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Abstract 
Finding suitable non-supersingular elliptic curves becomes an important issue for the 
growing area of pairing-based cryptosystems. For this purpose, many methods had 
been proposed when embedding degree k and cofactor h were taken different values. 
In this paper we propose a new method to find pairing-friendly elliptic curves without 
restrictions on embedding degree k and cofactor h. We propose the idea of effective 
polynomial families for finding the curves through different kinds of Pell equations or 
special forms of D(x)V2(x). In addition, we discover some efficient families which can 
be used to build perfect pairing-friendly elliptic curves over extension fields, e.g. Fq

2. 
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non-supersingular elliptic curves, pairing-friendly elliptic curves, Pell equation 

1. Introduction 
 
Apart from identity-based encryption scheme [12] and short signature scheme [13], 
selecting suitable elliptic curves for pairing-based cryptosystems is one of the most 
important issues in modern public-key cryptography. In pairing-based cryptosystems, 
Elliptic Curve Discrete Logarithm Problem (ECDLP) on supersingular elliptic curves 
can be reduced to Discrete Logarithm Problem (DLP) over an extension field by Weil 
Pairing [10] or Tate Paring [15]. However, because of the weakness of supersingular 
elliptic curves [11], researchers have explored other form of curves, such as the 
non-supersingular elliptic curves, for pairing-based cryptosystems. In 2001, Miyaji, 
Nakabayashi and Takano [8] first proposed a method to find suitable 
non-supersingular elliptic curves for pairing-based cryptosystems. They discussed the 
problem from the point of view of tract t. Scott and Barreto [1] extended the method 
of Miyaji et al and found more suitable non-supersingular elliptic curves. Gallbraith, 
Mckee and Valenca [3] summarized the method proposed by early researchers and 
presented some appropriate families of group orders of such elliptic curves. Brezing 
and Weng also proposed an alternative method to find these curves [7]. They used t − 
1 as a kth root of unity modulo prime r. Dupont, Enge and Morain [16] also proposed 
another method for finding the suitable non-supersingular elliptic curves. In their 
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method, tract t was chosen large enough to make 4q – t2 small for producing effective 
values of D. In the most recent work, Barreto and Naehrig [17] generated 
non-supersingular elliptic curves with lg(q)/lg(r) = 1 and embedding degree k = 12. 
They presented the best curves known so far and these curves were actually generated 
by a special polynomial family of q(x), t(x) and r(x), where 4q(x) – t2(x) can be 
factorized as one square polynomial multiplying with one constant number. 

 
In this paper we propose a new method for finding suitable non-supersingular 

elliptic curves for pairing-based cryptosystems. Compared to the previous work, the 
new method ignores the restrictions imposed on the embedding degree k and cofactor 
h. By using the new method, extended versions of Pell equations are found and solved 
to produce the elliptic curves by Complex Multiplication (CM) method [5]. Also 
when Pell equation can not be found, the idea of effective polynomial families of 
elliptic curves is proposed as another possible method for finding the suitable elliptic 
curves.  

 
This paper is organized as follows. In sections 2 we give a description of the 

mathematics background. In Section 3 we present the theoretical analysis and the new 
method. In addition, the idea of effective polynomial families of elliptic curves is 
proposed in this section. In Section 4 we propose some special polynomial families 
which can be used to generate pairing-friendly elliptic curves over extension field and 
we draw the conclusion in Section 5. Some parameters of several elliptic curves based 
on the proposed polynomial families are presented in Appendix A and Appendix B. 
 

2. Mathematics Background 
 
To find suitable elliptic curves for pairing-based cryptosystems, certain equations are 
required to be solved. Actually all the previous work used different approaches to 
solve the relative equations and set up the elliptic curves. 

 
Assume the cofactor h is an integer, r is the order of a point as a big prime number 

and t is the trace of an elliptic curve, we want to find an elliptic curve over Fq, where 
q = p is a prime number (we only consider the prime field in this paper). ECDLP on 
such elliptic curves can be reduced to DLP over Fq

k, where k is the smallest integer 
satisfying certain conditions, defined as the embedding degree [1]. The following 
equations determine whether such an elliptic curve exists or not. 
 

In a strict sense to find the elliptic curves suitable for pairing-based cryptosystems 
[10], we need  

r2 | #E(Fq)  (1) 
r | qk – 1  (2) 

However, under a mild condition [6], we can just consider q as kth roots of unity 
modulo r, like what had been done in [7]. Meanwhile since k should be the smallest 
integer satisfying the conditions, equation (2) should be presented as r| qk – 1 and qi – 1 
is not divisible by r when 0 < i < k. Thus from [14] we can get 

dr =Φk(q) (3) 
where d is an integer and Φk(q) is the cyclotomic polynomial of q with embedding 
degree k and  

d’r ≠ Φi(q), 0 < i < k  (4) 
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Besides these conditions we still need 
hr = q + 1 – t  (5) 

where h is an integer. By combining equation (3) and (5) together, we can get 
sr = Φk(t – 1)  (6) 

where s is also an integer[1]. Since k the smallest integer, with the same reason we have 
s’r ≠ Φi(t – 1), 0 < i < k (7) 

By Hasse’s bound we also need 
|t| ≤ 2q1/2  (8) 

Then we can compute the elliptic curve by solving 
DV2 = 4q – t2  (9) 

where D is chosen by certain conditions [2]. For solving equation (9), it is desired to 
find the relations between q and t, as the family of group order [3]. When q and t belong 
to quadratic families, equation (9) may be transformed into a well known Pell equation 
[4] as 

y2 – uDV2 = m  (10) 
where D should a square free number. After finding effective values of D, q and t, the 
elliptic curve can be obtained by implementing the Complex Multiplication (CM) 
method [5]. 
 

All the above contents are about how to find suitable elliptic curves for 
pairing-based cryptosystems in integer field. But it is impossible to search the whole 
integer field to obtain the suitable solutions. Thus we should transfer the problem into 
polynomial field. When analyzing in polynomial field, we assume q, t, r as q(x), t(x) 
and r(x); meanwhile h, d, s, D and V should be considered as h(x), d(x), s(x), D(x) and 
V(x). In the follows we give a Lemma which proves that in polynomial field, equation 
(4) and (7) are already both efficient and necessary conditions. In polynomial field 
equation (5) and (8) are not needed to ensure that k is the smallest integer.  
 
Lemma 1 
Finding the smallest integer k with that ECDLP over E(Fq) can be reduced to DLP 
over Fq

k, in polynomial field, we only need the conditions as r(x)| Φk(q(x)) and r(x)| 
Φk(t(x) – 1). In the proof of Lemma 1, q(x), t(x), r(x) and Φk are defined as different 
polynomials. 
 
Proof: In polynomial field, by common knowledge we know that from r(x) | q(x)k – 1, 
we can get r(x) | Φ1(q(x))Φi(q(x))Φj(q(x))…Φk(q(x)), where i, j…k are all the factors 
of k. Then since in polynomial field Φi(q(x)) is relative irreducible to Φj(q(x)) where i 
≠ j, if we get r(x)| Φk(q(x)), Φi(q(x)) will not be divisible by r(x), when i < k. Thus to 
get the smallest integer with r(x) | q(x)k – 1, we only need to have r(x)| Φk(q(x)). For 
the same reason when finding the smallest integer with r(x) | (t(x) – 1)k – 1, we only 
require r(x)| Φk(t(x) – 1).  
 

Thus for finding suitable elliptic curves for pairing-based cryptosystems in 
polynomial field, the equations (3, 5, 6, 8, 9) are required and they can be rewritten 
as: 

d(x)r(x) =Φk(q(x)) (11) 
h(x)r(x) = q(x) + 1 – t(x) (12) 
s(x)r(x) =Φk(t(x) – 1) (13) 
|t(x)| < 2q(x)1/2  (14) 
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D(x)V(x)2 = 4q(x) – t2(x)  (15) 

3. Effective Polynomial Families for Producing More Pairing - 
Friendly Elliptic Curves 
In the following section the math evidence for our new method is first provided. As 
proposed in [8], from equation (5) and (9) we can get the difference between 4q and t2 
after knowing t and r: 

DV2 = 4q – t2 = 4(hr + t – 1) – t2 ≡ – (t – 2)2 mod r (16) 
Represented in polynomial field, we have 

D(x)V2(x) = 4q(x) – t2(x) = – (t(x) – 2)2 mod r(x) (17) 
Then after getting r(x) and t(x), the form of D(x)V2(x) can be obtained. But whether  

q(x) = [D(x)V2(x) + t2(x)]/4 (18) 
satisfies equation (11) should be tested. After finding the effective q(x), we can 
directly solve 

DV2 = 4q(x) – t2(x) 
as a Pell equation if D(x)V2(x) = 4q(x) – t2(x) is quadratic. Otherwise all possible 
values of x should be tested to satisfy that q(x) and r(x) are prime numbers and at the 
same time small values of D exist. Thus in the follows we will give a rough 
description of our new method. 
 

When finding the suitable elliptic curves for pairing-based cryptosystems in 
polynomial field, we assume q, t, r as q(x), t(x) and r(x) respectively; meanwhile h, d, 
s, D and V should be considered as h(x), d(x), s(x), D(x) and V(x). At first we use an 
arbitrary irreducible polynomial r(x) to represent prime r. Then by Φk(t(x) – 1) ≡ 0 
mod r(x) we can find effective trace polynomials t(x). As proposed in [8], D(x)V2(x) = 
4q(x) – t2(x) ≡ – (t(x) – 2)2 mod r(x). Thus we can compute D(x)V2(x) by the above 
equation after knowing t(x) and r(x). Then the irreducible polynomial q(x) can be 
obtained by 4q(x) = D(x)V2(x) + t2(x). q(x) should also satisfy that Φk(q(x)) ≡ 0 mod 
r(x). If the obtained q(x) is according to all the conditions, then the D(x)V2(x) found 
above is effective. 
 

Based on the above analysis we propose a new algorithm for finding the suitable 
polynomial families of pairing-friendly elliptic curves.  
 
Algorithm 1 
Input: embedding degree k 
Output: q(x), t(x), r(x), D(x)V2(x) 

1. Choose an irreducible polynomial r(x). 
2. Compute trace polynomial t(x) by Φk(t(x) – 1) ≡ 0 mod r(x). 
3. Compute polynomial D(x)V2(x) by D(x)V2(x) = 4q(x) – t2(x) ≡ – (t(x) – 2)2 

mod r(x). 
4. After obtaining D(x)V2(x), compute q(x) by 4q(x) = D(x)V2(x) + t2(x). Test 

whether the irreducible polynomial q(x) satisfy Φk(q(x)) ≡ 0 mod r(x). 
5. If the obtained q(x) is effective, output all results as q(x), t(x), r(x), D(x)V2(x); 

otherwise repeat from step 1. 
 

By our new method more polynomial families for building the pairing-friendly 
elliptic curves can be easily found. But for finding the parameters of such curves often 
needs special forms of q(x), t(x) and r(x). In integer field, it means when D is a 
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“small” integer (D ≤ 1010) [1] and q, r are large prime numbers (qk > 21024 and r > 2160) 
[1, 9], DV2 = 4q – t2 must have a solution. This is actually to require special forms of 
q(x), r(x) and D(x)V2(x) = 4q(x) – t2(x) in polynomial field. Since when D(x)V2(x) is 
an arbitrary polynomial, to find valid values of D is very difficult when q and r are 
secure parameters. In the following parts we will discuss different forms of D(x)V2(x) 
that can be used to produce parameters of pairing-friendly elliptic curves efficiently. 
 

Before the discussion we need to mention a observation that when q(x), t(x) and 
r(x) are suitable polynomial families that can be used to generate pairing-based 
cryptosystems, then q(-x), t(-x) and r(-x) are such polynomial families too. This 
observation comes from the fact that in the operation x can be taken as either positive 
or negative values. 

3.1 Polynomial Families with Square Polynomial and Constant Number Factors 
Considering polynomial family D(x)V2(x) = 4q(x) – t2(x), when we require q, r as 
large prime numbers and D as an “small” integer, the simplest situation happens when 
4q(x) – t2(x) can be expressed as one square polynomial multiplying with one constant 
positive number. This means that D(x)V2(x) = DV2(x), where the degree of V(x) is not 
zero. Then we only need to seek the suitable x when q(x) and r(x) are prime numbers 
since the parameter D will always equal the constant integer. It is rather easy to find 
such x. The beauty for finding such polynomial families is that in the paring-based 
cryptosystems based on these polynomial families we have better possibilities to find 
certain x satisfying certain conditions which makes the computation of the systems 
more efficient, such as the compressed pairing [18]. 
 

The work of Barreto and Naehrig [17] gave us a perfect example of such 
polynomial families when k = 12. For finding such polynomials they claimed to use 
the condition that Φk(t(x) – 1) = r(x)r(–x). When k = 12, they got from [3] that t(x) – 1 
only could be 2x2 or 6x2 when Φk(t(x) – 1) is the multiple of two quadratic 
polynomials as r(x) and r(–x). But as the lemma proposed in [19], –2x2 and –6x2 also 
can be used as the possible polynomial with the feature of splitting. This generates the 
results tabulated in Table 1. 

  
t(x) r(x) q(x) 4q(x) – t2(x) 

2x2 + 1 4x4 + 4x3 + 2x2 + 2x + 1 4x4 + 4x3 + 4x2 + 2x + 1 (2x2 + 1)(6x2 + 8x + 
3) 

–2x2 + 1 4x4 + 4x3 + 2x2 + 2x + 1 4x4 + 4x3 + 2x + 1 12x4 + 16x3 + 4x2 + 
8x + 3 

6x2 + 1 36x4 + 36x3 + 18x2 + 6x + 1 36x4 + 36x3 + 24x2 + 6x + 1 3(6x2 + 4x + 1)2 
–6x2 + 1 36x4 + 36x3 + 18x2 + 6x + 1 36x4 + 36x3 + 12x2 + 6x + 1 3(36x4 + 48x3 + 20x2 

+ 8x + 1) 
Table 1: more splitting polynomial families when k = 12 

 
In Table 1 when t(x) – 1 = ±2x2 and –6x2, 4q(x) – t2(x) can not be factorized as one 

square polynomial multiplying with one constant number. When t(x) – 1 = 2x2, q(x) = 
4x4 + 4x3 + 4x2 + 2x + 1 = (2x2 + 1)(2x2 + 2x + 1) is not even an irreducible 
polynomial, which can not be used to produce a prime number q. Actually Φk(t(x) – 1) 
= r(x)r(–x) may not be a necessary condition to find such polynomial families. When 
k = 6, in Table 2 we list some polynomials of r(x), q(x) and t(x), where 4q(x) – t2(x) = 
DV2(x) but Φk(t(x) – 1) ≠ r(x)r(–x). These polynomial can be used to generate 
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pairing-friendly elliptic curves efficiently when k = 6 and ρ = lg(q)/lg(r) ≈ 2. The first 
family is used to generate the parameters of an elliptic curve in Appendix A. 

 
q(x) t(x) r(x) 4q(x) – t2(x) 

9x4 – 9x3 + 9x2 – 3x + 1 3x2 + 1 3x2 – 3x + 1 3(3x2 – 2x + 1)2 
27x4 – 9x3 + 3x2 – 3x + 1 –9x2 + 1 9x2 – 3x + 1 3(3x2 – 2x + 1 )2 

36x4 + 9x2 – 3x + 1 –6x2 – 3x + 1 12x2 + 1 3(6x2 – x + 1 )2 
Table 2: effective polynomial families when k = 6, ρ ≈ 2  

 
Although the curves produced from the above table may not be the ones with best 

performance since ρ = lg(q)/lg(r) ≈ 2 [1], the best form of 4q(x) – t2(x) = DV(x) will 
always lead to a small D. This gives us better possibilities to search suitable x with 
other efficient conditions such as [18]. For finding such results, in the following we 
will propose a Lemma which can be used to find the same polynomial family in Table 
1 easily. 
 
Lemma 2 
When finding q(x) and t(x) with 4q(x) – t2(x) = DV2(x) and degree(q(x)) = 
degree(t(x))/2, if assuming q(x) = qnxn + qn-1xn-1 + … + q1x + q0, t(x) = tnxn + tn-1xn-1 
+ … + t1x + t0, then 4qn – tn

2 and 4q0 – t0
2 can be factorized as one constant number 

multiplying with one square number. 
 
Proof: Assuming q(x) = qnxn + qn-1xn-1 + … + q1x + q0, t(x) = tnxn + tn-1xn-1 + … + 
t1x + t0, V(x) = vnxn + vn-1xn-1 + ... + v1x + v0, when 4q(x) – t2(x) = DV(x), since 4qn – 
tn

2 = Dvn
2 and 4q0 – t0

2 = Dv0
2, we can have the above conclusion.  

 
In the above Lemma we just suggest the common form of q(x) and t(x) when 4q(x) 

– t2(x) can be factorized as one constant number multiplying with one square 
polynomial. Actually the simplest case appears when qn = a2, tn/2 = a and q0 = b2, t0 = 
b, where a, b are integers. In such case, 4qn – tn/2 = 3a2 and 4q0 – t0

2 = 3b2 and m/n 
just equals a/b. In these situations D will equal 3. All the results in Table 2 are 
according to this condition. By the same technique, we also find the perfect 
polynomial family proposed by [17] and some more such polynomial families when k 
= 3 and 4. Table 3 and Table 4 tabulate the results. 

 
q(x) t(x) r(x) 4q(x) – t2(x) 

3x4 + 3x3 + 4x2 + 2x + 1 –3x2 – 2x – 2 x2 + x + 1 3x4  
x4 + x3 + 3x2 + x + 1 –x2 – 2x – 1 x2 + x + 1 3(x2 + 1 )2 

Table 3: effective polynomial families when k = 3, ρ ≈ 2 
 

q(x) t(x) r(x) 4q(x) – t2(x) 
4x4 – 4x3 + 2x2 – 2x + 1 –4x2 + 2x 2x2 – 2x + 1 4(x – 1)2 

8x4 + 6x2 + 2x + 1 4x2 + 2x + 2 4x2 + 1 4x2(2x2 – 1)2 
128x4 + 24x2 + 4x + 1 –16x2 + 4x 16x2 + 1 4(8x2 + 2x + 1)2 

Table 4: effective polynomial families when k = 4, ρ ≈ 2 
 
Actually as the conditions proposed by [17] for finding the special forms of 

polynomial t(x) with Φk(t(x) – 1) = r(x)r(–x), the value of k can not be 3, 4 or 6. If we 
want ρ = lg(q)/lg(r) ≈ 1, the degree of q(x) must equal with that of r(x). Then since 
equation (8) must be satisfied as the Hasse’s bound, the degree of Φk(t(x) – 1) has to 
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be at least four times of the degree of t(x) so that Φk(t(x) – 1) has the same degree of 
r(x)r(–x). Thus the values of k can not be 3, 4 or 6. 
 

3.2 Polynomial Families for Building and Solving Pell Equations  
When finding the suitable non-supersingular elliptic curves by setting up and solving 
certain Pell equations, different previous work had been proposed in [1, 3, 8]. In this 
section, we will propose the ideas of effective Pell equations and extended versions of 
Pell equations. The first idea gives the definition of certain Pell equations which have 
a better chance to generate pairing-friendly non-supersingular elliptic curves and the 
second idea shows the possibility to find such elliptic curves when k is larger than 6. 
Before the proposition of our new definitions, first we will give a Lemma which 
discovers an intrinsic relation between the polynomial families of elliptic curves 
when k = 3 and k = 6. 
 
Lemma 3 
Suppose in polynomial field t(x) and r(x) is a polynomial family of a 
non-supersingular elliptic curves with embedding degree k = 6. Then use 2 – t(x) as 
another trace polynomial t’(x), with same r(x) we can find a families with embedding 
degree k = 3. The converse situation is also true. 
 
Proof: when t(x) and r(x) satisfy the condition as a polynomial family with 
embedding degree k = 6, we have Φ6(t(x) – 1) = (t(x) – 1)2 – (t(x) – 1) + 1 = t2(x) – 
3t(x) + 3 ≡ 0 mod r(x). Then use 2 – t(x) as t’(x). With the same r(x), we implement 
them into the relation of a family when k = 3 as Φ3(2 – t(x) – 1) = (1 – t(x))2 + (1 – 
t(x)) + 1 = t2(x) – 3t(x) + 3. It is same with the equation when k = 6. Thus we can 
have Φ3(2 – t(x) – 1) ≡ 0 mod r(x).  As a conclusion, 2 – t(x) and r(x) can set up a 
valid polynomial family of a non-supersingular elliptic curve with embedding degree 
k = 6. The proof of the converse situation is similar.  
 

By the above lemma we can easily find polynomial families with k = 3 from the 
polynomial families with k = 6 or do on the converse case. Actually in [3] all the 
listed families with k = 3 or k = 6 can be found by the above lemma. Now we discuss 
some important issues for our new method. 
 

As analyzed above, polynomial D(x)V2(x) can be obtained by D(x)V2(x) = 4q(x) – 
t2(x) ≡ – (t(x) – 2)2 mod r(x) after knowing t(x) and r(x). In most cases V2(x) will equal 
1 since it is hard to find square polynomial factors contained in 4q(x) – t2(x).  Here if 
we want to set up a Pell equation, D(x)V2(x) must be chosen as a quadratic polynomial 
as ax2 + bx + c; otherwise we have to test all possible values for x to satisfy that q(x) 
and r(x) are prime numbers and meanwhile small values of D exist. Considering the 
quadratic form of D(x)V2(x) used to set up Pell equations, as analyzed in [3], the 
relation between q(x) and t(x) can be defined as the polynomial families of elliptic 
curves. But due to the security reason, special forms of families should be considered. 
 

For suitable q and t, the value for D must be a small integer (e.g. D < 1010) [1]. 
This is actually a very strict condition since meanwhile we need q and t as secure 
parameters. When k = 6, we at least require that q6 > 21024 [1] and r > 2160 [9]. This 
gives that q >2171≈ 1051. Since |t| < 2q1/2, equation (5) will always generate a very 
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large number. It is very hard to find a value of D smaller than 1010 for 
implementation. 
 

This idea can be proved by the examples proposed in [1] and [3]. The authors [3] 
noticed that compared to other families, q(x) = 208x2 + 30x + 1 and t(x) = –26x – 2 is 
particularly “lucky” in generating suitable (q, t) pairs. But it seemed they did not give 
the reason why this family could generate most of the examples in [1]. Now we 
provide some mathematics analysis to illustrate this question. Assuming 4q(x) – t2(x) 
is a quadratic polynomial as ax2 + bx + c, then finding suitable values of D is actually 
to solve a quadratic equation as DV2 = ax2 + bx + c for integer solutions with enough 
length, where D is taken as a square free number between 0 to 1010 [1] and V2 is a 
square number. Meanwhile for the suitable x, q(x) and r(x) need to be prime numbers. 
Thus more suitable integer solutions found for DV2 = ax2 + bx + c, more possibilities 
we can test for prime q(x) and r(x). Now we transform the equation into ax2 + bx + c 
– DV2 = 0 and try to factorize it since we only need the integer solutions. This means 
that ax2 + bx + c – DV2 = 0 must be factorized as (a1x + d1)(a2x + d2) = 0, where a1a2 
= a, d1d2 = c – DV2, a1d2 + a2d1 = b, a1 | d1 and a2 | d2. Now considering the situation 
that a1 = 1, obviously this kind of equations will have a better chance to generate the 
suitable integer solutions since the condition a1 | c1 can be ignored. Actually this is the 
most “lucky” family mentioned in [3]. The proposed family is that q(x) = 208x2 + 30x 
+ 1, t(x) = –26x – 2, DV2 equals 4q(x) – t2(x) as 4x(39x + 4). Here 4x can be viewed 
as x since 4 is a square contained in V2, which can be ignored in the computation. 
When 4q(x) – t2(x) can be factorized, which means DV2 = ax2 + bx + c = (a1x + 
c1)(a2x + c2), the final quadratic equation also has a better chance to generate suitable 
values of D because the condition a1a2 = a can be ignored. In such situations we just 
need to find the suitable values of D and V where c – DV2 can be factorized as d1d2 
and a1d2 + a2d1 = b, a1 | d1 and a2 | d2. This is actually the other “lucky” family 
mentioned in [3]. 

 
For the suitable families as the quadratic polynomial relations between q(x) and 

t(x), as analyzed above, we need that 4q(x) – t2(x) can be factorized. This ensures a 
larger possibility of the existence of small values of D. In other words, when 
transformed into Pell equations, these quadratic equations with the feature of 
factorization between 4q(x) and t2(x) are more likely to have suitable solutions. 
However, in most cases 4q(x) – t2(x) is an irreducible quadratic polynomial [3]. It is 
very difficult to find suitable x to satisfy that q(x) and r(x) are prime numbers and at 
the same time 4q(x) – t2(x) has a factor as a large square. In the following paragraphs, 
we will present some effective polynomial families with larger values of cofactor h, 
when k = 3, 4, and 6.   
 
(a) New quadratic families of elliptic curves when k = 3, h > 5 and ρ ≈ 1 
By our new algorithm, we can easily find all polynomial families with arbitrary values 
of h. In Table 5 we tabulate some polynomial families when k = 3, h = 6 and ρ ≈ 1. 
These families have not been proposed by any previous work and in Append A we 
generate the parameters of several elliptic curves for each of the family.  
 

h q(x) t(x) r(x) 4q(x) – t2(x) 
6 6x2 + 5x + 5 –x x2 + x + 1 23x2 + 20x + 20 
6 18x2 + 15x + 4 –3x – 1 3x2 + 3x + 1 3(21x2 + 18x + 5) 
6 78x2 + 29x + 2 –13x – 3 13x2 + 7x + 1 143x2 + 38x – 1 
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6 114x2 + 71 + 10 –19x – 7 19x2 + 15x + 3 95x2 + 18x – 9 
6 126x2 + 33x + 1 –21x – 4 21x2 + 9x + 1 3(21x2 – 12x – 4) 

Table 5: new quadratic polynomial families when k = 3, h = 6 
 
Based on the idea of effective polynomial families of elliptic curves, for large values 
of cofactor h, in Table 6 we tabulate some quadratic polynomial families when k = 3 
and h = 7 to 12. Among them we give two families with the feature of factorization 
when k = 3, ρ = lg(q)/lg(r) ≈ 1. Both of them should have a better chance for 
generating pairing-friendly elliptic curves.  
 

h q(x) t(x) r(x) 4q(x) – t2(x) 
7 364x2 + 72x + 3 –26x – 3 52x2 + 14x + 1 3(260x2 + 44x + 1) 
8 504x2 + 141x + 10 21x + 3 63x2 + 15x + 1 1575x2 + 438x + 31 
9 432x2 + 96 + 7 –12x – 1 48x2 + 12x + 1 9(176x2 + 40x + 3) 
10 310x2 + 79x + 4 –31x – 5 31x2 + 11x + 1 3(93x2 + 2x – 3) 
11 473x2 + 100x + 4 –43x – 6 43x2 + 13x + 1 43x2 – 116x - 20 
12 252x2 + 87x + 7 –21x – 4 21x2 + 9x + 1 3(9x + 2)( 21x + 2 ) 
16 688x2 + 251x + 22 43x + 7 43x2 + 13x + 1 3(7x + 1)(43x + 13) 

Table 6: new quadratic polynomial families when k = 3, ρ ≈ 1 
 
(b)New quadratic families of elliptic curves when k = 4, h > 5 and ρ ≈ 1 
In Table 7 we list some quadratic polynomial families when k = 4 and h = 6 to 12. 
The third and fourth families in the table are effective families with the feature of 
factorization. The second polynomial family of h = 8 is used to generate the 
parameters of a non-supersingular elliptic curve in Appendix A. 
 

h q(x) t(x) r(x) 4q(x) – t2(x) 
6 12x2 + 10x + 5 –2x 2x2 + 2x + 1  4(11x2 + 10x + 5) 
7 35x2 + 23x + 5 –5x – 1 5x2 + 4x + 1 115x2 + 82x + 19 
8 136x2 + 47x + 4 –17x – 3 17x2 + 8x + 1 (5x + 1)(51x + 7) 
8 136x2 + 81x + 12 17x + 5 17x2 + 8x + 1 (3x + 1)(85x + 23) 
9 45x2 + 41x + 11 5x + 3 5x2 + 4x + 1 155x2 + 134x + 35 
10 80x2 + 36x + 9 –4x 8x2 + 4x + 1 4(76x2 + 36x + 9) 
11 220x2 + 98x + 13 10x + 3 20x2 + 8x + 1 780x2 + 332x + 43 
12 384x2 + 88x + 11 –8x 32x2 + 8x + 1 4(368x2 + 88x + 11) 

Table 7: new quadratic polynomial families when k = 4, ρ ≈ 1 
 
(c) New quadratic families of elliptic curves when k = 6, h > 5 and ρ ≈ 1 
Same as the results listed in Table 6, by our method we find more quadratic 
polynomial families of non-supersingular elliptic curves when k = 6, h >5 and ρ ≈ 1. 
When h = 9 one of the families we present in Table 8 is an effective polynomial 
family. Two of the families in Table 8 are used to generate the parameters of two 
non-supersingular elliptic curves in Appendix A.  
 

h q(x) t(x) r(x) 4q(x) – t2(x) 
6 24x2 + 14x + 7 2x + 2 4x2 + 2x + 1 4(23x2 + 12x + 6) 
6 72x2 + 30x + 5 –6x 12x2 + 6x + 1 4(63x2 + 30x + 5) 
7 91x2 + 36x + 4 –13x – 2 13x2 + 7x + 1 195x2 + 92x + 12 
7 49x2 + 28x + 5 –7x – 1 7x2 + 5x + 1 147x2 + 98x + 19 
8 32x2 + 18x + 9 2x + 2 4x2 + 2x + 1 4(31x2 + 16x + 8) 
8 608x2 + 202x + 17 –38x – 6 76x2 + 30x + 3 4(247x2 + 88x + 8) 
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9 279x2 + 130x + 15 31x + 7 31x2 + 11x + 1 (5x + 1)(31x + 11) 
9 81x2 + 30x + 10 3x + 2 9x2 + 3x + 1 9(35x2 + 12x + 4) 
10 40x2 + 22x + 11 2x + 2 4x2 + 2x + 1 4(39x2 + 20x + 10) 
10 1750x2 + 415x + 26 –35x – 3 175x2 + 45x + 3 5(1155x2 + 290x + 19) 

Table 8: new quadratic polynomial families when k = 6, ρ ≈ 1 
  

In the above contents, actually we present some effective polynomial families 
which can be used to set up certain Pell equation. These Pell equations have better 
chances to obtain pairing-friendly elliptic curves in implementations. Then we should 
point out that when q(x) has degree larger than 2, we can not get Pell equation from 
4q(x) – t2(x) since it will not be a quadratic polynomial. But if we factorize 4q(x) – 
t2(x) as D(x)V2(x) and D(x) is quadratic, we still can obtain Pell equations just by D(x). 
The reason is that square polynomial V2(x) can be ignored in the computation. This 
can be viewed as to set up the extended versions of Pell equations. By this idea more 
Pell equation can be established and more elliptic curves may be found when k > 6. 
Here we should mention one useful observation. Besides the situations when q(x) and 
t2(x) are quadratic polynomials, sometimes extended versions of Pell equations can be 
produced when 4q(x) – t2(x) are like the forms as: 

4q(x) – t2(x) = ax2i + bxi + c (19) 
where a, b, c and i are integers. For example, when 4q(x) – t2(x) = ax4 + bx2 + c, 
replacing x2 by y, we still may get a Pell equation as  

DV2 = ay2 + by + c  (20) 
Actually when 4q(x) – t2(x) can be viewed as y(x)2 – c, where y(x)2 is any square 
polynomials and c is a constant number, the effective Pell equations may be 
established. Thus in the implementations we will enlarge the searching for all kinds of 
Pell equations. 

 
In the following paragraphs, we will present some polynomial families which can 

be used to set up the extended versions of Pell equations when k > 6. 
 
(d) Effective polynomial families of elliptic curves when k = 12, ρ ≈ 1.5 
When k = 12, it is unlikely to find quadratic relations between 4q(x) and t2(x). But it is 
still possible to find certain forms of 4q(x) – t(x)2 with square polynomials factors and 
set up extended versions of Pell equations. Then small values of D can be obtained. 
Table 9 lists some of the results when k = 12 and ρ ≈ 1.5. For convenience, we just 
take r(x) as the standard cyclotomic polynomial as x4 – x2 + 1. 
 

q(x) t(x) 4q(x) – t2(x) 
x6 + 2x5 – 2x3 + x + 1 –x + 1 (x + 1)2(4x4 – 4x2 + 3) 

3x6 + 6x5 – 6x3 + 5x + 3 –x + 1 (x + 1)2(12x4 – 12x2 + 11) 
5x6 + 10x5 – 10x3 + 9x + 5 –x + 1 (x + 1)2(20x4 – 20x2 + 19) 

Table 9: effective polynomial families when k = 12, ρ ≈ 1.5 
 
(e) More effective families of elliptic curves when k = 12, ρ ≈ 2 
When k = 12 and ρ ≈ 2, we find some special forms of D(x)V2(x), which can also be 
used to set up extended versions of Pell equations. Table 10 presents the results. 
During the implementation we still use the simplest form of r(x) as the cyclotomic 
polynomial as x4 – x2 + 1. 
 

q(x) t(x) 4q(x) – t2(x) 
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x8 + 2x7 + x6 + x2 + x + 1 –x + 1 (x + 1)2(4x6 + 3) 
2x8 + 4x7 + 2x6 + 2x2 + 3x + 2 –x + 1 (x + 1)2(8x6 + 7) 
Table 10: effective polynomial families when k = 12, ρ ≈ 2 

 

3.3 Polynomial Families with Small Degree 
Actually when the degree of D(x)V2(x) is much smaller than that of q(x), finding valid 
values of D may not be a hard problem. But unfortunately since equation (8) must be 
satisfied, the degree of D(x)V2(x) is always same as that of q(x). Thus it is hard to find 
polynomial families with small degree D(x)V2(x). 

From the above analysis, we now define the effective polynomial families of 
suitable non-supersingular elliptic curves for pairing-based cryptosystems. 
 
Definition: When finding the polynomial families of suitable non-supersingular 
elliptic curves for pairing-based cryptosystems in polynomial field, r(x), q(x) and t(x) 
should satisfy that 4q(x) – t2(x) can be factorized with one square polynomial; or 4q(x) 
– t2(x) at least can be factorized; or 4q(x) – t2(x) only contains terms with smaller 
degree compared to q(x). These families as the relations between q(x) and t(x) are 
defined as the effective polynomial families. They have a better chance to generate 
non-supersingular elliptic curves in implementations. 
 

Now we propose the complete algorithm for finding suitable non-supersingular 
elliptic curves for pairing-based cryptosystems. 
 
Algorithm 2 
Input: embedding degree k, qk > 21024 and r > 2160 
Output: x0, q(x), t(x), r(x), D(x)V2(x) 

1. Choose an irreducible polynomial r(x). 
2. Compute trace polynomial t(x) by Φk(t(x) – 1) ≡ 0 mod r(x). 
3. Compute polynomial D(x)V2(x) by D(x)V2(x) = 4q(x) – t2(x) ≡ – (t(x) – 2)2 

mod r(x). According to the definition of effective polynomial families, if 
D(x)V2(x) can be used to set up Pell equations, it should be represented as the 
axi(bxi + c) or (axi + b)(cxi + d) where a, b, c, d and i are all integers; 
otherwise degree(V(x)) > 0 or degree(D(x)V2(x)) < 2degree(r(x)) should be 
satisfied. 

4. After obtaining D(x)V2(x), compute q(x) by 4q(x) = D(x)V2(x) + t2(x). Test 
whether the irreducible polynomial q(x) satisfy Φk(q(x)) ≡ 0 mod r(x). 

5. If D(x)V2(x) = 4q(x) – t2(x) is as the form as ax2i + bxi + c, transfer DV2 = 4q(x) 
– t2(x) into a Pell equation and solve it for effective values of D, q, r, t based 
on certain integer x0 as D(x0), q(x0), r(x0) and t(x0); otherwise test all possible 
values of x to obtain certain integer x0 with D(x0), q(x0), r(x0) and t(x0) as the 
suitable parameters. 

6. Establish the elliptic curve by CM method with the above parameters. 
7. Find other effective values x0 and parameters, set up different elliptic curves 
8. If no elliptic curves are found, repeat from step 1. 

 
After finding all the suitable polynomials of D(x)V2(x), q(x), t(x) and r(x), we can 

get effective values of D, q and r by solving certain Pell equations or testing all 
possible values of x in D(x)V2(x), where V2(x) is a square polynomial. Then CM 
method can be used to produce the desired non-supersingular elliptic curves for 
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pairing-based cryptosystems. Here we should mention that prime r can also be 
regarded as m × n, where m is a small composite number and n is a large prime. In 
such case the cofactor will be increased as h × m.  

 
Another issue we should point out is that when finding the effective polynomial 

families, testing different values of x, we could obtain different non-supersingular 
elliptic curves. This is an important advantage for using the idea of family in 
polynomial field. Since compared to the work of [7, 18], we give the possibility to 
obtain different suitable non-supersingular elliptic curves based on a same polynomial 
family. In their work the proposed results are special and unique; people can not get 
other results by their method.  

 
In the following section we will discuss the possibilities for building the 

pairing-friendly elliptic curves over extension fields. 

4. Pairing-Friendly Elliptic Curves over Extension Fields 
In [17] the authors have proposed an open problem to find pairing-friendly elliptic 
curves over extension fields. In their work the authors used the condition as Φk(t(x) – 
1) = r(x)r(–x) and found some square q(x) as q2 when k = 5. But since in their 
example 4q(x) – t2(x) did not belong to any effective forms proposed above; finding 
valid values of D became a hard problem. In the follows we will propose the effective 
polynomial families, which can be used to find the pairing-friendly elliptic curves 
over extension field when k = 3. 
 

To find the elliptic curves over extension fields, q(x) is not an irreducible 
polynomial but a polynomial with integer degree. Assuming to find q(x) as a square 
polynomial, then we can get pairing-friendly elliptic curves over Fq

2. For this purpose, 
we modify our algorithm as: 
 
Algorithm 3 
Input: embedding degree k, qk > 21024 and r > 2160 
Output: x0, q(x), t(x), r(x), D(x)V2(x) 
1. Choose an irreducible polynomial r(x). 
2. Compute trace polynomial t(x) by Φk(t(x) – 1) ≡ 0 mod r(x). 
3. Compute polynomial D(x)V2(x) by D(x)V2(x) = 4q(x) – t2(x) ≡ – (t2(x) – 2)2 mod 

r(x). According to the definition of effective polynomial families, if D(x)V2(x) can 
be used to set up Pell equations, it should be represented as the axi(bxi + c) or (axi 
+ b)(cxi + d) where a, b, c, d and i are all integers; otherwise degree(V(x)) > 0 or 
degree(D(x)V2(x)) < 2degree(r(x)) should be satisfied. 

4. After obtaining D(x)V2(x), compute q(x) by 4q(x) = D(x)V2(x) + t2(x). Test 
whether q(x) is a square polynomial. 

5. If D(x)V2(x) = 4q(x) – t2(x) is as the form as ax2i + bxi + c, transfer DV2 = 4q(x) – 
t2(x) into a Pell equation and solve it for effective values of D, q, r, t based on 
certain integer x0 as D(x0), q(x0), r(x0) and t(x0); otherwise test all possible values 
of x to obtain certain integer x0 with D(x0), q(x0), r(x0) and t(x0) as the suitable 
parameters.   

6. Establish the elliptic curve by CM method with the above parameters. 
7. Find other effective values x0 and parameters, set up different elliptic curves. 
8. If no elliptic curves are found, repeat from step 1 
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As a result, we find some effective polynomial families for pairing-friendly 

elliptic curves over Fq
2, where q(x) is a square polynomial and D(x)V2(x) can be 

factorized as one constant number multiplying with a square polynomial. This means 
the values for D are always valid. Also the families we found have near-prime orders 
or prime orders. In Table 11 we list some of these effective polynomial families: 
 

q(x) r(x) h t(x) DV2(x) 
(3x + 1)2 3x2 + 3x + 1 3 –3x – 1 3(3x + 1)2 
(4x – 1)2 16x2 – 4x + 1 1 –4x + 1 3(4x – 1)2 
(3x – 1)2 9x2 – 3x + 1 1 –3x + 1 3(3x – 1)2 
(2x – 1)2 4x^2 – 2x + 1 1 –2x + 1 3(2x – 1)2 

Table 11: effective polynomial families of elliptic curves over extension field 
 

In Appendix B we will present some parameters of certain pairing-friendly elliptic 
curves over extension fields based on the families proposed above. 

5. Conclusion 
In this paper we present a new method for finding more pairing-friendly elliptic 
curves over prime field and extension field. We propose the idea of effective 
polynomial families to build such elliptic curves through different kinds of Pell 
equations and special forms of D(x)V2(x). By using these effective families, numerous 
pairing-friendly elliptic curves can be found without restrictions on embedding degree 
k and cofactor h. 
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Appendix A: Pairing-friendly elliptic curves over prime fields 

(i) K = 3 
(a) Examples of elliptic curve parameters when k = 3, ρ ≈ 1 
Compared to the previous work, when k = 3 by our method more non-supersingular 
elliptic curves are found with larger values of cofactor h. In the follows we just list the 
parameters of some pairing-friendly elliptic curves based on each of the polynomial 
family in Table 5. For finding the parameters, we use the same technique as [4]. We 
allow r to contain a small factor m as r = m × s where s should be larger than 2160. 
 
r(x) = x2 + x + 1, q(x) = 6x2 + 5x + 5, t(x) = –x, D(x)V2(x) = 23x2 + 20x + 20, h = 6, 21024 < 
q3 and r > 2160 
x = 107992341253871594470495195949208043208992587427135202613309174 
r = 489971295368587505513952540263630281178460340947492624072085746500784815 
 21453352606690925298502141956766603170180956831 (395 bits) 
q = 699740746169559399899618985516537258938269852875978851245571527727256402 
 47435496174287888433640626775156674491882646541919531 (415 bits) 
t = –107992341253871594470495195949208043208992587427135202613309174 
h = 6 × 238021 
DV2 = 4q – t2 =  
1603682 × 4089759288100256320226671910577333030102135009017528905691422 
 
r(x) = 3x2 + 3x + 1, q(x) = 18x2 + 15x + 4, t(x) = –3x – 1, D(x)V2(x) = 3(21x2 + 18x + 5), h = 
6, 21024 < q3 and r > 2160 
x = –780326922516185066362436307926979960306345221131853 
r = 182673031801074087690113503172100516465178233671103794446691490860201196 
 6279821894586370822563570245269 (340 bits) 
q = 109603819080644452614068101903260309879106940202662300077822570001672708 
 84987855148458105854417084867171 (343 bits) 
t = 2340980767548555199087308923780939880919035663395558 
h = 6 
DV2 = 4q – t2 = 745530 × 71732225274287771987157605144916662896864519785622 
 
r(x) = 13x2 + 7x + 1, q(x) = 78x2 + 29x + 2, t(x) = –13x – 3, D(x)V2(x) = 143x2 + 38x – 1, h 
= 6, 21024 < q3 and r > 2160 
x = 26123560138900986808433394039528745608745235385710787 
r = 121530481182193083390377656544009605858732914274130896231861404619587954 
 815025809027931941484407717891059 (346 bits) 
q = 532303507578005705249854135662762073661250164520693322099490134176666956 
 99347181840360497456482520422043607 (355 bits) 
t = -339606281805712828509634122513873692913688060014240234 
h = 6 × 73 
DV2 = 4q – t2 = 519518 × 4334111518135076339455165196214806199113970377471982 
 
r(x) = 19x2 + 15x + 3, q(x) = 114x2 + 71x + 10, t(x) = –19x – 7, D(x)V2(x) = 95x2 + 18x – 9, 
h = 6, 21024 < q3 and r > 2160 
x = 3208011268618809817303308159360004976748212724053421335260982957 
r = 101313673415606241241596308947228535188074366040695735312539291029539770 
 0808397291439442738209442945896456768518925277782173873 (419 bits) 
q = 117321233815272027357768525760890643747790115875125661491920499006111832 
 3432366676958111835818694836789880896187900466301798668743 (429 bits) 
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t = –60952214103757386528762855027840094558216041757015005369958676190 
h = 6 × 193 
DV2 = 4q – t2 =  
282662 × 588117326094371579915359858073132030725290723773999093015176342 
 
r(x) = 21x2 + 9x + 1, q(x) = 126x2 + 33x + 1, t(x) = –21x – 4, D(x)V2(x) = 3(21x2 – 12x – 4), 
h = 6, 21024 < q3 and r > 2160 
x = -113997343431526234288179224027552262202892207632485046758 
r = 272903280498352086943725678029261579493673666731859088319897861938294465 
 988333500738467919384568218005166007101023 (377 bits) 
q = 163741968299011252166235406817556947696204200039115452992178111584182884 
 6850052768135386113813670044391278228588051 (380 bits) 
t = 2393944212062050920051763704578597506260736360282185981914 
h = 6 
DV2 = 4q – t2 =  
909258 × 9489021705671429508444420587555213950003198654898469262 
 
(b) Examples of elliptic curve parameters when k = 3, ρ ≈ 2 
When embedding degree k = 3, besides the quadratic relations between q(x) and t(x), 
we can easily find the following parameters from the families in Table 3. Here the 
value of D will always be effective as a constant number. In the following results we 
require that q is a multiple of 32 bits. 
 
r(x) = x2 + x + 1, q(x) = x4 + x3 + 3x2 + x + 1, t(x) = –x2 – 2x – 1, D(x)V2(x) = 3(x2 + 1 )2, 
h(x) = x2 + 3, 21024 ≤ q3 and r ≥ 2160. 
x = 260244835333529706610404501 
r = 67727374317775992040088322743872009225336773451463503 (176 bits) 
q = 458699723198014302322175075445042923367697888751204409021889707530902678 
 2460449640647092701307254113663007 (352 bits) 
t = – 67727374317775992040088323004116844558866480061868004 
h = 67727374317775992040088322483627173891807066841059004 
DV2 = 4q – t2 = 3 × 677273743177759920400883224836271738918070668410590022 
 
x = 260244835333529706610427910 
r = 67727374317775992040100506886572654419140859917396011 (176 bits) 
q = 458699723198014302322340115443728482390883378426585298016395281587250254 
 0631060767770513165271906668613211 (352 bits) 
t = –67727374317775992040100507146817489752670566527823921 
h = 67727374317775992040100506626327819085611153306968103 
DV2 = 4q – t2 = 3 × 677273743177759920401005066263278190856111533069681012 

(ii) K = 4 
Example of elliptic curve parameters when k = 4, ρ ≈ 1 
When k = 4, we present two polynomial families with the feature of factorization in 
Table 7, which are not mentioned in any previous work. Many suitable elliptic curves 
can be built by implementing the two effective polynomial families. Here we still 
allow r to contain a small factor m as r = m × s and s > 2160. In the last example q is a 
multiple of 32 bits and the curve built on such parameters should be has more 
efficiency.  
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r(x) = 17x2 + 8x + 1, q(x) = 136x2 + 81x + 12, t(x) = 17x + 5,h = 16 D(x)V2(x) =(3x + 1)(85x 
+ 23), 21024 ≤  q4 and r ≥  2160  
 
x = –67312880206476020926828959804706092102631 
r = 592518502375028090681570811272334123427918861549899984648012038516956477 
 569955813 (269 bits) 
q = 616219242470029214308833643723227488365034471692932473941576763965318056 
 669188300797 (279 bits) 
t = –1144318963510092355756092316680003565744722 
h = 8 × 130 
DV2 = 4q – t2 = 266731× 20812848230770108800353987731297279408282 
 
x = –94056349577742436988561927160156629186135 
r = 751960736150691641907974734231014189505530306819683167620892594630101285 
 29531280373 (276 bits) 
q = 120313717784110662705275957476962270320884689195355024657199934585540033 
 3809804321677 (280 bits) 
t = –1598957942821621428805552761722662696164290 
h = 8 × 2 
DV2 = 4q – t2 = 119787 × 43396366202032564048181299670622281681722 
 

For having higher security level, we present the parameters as: 
 
x = –119123169050153468407424364943789874639032724667796477458985 
r = 165229862929708561784869585618614016966555003896350984834126269819548604 
 4292493985861429399930971260312670534714063301 (390 bits) 
q = 192988479901899600164727676002541171816936244550937950286259280639845384 
 7124670049271945494691505568488879832005909132827 (400 bits) 
t = –2025093873852608962926214204044427868863556319352540116802740 
h = 8 × 292 
DV2 = 4q – t2 =  
270127 × 36600104974559782712701748877736296206606237052371443845982 
 

For finding q as a multiple of 32 bits, we present the parameter as: 
 
x = –4117985507219224624463967678092656335927903512156327 
r = 103157045316091308211801922580326793373122548954255109308819070505734956 
 85372961857387341289776059793 (333 bits) 
q = 230626143072279015942961322274385005408422620246049055778965257275579666 
 7500011808957215406698294429143869 (352 bits) 
t = –70005753622726818615887450527575157710774359706657554 
h = 8 × 27946 
DV2 = 4q – t2 = 119715 × 1900555774530993472704021773230992625075594147385722 

(iii) K = 6 
(a) Examples of elliptic curve parameters when k = 6, ρ ≈ 1 
 
r(x) = 52x2 + 14x + 1, q(x) = ζq_k(x) = 208x2 + 30x + 1, t(x) = ζ(t-1)_k(x) + 1 = –26x – 2, 
D(x)V2(x) = 4x(39x + 4), 21024 <q6 and r > 2160 
x = –76678828867367445744045 
r = 305741425416493202361689487439975889605713608671 (158 bits) 
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q = 1222965701665972809446759943409454109976443779851 (160 bits) 
t = 1993649550551553589345168 
h = 4 
DV2 = 4q – t2 = 717595 × 11305715911188715612622 
 

This example had been presented in [1]. The family had been proposed in [3]. By 
using our method, the same results are also found. After finding more quadratic 
relations between q(x) and t2(x) with the feature of factorization, more suitable 
parameters of non-supersingular elliptic curves are obtained as the follows. Here r is 
allowed to contain a small factor and thus the cofactor h has increased. 
 
r(x) = 4x2 + 2x + 1, q(x) = 24x2 + 14x + 7, t(x) = 2x + 2, D(x)V2(x) = 4(23x2 + 12x + 6), h = 
6, 21024 ≤  q6 and r ≥  2160 
x = –16691737029853261335736531584463 
r = 371485446765032766010643980506496987418584908560604945382941517 (208 bits) 
q = 6686738041770589788191591649116912390060468647568217543829778381  
 (213 bits) 
t = –33383474059706522671473063168924 
h = 6 × 3 
DV2 = 4q – t2 = 889673 × 1697384540279973006240061233262 
 
r(x) = 4x2 + 2x + 1, q(x) = 32x2 + 18x + 9, t(x) = 2x + 2, D(x)V2(x) = 4(31x2 + 16x + 8), h = 
8, 21024 ≤  q6 and r ≥ 2160 
x = 667006492228484628797618935 
r = 1779590642699790102050596774018164008195602559477374771 (181 bits) 
q = 14236725141598320816404774193479325050021789733414236039 (184 bits) 
t = 1334012984456969257595237872 
h = 8 
DV2 = 4q – t2 = 457543 × 109805715446199105092823022 
 
(b) Examples of elliptic curve parameters when k = 6, ρ ≈ 2 
To find simpler examples, we start from more restrict condition. We require that 
D(x)V2(x) = 4q(x) – t(x)2 can be factorized as one square polynomial multiplying with 
one constant number. This is such a restrict condition and we loose the value of 
lg(q)/lg(r) to about 2. In the following example, we used the families in Table 2 and 
the value of x only needs to satisfy that q(x) and r(x) are prime numbers since 4q(x) – 
t2(x) is always effective for generating small values of D. In such situations we can 
easily find the suitable x, which is satisfied with other efficient conditions, e.g. q is a multiple 
of 32 bits. 
 
r(x) = 3x2 – 3x + 1, q(x) = 9x4 – 9x3 + 9x2 – 3x + 1, t(x) = 3x2 + 1, h(x) = 3x2 +1, D(x)V2(x) = 
3(3x2 – 2x + 1)2, 21024 ≤  q6 and r ≥  2160. 
x = 604462909807314587356303 
r = 1096126227998177188664421900678665941188259414519 (160 bits) 
q = 120149270770551192137275958192710646407010077402658082075856510602661207 
 9367476683682217162574559 (320 bits) 
t = 1096126227998177188664423714067395363132021483428 
h = 1096126227998177188664423714067395363132021483428 
DV2 = 4q – t2 = = 3 × 10961262279981771886644225051415757485028467708222 

 
With the above results, certain non-supersingular ellitptic curves suitable for 
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pairing-based cryptosystems can be easily obtained by using CM method. More 
importantly, when changing the values of x, these polynomial families can produce 
different elliptic curves. 

(iv) K = 12 
(a) Examples of elliptic curve parameters when k = 12, ρ ≈ 1 
By our new method, we also find the perfect polynomial family [17] when k = 12 and 
ρ ≈ 1 as q(x) = 36x4 + 36x3 + 24x2 + 6x + 1, r(x) = 4x4 + 4x3 + 2x2 + 2x + 1, t(x) = 
6x2 + 1 and D(x)V2(x) = 3(6x2 + 4x + 1)2. But since in [17] the authors already have 
implemented the family nicely to obtain many efficient non-supersingular elliptic 
curves, we will not list any examples for this special family.  
 
(b) Examples of elliptic curve parameters when k = 12, ρ > 1 
When k = 12, it is unlikely to find quadratic relations between q(x) and t(x). Then as 
the families presented in Table 8 and Table 9, we must set up extended versions of 
Pell equation. When k = 12 and ρ ≈ 1.5, when 4q(x) – t2(x) only contains the terms 
with even degree, we still can get Pell equations. The follows is an example based on 
the first family in Table 8. 
 
r(x) = x4 – x2 + 1  
q(x) = x6 + 2x5 – 2x3 + x + 1 
t(x) = –x + 1 
4q(x) – t2(x) = (x + 1)2(4x4 – 4x2 + 3) 
 

Since the square polynomial (x + 1)2 does not need to be considered in the 
computation, we can easily get the Pell equation by replacing x2 with y as (2y – 1)2 – 
DV2 = –2. Then after solving the above Pell equation for small values of D and prime 
q and r, we can obtain the desired parameters. 

 
When k = 12 and ρ ≈ 2, for the families presented in Table 9, the same procedure 

can be taken. The follows is an example of setting up a Pell equation based on the first 
family in Table 9. Here we replace x3 with y. 

 
r(x) = x4 – x2 + 1  
q(x) = x8 + 2x7 + x6 + x2 + x + 1 
t(x) = –x + 1 
4q(x) – t2(x) = (x + 1)2(4x6 + 3) 
(2y)2 – DV2 = –3 

Appendix B: Pairing-friendly elliptic curves over extension fields 
In the follows we list some parameters of pairing-friendly elliptic curves over square 
field Fq

2 when k = 3. The parameters are obtained based on the second and third 
families in Table 11. Many other non-supersingular elliptic curves over extension 
field can also be found by our proposed families. In the following results, we require 
that q is a multiple of 32 bits for the efficiency of computation of elliptic curve 
operations.  
 
q(x)2 = 9x2 – 6x + 1 = (3x – 1)2, t(x) = –3x + 1, r(x) = 9x2 – 3x + 1, h = 1, DV2 = 3(3x – 1)2, 
21024 ≤ q3 and r ≥ 2160 
x = 1569275433846670190958947355801916604025588861116008640328 
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q = 4707826301540010572876842067405749812076766583348025920983 (192 bits) 
r = 221636284854718945569069600563307827653573533396368140926173845366284063 
 30502082430128293370823784630437413385607273 (384 bits) 
t = –4707826301540010572876842067405749812076766583348025920983 
h = 1 
DV2 = 3 × 47078263015400105728768420674057498120767665833480259209832 

 
x = 1569275433846670190958947355801916604025588861116008647110 
q = 4707826301540010572876842067405749812076766583348025941329 (192 bits) 
r = 221636284854718945569069600563307827653573533396368142841882523988945165 
 62006539837003064723851570440035284576227571 (384 bits) 
t = –4707826301540010572876842067405749812076766583348025941329 
h = 1 
DV2 = 3 × 47078263015400105728768420674057498120767665833480259413292 

 
q(x)2 = 16x2 – 8x + 1 = (4x – 1)2, t(x) = –4x + 1, r(x) = 16x2 – 4x + 1, h = 1, DV2(x) = 3(4x – 
1)2, 21024 ≤  q3 and r ≥  2160 
x = 784637716923335095479473677900958302012794430558004330460 
q = 3138550867693340381917894711603833208051177722232017321839 (192 bits) 
r = 985050154909861980306976002503590345126993481761636207745617148059956561 
 124232672053768501227840495 6871574123663761 (384 bits) 
t = –3138550867693340381917894711603833208051177722232017321839 
h = 3 
DV2 = 3 × 31385508676933403819178947116038332080511777222320173218392 
 
x = 784637716923335095479473677900958302012794430558004345091 
q = 3138550867693340381917894711603833208051177722232017380363 (192 bits) 
r = 985050154909861980306976002503590345126993481761636244481727344236967063 
 396806692434315434825265498 8684741035392133 (384 bits) 
t = – 3138550867693340381917894711603833208051177722232017380363 
h = 3 
DV2 = 3 × 31385508676933403819178947116038332080511777222320173803632 
 


