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Abstract. The most important and expensive operation in a hyperelliptic curve cryptosystem
(HECC) is scalar multiplication by an integer k, i.e., computing an integer k times a divisor D on
the Jacobian. Using some recoding algorithms for scalar k, we can reduce a number of divisor class
additions during the process of computing scalar multiplication. So divisor doubling will account
for the main part in all kinds of scalar multiplication algorithms. In order to accelerate the genus 3
HECC over binary fields we investigate how to compute faster doubling in this paper.
By constructing birational transformation of variables, we derive explicit doubling formulae for all
types of defining equations of the curve. For each type of curve, we analyze how many field oper-
ations are needed. So far all proposed curves are secure, though they are more special types. Our
results allow to choose curves from a large enough variety which have extremely fast doubling need-
ing only one third the time of an addition in the best case. Furthermore, an actual implementation
of the new formulae on a Pentium-M processor shows its practical relevance.

Keywords: Genus 3 Hyperelliptic Curve, Explicit Doubling Formulae, Fast Arithmetic, Binary
Fields

1 Introduction

In 1988, Neal Koblitz suggested for the first time the generalization of elliptic curves to curves of higher
genus for cryptographic use, namely hyperelliptic curves [Kob88, Kob89]. The operand size of HECC
is even shorter compared to elliptic curve cryptosystem (ECC). This fact is advantageous for HECC
on any platform. During the last decade, elliptic curve cryptosystems (ECC) [Kob87, Mil86] have been
extensively studied from both a pure and applied perspective. However, HECC obtained a lot of attention
till recent years. There has been a major effort in improving the group operations and in implementing
HECC on different processors. Using explicit formulae instead of Cantor algorithm has reduced sharply the
complexity of arithmetic in the ideal class group of hyperelliptic curves and obtained fast implementation
in software [MCT01, MDM+02, KMG+02, Tak02, PWP03, WPW+03, Lan03, GMA+04, Ava04, Wol04,
FWW05] and hardware platform [BCLW02, Cla02, EMY04, KWC+04].

For all kinds of cryptographic protocols based on ECC or HECC, the computation of scalar multi-
plication is the main operation. Scalar multiplication algorithms include usually divisor class additions,
doublings and perhaps some precomputations. By some recoding methods for scalar, we can reduce a
number of divisor class additions. However, we cannot decrease the number of divisor class doubling in
general case (for some special curves, it is possible). So divisor class doublings will become the crucial
step for the performance of the entire cryptosystem. Improving the arithmetic of doubling has a direct
impact on the efficiency of the whole system.

In [LS04, BD04], several authors discuss genus 2 curves over fields of characteristic 2 and doubling
formulae for the different types of curves in detail. They give a complete study of all cases of defining
equation of the curve and make a trade-off between speed-up and special parameters. Although we can
1
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use Koblitz curves to accelerate the computation of scalar multiplication [GLS00, Lan04], there are only
6 and 24 different isogenie classes for genus 2 and 3 binary curves, respectively. So the choice of curves
is rather limited. In order to enlarge the range of selecting curves, we will address all kinds of genus 3
curves defined over the extension field in this paper.

For genus 3 curves over GF (2n), Pelzl et al. [PWGP03] discussed a very special type of curves
with h(x) = 1 and gave efficient doubling explicit formulae. In [GKP04], the authors proposed efficient
algorithms to compute the resultant of two polynomials and of the inverse of one polynomial modulo
another, and improved the overall complexity of complexity of the addition and doubling algorithms
for both even and odd characteristics. Their explicit formulae are applicable to almost all hyperelliptic
curves of genus 3. By using a birational transformation of the form (x, y) 7→ (λx + µ, νy), they discuss
five possible types of curves for even characteristic case.

In this article, we generalize the ideas proposed in [LS04] to genus 3 case and improve the results in
[GKP04] further. we construct isomorphic transformations first to achieve as many zero coefficients as
possible, and then make strong use of the defining equation of the curve obtain more efficient doubling
explicit formulae. We do a complete study of all kinds of curves and analyze which kind of curve can lead
to fast computation of doubling a divisor class. Finally, we combine the new doubling explicit formulae
with NAF method to compute scalar multiplication fast, and give detailed experiment results.

The remainder of the paper is organized as follows: Section 2 states a brief mathematical background
related to genus 3 hyperelliptic curves over binary fields. Section 3 describes Harley’s algorithm for
doubling a divisor class. In section 4, 5, 6, and 7 we derive the new doubling explicit formulae for genus
3 curves according to the different degree of h(x). Section 8 summarize our contributions. Finally, we
present our experimental results in Section 9 and conclude with a discussion of our results in Section 10.

2 Genus 3 Hyperellitpic Curves and Their Divisor Class Groups

In this section we present the representation of the divisor class group elements for genus 3 hyperelliptic
curves over finite fields of characteristic two. For mathematical background and more details about
hyperelliptic curves, please the interested reader refer to [Can87, Kob89, MWZ96].

Let GF (q), q = 2l be a finite field of characteristic 2. A non-singular (imaginary quadratic) hyperel-
liptic curve C of genus 3 over GF (q) is defined by an equation of the form

C : Y 2 + h(X)Y = f(X),

where h(X) is a polynomial of degree ≤ 3, and f(X) is a monic polynomial of degree 7, i.e.,

h(X) = h3X
3 + h2X

2 + h1X + h0,

f(X) = X7 + f6X
6 + f5X

5 + f4X
4 + f3X

3 + f2X
2 + f1X + f0,

with hi, fi ∈ GF (q).
The equation (∗) defining a hyperelliptic curves C of genus 3 is unique up to a change of coordinates of
the form
(∗) (x, y) −→ (α2x + β, α7y + t(x)),
Where α, β ∈ GF (q) with α 6= 0 and t(x) ∈ Fq[x] with deg t ≤ 3 [Lok94]. If an algebraic curve has
a singular point then the curve is singular. However a hyperelliptic curve is by definition non-singular.
The divisor class group JC(GF (q)) of C forms a finite abelian group and therefore we can construct
cryptosystems based on discrete logarithm problems on the Jacobian of C. Any equivalent class D in
JC(GF (q)) can be represented by Mumford’s representation as follows [Mum84].
Mumford’s Representation for Genus 3 Hyperelliptic Curves:
D = [u(x), v(x)] = [x3 + u2x

2 + u1x + u0, v2x
2 + v1x + v0], u(x), v(x) ∈ Fq[X], where

u(x) = x3 + u2x
2 + u1x + u0 =

∏3
i=1(x− xi)ordPi

(D),
yi = v(xi)
for Pi = (xi, yi) ∈ C with ordPi

(D) > 0, (i = 1, 2, 3) and u|v2 + hv + f .
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The degree of u(x) is called the weight of D and D a reduced divisor, if its weight equals 3. Any class
in JC(GF (q)) can be uniquely represented by a reduced divisor.

3 Harley’s Algorithm for Divisor Class Doublings

In [GH00], the authors noticed that one can reduced the number of operations by distinguishing between
possible cases according to the properties of the input divisors. They proposed an efficient algorithm
(using many computational algebra tricks such as Karatsuba multiplication, Chinese Remainder Theory,
and Newton Interation) to compute in the Jacobian of hyperelliptic curves. For a complete description
about explicit formulae for group operations we refer to [Wol04].

In this paper we concentrate on doublings for genus 3 curves in the most significant case where the
input divisor [u(x), v(x)] has full degree and u and h do not have a common factor. Therefore, we assume
from now on

D = [u(x), v(x)], deg u(x) = 3, resutant [u(x), h(x)] 6= 0.

Let u(x) = x3 + u2x
2 + u1x + u0, v(x) = v2x

2 + v1x + v0. Using the following Harley algorithm, we can
double a divisor class on a Jacobian:
Step 1. Compute resultant r of u and h;
Step 2. Compute almost inverse inv = r/h mod u = inv2x

2 + inv1x + inv0;
Step 3. Compute z = ((f − hv − v2)/u) mod u = z2x

2 + z1x + z0;
Step 4. Compute s

′
= zinv mod u = s

′
2x

2 + s
′
1x + s

′
0;

Step 5. Compute s = (s
′
/r) and make s monic: s = x2 + s1x + s0;

Step 6. Compute G = su = x5 + g4x
4 + g3x

3 + g2x
2 + g1x + g0;

Step 7. Compute u
′
= u−2{[G + (r/s

′
2)v]2 + (r/s

′
2)hG + (r/s

′
2)

2(hv − f)} = u
′
3x

3 + u
′
2x

2 + u
′
1x + u

′
0;

Step 8. Compute v
′
= −[G(s

′
2/r) + h + v] mod u

′
= v

′
3x

3 + v
′
2x

2 + v
′
1x + v

′
0;

Step 9. Reduce u
′
: u” = (f − v

′
h− v

′2)/u
′
= x3 + u”

2x
2 + u”

1x + u”
0;

Step 10. Compute v” = −(v
′
+ h) mod u” = v”

2x2 + v”
1x + v”

0 .
We now study the different expressions for h separately because the actual execution of the Harley’s

algorithm depends on the coefficients of the curve. We will present explicit formulae for four different
case: deg h = 0, deg h = 1, deg h = 2 and deg h = 3. In the two latter cases, we try to find special
curves which can lead to a significant speedup. The major speedup is obtained by simplify and cancel r
in the expressions. For hyperelliptic curves of genus 3 and characteristic two there exist no supersingular
cases [RS02]. I.e. for genus 3 HEC we can take special curves with h constant. Using these special curves,
we can obtain explicit formulae with low complexity and optimum performance regarding the number of
required field operations for the execution of the group operations.

4 Case deg h = 0

In this section we assume deg h = 0. One can obtain an isomorphic curve where f6 = f4 = f2 = 0 and
h0 is divided by any α7. To improve the efficiency of HEC, we hope that coefficients hi are ’small’ in
an isomorphic curve, which allows the multiplication with it to be performed via additions. So we will
choose α7 such that h0

α7 is ’small’ in practical use. If we choose finite fields GF (2n) with n ≡ 1(mod 3)
or n ≡ 2(mod 3) there are no elements α ∈ GF (2n) such that α7 = 1 (the unit element of GF (2n)).
Therefore, there is always an α such that α7 = h0. For n ≡ 0(mod 3) this happens with probability 1/7.
We obtain the isomorphic curve by using the following birational transformation of variables and dividing
the equation by α14:

Y ← α7Ỹ + mX̃2 + nX̃, X ← α2X̃ + f6

where m = α4
√

f4 + f5f6, n = α2
√

f2 + f3f6 + h0m. So we obtain a curve of the form Y 2 + h0Y =
X7 + f5X

5 + f3X
3 + f1X + f0, usually with h0 = 1. Adding a constant term to the substitution of Ỹ one

can achieve f0 = 0 with probability 1/2. Hence, there are only three parameters f5, f3, f1 as opposed to
five in the general case showing that the type is indeed special.
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With the new curve coefficients the expression r and s will simplify to:

r = h3
0, s

′
2 = h2

0z2, s
′
1 = h2

0z1, s
′
0 = h2

0z0.

We note that

u
′
3 = 0, u

′
2 = s2

1 = (s
′
1/s

′
2)

2 = (z1/z2)2,

u
′
1 = (r/s

′
2)

2 = h2
0(z

−1
2 )2, u

′
0 = s2

0 = (s
′
0/s

′
2)

2 = (z0/z2)2,

and

v
′
3 = (u

′
2 + g3)(s

′
2/r) = h−1

0 (u
′
2z2 + z0 + u2z1 + u1z2),

v
′
2 = (g4u

′
2 + u

′
1 + g2)(s

′
2/r) + v2 = h−1

0 [(u2z2 + z1)u
′
2 + u

′
1 + u2z0 + u1z1 + u0z2] + v2,

v
′
1 = (g4u

′
1 + u

′
0 + g1)(s

′
2/r) + v1 = h−1

0 [(u2z2 + z1)u
′
1 + u

′
0 + u1z0 + u0z1] + v1,

v
′
0 = (g4u

′
0 + g0)(s

′
2/r) + h0 + v0 = h−1

0 [(u2z2 + z1)u
′
0 + u0z0] + h0 + v0.

Since f + hv + v2 = uz + u2x we also have that

f0 + h0v0 + v2
0 = u0z0,

f1 + h0v1 = u1z0 + u0z1 + u2
0,

h0v2 + v2
1 = u2z0 + u1z1 + u0z2,

f3 = z0 + u2z1 + u1z2 + u2
1,

v2
2 = z1 + u2z2,

f5 = u2
2 + z2.

Using the equations above, we can calculate cheaply u
′
2, u

′
0 and v

′
3, v

′
2, v

′
1, v

′
0 as follows:

u
′
2 = (z1/z2)2 = [(v2

2 + u2z2)/z2]2 = [v2
2z−1

2 ]2 + u2
2,

u
′
0 = (z0/z2)2 = [(f3 + u2

1 + u2z1 + u1z2)/z2]2 = [(f3 + u2
1)z

−1
2 ]2 + u2

1 + u2
2u

′
2,

v
′
3 = h−1

0 (u
′
2z2 + f3 + u2

1),

v
′
2 = h−1

0 (v2
2u

′
2 + u

′
1 + v2

1),

v
′
1 = h−1

0 (v2
2u

′
1 + u

′
0 + f1 + u2

0),

v
′
0 = h−1

0 (v2
2u

′
0 + f0 + v2

0) + h0.

We give the doubling formulae for this case in Table 1. The operations are counted for the case h0 = 1, h−1
0

is ’small’ (multiplication with h−1
0 are not counted), and arbitrary h0. Both h2

0 and h−1
0 are precomputed.
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Table 1. Doubling deg h = 0, deg u = 3

Input [u, v], u = x3 + u2x2 + u1x + u0, v = v2x2 + v1x + v0; h2
0, h−1

0

Output [u”, v”] = 2[u, v]

Step Expression h0 = 1 h−1
0 small h0 arbitrary

1 Compute ũ = u2 and ṽ = v2: 6S 6S 6S

ũ2 = u2
2, ũ1 = u2

1, ũ0 = u2
0, ṽ2 = v2

2 , ṽ1 = v2
1 , ṽ0 = v2

0 ;

2 Compute u
′

= x4 + u
′
3x3 + u

′
2x2 + u

′
1x + u

′
0: 1I, 3M, 3S 1I, 4M, 3S 1I, 4M, 3S

z2 = f5 + ũ2, t1 = f3 + ũ1, t2 = f1 + ũ0, t3 = f0 + ṽ0;

If z2 = 0 then call the Cantor algorithm

invz2 = z−1
2 , u

′
3 = 0, u

′
2 = (ṽ2invz2)

2 + ũ2;

u
′
1 = h2

0(invz2)
2, u

′
0 = (t1invz2)

2 + ũ1 + ũ2u
′
2;

3 Compute v
′

= v
′
3x3 + v

′
2x2 + v

′
1x + v

′
0: 4M 4M 8M

v
′
3 = h−1

0 (u
′
2z2 + t1), v

′
2 = h−1

0 (ṽ2u
′
2 + u

′
1 + ṽ1);

v
′
1 = h−1

0 (ṽ2u
′
1 + u

′
0 + t2), v

′
0 = h−1

0 (ṽ2u
′
0 + t3);

4 Reduce u
′
, i.e. u” = x3 + u”

2x2 + u”
1x + u”

0: 1M, 2S 1M, 2S 1M, 2S

u”
2 = v

′2
3 , u”

1 = f5 + u
′
2, u”

0 = u”
2u
′
2 + v

′2
2 + u

′
1;

5 Compute v” = v”
2x2 + v”

1x + v”
0 : 3M 3M 3M

v”
2 = v

′
2 + v

′
3u”

2, v”
1 = v

′
1 + v

′
3u”

1, v”
0 = v

′
0 + v

′
3u”

0;

Sum 1I, 11M, 11S 1I, 12M, 11S 1I, 16M, 11S

[Remark]: In this case, we obtain the same explicit formula as in [GKP04]. However, we derived it from Harley’s
algorithm, whereas they from Cantor’s algorithm. Compared with the explicit formula in [PWGP03], our formula
saves 3M . For genus 3 hyperellitpic curves defined over binary fields, this is the fastest doubling explicit formula
so far.

5 Case deg h = 1

In this section we discuss the case of deg h = 1. One can obtain an isomorphic curve where f6 = h0 = 0
and h1 is divided by any α5. We will choose α5 such that h1

α5 is ’small’ in practical use. If we choose
finite fields GF (2n) with n not being divided by 4 there are no elements α ∈ GF (2n) such that α5 = 1.
Therefore, there is always an α such that α5 = h0. For n ≡ 0(mod 4) this happens with probability 1/5.
We obtain the isomorphic curve by using the following birational transformation of variables and dividing
the equation by α14:

Y ← α7Ỹ + α6

√
f6 +

h0

h1
X̃3, X ← α2X̃ +

h0

h1

So we obtain a curve of the form Y 2 + h1XY = X7 + f5X
5 + f4X

4 + f3X
3 + f2X

2 + f1X + f0, usually
with h1 = 1. Adding a linear factor to the substitution of Ỹ one can achieve f2 = 0 with probability 1/2.
A constant term leads to f1 = 0. Therefore, there are only four free parameters f5, f4, f3, f0.

With the new curve coefficients the expression r and s will simplify to:

r = u0h
3
1, s

′
2 = z0h

2
1, s

′
1 = (u2z0 + u0z2)h2

1, s
′
0 = (u1z0 + u0z1)h2

1,

rs
′
2 = u0z0h

5
1, s2 =

s
′
2

r
=

z0

u0h1
.

In this case, we have that

u
′
3 = 0, u

′
2 = s2

1 = (s
′
1/s

′
2)

2 = (u2 + u0 · z2

z0
)2,

u
′
1 = (r/s

′
2)

2 = h2
0u

2
0(z

−1
0 )2, u

′
0 = s2

0 = (s
′
0/s

′
2)

2 = (u1 + u0 · z1

z0
)2,

and
v
′
3 = (u

′
2 + g3)(s

′
2/r) = h−1

1 [z2 · (u0 · z2

z0
) + z1 + u2z2],
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v
′
2 = (g4u

′
2 + u

′
1 + g2)(s

′
2/r) + v2 = h−1

1 [z2u
′
2 +

h1

s2
+ u2z1 + u1z2 + z0] + v2,

v
′
1 = (g4u

′
1 + u

′
0 + g1)(s

′
2/r) + h1 + v1 = h−1

1 [
1

h1s2
(z2 · h1

s2
+ z2

1) + u2z0 + u1z1 + u0z2] + v1,

v
′
0 = (g4u

′
0 + g0)(s

′
2/r) + v0 = h−1

1 (z2u
′
0 + u1z0 + u0z1) + v0.

Since f + hv + v2 = uz + u2x we also obtain that

f0 + v2
0 = u0z0 (= rs

′
2/h5

1),

f1 + h1v0 = u1z0 + u0z1 + u2
0,

f2 + h1v1 + v2
1 = u2z0 + u1z1 + u0z2,

f3 + h1v2 = z0 + u2z1 + u1z2 + u2
1,

f4 + v2
2 = z1 + u2z2,

f5 = u2
2 + z2.

Using the equations above, we can calculate cheaply u
′
2, u

′
0 and v

′
3, v

′
2, v

′
1, v

′
0 as follows:

u
′
2 = (u2 + u0 · z2

z0
)2 = (u2 + u0 · z2

u0h1s2
)2 = (u2 +

z2

h1s2
)2,

u
′
0 = (u1 + u0 · z1

z0
)2 = (u1 + u0 · z1

u0h1s2
)2 = (u1 +

z1

h1s2
)2,

v
′
3 = h−1

1 (
z2
2

h1s2
+ f4 + v2

2),

v
′
2 = h−1

1 (z2u
′
2 +

h1

s2
+ f3 + u2

1),

v
′
1 = h−1

1 [
1

h1s2
(z2 · h1

s2
+ z2

1) + f2 + v2
1 ],

v
′
0 = h−1

1 (z2u
′
0 + f1 + u2

0).

We note that f0 + v2
0 = u0z0 = rs

′
2/h5

1, so it is very cheap to calculate rs
′
2 as the exact coefficients of z

are not necessary. In Table 2, we present the doubling formula for this case. The operations are counted
for the case h1 = 1, h−1

1 is ’small’ (multiplication with h−1
1 are not counted), and arbitrary h1. Both h2

1

and h−1
1 are precomputed. In Step 2 the inversion and multiplication with k0 can also be replaced by a

division as the inverse is not used later on.
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Table 2. Doubling deg h = 1, deg u = 3

Input [u, v], u = x3 + u2x2 + u1x + u0, v = v2x2 + v1x + v0; h2
1, h−1

1

Output [u”, v”] = 2[u, v]

Step Expression h1 = 1 h−1
1 small h1 arbitrary

1 Compute rs
′
2: 1M, 4S 1M, 4S 1M, 4S

k0 = u2
0, z2 = f5 + u2

2, t1 = f4 + v2
2 ;

z1 = t1 + u2z2, w0 = f0 + v2
0 (= rs

′
2/h5

1);

If w0 = 0 then call the Cantor algorithm

2 Compute 1/h1s2 and s1, s0: 1I, 3M 1I, 3M 1I, 3M

w1 = (1/w0) · k0 (= 1/h1s2), k1 = z2w1;

k2 = z1w1, s1 = u2 + k1, s0 = u1 + k2;

3 Compute u
′

= x4 + u
′
3x3 + u

′
2x2 + u

′
1x + u

′
0: 3S 2M, 2S 2M, 2S

w2 = h2
1w1 (= h1/s2), u

′
3 = 0;

u
′
2 = s2

1, u
′
1 = w2w1, u

′
0 = w2 + s2

0;

4 Compute v
′

= v
′
3x3 + v

′
2x2 + v

′
1x + v

′
0: 5M, 4S 5M, 4S 9M, 4S

v
′
3 = h−1

1 (z2k1 + t1), v
′
2 = h−1

1 (z2u
′
2 + w2 + f3 + u2

1);

v
′
1 = h−1

1 [w1(z2w2 + z2
1) + f2 + v2

1 ];

v
′
0 = h−1

1 (z2u
′
0 + f1 + u2

0);

5 Reduce u
′
, i.e. u” = x3 + u”

2x2 + u”
1x + u”

0: 1M, 2S 2M, 2S 2M, 2S

u”
2 = v

′2
3 , u”

1 = f5 + u
′
2;

u”
0 = f4 + u”

2u
′
2 + v

′2
2 + u

′
1 + h1v

′
3;

6 Compute v” = v”
2x2 + v”

1x + v”
0 : 3M 3M 3M

v”
2 = v

′
2 + v

′
3u”

2, v”
1 = v

′
1 + v

′
3u”

1 + h1, v”
0 = v

′
0 + v

′
3u”

0;

Sum 1I, 13M, 13S 1I, 16M, 12S 1I, 20M, 12S

[Remark]: The algorithm in [GKP04] needs 1I, 44M, 6S to compute divisor class doubling. However, our derived
explicit formula needs only 1I, 13M, 13S in this case. Compared with the explicit formula in [GKP04], our formula
save 31M at the cost of extra 7S.

6 Case deg h = 2

If h is of degree two then we cannot make any of its coefficients zero in general. In this section we
will discuss special curves with h1 = 0, that is, the curves having the form Y 2 + (h2X

2 + h0)Y =
X7 + f6X

6 + f5X
5 + f4X

4 + f3X
3 + f2X

2 + f1X + f0, which allows for a significant speedup. By making
a change of coordinates we can obtain f5 = f3 = f2 = h0 = 0 and h2 is divided by any α3. We will choose
α3 such that h2

α3 is ’small’ in practical use. If, as usual, one choose finite GF (2n) with n odd there are no
non-trivial cube roots of unity. Hence, there is always an α such that α3 = h2. For even n this happens
with probability 1/3. The isomorphic curve is obtained by using the following birational transformation
of variables and dividing the equation by α14:

Y ← α7Ỹ + mX̃3 + sX̃ + t,X ← α2X̃ + β

where β =
√

h0
h2

,m = α6 · f5+β2

h2
, s = α2 · f3+β4

h2
and t = h2

2(f2+f3β+f6β4+β5)+f2
3 +β8

h3
2

. So we obtain a curve

of the form Y 2 + h2X
2Y = X7 + f6X

6 + f4X
4 + f1X + f0, usually with h2 = 1. Adding a quadratic

factor to the substitution of Ỹ one can achieve f4 = 0 with probability 1/2. Accordingly, there are only
three free parameters f6, f1, f0.

Then the expressions for r and s will simplify to:

r = u2
0h

3
2, s

′
2 = (u1z0 + u0z1)h2

2, s
′
1 = [u2(u1z0 + u0z1) + u0z0]h2

2,

s
′
0 = [u1(u1z0 + u0z1) + u0(u2z0 + u0z2)]h2

2, s1 =
s
′
1

s
′
2

= u2 + k1, s0 =
s
′
0

s
′
2

= u1 + k2,
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where k1 = u0z0
u1z0+u0z1

and k2 = u0(u2z0+u0z2)
u1z0+u0z1

. In this case, we have that

u
′
3 = 0, u

′
2 = s2

1, u
′
1 =

r

s
′
2

(h2 +
r

s
′
2

) = h2
2w1(1 + w1),

u
′
0 =

r

s
′
2

[h2(u2 + s1) +
rf6

s
′
2

] + s2
0 = h2

2w1(k1 + f6w1) + s2
0,

where w1 = u2
0

u1z0+u0z1
and

v
′
3 = (u

′
2 + g3)(s

′
2/r) = h−1

2 [z2 +
(u0z0)2

u2
0(u1z0 + u0z1)

],

v
′
2 = (g4u

′
2 + u

′
1 + g2)(s

′
2/r) + h2 + v2 = h−1

2 [z1 + u2z2 +
(u0z0)k2

1

u2
0

] + h2w1 + v2,

v
′
1 = (g4u

′
1 + u

′
0 + g1)(s

′
2/r) + v1 = h−1

2 [z0 + u1z2 + u2z1 +
(u2z0 + u0z2)2

u1z0 + u0z1
] + (h2w1)(f6 + k1) + v1,

v
′
0 = (g4u

′
0 + g0)(s

′
2/r) + v0 = h−1

2 [u2z0 + u1z1 + u0z2 +
(u0z0)k2

2

u2
0

] + (h2k1)(k1 + f6w1) + v0.

And since f + hv + v2 = uz + u2(x + f6) we also have that

f0 + v2
0 = u0z0 + f6u

2
0,

f1 = u1z0 + u0z1 + u2
0,

h2v0 = u2z0 + u1z1 + u0z2 + f6u
2
1,

h2v1 = z0 + u2z1 + u1z2 + u2
1,

f4 + h2v2 + v2
2 = z1 + u2z2 + f6u

2
2,

0 = u2
2 + z2.

We use the equations above to calculate k1, k2, w1 and v
′
3, v

′
2, v

′
1, v

′
0 cheaper:

k1 =
f0 + v2

0 + f6u
2
0

f1 + u2
0

, k2 =
u0(h2v0 + u1z1 + f6u

2
1)

f1 + u2
0

, w1 =
u2

0

f1 + u2
0

,

v
′
3 = h−1

2 [z2 +
(f0 + v2

0 + f6u
2
0)

2

u2
0(f1 + u2

0)
],

v
′
2 = h−1

2 [f4 + v2
2 + f6u

2
2 +

(f0 + v2
0 + f6u

2
0)k

2
1

u2
0

] +
h2u

2
0

f1 + u2
0

,

v
′
1 = h−1

2 [u2
1 +

(u1z1 + f6u
2
1 + h2v0)2

f1 + u2
0

] +
h2u

2
0(f6 + k1)
f1 + u2

0

,

v
′
0 = h−1

2 [f6u
2
1 +

(f0 + v2
0 + f6u

2
0)k

2
2

u2
0

] + (h2k1)(k1 +
u2

0f6

f1 + u2
0

).

We note that rs
′
2 = u2

0(u1z0 + u0z1)h5
2 = u2

0(f1 + u2
0)h

5
2, so it is very cheap to calculate rs

′
2 since we

need not know the exact coefficients of z. We describe the doubling formula for this case in Table 3. The
operations are counted for the case h2 = 1, h−1

2 is ’small’ (multiplication with h−1
2 are not counted), and

arbitrary h2. Both h2
2 and h−1

2 are precomputed.
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Table 3. Doubling deg h = 2, h1 = 0, deg u = 3

Input [u, v], u = x3 + u2x2 + u1x + u0, v = v2x2 + v1x + v0; h2
2, h−1

2

Output [u”, v”] = 2[u, v]

Step Expression h2 = 1 h−1
2 small h2 arbitrary

1 Precomputation: 5M, 5S 7M, 5S 7M, 5S

ũ2 = u2
2, ũ1 = u2

1, ũ0 = u2
0, z2 = f4 + v2

2 + f6ũ2;

z1 = z2 + h2v2 + ũ2u2, t1 = f0 + v2
0 + f6ũ0;

t2 = f6ũ1, t3 = t2 + h2v0 + u1z1, t4 = f1 + ũ0;

If t4 = 0 then call the Cantor algorithm

2 Compute s1, s0: 1I, 7M 1I, 7M 1I, 7M

t5 = (t4ũ0)
−1, t6 = t4t5, t7 = ũ0t5, t8 = t1t6, k1 = t1t7;

k̃2 = t3t7, k2 = u0k̃2, s1 = u2 + k1, s0 = u1 + k2;

3 Compute u
′

= x4 + u
′
3x3 + u

′
2x2 + u

′
1x + u

′
0: 1M, 2S 3M, 1S 3M, 1S

w1 = ũ0t7, w2 = h2
2w1, u

′
2 = s2

1, u
′
1 = w2(1 + w1);

4 Compute v
′

= v
′
3x3 + v

′
2x2 + v

′
1x + v

′
0: 7M, 3S 9M, 3S 13M, 3S

v
′
3 = h−1

2 (ũ2 + t21t5), v
′
2 = h−1

2 (z2 + t8k2
1) + h2w1;

v
′
1 = h−1

2 (ũ1 + k̃2t3) + (h2w1)(f6 + k1);

v
′
0 = h−1

2 (t2 + t8k2
2) + (h2k1)(k1 + f6w1);

5 Reduce u
′
, i.e. u” = x3 + u”

2x2 + u”
1x + u”

0: 1M, 2S 3M, 1S 3M, 1S

u”
2 = f6 + v

′2
3 , u”

1 = u
′
2 + h2v

′
3;

u”
0 = f4 + u”

2u
′
2 + u

′
1 + v

′2
2 + h2v

′
2;

6 Compute v” = v”
2x2 + v”

1x + v”
0 : 3M 3M 3M

v”
2 = v

′
2 + v

′
3u”

2 + h2, v”
1 = v

′
1 + v

′
3u”

1, v”
0 = v

′
0 + v

′
3u”

0;

Sum 1I, 24M, 12S 1I, 32M, 10S 1I, 36M, 10S

[Remark]: For general case with h(x) = h2x
2 + h1x + h0, the authors using a birational transformation to make

the curve’s coefficient f6 zero [GKP04]. Their algorithm needs 1I, 52M, 8S to compute divisor class doubling.
Using special curves with h(x) = h2x

2 + h0, our explicit formula needs only 1I, 24M, 12S for h2 = 1. Compared
with the explicit formula in [GKP04], our formula saves 28M at the cost of extra 4S in the best case. In the
formulae presented in Table 3 there are four counted multiplications with f6 which are cheaper when f6 is ’small’.

7 Case deg h = 3

When h is of degree three, we cannot also make any of its coefficients zero in general. We will show that
special curves with h2 = h1 = h0 = 0 can obtain excellent performance in this section. We can construct
a change of coordinates to make f5 = f4 = f3 = 0 and h3 = 1. The isomorphic curve is obtained by using
the following birational transformation of variables and dividing the equation by h14

3 :

Y ← h7
3Ỹ + h3

3f5X̃
2 +

f4h
2
3 + f2

5

h3
X̃ +

f3

h3
, X ← h2

3X̃

So we obtain a curve of the form Y 2 + X3Y = X7 + f6X
6 + f2X

2 + f1X + f0. Adding a cube factor
to the substitution of Ỹ one can achieve f6 = 0 with probability 1/2. Thereby, there are only three free
parameters f2, f1, f0.

Then the expressions for r and s will simplify to:

r = u3
0, s

′
2 = u0(u2z0 + u1z1 + u0z2) + u2

1z0, s
′
1 = u2[u0(u2z0 + u1z1 + u0z2)] + u0(u1z0 + u0z1),

s
′
0 = u1[u0(u2z0 + u1z1 + u0z2)] + u0[u2(u1z0 + u0z1) + u0z0], s1 =

s
′
1

s
′
2

= u2 + k1, s0 =
s
′
0

s
′
2

= u1 + k2,
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where k1 = u0(u1z0+u0z1)
u0(u2z0+u1z1+u0z2)+u2

1z0
and k2 = u0[u2(u1z0+u0z1)+u0z0]

u0(u2z0+u1z1+u0z2)+u2
1z0

. In this case, we have that

u
′
3 = 0, u

′
2 = s2

1 +
r

s
′
2

, u
′
1 =

r

s
′
2

(k1 +
r

s
′
2

), u
′
0 =

r

s
′
2

(k2 + u2k1 +
rf6

s
′
2

) + s2
0,

v
′
3 = (u

′
2 + g3)(s

′
2/r) + 1 =

u0z0

u2
0

+
(u1z0 + u0z1)2

u2
0(u2z0 + u1z1 + u0z2) + u2

1(u0z0)
,

v
′
2 = (g4u

′
2 + u

′
1 + g2)(s

′
2/r) + v2 =

(u1z0 + u0z1)(u
′
2 + u2

2)
u2

0

+ z2 + k1 +
r

s
′
2

+ v2,

v
′
1 = (g4u

′
1 + u

′
0 + g1)(s

′
2/r) + v1 =

k2[u2(u1z0 + u0z1) + u0z0] + u2
2(u0z0)

u2
0

+

k1(k1 + r
s
′
2
) + (k2 + u2k1 + rf6

s
′
2

) + (z1 + u2z2) + v1,

v
′
0 = (g4u

′
0 + g0)(s

′
2/r) + v0 =

(u1z0 + u0z1)(u
′
0 + u2

1)
u2

0

+ (z0 + u2z1 + u1z2) + v0.

And since f + hv + v2 = uz + u2(x + f6) we also have that

f0 + v2
0 = u0z0 + f6u

2
0,

f1 = u1z0 + u0z1 + u2
0,

f2 + v2
1 = u2z0 + u1z1 + u0z2 + f6u

2
1,

v0 = z0 + u2z1 + u1z2 + u2
1,

v1 + v2
2 = z1 + u2z2 + f6u

2
2,

v2 = u2
2 + z2.

Using the equations above, we can calculate k1, k2,
r
s
′
2

and v
′
3, v

′
2, v

′
1, v

′
0 cheaper:

k1 =
u2

0(f1 + u2
0)

u2
0(f2 + v2

1 + f6u2
1) + u2

1(f0 + v2
0 + f6u2

0)
,

k2 =
u2

0[u2(f1 + u2
0) + (f0 + v2

0 + f6u
2
0)]

u2
0(f2 + v2

1 + f6u2
1) + u2

1(f0 + v2
0 + f6u2

0)
,

r

s
′
2

=
u4

0

u2
0(f2 + v2

1 + f6u2
1) + u2

1(f0 + v2
0 + f6u2

0)
,

v
′
3 =

f0 + v2
0 + f6u

2
0

u2
0

+
(f1 + u2

0)
2

u2
0(f2 + v2

1 + f6u2
1) + u2

1(f0 + v2
0 + f6u2

0)
,

v
′
2 =

(f1 + u2
0)(u

′
2 + u2

2)
u2

0

+ k1 +
r

s
′
2

+ u2
2,

v
′
1 =

k2[u2(f1 + u2
0) + (f0 + v2

0 + f6u
2
0)] + u2

2(f0 + v2
0 + f6u

2
0)

u2
0

+

k1(k1 + r
s
′
2
) + (k2 + u2k1 + rf6

s
′
2

) + (v2
2 + f6u

2
2),

v
′
0 =

(f1 + u2
0)(u

′
0 + u2

1)
u2

0

+ u2
1.

We note that rs
′
2 = u2

0[u
2
0(u2z0 +u1z1 +u0z2)+u2

1(u0z0)] = u2
0[u

2
0(f2 +v2

1 +f6u
2
1)+u2

1(f0 +v2
0 +f6u

2
0)], so

we can calculate rs
′
2 cheaply without knowing the exact coefficients of z. We present the explicit formula

for this case in Table 4.
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Table 4. Doubling deg h = 3, h2 = h1 = h0 = 0, deg u = 3

Input [u, v], u = x3 + u2x2 + u1x + u0, v = v2x2 + v1x + v0;

Output [u”, v”] = 2[u, v]

Step Expression Cost

1 Precomputation: 5M, 6S

ũ2 = u2
2, ũ1 = u2

1, ũ0 = u2
0, ṽ2 = v2

2 , ṽ1 = v2
1 , ṽ0 = v2

0 , t1 = f0 + ṽ0 + f6ũ0;

t2 = f2 + ṽ1 + f6ũ1, t3 = ũ0t2 + ũ1t1, t4 = f1 + ũ0, t5 = u2t4 + t1;

If t3 = 0 then call the Cantor algorithm

2 Compute s1, s0: 1I, 6M

t6 = (t3ũ0)
−1, t7 = t3t6, t8 = ũ0t6, t9 = ũ0t8;

k1 = t4t9, k2 = t5t9, s1 = u2 + k1, s0 = u1 + k2;

3 Compute u
′

= x4 + u
′
3x3 + u

′
2x2 + u

′
1x + u

′
0: 5M, 2S

w4 = ũ0t9, u
′
2 = s2

1 + w4, t10 = k1 + w4, u
′
1 = w4t10;

t11 = k2 + u2k1 + f6w4, u
′
0 = s2

0 + w4t11;

4 Compute v
′

= v
′
3x3 + v

′
2x2 + v

′
1x + v

′
0: 10M, 1S

v
′
3 = t1t7 + t24t8, t12 = t4t7, v

′
2 = t12(u

′
2 + ũ2) + k1 + w4 + ũ2;

v
′
1 = k1t10 + t11 + (k2t5 + ũ2t1)t7 + ṽ2 + f6ũ2, v

′
0 = t12(u

′
0 + ũ1) + ũ1;

5 Reduce u
′
, i.e. u” = x3 + u”

2x2 + u”
1x + u”

0: 1M, 2S

u”
2 = f6 + v

′
3 + v

′2
3 , u”

1 = u
′
2 + v

′
2, u”

0 = u”
2u
′
2 + u

′
1 + v

′2
2 + v

′
1;

6 Compute v” = v”
2x2 + v”

1x + v”
0 : 3M

v”
2 = v

′
2 + (v

′
3 + 1)u”

2, v”
1 = v

′
1 + (v

′
3 + 1)u”

1, v”
0 = v

′
0 + (v

′
3 + 1)u”

0;

Sum 1I, 30M, 11S

[Remark]: In [GKP04], the authors discuss two types of curves with h2 = 0 and f6 = 0, respectively. Their
doubling formulae cost 1I, 63M, 9S and 1I, 64M, 5S for this two different cases. We note that using special curves
with h(x) = h3x

3 can lead to fast computation of a divisor class doubling. We derive the new explicit doubling
formula which needs only 1I, 30M, 11S. Compared with the algorithms in [GKP04], our formula saves 33M at
the cost of extra 2S. In addition, there are four counted multiplications with f6 which can be computed cheaply
when f6 is ’small’ in the formulae.

8 Summary

Depending on the degree of h, we derived the corresponding explicit formulae which can compute dou-
blings fast in the previous sections. For h of degree 0 and 1 the case f6 not small does not apply since we
make it zero by isomorphic transformations. We also find fast doubling formulae for special curves when
the degree of h is 2 and 3. All results are summarized in Table 5.

Table 5. Overview

h(x) h(x) = h0 h(x) = h1x

hi h0 = 1 h−1
0 small h0 arb. h1 = 1 h−1

1 small h1 arb.
cost 1I, 11M, 11S 1I, 12M, 11S 1I, 16M, 11S 1I, 13M, 13S1I, 16M, 12S1I, 20M, 12S
h(x) h(x) = h2x

2 h(x) = x3

hi h2 = 1 h−1
2 small h2 arb. —

f6 small 1I, 20M, 12S 1I, 28M, 10S 1I, 32M, 10S 1I, 26M, 11S
f6 arb. 1I, 24M, 12S 1I, 32M, 10S 1I, 36M, 10S 1I, 30M, 11S

9 Experimental Results

In order to test the performance of our new doubling formulae, we implemented genus 3 HECC over 3
binary fields. Due to the attack proposed by Thériault [Thé03], we should select at least 56-bit finite fields
in order to obtain the same security as a 160-bit elliptic curve cryptosystem. So we used binary fields
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GF (259), GF (261) and GF (263). For GF (259) and GF (261), we used the minimal weight irreducible
pentanomial x59 + x7 + x4 + x2 + 1 and x61 + x5 + x2 + x + 1 to construct finite fields, respectively.
However, for GF (263), we used the minimal weight irreducible trinomial x63 + x + 1 as field extension.
Efficient algorithms summarized in [Pel02] were used to perform the field arithmetic. In addition, We
used a NAF method to perform the scalar multiplication. All tests are implemented on a Pentium-M
@1.5 GHz processor and with C programming language. The experimental results were depicted in three
bar graphs.
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In the graphs above we include the following ten cases respectively:
• deg 3 mon arb f6: The case where deg h = 3, h2 = h1 = h0 = 0, f6 6= 0 and h3 = 1;
• deg 3 mon: The case where deg h = 3, h2 = h1 = h0 = 0, f6 = 0 and h3 = 1;
• deg 2 arb f6: The case where deg h = 2, h1 = h0 = 0, f6 6= 0;
• deg 2 arb: The case where deg h = 2, h1 = h0 = 0, f6 = 0;
• deg 2 mon arb f6: The case where deg h = 2, h1 = h0 = 0, f6 6= 0 and h2 = 1;
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• deg 2 mon: The case where deg h = 2, h1 = h0 = 0, f6 = 0 and h2 = 1;
• deg 1 arb: The case where deg h = 1, h0 = 0;
• deg 1 mon: The case where deg h = 1, h0 = 0 and h1 = 1;
• deg 0 arb: The case where deg h = 0;
• deg 0 mon: The case where deg h = 1 and h0 = 1;

10 Conclusion and Outlook

We have discussed how to accelerate the computation of divisor class doublings for genus 3 hyperelliptic
curves defined over binary fields and given explicit formulae for all types of curves. Compared with the
results in [PWGP03, GKP04], our explicit formulae have reduced some field operations further and shown
excellent performance on a Pentium-M processor. The divisor addition formulae depend far less on the
coefficients of h. Several authors have improved the corresponding addition explicit formulae according
to the degree of h in [GKP04].

Side channel attacks (SCA) are powerful attacks which use a priori innocuous information such as
power consumption or timings to break implementations of cryptosystem [Koc96, KJJ99]. On lightweight
crypto-devices such as smartcards and PDAs, side channel attacks are a major threat. In order to imple-
ment genus 3 HECC securely on all kinds of embedded processors, we need consider countermeasures to
thwart SCA because of the remarkable difference of the operation counts for addition and doubling. For
example, in the case of h(x) = 1, the operation number of doubling is only one third that of addition.
In [Thé04], the author presented two integer recoding algorithms which are resistant to SPA attacks and
suitable especially to our case where the doubling operations are significantly fast than a group addition.
To avoid DPA we can employ the countermeasures proposed in [Ava03].

In this paper we restricted our attentions to affine coordinate system. However, Xinxin Fan et. al has
obtained inversion-free explicit formulae for genus 3 hyperelliptic curves [FWW05]. For genus 3 HECC
defined over binary fields, the authors gave only inversion-free explicit formulae for special curves with
h(x) = 1. So how to extended the idea of this paper to projective coordinate system and improve the
formulae in [FWW05] will be the next logical step to accelerate the implementation for genus 3 HECC.
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[Thé03] N.Thériault. Index calculus attack for hyperelliptic curves of small genus. Advances in Cryptology -
ASIACRYPT’03, G.Goos, J.Hartmanis, and J.van Leeuwen, Eds. Berlin: Springer Verlag, 2003, pp.79 - 92,
LNCS 2894.

[Wol04] T. Wollinger. Software and Hardware Implementation of Hyperelliptic Curve Cryptosystems. Europäischer
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