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Abstract. In recent years, cryptographic protocols based on the bilinear pairings have
attracted much attention. One of the most distinguished achievements in this area was
the solution to design short signatures. Up to now, there exist two short signature
schemes with random oracles and one without random oracles from bilinear pairings.
In this paper, we describe another short signature scheme which is existentially un-
forgeable under a chosen message attack without using random oracles. The security
of our scheme depends on a new complexity assumption we call the k+1 square roots
assumption. We discuss the relationship between the k+1 square roots assumption and
some related problems and give some conjectures. Further more, the k+1 square roots
assumption gives even shorter signatures under the random oracles.
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1 Introduction

It is well known that a signature scheme that produces signatures of length ` can have some
security level of at most 2`, which means that given the public key, it is possible to forge a
signature on any message in O(2`). A natural question that arises is how we can concretely
construct a signature scheme that can produce shorter signature length whilst maintaining
an existential forgery with the same security level.

Short digital signatures are always desirable. They are necessary in situations in which
humans are asked to manually key in the signature or when working in low-bandwidth com-
munication environments. They are also useful in general to reduce the communication com-
plexity of any transmission. As noted in [27], when one needs to sign a postcard, it is desirable
to minimize the total length of the original message and the appended signature. In the early
days, research in this area has been mainly focusing on how to minimize the total length of
the message and the appended signature [28, 1] and how to shorten the DSA signature scheme
while preserving the same level of security [27]. From Hidden Field Equation (HFE) problem
and Syndrome Decoding problem, a number of short signature schemes, such as Quartz [29,
15], McEliece-based signature [16], have been proposed.

Boneh, Lynn and Shacham [10] propsed a totally new approach to design short digital sig-
natures. The resulting signature scheme, referred to as the BLS signature scheme, is based on
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the Computational Diffie-Hellman (CDH) assumption on elliptic curves with low embedding
degree. In BLS signature scheme, with a signature length ` = 160 bits (which is approximately
half the size of DSS signatures with the same security level), it provides a security level of
approximately O(280) in the random oracle model. In [36, 5], a more efficient approach to
produce a signature of the same length of BLS was proposed. However, its security is based
on a stronger assumption.

Provable security is the basic requirement for signature schemes. Currently, most of the
practical secure signature schemes were proved in the random oracle model [3]. Security in
the random oracle model does not imply security in the real world. The first provably se-
cure signature scheme in the standard model was proposed by Goldwasser et al. [22] in 1984.
However, the scheme signs a message in a bit-by-bit manner and hence is regarded as not
the ideally suitable for applications. Gennaro, Halevi and Rabin [21] , Cramer and Shoup [17]
firstly proposed secure signature schemes under the so-called Strong RSA assumption in the
standard model and the efficiency of which is suitable for practical use. Later, Camenisch and
Lysyanskaya [12] and Fischlin [19] constructed another two provably secure signature schemes
under the strong RSA assumption in the standard model. In 2004, Boneh and Boyen [5] pro-
posed a short signature scheme (BB04) from bilinear groups which is existentially unforgeable
under a chosen message attack without using random oracles. The security of the scheme de-
pends on a new complexity assumption: the Strong Diffie-Hellman assumption. Therefore, it
is till a challenge to construct efficient and provably secure signature schemes in the standard
model, especially for short signatures.

Contributions. Our main contributions in this paper are:

– We construct a new efficient and provably secure short signature scheme in the standard
model from bilinear pairings. The signature size and efficiency of the proposed scheme are
same as BB04 scheme. This is the second short signature scheme without random oracles.
The security of our scheme depends on a new complexity assumption we call the k+1
square roots assumption.

– Under the random oracles, we present the even shorter signatures. It can provide signature
whose length is approximately 160 bits. It is comparable to BB04 [5] scheme and ZSS [36]
scheme and more efficient than BLS scheme.

– Related to the k+1 square roots assumption, we propose and discuss some new mathe-
matical problems and conjectures.

The rest of the paper is organized as follows: The next section contains preliminaries. We
briefly review the bilinear pairings and secure signature schemes, and propose the k+1 square
roots problem and k+1 square roots assumption. Section 3 gives the new short signature
scheme and its security analysis without random oracles. We also discuss the relationship be-
tween our new signature scheme without random oracles and the Chameleon hash signatures.
In Section 4 we show that with random oracles the k+1 square roots assumption gives even
shorter signatures. We give a security proof under the random oracle model. Section 5, we
propose and discuss many new mathematical problems and conjectures related to the k+1
square roots assumption. Section 6 concludes this paper.
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2 Preliminaries

2.1 Bilinear Pairings

In recent years, the bilinear pairings have been found various applications in cryptography
and have allowed us to construct some new cryptographic primitives. We briefly review the
necessary facts about bilinear pairings using the same notation as [8, 10]:

Let G be (mutiplicative) cyclic groups of prime order q. Let g be a generator of G .

Definition 1. A map e : G × G → GT (here GT is an additional group such that |G| =
|GT | = q) is called a bilinear pairing if this map satisfies the following properties:

1. Bilinearity: For all u, v ∈ G and a, b ∈ Zq, we have e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: e(g, g) 6= 1. In other words, if g be a generator of G, then e(g, g)
generates GT .

3. Computability: There is an efficient algorithm to compute e(u, v) for all u, v ∈ G.

We say that G is bilinear group if there exists a group GT , and a bilinear pairing e : G×G→
GT as above. Such groups can be found on supersingular elliptic curves or hyperelliptic curves
over finite field, and the bilinear parings can be derived from the Weil or Tate pairing.

2.2 The k + 1 Square Roots Assumption

In this subsection, we first introduce a new hard problem which the new signature scheme in
this paper is based.

Definition 2 (k + 1-SRP). The k + 1 Square Roots Problem in (G, GT ) is as follows:
For an integer k, and x ∈R Zq, g ∈ G, given

{g, α = gx, h1, . . . , hk ∈ Zq, g
(x+h1)

1
2 , . . . , g(x+hk)

1
2 },

to compute g(x+h)
1
2 for some h /∈ {h1, . . . , hk}.

We say that the k + 1-SRP is (t, ε)-hard if for any t-time adversary A, we have

Pr

[

A(g, α = gx, g(x+h1)
1
2 , . . . , g(x+hk)

1
2 |x ∈R Zq, g ∈ G, h1, . . . , hk ∈ Zq)

= g(x+h)
1
2 , h /∈ {h1, . . . , hk}

]

< ε.

Definition 3 (k + 1-SR Assumption). We say that the (k + 1, t, ε)-SR assumption holds
in (G, GT ) if no t-time algorithm has advantage at least ε in solving the k+1-SRP in (G, GT ),
i.e., k + 1-SRP is (t, ε)-hard in (G, GT ).
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2.3 Secure Signature Schemes

A signature scheme consists of the following four algorithms : a parameter generation algo-
rithm ParamGen, a key generation algorithm KeyGen, a signature generation algorithm Sign

and a signature verification algorithm Ver.
There are two specific kinds of attacks against signature schemes: the no-message attack

and the known-message attack. In the first scenario the attacker only knows the public key
of the signer. In the second one the attacker has access to a list of message-signature pairs.
There is a type of the strongest chosen-message attack: the adaptively chosen-message attack,
i.e., the attacker has the knowledge of the public key of the signer, and he can ask the signer
to sign any message that he wants. He can then adapt his queries according to previous
message-signature pairs. The strongest notion of security for signature schemes was defined
by Goldwasser, Micali and Rivest [22, 23] as follows:

Definition 4 (Secure signatures [22, 23]). A signature scheme S = < ParamGen, KeyGen,
Sign, Ver > is existentially unforgeable under an adaptive chosen message attack if it is in-
feasible for a forger who only knows the public key to produce a valid message-signature pair
after obtaining polynomially many signatures on messages of its choice from the signer.

Formally, for every probabilistic polynomial time forger algorithm F there does not exist
a non-negligible probability ε such that

Adv(F) = Pr













〈pk, sk〉 ← 〈ParamGen, KeyGen〉(1l);
for i = 1, 2, . . . , k;
mi ← F(pk, m1, σ1, . . . , mi−1, σi−1), σi ← Sign(sk, mi);
〈m, σ〉 ← F(pk, m1, σ1, . . . , mk, σk);
m /∈ {m1, . . . , mk} and Ver(pk, m, σ) = accept













≥ ε.

Goldwasser et al. also realize a signature scheme which satisfies the above security notion.
Their scheme has an advantage that it does not use hash functions for message formatting.
It is the first secure signature scheme under the standard model.

Here we use the definition of [4] which takes into account the presence of an ideal hash
function (the cryptographic hash function is seen as an oracle which produces a random value
for each new query), and gives a concrete security analysis of digital signatures.

Definition 5 (Exact security of signatures [4]). A forger F is said to (t, qH , qS , ε)-break
the signature scheme S = < ParamGen, KeyGen, Sign, Ver > via an adaptive chosen message
attack if after at most qH queries to the hash oracle, qS signatures queries and t processing
time, it outputs a valid forgery with probability at least ε.

A signature scheme S is (t, qH , qS , ε)-secure if there is no forger who (t, qH , qS , ε)-breaks
the scheme.

3 New Short Signatures Without Random Oracles

3.1 Construction

We describe the new signature scheme as follows:
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Let e : G × G → GT be the bilinear pairing where |G| = |GT | = q for some prime q. We
assume that |q| ≥ 160. As for the message space, if the signature scheme is intended to be
used directly for signing messages, then |m| = 160 is good enough, because, given a suitable
collision resistant hash function, such as SHA-1, one can first hash a message to 160 bits, and
then sign the resulting value. So the messages m to be signed can be regarded as an element
in Zq. In order to give an exact security proof with good bound for the new signature scheme,
we limit the message space is Zq[+1] := {a ∈ Zq| a is a quadratic residue modulo q}. The
system parameters are (G, GT , e, q, g, Zq[+1]), here g ∈ G is a random generator.

Key Generation. Randomly select x, y ∈R Z∗
q , and compute u = gx, v = gy. The pub-

lic key is (u, v). The secret key is (x, y).

Signing: Given a secret key x, y ∈R Z∗
q , and a message m ∈ Zq[+1], pick a random r ∈R Z∗

q ,
and compute

σ = g(x+my+r)
1
2 ∈ G.

Here (x+my+r)
1
2 is computed modulo q. When x+my+r is not a quadratic residue modulo

q we try again with a different random r. The signature is (σ, r).

Verification: Given a public key (G, GT , q, g, u, v), a message m ∈ Zq[+1], and a signature
(σ, r), verify that

e(σ, σ) = e(uvmgr, g).

The verification works because of the following equations:

e(σ, σ) = e(g(x+my+r)
1
2 , g(x+my+r)

1
2 )

= e(g, g)(x+my+r)
1
2 ·(x+my+r)

1
2

= e(g, g)x+my+r

= e(gx+my+r, g)

= e(uvmgr, g)

Notes: From above construction, we can regard the message space as Zq, and we also can

compute the signature as σ = g(x+m+yr)
1
2 ∈ G. But the security proofs of such schemes are

different with the description at section 3.3.

3.2 Efficiency

Using the bilinear groups, there exist three secure signature schemes without random oracles,
i.e., BB04 scheme [5], BMS03 scheme [11] and CL04 scheme [13]. BMS03 signature scheme is
based on a signature authentication tree with a large branching factor. Compare to BMS03
and CL04 scheme, our scheme has the obvious advantages in all parameters such as the public
key and signature lengths and performance.

The new signature scheme requires one computation of square root in Z∗
q and one expo-

nentiation in G to sign. For the verification, it needs two pairings and two exponentiations in
G. This is same as BB04 scheme.
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We note that the computation of the pairing is the most time-consuming in pairing based
cryptosystems. Although there have been many papers discussing the complexity of pairings
and how to speed up the pairing computation [2, 18, 20], the computation of the pairing still
remains time-consuming. Similar to BB04 scheme, some pairings in the proposed signature
scheme can be pre-computed and published as part of the signers public key such that there
is only one pairing operation in verification. We pre-compute a = e(u, g), b = e(g, g) and
c = e(v, g) and published as part of the signers public key. Then, for a message m ∈ Z∗

q , and
a signature (σ, r), the verification can be done as follows:

e(σ, σ)
?
= a · bm · cr.

So, the verification only needs one pairing and two exponentiations in GT , and we know that
the exponentiations in GT tends to be significantly faster than pairing operation.

Signature Length. A signature in the new scheme contains two elements (σ, r), one is
in G and the other is in Z∗

q . When using a supersingular elliptic curve over finite field Fpn

with embedding degree k = 6 and the modified weil pairing [10], the length of element in Z
∗
q

and G can be approximately log2 q bits, therefore the total signature length is approximately
2 log2 q bits. For detail, let P ∈ E(Fpn), ord(P ) = q, G =< P >. Let φ be a distortion map,
i.e., an efficiently computable automorphism of E[q] ∼= Zq × Zq such that φ(P ) /∈< P >= G.
Consider the bilinear pairing

ê : G×G→ µq,

defined by

ê(P, Q) = ew(P, φ(Q)),

here ew is weil pairing and µq is the subgroup of order q in F ∗
pnk .

We can choice the parameter such that the elements in G are 171-bits strings. So, we
obtain a signature whose length is approximately the same as a DSA signature with the
same security, but which is provably existentially unforgeable under a chosen message attack
without the random oracle model, which is same as BB04. Therefore, this is the second short
signature scheme without random oracles.

3.3 Proof of Security

The following theorem shows that the scheme above is existentially unforgeable in the strong
sense under chosen message attacks, provided that the k+1-SR assumption holds in (G, GT ).

Theorem 1. Suppose the (k + 1, t′, ε′)-SR assumption holds in (G, GT ). Then the signature
scheme above is (t, qS , ε)-secure against existential forgery under an adaptive chosen message
attack provided that

qS < k + 1, ε = 2ε′ + 4
qS

q
≈ 2ε′, t ≤ t′ −Θ(qST ).

where T is the maximum time for computing a square root in Z∗
q and an exponentiation in G.
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Proof. To prove the theorem, we will prove: “If there exists a (t, qS , ε)-forger F using adaptive
chosen message attack for the proposed signature scheme, then there exists a (t′, ε′)-algorithm
A solving qS-SRP (also k + 1-SRP, if k + 1 > qS), where t′ ≥ t + Θ(qST ), ε′ = ε

2 − 2 qS

q
.”

Assume F is a forger that (t, qS , ε)-breaks the signature scheme. We construct an algorithm
A that, by interacting with F , solves the qS-SRP in time t′ with advantage ε′.

Suppose A is given a challenge – a random instance of qS-SRP:

“ For an integer qS , and x ∈R Zq, g ∈ G, given

{g, α = gx, h1, . . . , hqS
∈ Zq, g(x+h1)

1
2 , . . . , g(x+hqS

)
1
2 },

to compute g(x+h)
1
2 for some h /∈ {h1, . . . , hqS

}.”

Next, we describe how the algorithm A to solve the qS-SRP by interacting with F . The
approach is similar to BB04 [5] and [35]. We distinguish between two types of forgers that
F can emulate. Let (G, GT , q, g, u, v) be the public key given to forger F where u = gx

and v = gy. Suppose F asks for signatures on messages m1, m2, · · · , mqS
∈ Z∗

q and is given
signatures (ri, σi) on these messages for i = 1, · · · , qS . Let hi = miy + ri and let (m, r, σ) be
the forgery produced by F . Denote two types of forger F as:

Type-1 Forger which either makes query for mi = −x, or outputs a forgery where my + r /∈
{h1, h2, · · · , hqS

}.

Type-2 Forger which both never makes query for message m = −x, and outputs a forgery
where my + r ∈ {h1, h2, · · · , hqS

}.

A plays the role of the signer, it produces a forgery for the signature scheme as follows:

Setup: A is given g, α = gx, with qS known solutions (hi ∈ Zq, si = g(x+hi)
1
2 ∈ G) for

random hi (i = 1, · · · , qS). A picks random y ∈ Zq and a bit bmode ∈ {1, 2} randomly. If
bmode = 1, A publishes the public key PK1 = (G, GT , q, g, u, v), here u = α, v = gy. If
bmode = 2, A publishes the public key PK2 = (G, GT , q, g, u, v), here u = gy, v = α. In F
’s view, both PK1 and PK2 are valid public keys for the signature scheme.

Simulation: The forger F can issue up to qS signature queries in an adaptive fashion. To
respond these signature queries, A maintains a list H-list of tuples (mi, ri, hi) and a query
counter l which is initially set to 0.

Upon receiving a signature query for mi, A increments l by one, and checks if l > qS . If
l > qS , it neglects further queries by F and terminate F . Otherwise, checks if g−mi = u. If
so, then A just obtained the private key for the public key PK = (G, GT , q, g, u, v) it was
given, which allows it to forge the signature on any message of its choice. At this point A
successfully terminates the simulation.

Otherwise, if bmode = 1, set ri = hi −miy ∈ Zq. In the very unlikely event that ri = 0,
A reports failure and aborts. Otherwise, A gives F the signature (ri, σi = si) This is a valid
signature on mi under the public key PK1 = (G, GT , q, g, u, v) since ri is uniform in Zq
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and

e(σi, σi) = e(g(x+hi)
1
2 , g(x+hi)

1
2 ) = e(ughi , g) = e(ugri+miy, g) = e(uvmigri , g).

If bmode = 2, , set ri = mihi−y ∈ Zq. If ri = 0, A reports failure and aborts. Otherwise, A

returns (ri, σi = s
√

mi

i ) as answer (This is why we limit the message space is Zq[+1]).
This is a valid signature on mi for PK2 because ri is uniform in Zq and

e(σ, σ) = e(g(x+hi)
1
2
√

mi , g(x+hi)
1
2
√

mi)

= e(gmihivmi , g)

= e(gy+rivmi , g)

= e(uvmigri , g)

A adds the tuple (mi, ri, vmigri) to H-list.

Reduction: Eventually, the forger F returns a forgery (m, r, σ), where (r, σ) is a valid
forgery distinct from any previously given signature on message m. Note that by adding
dummy queries as necessary, we may assume that F made exactly qS signature queries. Let
W ← vmgr. Algorithm A searches the H-list for a tuple whose rightmost component is equal
to W . Then according to two types of forger F , we denote the following events as:

F1: (Type-1 forgery:) No tuple of the form (·, ·, W ) appears on the H-list.
F2: (Type-2 forgery:) The H-list contains at least one tuple (mj , rj , Wj) such that Wj = W .

Denote E1 to be the event bmode = 1 (i.e., F produced a type-1 forgery, or F made a
signature query for a message mi such that g−mi = u.) and denote E2 to be the event bmode =
2 . We claim that A can succeed in breaking the signature scheme if (E1 ∧ F1) ∨ (E2 ∧ F2)
happens.

Case 1. If u = g−mi , then A has already recovered the secret key of its challenger, A can forge
signature on any message of his choice. We assume that F produced a type-1 forgery
(m, r, σ). Since the forgery is valid, we have

e(σ, σ) = e(uvmgr, g) = e(ugmy+r, g).

Let h = my + r. So, the forgery (m, r, σ) provides a new qS − SRP solution (h, σ).
Case 2. Since v = α = gx, then we know that there exists a pair vmj grj = vmgr. Since (m, r) 6=

(mj , rj), otherwise it is not regarded as a forgery, so, m 6= mj , r 6= rj . Therefor, A can

compute x =
rj−r

m−mj
which also enables A to recover the secret key of its challenger. He

can now forge a signature on any message of its choice.

Any valid forgery (m, r, σ) will give a new qS − SRP solution under at least one of the 2
above reductions.

This completes the description of Algorithm A. A standard argument shows that if A does
not abort, then, from the viewpoint of F , the simulation provided by A is indistinguishable
from a real attack scenario. Since the simulations are perfect, F cannot guess which reduction
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the simulator is using. Therefore, F produces a valid forgery in time t with probability at
least ε.

Since E1 and F1 are independent with uniform distribution, Pr[E1∨E2] = 1 and Pr[F1∨
F2] = 1, the probability that A succeeds is Pr[(E1 ∧ F1) ∨ (E2 ∧ F2)] = 1

2 .
Next we bound the probability that A dos not abort. From above description of A we

know that A aborts if

– At E1 ∧ F1, only if ri = 0, i.e., miy = hi. For given y, this happens with probability at
most qS

q
.

– or at E2 ∧ F2, only if ri = 0, i.e., mihi = y. For given y, this happens with probability
at most qS

q
.

So, A succeeds with probability at least ε
2 − 2 qS

q
.

Let T be the maximum time for a computing square root in Z
∗
q and an exponentiation in

G. The running time of A is t′ ≥ t + Θ(qST ). This complete the proof. �

3.4 Relation to Chameleon Hash Signatures and On-line/Off-line Signatures

Chameleon signatures, introduced by Krawczyk and Rabin [25], are based on well established
hash-and-sign paradigm, where a chameleon hash function is used to compute the crypto-
graphic message digest. A chameleon hash function is a trapdoor one-way hash function,
which prevents everyone except the holder of the trapdoor information from computing the
collisions for a randomly given input. Chameleon signatures simultaneously provide the prop-
erties of non-repudiation and non-transferability for the signed message, i.e., the designated
recipient is capable of verifying the validity of the signature, but cannot disclose the contents
of the signed information to convince any third party without the signer’s consent.

Similar to the discussion in BB04[5], the my + r component in our signature scheme
provides us with the functionality of a chameleon hash too: given m, we can choose r so that
my + r maps to some predefined value of our choice. This makes it possible to handle the
chosen message attack. Embedding the hash my + r directly in the signature scheme results
in a much more efficient construction than using an explicit chameleon hash (which requires
additional exponentiations). Therefore, our new signature scheme is a chameleon signature
scheme.

Shamir and Tauman [33] showed that chameleon hash function can be used to develop a
new paradigm called hash-sign-switch, which can convert any signature scheme into a highly
efficient on-line/off-line signature scheme. It is easy to convert our new signature scheme into
a highly efficient on-line/off-line signature scheme:

– Key Generation. This is the same as the scheme given in Section 3.1.
– Signing: This step is split into two phases, online and offline.

Offline phase.
The signer selects r ∈ Zp and computes:

σ = g(x+r)
1
2 ,

Online phase.
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For any message m, the signer computes:

r′ = r −my,

Publish (r′, σ) as the signature on m.
– Verification: Given a public key (G, GT , q, g, u, v), a message m, and a signature

(σ, r′), verify that

e(σ, σ) = e(uvmgr′

, g).

4 Shorter Signatures with Random Oracles

We present a more efficient short signature scheme based on qS − SRP in the random oracle
model. The proposed new short signature scheme with random oracle is described as follows:

The system parameters are (G, GT , e, q, g, I), here g ∈ G is a random generator and I
is the upper bound of i used in the signing and verification phase.

Key Generation. Randomly select x ∈R Z∗
q , and compute u = gx. The public key is u.

The secret key is x.

Signing: Given a secret key x, and a message m, computes σ = g(H(m||i)+x)
1
2 . The sig-

nature σ is computed for i starting at 0 and increasing by 1 at each try, until H(m||i) + x is
a quadratic residue modulo q.

Verification: Given a public key (G, GT , e, q, g, u, I), a message m ∈ Z∗
q , and a sig-

nature σ, verify that
e(σ, σ) = e(gH(m||i)u, g).

Here i starting at 0 and increasing by 1 at each try, until H(m||i) + x is a quadratic residue
modulo q.

The verification works because of the following equations:

e(σ, σ) = e(g(x+H(m||i))
1
2 , g(x+H(m||i))

1
2 )

= e(g, g)(x+H(m||i))
1
2 ·(x+H(m||i))

1
2

= e(g, g)x+H(m||i)

= e(gx+H(m||i), g)

= e(ugH(m||i), g)

The failure probability can be made arbitrarily small by picking an appropriately large
I. For each i, the probability that H(m||i) + x leads to a quadratic residue modulo q is
approximately 1/2. Hence, the probability that a given message m will be failure is 1

2I .
We pre-compute a = e(u, g) and b = e(g, g) and publish them as part of the signers

public key. Then, for a message m ∈ Z∗
q , and a signature σ, the verification can be done as

follows:
e(σ, σ)/b

?
= aH(m||i).
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This signature scheme can provide the same signature length as BLS scheme. We compare
this signature scheme with the BLS scheme from the view point of computation overhead.
The key and signature generation times are comparable to BLS signatures. The verification
time is faster since verification requires only one pairing and one exponentiation if the sig-
nature is (σ, i). If the signature is only σ, then this scheme will need one pairing and many
exponentiations in GT due to the pre-computation of a = e(u, g) and b = e(g, g), but BLS
scheme will need more pairings.

About the security of proposed signature scheme against an adaptive chosen message
attack, we have the following theorem:

Theorem 2. If there exists a (t, qH , qS , ε)-forger F using adaptive chosen message attack for
the proposed signature scheme, then there exists a (t′, ε′)-algorithm A solving qH −k-SRP (for
a constant k ∈ Z+), where

t = t′, ε′ ≥
qS−1
∏

j=0

qH − k − j

qH − j
·

k

qH

· ε.

Especially, there exists a (t′ = t, ε′ ≥ qS

q2
H

· ε)-algorithm A solving qH − 1-SRP.

Proof. In the proposed signature scheme, before signing a message m, we need to make a
query H(m||i). We ignore the case that H(m||i) is not a quadratic residue modulo q. In other
words, we assume that for any hash query, the hash oracle will give a right response. Our
proof is in random oracle model (the hash function is seen as a random oracle, i.e., the output
of the hash function is uniformly distributed).

Suppose that a forger F (t, qH , qS , ε)-break the signature scheme using an adaptive chosen
message attack. We will use F to construct an algorithm A to solve qH − 1-SRP.

Suppose A is given a challenge:
“ For integer qH and k, and x ∈R Zq, g ∈ G, given

{g, α = gx, h1, . . . , hqH−k ∈ Zq, g(x+h1)
1
2 , . . . , g(x+hqH−k)

1
2 },

to compute g(x+h)
1
2 for some h /∈ {h1, . . . , hqH−k}.”

Now A plays the role of the signer and sets the public key be u = α. A will answer hash
oracle queries and signing queries itself. We assume that F never repeats a hash query or a
signature query.

S1 A prepares qH responses {w1, w2, . . . , wqH
} of the hash oracle queries, h1, . . . , hqH−k are

distributed randomly in this response set.
S2 F makes a hash oracle query on mj for 1 ≤ j ≤ qH . A sends wj to F as the response of

the hash oracle query on mj.

S3 F makes a signature oracle query for wj . If wi = hj , A returns g(x+hj)
1
2 to F as the

response. Otherwise, A reports failure and aborts.
S4 Eventually, F halts and outputs a message-signature pair (m, σ). Here the hash value of

m is some wl and wl /∈ {h1, . . . , hqH−k}. Since (m, σ) is a valid forgery and H(m||i) = wl,
it satisfies:

e(σ, σ) = e(gH(m||i)u, g).
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So, σ = g(x+wl)
1
2 . A outputs (wl, σ) as a solution to A’s challenge.

Algorithm A simulates the random oracles and signature oracle perfectly for F . F cannot
distinguish between A ’s simulation and real life because the hash function behaves as a
random oracle. Therefore F produces a valid forgery for the signature scheme with probability
at least ε.

Now, we bound the probability A dos not abort. In step S3, the success probability of A
is qH−k

qH
, so, for all signature oracle queries, A will not fail with probability

ρ ≥

qS−1
∏

j=0

qH − k − j

qH − j

(if F only makes s(≤ qS) signature oracle queries, the success probability ofA is
∏s−1

j=0
qH−k−j

qH−j
).

Hence, after the algorithm A finished the step S4, the success probability of A is:

ε′ ≥
qS−1
∏

j=0

qH − k − j

qH − j
·

k

qH

· ε.

Especially, if let k = 1, then the success probability of A is:

ε′ ≥
qS

q2
H

· ε.

The running time of A is equal to the running time of F t′ = t. �

Another most impressive application of pairings to cryptography is the identity-based
encryption scheme [8]. The concept of ID-based cryptosystem was first introduced by Shamir
[32]. The basic idea of ID-based cryptosystem is to use the identity information of a user as
his public key. As noted in [8], there is a relationship between the short signature schemes
and the ID-based public key setting from bilinear pairing, that is the signing process in the
short signature scheme can be regarded as the private key extract process in the ID-based
public key setting. Therefore, how to construct ID-based cryptosystem using the new short
signature, such as ID-based encryption schemes [8, 6], ID-based signature schemes[14, 24, 30],
etc., is an interesting topic.

5 Some New Mathematical Problems

Before describe some mathematical problems, we need the following notions from complexity
theory.

� We say problem A is polynomial time reducible to problem B, denoted by B =⇒ A, if
there exists a polynomial time algorithm R for solving problem A that makes calls to
a subroutine for problem B. In this case, we also say the problem B is harder than the
problem A.

� We say that A and B are polynomial time equivalent if A is polynomial time reducible
to B and B is polynomial time reducible to A.
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Now we describe two well studied problems in the group (G, ·).

– Discrete Logarithm Problem (DLP): Given two group elements g and h, find an
integer n ∈ Z∗

q , such that h = gn whenever such an integer exists.

– Computational Diffie-Hellman Problem (CDHP): For a, b ∈ Z∗
q , given g, ga, gb,

compute gab.

There are two variations of CDHP:

– Inverse Computational Diffie-Hellman Problem (Inv-CDHP): For a ∈ Z∗
q , given

g, ga, to compute ga−1

.
– Square Computational Diffie-Hellman Problem (Squ-CDHP): For a ∈ Z∗

q , given

g, ga, to compute ga2

.

Due to the results of [26, 31], we have the following theorem:

Theorem 3. CDHP, Inv-CDHP and Squ-CDHP are polynomial time equivalent.

In the following, we definite a new problem in G that we call Reverse Square Compu-
tational Diffie-Hellman Problem (RSCDHP), which is closely related to the proposed
signature scheme with hash function.

Definition 6 (RSCDHP). For y ∈ Z∗
q , given g, gy2

, to compute gy.

Theorem 4. The new signature scheme with hash function is secure under no-message attack
if RSCDHP is hard, i.e., if there exists a (t, qH , ε)-forger F against no-message attack for new
scheme, then there exists an (t′, ε′)-algorithm A solving RSCDHP, where t′ = t, ε′ = 1

qH
ε.

Proof. Suppose that a forger F via no-message attack (t, qH , ε)-breaks the proposed scheme.
We will use F to construct an attack algorithm A to solve RSCDHP. Suppose that A is given
a challenge:

“ For y ∈ Z
∗
q , given g, gy2

, to compute gy.”

A chooses t ∈ Z∗
q at random, thenA runs F with the system parameter (G, GT , e, q, g, I),

the public key is u = gy2

/gt. F makes hash oracle queries during its execution. A picks an
integer i0 from {1, · · · , qH} at random.

Now, suppose F makes a hash oracle query on mi for 1 ≤ i ≤ qH . If i = i0, then A returns
t as a hash value of mi0 . Otherwise, A chooses hi ∈ Z∗

q and returns it as the hash value of mi.
Eventually F halts and outputs a message-signature pair (m, σ). Without loss of generality
we may assume that F has requested the hash query m before. Suppose m = mi for some i. If
i 6= i0, then A outputs “failure” and halts. Otherwise, A outputs σ as a solution of RSCDHP
given by g and gy2

. Since (m, σ) is a valid forgery and H(m) = t, it satisfies:

e(σ, σ) = e(ugH(m), g) = e(gy2

/gt · gt, g) = e(gy2

, g).

The running time of A is equal to the running time of t′ = t. The the success probability of
A is: ε′ = 1

qH
ε. �
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It is not hard to prove that

Theorem 5. RSCDHP =⇒ 1-RSP =⇒ 2-RSP =⇒ · · · =⇒ k-RSP =⇒ k+1-RSP.

Similar to the Square Computational Diffie-Hellman Problem and Reverse Square Com-
putational Diffie-Hellman Problem, we have

Definition 7 (k+1 Exponent Problem [36]). Given k + 1 values < g, gy, gy2

, . . . , gyk

>,

compute gyk+1

.

Definition 8 (k-RSCDH problem). For y ∈ Z
∗
q , given g, gy2

, gy3

, . . . , gyk

, gyk+1

to com-
pute gy.

We present some open problems and conjectures below for the first time:

Conjecture 1 k-RSP and k-RSCDHP are polynomial time equivalent.

Motivated by the signature scheme we also formulate a strong form of the conjecture.

Conjecture 2 RSCDHP is harder than SCDHP. Especially, if the order q of G is prime,
RSCDHP and SCDHP are polynomial time equivalent.

When the order q of G is not a prime, e.g., a RSA module (i.e., it is the product of two
safe primes), RSCDHP may be harder than SCDHP. This is because that even DLP can be
solved (hence the SCDHP is also solved), it seems that we still can not solve RSCDHP due
to the computation of the quadratic residue modulo a RSA module.

6 Conclusion and Further Works

In this paper, we describe the second short signature scheme from bilinear pairing which is
existentially unforgeable under a chosen message attack without using random oracles. The
security of our scheme depends on a new complexity assumption we call the k+1 square roots
assumption. We discuss the relationship between the k+1 square roots assumption and some
related problems and conjectures. Furthermore, the k+1 square roots assumption gives even
shorter signatures under the random oracles, a signature is only one element in a finite field.

Another main contribution of this paper is that we first propose some new mathematical
problems (k + 1 RSP, RSCDHP, etc.). These problems are not well studied before and we are
uncertain their difficulty. For further works, we expect to give a bound on the computational
complexity of these problems and seek more their applications for designing cryptographic
schemes.

BLS[10], BB04 [5] and ZSS [36] short signature schemes play an important role in many
paring-based cryptographic systems. The proposed short signature scheme in this paper is
comparable to them and we expect to see many other schemes based on it, such as group
signatures [7], aggregate signatures [9] and universal designated-verifier signatures [34].
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