into an ID-IND-CCA2 secure ID-KEM. Such an ID-KEM
can then be used to build an ID-IND-CCA2 secure encryption scheme using the
construction of Theorem 1 [4].

3.1 An ID-OW-CPA IBE scheme based on Sakai–Kasahara keys

Let t be the security parameter. The system parameters consist of groups G1,
G2 and GT , as defined in Section 2.1, with order p ≈ 2t and a bilinear pairing
ê : G1×G2 → GT . In addition we require a generator u1 for G1 and a generator
u2 for G2 such that u1 = ψ(u2). The scheme also uses two hash functions:

H1 : {0, 1} → Zp and H2 : GT → {0, 1}n

where {0, 1}n is the message space. It works as follows.

– GID(1k): Select s ∈ Z∗p at random and set R = us
1. The value s is the secret

key Msk of the TA (a trusted authority), while R along with the other system
parameters is the public key Mpk.

– XID(Mpk, ID, s): This outputs the identity-based secret key

DID = u
1/(s+H1(ID))
2

– EID(Mpk, ID,m; r):
- Q←R · uH1(ID)

1

- U←Qr

- V←m⊕H2(ê(u1, u2)r)
- Return (U, V )



– DID(Mpk, ID, DID, (U, V )): This outputs

V ⊕H2(ê(U,DID))

We now present the security result for the IBE scheme above.

Theorem 2. Suppose that there is algorithm A which breaks the above scheme
in terms of ID-OW-CPA. If we model H1 and H2 as random oracles, and we
let q1, q2 and qX be the number of queries that A makes to H1, H2 and its key
extraction oracle respectively. Then there is an algorithm B to solve the q-BDHI
problem with q = q1 + qX + 1 such that

AdvID−OW−CPA
ID (A) ≤ (q · q2) ·Advq−BDHI(B) +

1
2n
.

The proof of this theorem is given in the appendix.

3.2 Generic Reduction

Here we take a generic probabilistic ID-based encryption scheme, which is se-
cure in the sense of ID-OW-CPA. Let the encryption algorithm be denoted
EID(Mpk, ID,m; r) and the decryption algorithm be denoted DID(Mpk, ID, DID, c),
where DID is the output from the extraction algorithm XID−KEM(Mpk,Msk, ID).
We assume the message space of EID is given by M ID(Mpk) and the space of ran-
domness is given by R ID(Mpk). The construction uses two cryptographic hash
functions:

H3 : {0, 1}∗ → R ID(Mpk) and H4 : {0, 1}∗ → {0, 1}κ

for some κ ∈ Z. Using this we construct an ID-KEM as follows.
EID−KEM(Mpk, ID):
– m←M ID(Mpk)
– r←H3(m)
– c←EID(Mpk, ID,m; r)
– k←H4(m)
– Return (k, c)

DID−KEM(Mpk, ID, DID, c):
– m←DID(Mpk, ID, DID, c)
– If m =⊥, return ⊥
– r←H3(m)
– If c 6= EID(Mpk, ID,m; r), return ⊥
– k←H4(m)
– Return k

From [4] we have the following theorem concerning the security of the construc-
tion above.

Theorem 3. If EID is an ID-OW-CPA secure ID-based encryption scheme and
H3 and H4 are modelled as random oracles then the construction above is secure
against adaptive chosen ciphertext attack.

Specifically, if A is a PPT algorithm that breaks the ID-KEM construction
above using a chosen ciphertext attack, then there exists a PPT algorithm B,
with

AdvID−IND−CCA2
ID−KEM (A) ≤ 2(q3 + q4 + qD) ·AdvID−OW−CPA

ID (B) +
2qDγ(Mpk)
|R ID(Mpk)|

,

where q3, q4 and qD are the number of queries made by A to H3, H4 and the
decryption oracle respectively, and γ(Mpk) is as in (1).



When we instantiate this generic construction with our ID-OW-CPA scheme
from Stage 1, we have

γ(Mpk)
|R ID(Mpk)|

≈ 1
p
.

3.3 Full Scheme

The full ID-KEM scheme works as follows. The algorithms GID−KEM and XID−KEM

are simply GID and XID for the IBE scheme above.

EID−KEM(Mpk, ID)
– m←{0, 1}n
– r←H3(m)
– Q←R · uH1(ID)

1

– U←Qr

– V←m⊕H2(ê(u1, u2)r)
– k←H4(m)
– c←(U, V )
– Return (k, c)

DID−KEM(Mpk, ID, DID, c)
– Parse c as (U, V )
– α←ê(U,DID)
– m←H2(α)⊕ V
– r←H3(m)
– If (U, V ) 6= EID(Mpk, ID,m; r), re-

turn ⊥
– k←H4(m)
– Return k

Note that ê(u1, u2) can be included in the master public key to minimise the
number of pairing computations necessary.

We now look at the validity check in more detail. We need to ensure that the
following holds

U = Qr

V = m⊕H2(ê(u1, u2)r),

where

Q = R · uH1(ID)
1

m = V ⊕H2(ê(u1, u2)r).

However, if U = Qr then α is always equal to ê(u1, u2)r. In this case V always
equals m⊕H2(α) and m is defined to be V ⊕H2(α). This means that checking
whether or not V is correct is redundant. Hence, we only need to check whether
U = Qr. Since the decryptor knows its own identity, it can be assumed to
have precomputed the value of Q, therefore the validity check involves only one
exponentiation in G1.

4 Comparison with Other Schemes

In this section we compare the ID-IND-CCA2 scheme from the previous section,
which we denote by SK-C2, with the other efficient ID-based encryption schemes
in the literature.



– BF-IBE: The original Boneh–Franklin scheme which is secure assuming the
BDH problem is hard. The ID-based keys are constructed in the standard
way by hashing to a point in either G1 or G2. The associated secret key
is obtained by multiplying this point by the master secret. We use BF-
IBEa to denote the extension of the Boneh–Franklin in which an arbitrary
block cipher is used instead of xor. In [4] this latter version is referred to as
FullIdent-2. Note, BF-IBEa does not need to be used with a full DEM; a
standard block cipher secure against passive attacks is sufficient.

– SK-IBE: The scheme described in [6]. This uses the keys construction of
Sakai and Kasahara as in the current paper. The scheme is secure assuming
the q-BDHI problem is hard. Similar to BF-IBEa, we can define an SK-IBEa
by replacing xor with a block cipher.

– BF-C1: Construction C-1 from [4]. This is a hybrid KEM based construc-
tion, originally mentioned in a paper by Lynn [11]. It is secure assuming a
suitable gap problem is hard. The keys are of the same form as those in the
Boneh–Franklin scheme.

– BF-C2: Construction C-2 from [4]. This uses the generic construction used
in this paper applied to the BasicIdent scheme of [3].

Note, all of the above scheme are secure in the random oracle model. We have
not considered comparisons with schemes secure in the standard model as they
are very inefficient.

To compare efficiency we first look at the computations necessary to imple-
ment the various schemes in Table 1. The first two rows of the table correspond
to IBE schemes, whilst the last three refer to ID-KEM/DEM hybrid construc-
tions. We assume that the obvious precomputations have been performed in all
cases.

pairings exponentiations hashes
Scheme EID DID EID DID EID DID

BF-IBEa 1 1 2 1 4 3
SK-IBEa 0 1 3 1 4 3
BF-C1 1 1 2 0 2 1
BF-C2 1 1 2 1 4 3
SK-C2 0 1 3 1 4 3

Table 1. The computations necessary for various IBE schemes

We see that the schemes based on the Sakai–Kasahara key construction do not
have to perform a pairing in their encryption routine. This comes at the expense
of an extra group exponentiation, however these are usually much cheaper than a
pairing computation. In addition we note that using the Sakai–Kasahara method
of constructing keys, as opposed to the method of Boneh and Franklin, avoids
the need to hash into an elliptic curve group. As pointed out in [18], hashing
into the group can cause problems if the groups are not chosen in a suitable way.



In addition, hashing into an elliptic curve is in general more expensive both in
terms of CPU time and code footprint size than hashing into the integers.

In Table 2 we compare an implementation of our construction with that of
BF-IBEa for a 160-bit MNT-type curve. The improvement in performance comes
from the lack of a pairing computation on encryption and the lack of a need to
hash into an elliptic curve group.

BF-IBEa SK-C2

ID-Public Key Gen 18 4
ID-Private Key Gen 113 88

ID-Encrypt 75 30
ID-Decrypt 55 62

Table 2. Comparision of CPU time in milli-seconds

We reiterate that using an ID-KEM/DEM construction is more flexible as it
allows the use of identity based encryption with an arbitrary method to encrypt
the actual data packet, or even the use of the KEM on its own to transmit a
key for another application. This philosophy for designing public key encryption
algorithms is well explained in [8] and [14], so we do not go into the benefits
more here.

We now turn to the ciphertext sizes of the various schemes above. In Table 3
we let |G1| etc. denote the number of bits needed to represent an element in
the group G1. It is convention that when instantiated with elliptic curves, the
group G1 refers to the subgroup of order p of an elliptic curve over the “small”
finite field. Then for supersingular elliptic curves we have G1 = G2, however for
so-called MNT curves we have that G2 is related to a subgroup of the twisted
elliptic curve over a large finite field. Hence, representing elements of G2 can
require more bits than are required to represent elements of G1.

In Table 3 we also mention whether the scheme requires hashing into either
the group G1 or the group G2. One should note that hashing into G2 can be
computationally expensive as pointed out in [18] for certain choices of groups,
whilst hashing into G1 is usually very efficient. As in [12] we let BF-IBE⊥ etc.,
denote the protocol BF-IBE but with the roles of G1 and G2 reversed. Note,
reversing the roles of G1 and G2 can have effects on the security proof or on
other aspects related to efficiency. See [18] for more details. Note that the only
case in which reversing the roles of G1 and G2 makes no difference is the case of
supersingular elliptic curves for which G1 = G2.

We do not give rows for the Sakai–Kasahara based schemes where the roles of
G1 and G2 are reversed; reversing the roles of G1 and G2 only reduces bandwidth
efficiency for no gain in performance, as for these schemes one never has to hash
into G1 or G2.
In Table 3, n either refers to the key length of the DEM, or the size of σ in the
standard BF-IBE etc. We note that for the schemes with Boneh–Franklin style



scheme ciphertext hashing
size G1 G2

BF-IBE |G1| + n + |m| N Y
BF-IBEa |G1| + n + |ESK(m)| N Y

BF-IBE⊥ |G2| + n + |m| Y N

BF-IBEa⊥ |G2| + n + |ESK(m)| Y N
SK-IBE |G1| + n + |m| N N
SK-IBEa |G1| + n + |ESK(m)| N N
BF-C1 |G1| + |EDEM(m)| N Y
BF-C2 |G1| + n + |EDEM(m)| N Y

BF-C1⊥ |G2| + |EDEM(m)| Y N

BF-C2⊥ |G2| + n + |EDEM(m)| Y N
SK-C2 |G1| + n + |EDEM(m)| N N

Table 3. The bandwidth requirements of various IBE schemes

keys one either needs to choose, for MNT curves, between low bandwidth and
hashing into G2, or high bandwidth and hashing into G1.

Bandwidth for ciphertexts can be further reduced as follows. In the ciphertext
we transmit the element U ∈ G1, which is a point on an elliptic curve in practice.
We could clearly compress the point U . However, compression usually entails
sending an extra bit so as to uniquely decompress the point. This is unnecessary
for the cost of one field inversion. Suppose we only transmit the x-coordinate of
the point U , in which case the receiver only knows U upto sign. Hence, he can
only compute

α←ê(±U,DID)±1.

But by computing
H2(α+ α−1)

instead of
H2(α),

a unique value will be produced. In particular this technique avoids the need to
transmit an extra bit to uncompress the x-coordinate x(U) to a unique point,
and it does not affect the security proof. One does, obviously, have to also modify
the validity check slightly.

We note that an analogous construction to C-1 from [4] can be applied to
the Sakai–Kasahara method of constructing keys. This scheme is efficient and
can be proved secure using a suitable, but slightly unnatural, gap problem using
similar techniques to the proof of construction C-1 from [4].
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A Proof of Theorem 2

To prove our theorem we will show how to use A to construct an algorithm B
to solve the q-BDHI problem, where q = q1 + qX + 1.

Algorithm B proceeds as follows. It takes as input

(g1, g2, gx
2 , g

x2

2 , gx3

2 , . . . , gxq

2 ) ∈ G1 ×Gq+1
2



with g1 = ψ(g2) and then selects an integer I ∈ {1, . . . , q}.
It then needs to set up the domain parameters and keys for the ID-based

encryption algorithm; it proceeds as follows.
It selects h0, . . . , hq−1 uniformly at random from Zp and defines

f(z) =
q−1∏
i=1

(z + hi) =
q−1∑
i=0

ciz
i.

Note that c0 6= 0 as none of the hi are equal to zero.
It computes

u2 =
q−1∏
i=0

(gxi

2 )ci = g
f(x)
2

and

u′2 =
q−1∏
i=0

(gxi+1

2 )ci = g
xf(x)
2 = ux

2 .

Note that if u2 = 1 then we have that x = −hi for some value of i and hence B
can solve the q-BDHI problem; it first checks which value of hi corresponds to
−x and then it computes ê(g1, g2)1/x directly.

Assuming that there is no hi such that x = −hi, algorithm B defines the
polynomials

fi(z) = f(z)/(z + hi) =
q−2∑
j=0

di,jz
i, for 1 ≤ i < q.

Note that

u
1/(x+hi)
2 = g

fi(x)
2 =

q−2∏
j=0

(gxj

2 )di,j .

Let PS denote the set {
(hj + h0, u

1/(x+hj)
2 )

}q−1

j=1
.

Algorithm B sets

t′ =
q−1∏
i=1

(gxi−1

2 )ci = g
(f(x)−c0)/x
2

and sets
γ0 = ê(ψ(t′), u2 · gc0

2 ).

It defines u1 = ψ(u2) and sets the public key of the TA to be

R = ux−h0
1 = ψ(u′2 · u

−h0
2 ) = ψ(u′2) · u

−h0
1 .

Algorithm B now invokes the first stage of algorithm A with the domain param-
eters that it has constructed. It responds to the oracle calls made by A as follows.



H1-query on IDi : B maintains a list H1 of tuples (IDi, hi, DIDi
) indexed by

IDi. On input of IDi, the ith distinct query, algorithm B responds as follows.

1. If i = I then B responds with h0 and adds (IDi, h0,⊥) to the list H1.
2. Otherwise it selects a random element (hi +h0, u

1/(x+hi)
2 ) from PS (without

replacement). It adds (IDi, hi + h0, u
1/(x+hi)
2 ) to the list H1 and it returns

hi + h0.

If the query is a repeat query then B responds with the response that it gave
the first time by looking it up on the list.

H2-query on α : B maintains a list H2 of tuples (α, β). If α appears in the
list H2 then B responds with β. Otherwise it chooses β at random from {0, 1}n
and it adds (α, β) to the H2 list before responding with β.

Extraction Query on IDi : If IDi does not appear on the H1 list then B first
makes an H1 query. Algorithm B then checks whether the corresponding value
of DIDi

is ⊥. If so it terminates. Otherwise it responds with DIDi
.

At some point A’s first stage will terminate and it will return a challenge iden-
tity ID∗. If A has not called H1 with input ID∗ then B does so for it. If the
corresponding value of DID∗ is not equal to ⊥ then B will terminate.

Algorithm B chooses a random value of s ∈ Zp and a random value V ∗ in
{0, 1}n. It computes U∗ = us

1 and sets the challenge ciphertext to be

c∗ = (U∗, V ∗).

This challenge ciphertext is now passed to algorithm A’s second stage. Note, due
to the rules of the game, B will not terminate unexpectedly when responding to
extraction queries made once A has been given the challenge ciphertext.

At some point algorithm A responds with its guess as to the value of the
underlying plaintext m∗. For a genuine challenge ciphertext we should have

m∗ = V ∗ ⊕H2(ê(U∗, DID∗)).

If H2 is modelled as a random oracle we know that A only has any advantage if
the list H2 contains an input value

α∗ = ê(U∗, DID∗). (2)

Algorithm B sets
γ = α∗1/s.

We have that
DID∗ = u

1/((x−h0)+h0)
2

and so
γ = ê(u1, u2)1/x.



Algorithm B’s job is to compute ê(g1, g2)1/x. It sets

γ/γ0 = ê(g1, g2)f(x)·f(x)/x/ê(g(f(x)−c0)/x
1 , g

f(x)+c0
2 )

= ê(g1, g2)f(x)·f(x)/x−f(x)·f(x)/x+c2
0/x

= ê(g1, g2)c2
0/x

and it solves the q-BDHI problem by outputting

ê(g1, g2)1/x = (γ/γ0)
1/c2

0 .

Let us denote the event that A makes the query α∗, as defined in (2), during
its attack by Ask. We say that A wins if it outputs the correct value of the
encrypted message in its attack. By definition we have

AdvID−OW−CPA
ID (A) = Pr[A wins ∧ Ask] + Pr[A wins ∧ ¬Ask]

≤ Pr[A wins ∧ Ask] +
1
2n
. (3)

The last inequality follows from the fact that, in the random oracle model, if
the event Ask does not occur, then A has no information about the message
encrypted in the challenge ciphertext.

To conclude the proof we note that, provided B picks the correct index and
the event Ask occurs, B succeeds in solving the q-BDHI problem with probability
at least 1/q2 and therefore

Pr[A wins ∧ Ask] ≤ ((q1 + qX + 1) · q2) ·Advq−BDHI(B). (4)

The result follows from (3) and (4).


