
Simple and Provable Secure Strong Designated

Verifier Signature Schemes

Raylin Tso, Takeshi Okamoto†, and Eiji Okamoto‡

Risk Engineering Major
Graduate School of Systems and Information Engineerin

University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan,

raylin@cipher.risk.tsukuba.ac.jp

{ken†, okamoto‡}@risk.tsukuba.ac.jp

Abstract. In this paper, we introduce a simple strong-designated ver-
ifier signature (SDVS) scheme which is much more efficient than previ-
ously proposed SDVS schemes. In addition, with only one more param-
eter published by the signer, this scheme can provide signer’s forward
security. That is, the consistency of a signature cannot be verified by
any third party even if he/she knows a signer’s private key. Thus the pri-
vacy of a signer’s identity is protected independently in each signature, if
the designated verifier’s private key has not been disclosed. In addition,
this scheme can be easily modified to a designated verifier signcryption
scheme with virtually no additional cost. We will also show that the
proposed scheme is provably secure in the random oracle model.

Key words: BDDH problem, CDH problem, designated verifier signature,
privacy of signer’s identity, provable security, signer’s forward security.

1 Introduction

A Designated Verifier Signature (DVS) is intended to allow an entity, Alice, to
prove the validity of a signature to a specific verifier, Bob, in such a way that
although Bob can check the validity of the signature, he cannot transfer this
conviction to other third party. This concept was first introduced by Jakobsson
et al. in [6] and was formalized and extended to the notion of Strong designated
verifier signature (SDVS) scheme by Saeednia et al. in [11]. In a DVS scheme,
anyone who intercept the signature can verify the consistency of the signature but
cannot distinguish whether it is originated from Alice (signer) or Bob (verifier),
because both entities are capable of creating such a signature. On the other hand,
in a SDVS scheme, only the designated verifier, Bob, is capable of verifying the
consistency and validity of the signature so that the privacy of signer’s identity
is protected (cf., to encrypt a DVS using Bob’s public key is an alternative but
not efficient way comparing to a SDVS scheme).

A SDVS scheme is very useful in various situations. For example, it can
provide freedom from coercion in electronic voting systems. It also provides a

way for a merchant and a customer to negotiate for a best price of a purchase
without any third party to verify the validity of the negotiated price.

Most of the SDVS schemes proposed up to now are probabilistic, which use
one or more random parameters to mask their signatures. We notice that in some
schemes (e.g., [7, 11]), although random parameters have been used, the securities
of their schemes still depend on only the Deffie-Hellman key pairs. In other words,
random parameters are irrelevant to the securities of their schemes. For the
worse, in some schemes (e.g., [7, 11, 13]), if the secret term of a random parameter
(e.g., secret term: r ←R Z∗

q , random parameter Q ← rP , P : a generator of an
additional group with prime order q) is disclosed, then the signers’ private key
will be derived according. Therefore, in these schemes, the secret term of a
random parameter picked by a signer should be protected with higher secrecy
than that of his/her private key.

On the other hand, Rivest et al. mentioned in [10] that a DVS can be realized
by a message authentication code (MAC) computed with a shared secret key,
but this requires an initial set-up for the key-agreement procedure. Recently,
some one-way and two-party authenticated key agreement protocols are proposed
([9] and Scheme II in [8]). Using these protocols with a MAC, SDVS schemes
can be easily constructed. Furthermore, these key agreement protocols are quite
efficient, which implies that any SDVS scheme without lower communication and
computation cost than these key agreement protocols may lose their significance
in practical use.

In addition, since a main purpose of a SDVS scheme is to protect the privacy
of a signer’s identity, the secrecy of previously signed signature should not be
affected even if any third party knows the signer’s private key. This is called
signer’s forward security. Unfortunately, this property is important but has been
less considered up to now.

Our Contribution In this paper, we first propose a deterministic SDVS scheme
in which the randomization of a signature depends only on the hashed message
and its security depends on the secrecy of the Deffie-Hellman key pair. With
this technique we can reduce the communication cost of a signature from (at
least) 2 of the previously proposed scheme to only 1 and make a SDVS scheme
more efficient. Although the scheme is deterministic, it is provably secure in
the random oracle model with unforgeability against existential forgery under
adaptive chosen message attack, indistinguishability of signer’s identity , and
non-transferability of a signature. In addition, with only one more parameter
picked and published by the signer, our scheme is easily to become probabilistic,
and signer’s forward security can be provided accordingly. Finally, we will show
that our scheme can be easily modified to a designated verifier signcryption
scheme with virtually no additional cost, which is important and useful in the
case if the message is required to be kept secret from any third party.

Related Work and Paper Organization A SDVS scheme is also named as
a deniable authentication protocol [1, 4, 12] which originated from the property
that a signer can later deny his signature. Scheme proposed in [4] is also a

2

deterministic and Diffie-Hellman key pair based SDVS scheme, but their scheme
is more like a MAC and have no concrete security proofs. Our scheme is different
with [4] and a MAC mainly in the following aspects.

• Our scheme is easy to become probabilistic and the signer’s forward security
is provided accordingly.
• Our scheme can be modified into a designated verifier signcryption scheme

with virtually no additional cost.
• We have concrete proofs and show that our scheme is secure in the random

oracle model.

The rest of this paper is organized as follows. In Section 2, we recall some
security assumptions and definitions of SDVS schemes. Section 3 and 4 describe
our basic scheme ,modified scheme, and their security proofs. In section 5, we
show the performance comparison of our schemes with other previously pro-
posed SDVS or DVS schemes. In Section 6, we show our designated verifiers
signcryption scheme and its performance compared with other schemes. Finally,
our conclusion is formulated in Section 7.

2 Preliminaries

2.1 Hardness Assumption

The proof of security of our scheme can be reduced to two well-known hard-
ness assumptions, Computational Diffie-Hellman (CDH) and Bilinear Decisional
Diffie-Hellman (BDDH) assumptions.

Definition 1. CDH Assumption: Let G be a cyclic group of prime order q,
the CDH assumption states that given (g, ga, gb) for a randomly picked generator
g and random a, b ∈ {1, · · · , q − 1}, there exists no polynomial time algorithm
which can find an element C ∈ G such that C = gab with non-negligible proba-
bility.

Definition 2. BDDH Assumption: Let G be a cyclic group of prime order
q, and let g be a randomly picked generator of G. The BDDH problem is to
distinguish 4-tuples of the form (ga, gb, gc, gabc) and (ga, gb, gc, gd), where a, b, c, d
are random elements of {1, · · · , q− 1}. We say a BDDH problem is hard if there
exists no ponlynomial time algorithm which can distinguish d from abc with
non-negligible probability.

2.2 SDVS Model

Definition 3. An SDVS scheme with security parameter k consists of the fol-
lowing algorithms:

• System parameter generation algorithm SysGen: It takes 1k as input and
the outputs are the public parameters.

3

• Key generation algorithm KeyGen: It takes the public parameters as input
and outputs a public/private key pair (pki, ski) for each entity Ui in the
scheme.
• Signing algorithm Sign: It takes a message m, a signer Ui’s private key ski,

a verifier Uj’s public key pkj . The output σ is a SDVS of m.
• Verifying algorithm V eri: It takes < σ,m, pki, skj > and the public parame-

ters as inputs, outputs “accept” if σ is a valid SDVS of m, otherwise, outputs
“reject”.

A properly formed Uj-designated verifier signature must be accepted by V eri.

Definition 4. Security Requirements [7] An SDVS scheme must satisfy the
following properties:

• Unforgeability: Given a pair of signing keys (pki, ski) and a pair of verify-
ing keys (pkj , skj), it is computationally infeasible, without the knowledge
of the secret key ski or skj , to produce a valid SDVS σ.
• Non-transferability: Given a message m and a SDVS σ of this message,

it is (unconditionally) infeasible to distinguish a signer from a designated
verifier, even if one knows all secrets. In other words, it is infeasible to deter-
mine who from the original signer or the designated verifier performed this
signature, even if one knows all secrets.
• Privacy of signer’s identity: Given a message m and a Uj-designated

verifier signature σ of this message, it is computationally infeasible, without
the knowledge of the key of Uj or the one of the signer, to determine which
pair of signing keys was used to generate σ.

In our probabilistic SDVS scheme, an additional security property is pro-
vided.

• Signer’s forward security: If the private key of a signer A is disclosed,
then anyone knowing A’s private key can of course impersonate A and forge
A’s signature. But the secrecy of previously established signature signed by A
should not be affected. In other words, any previously established signature
signed by A should not become verifiable to any adversary even if he/she
knows A’s private key. In addition, A’s identity should not be derived and
verified from the previously signed signatures.

3 Basic Scheme (Deterministic)

In this section, we propose our deterministic SDVS scheme. Let G be an additive
group of prime order q in which the CDH problem and the BDDH problem are
assumed to be hard. For simplicity, we can think of G as a group of points on
an elliptic curve over Zq.

System parameters generation: A trusted authority (TA) who is trusted by
all the entities is responsible for the system parameters generation. On input
1k to the system parameter generation algorithm SysGen, SysGen outputs the
following public parameters.

4

• P : a generator of G with order q.
• h: G→ Z∗

q a hash function.
• H: {0, 1}∗ → G a hash function.

Key generation: TA generates each entity’s public/private key pair by KeyGen
algorithm. For entities Alice and Bob, their public/pribate key pairs are gener-
ated as follows:

• Pick up random {a, b} R← Z∗
q × Z∗

q , and compute Va ← aP , Vb ← bP .
• The private/public key pair for participant Alice is (a, Va), and the pri-

vate/private key pair for participant Bob is (b, Vb).

Signature generation: When Alice wants to sign a message m ∈ {0, 1}∗ while
designates Bob to be the verifier. Alice executes the Sign algorithm and does
the following steps:

• Given Alice’s private key a, and Bob’s public key Vb, compute aVb.
• Compute h(aVb) and H(m).
• The SDVS for m is σ ← h(aVb)H(m).

Verification: With the knowledge that the signature σ is signed by Alice, then
only Bob can verify the validity of the signature. Bob executes the V eri algorithm
and does the following steps:

• Given Bob’s private key b, and Alice’s public key Va, compute bVa and
h(bVa).
• Given the message m, compute H(m) and σ̃ ← h(bVa)H(m).
• Accept σ as a valid signature if and only if σ = σ̃.

A signature σ will always be accepted by Bob if it is properly formed. The
consistency of this scheme is straightforward.

3.1 Security

For digital signatures, the widely accepted notion of security was defined by
Goldwasser et. al. in [5] as existential forgery against adaptive chosen-message
attack (EF-ACMA). For a SDVS scheme, it behaves as not only a signature
scheme but also an encryption scheme which encrypts a signer and a verifier’s
identities. In the following definition, we give the EF-ACMA definition in our
SDVS scheme which is a modification of the semantic security against passive
adversaries for Identity-Based Encryption described in [2]. In our definition,
the signer and verifier’s identities as well as the public keys can be randomly
selected by an adversary in the challenge phase. Although some restrictions on
these identities are required, we emphasize the difference that in other SDVS
schemes (if they have concrete security proofs), the identities (as well as public
keys) of a signer and a verifier in their EF-ACMA proofs cannot be randomly
selected by an adversary and was decided and provided by the challenger.

5

Definition 5. Existential Forgery under Adaptive Chosen Message At-
tack (EF-ACMA)

Consider the following game played by an adversary A.

1. Setup. In the setup phase, the challenger generates all the public parameters
and gives them to the adversary.

2. Phase 1. The adversary A is allowed to make the following queries.
• H-query: At any time, A can ask the H-hash query of a message mi at

his choice.
• PrivateKey-query: At any time, A is allowed to ask to the private key

revealing oracle Pri. The adversary can repeat this multiple times for
different public keys.
• h-query: At any time, A is also allowed to make h-query by given one

parameter Qi ∈ G.
• Signing query: At any time, A can ask a signing query to the signing

oracle Σ by providing a message mi and two public keys pkl, pkl′ . We
assume that A always requests the H-query of a message mi before it
requests a signing query of mi and it always requests the H-query of
the message m∗ that it outputs as its forgery. It is trivial to modify any
forger to have this property.

3. Challenge. The adversary A submits two public keys pkj1 , pkj2 which he
will use to forge a designated verifier signature. These public keys are re-
stricted to the entities Uj1 , Uj2 that their private keys have not been re-
quested, in addition, any Uj2 -designated verifier signature signed by Uj1 or
Uj1 -designated verifier signature signed by Uj2 has not been requested to the
signing oracle in the previous phase.

4. Phase 2. Phase 1 is repeated with the restriction that the adversary A
cannot request the private keys for pkj1 and pkj2 . In this phase, signing
queries of signatures between Uj1 and Uj2 are available.

5. Forgery. The adversary submits a forged signature σ∗ of a message m∗,
where Uj1 is the signer and Uj2 is the designated verifier. In addition, σ∗ is
a new signature, which means that the signing query of m∗ between Uj1 and
Uj2 has not been requested.

Definition 6. Given a security parameter k, the advantage of a forgery algo-
rithm A in existentially forging a SDVS of our basic scheme (BS), where A can
access to a signing oracle Σ, a private key revealing oracle Pri and two hash
functions h : G→ Z∗

q and H : {0, 1}∗ → G with restrictions defined in Definition
5, is defined as

AdvEF−ACMA
BS,A

�
=

Pr

⎡⎢⎢⎢⎣V eri(pkj1 , skj2 , m
∗, σ∗) = accept

∣∣∣∣∣∣∣∣∣
(P,G) R← SysGen(1k)
(ski, pki, 1 ≤ i ≤ n) R← KenGen(P,

G,Ui, 1 ≤ i ≤ n)
(m∗, σ∗) R← AΣ,Pri,h,H(pkj1 , pkj2)

⎤⎥⎥⎥⎦ .

6

Here n is the number of entities in the scheme and (pkj1 , pkj2) are two public
keys with restrictions defined in Definition 5.

Definition 7. A SDVS scheme is (T , qh, qH, qPri, qΣ, ε)-secure against EF-ACMA
if all T -time adversaries making at most qh h-query, qH H-query, qPri PrivateKey-
query and qΣ Signing query, respectively, have an advantage ε in breaking our
scheme.

In the following theorem, we prove that our scheme is secure against EF-
ACMA in the random oracle model.

Theorem 1. Unforgeability: Suppose there exists an adversary A which can
(T , qh, qH, qPri, qΣ , ε)-break our SDVS scheme via EF-ACMA, then we can con-
struct an algorithm F which can (T ′, ε′)-break the CDH problem on G where

T ′ = T + qhO(1)h + qHO(1)H + qPriO(1)Pri + qΣO(1)Σ and
ε′ ≥ 1/qΣ · (1− 1/(qΣ + 1))(qΣ+1)ε.

Here O(1)℘ with ℘ ∈ {h,H, P ri, Σ} is the time unit for replying the correspond-
ing query.

Proof: We show how a CDH problem in G can be solved if a signature of our
scheme can be forged.
Initial Stage. F is given a challenge (Q, αQ, βQ) from an outsider where Q is
randomly picked from the additional group G, and (α, β) R← Z∗

q × Z∗
q . F ’s goal

is to find αβQ ∈ G.
Setup. In the setup phase, F generates a primitive element P of G. On input
(P,G,Ui, 1 ≤ i ≤ n), where Ui, 1 ≤ i ≤ n denotes the n entities of the scheme, F
runs KenGen and the outputs are the public/private key pairs (pki, ski) of entity
Ui for 1 ≤ i ≤ n. At the end of this phase, F gives all the public parameters
(P,G, pki, 1 ≤ i ≤ n) to A and allows A to run.

Phase 1. The following queries are available to A and are controlled by F . Any
of its queries may depend on previous answers

• H-query: Any time when A asks the H-hash query of a message mi. F picks
ri

R← Z∗
q and outputs riQ ∈ G as a reply. Each of these queries is recorded

in the H-List in the form (mi, ri, riQ) by F so as to make sure that each
query of different mi has distinct answer.
• PrivateKey-query: Each time when A provides a public key pki(= xiP)

to Pri, F responds this query with xi.
• h-query: When A makes a h-query by given a parameter Qi ∈ G, F replies

with γ̂i
R← Z∗

q . Each of this query/reply pair is recorded in the h-List by F .
• Signing query:

For any signing query σi of a message mi and two public keys pksign(=
xP), pkveri(= yP) provided byA, if xyP = Qj for some Qj where h(Qj) = γ̂j

7

has been requested previously, then F replies σi ← γ̂jriQ where riQ = H(m)

is extracted from theH-List. Otherwise, F outputs σi ← γ̂′riQ with γ̂′ R← Z∗
q

and records σi in the Σ-List and γ̂′ in the h-List as the result of h(xyP).

Challenge. The adversary A submits two public keys pkj1 , pkj2 which he will
use to forge a designated verifier signature between the two entities Uj1 , Uj2 . For
convenience, we set Uj1 as UA, Uj2 as UB, and pkj1 = Va = aP, pkj2 = Vb = bP .
These public keys are restricted to the entities that their private keys have not
been requested, in addition, any UB-designated verifier signature signed by UA

or UA-designated verifier signature signed by UB has not been requested to the
signing oracle in Phase 1.

Phase 2. If abP = Qi for some Qi ∈ G where h(Qi) has been asked in Phase
1, then F aborts the challenge and outputs “failure”. Otherwise, F allows A
to repeat Phase 1 with the restriction that A cannot request the private keys
for VA and VB. In this phase, A can initiate the signing query for a signature
of a message m signed and designated between UA and UB. F replies with
rαQ(= αrQ) where rQ is the reply of H(m) which A requested previously,
therefore r can be extracted from the H-List.

On the other hand, since a signature can be derived without a signing query
if the corresponding H-query, PrivateKey-query and h-query have been asked,
we may assume that, in Phase 2, A requests a signing query to the signing oracle
Σ only for a signature signed and verified between UA and UB. For any other
signature not signed and verified between UA and UB, A use the alternative way
(i.e., H-query, PrivateKey-query and then h-query) to find its value. It is trivial
to modify any adversary A to have this property.

Forgery. After qh h-query, qH H-query, qPri PrivateKey-query and qΣ Signing
query, the adversary submits a forged signature σ∗ of a message m∗ signed by
UA and is designated to UB.

From the above description, anyone can see easily that all the oracles simu-
lated by F are indistinguishable from real oracles. So everything should go well
without any problem if both F and A are behaved well. In addition, because of
the restrictions described in the Challenge phase, we can conclude that a forged
signature between UA and UB cannot be launched successfully without the pro-
cess of Phase 2 (because the value of h(abP) has not been distributed yet before
Phase 2). In the following proof, we focus only on the h-query in both Phases
and signing query in Phase 2. We assume that abP �= Qi for some Qi ∈ G where
h(Qi) has been asked in Phase 1. In addition, A cannot request the singing query
(with entities UA and UB) of the message m∗ in Phase 2 but H(m∗) must have
been queried before it outputs its forgery. We construct a series of games and
modify F in each game. The final variant of F in the final game thus is the one
we want for solving the CDH problem. This idea is inspired by [3].

• Game 0 : F behalves as previous description but records a new list (called
N -List) containing a list of tuples 〈mi, Qi, σi, si〉 as explained below. All of

8

these tuples are initially empty. mi is message of the i-th query for H(mi),
Qi = riQ = H(mi), σi = h(abP)H(mi) = riαQ if it has been queried,
otherwise σi is still empty. si maintains empty which will be used from
the next game. Finally, in the Forgery phase, A outputs a forged signature
(m∗, σ∗). If σ∗ is a valid DVS of m∗, and m∗ = mi∗ for some i∗ where
its signing query of the two entities UA, UB has not been queried, then F
outputs “success”; otherwise, it outputs “failure”. Since the modification in
this game will not affect the behavior of A, by Definition 5 and 6, we have

AdvGame 0
F = Pr

[
FA(G,Q, αQ, βQ) = success

∣∣∣∣∣Q R← G

α, β
R← Z∗

q

]
= AdvEF−ACMA

BS,A = ε.

• Game 1 : F behaves as that in Game 0 with a difference that, before it
replies to A for H(mi) of a message mi, F replace si in N -List with an
element in {0, 1} by flipping a random cycle. The cycle outputs si ← 1
with probability 1/(qΣ + 1) and si ← 0 with probability 1 − 1/(qΣ + 1).
Finally, F outputs “success” if A succeeds in outputting a forgery (m∗, σ∗)
and si∗ = 1 for the message m∗. The change in this game will not affect
the behavior of A since A have no information about any si. Thus we have
AdvGame 1

F = AdvGame 0
F · Pr[si∗ = 1] = ε/(qΣ + 1). We define si ∈ {0, 1}

with different probabilities in order to let F of the following games to have
advantages of maximum lower-bound.
• Game 2 In this game, F functions as that in Game 1 but outputs “success”

only if si∗ = 1 of the message m∗ and si = 0 of the other messages mi.
The same as that in Game 1, A cannot get any information about si, so its
behavior is independent of any si. Sine A makes at most qΣ signing queries
in Phase 2, and for each signing query of a message mi in Phase 2, the
probability that si = 0 is 1 − 1/(qΣ + 1), therefore, we have AdvGame 2

F ≥
AdvGame 1

F · Prob[sij = 0, 1 ≤ j ≤ qΣ] = ε/(qΣ + 1) · (1 − 1/(qΣ + 1))qΣ =
1/qΣ · (1− 1/(qΣ + 1))(qΣ+1)ε.
• Game 3 : In this game, F functions as that in Game 2 with the difference

that if A requests a signature on a message mi for which si = 1, then F
declares failure and halts immediately. If, finally, A creates a valid forgery
(m∗, σ∗) and F outputs “success” in Game 3, then there is no difference
between Game 2 and Game 3. Therefore, AdvGame 3

F = AdvGame 2
F ≥ 1/qΣ ·

(1− 1/(qΣ + 1))(qΣ+1)ε. Game 3 provides a shortcut for the case when F ’s
output is “failure”.
• Game 4 : In Game 4, if si = 1 for some mi, then F sets Qi ← riβQ in
N -List. But no change will be occurred in a query if si = 0. Since ri is
randomly picked in Z∗

q , riQ and riβQ are both uniform distributions in G.
Therefore, this modification is still indistinguishable from a real oracle and
A will behave under F exactly as it does in previous games. So we have
AdvGame 4

F = AdvGame 3
F ≥ 1/qΣ · (1− 1/(qΣ + 1))(qΣ+1)ε.

• Game 5 : In this final game, whenever F in Game 4 outputs “success”, it
also outputs “success” in Game 5 and, in addition, outputs (r∗)−1 · σ∗,

9

where m∗ is the message for which A outputs a forged signature σ∗. Clearly,
AdvGame 5

F = AdvGame 4
F ≥ 1/qΣ · (1− 1/(qΣ + 1))(qΣ+1)ε.

In Game 5, if the forgery (m∗, σ∗)Amade is a valid message/signature pair, then
σ∗ = h(abP)H(m∗) = αH(m∗) = αr∗βQ Consequently, we have (r∗)−1 · σ∗ =
αβQ.

The running time required by F is the same as A’s running time plus the
time it takes to respond to all the queries A made. Thus, if A runs in time T ,
then

T ′ = T + qhO(1)h + qHO(1)H + qPriO(1)Pri + qΣO(1)Σ .

�

In the next theorem, we prove that our basic scheme possesses the indistin-
guishability of signer’s identity based on the BDDH problem.

Theorem 2. Privacy of signer’s identity: If there exists an algorithm A
which can (t, qH, qΣ , ε)-break the indistinguishability of signer’s identity, then
there exists an algorithm F ′ which can (t + qHO(1)H + qΣO(1)Σ , ε)-break the
BDDH Problem in G. Here h-query and PrivateKey query are omitted since
they are not controlled by F ′ in the following proof.

Proof: F ′ is given all the elements in G by an outsider L. In particular, P
is the generator of G with order q. At any time, F ′ can access a reveal oracle
Rev (controlled by L) by picking up three elements < X(= xP), Y (= yP), Z(=
zP) >∈R G3 and Rev responds with xyzP . We assume the outsider L (as well as
Rev) are well-behaved so Rev always responds < X, Y, Z > with correct xyzP .
At the end, F ′ requests its BDDH challenge by providing two three-tuple < A0(=
a0P), B(= bP), C(= cP) >∈ G3 and < A1(= a1P), B(= bP), C(= cP) >∈ G3

at his choice to L. Note that F ′ does not know the values of < a0, a1, b, c >. This
time, L outputs only one solution a∗bcP , a∗ ∈ {a0, a1}, of the BDDH problem,
and F ′ has to distinguish if a∗bcP is the solution of the BDDH problem of
< A0, B, C > or < A1, B, C >.

On the other hand, F ′ simulates a SDVS scheme with n entities (for conve-
nience, we denote ℵ = {U1, · · · , Un} as the set of these entities) and provides to
A the public key of each entity Ui ∈ ℵ by randomly picking an element Qi ∈ G.
Denote PKℵ the set of these public keys. In addition, A is allowed to make
at most qH H-queries and qΣ signing queries, respectively. F ′ is responsible for
these queries so F ′ has to simulate the random oracle H(·) and the signing oracle
Σ(·) well. The same as Theorem 1, we assume that A always requests the hash
of a message m before it requests a signature of m. At the end, A requests its
full-anonymity challenge by providing to F ′

1. two signers UΩ0 , UΩ1 with public key VΩ0(= ω0P), VΩ1(= ω1P), respectively,
2. one designated verifier UΓ with public key VΓ (= γP), and
3. a message M ∈ {0, 1}∗

10

at his choice where the hash query H(M) must have been asked but its signing
query must not have been asked previously. This time F ′ outputs a signature
σ∗ singed by UΩ∗ and A has to distinguish if Ω∗ = Ω0 or Ω1.

We show how B can solve his challenge of a BDDH problem by utilizing A.
At any time, when A asks the hash oracleH(·) for a message mi, F ′ responds the
query by randomly picking an element Ri ← G \PKℵ. F ′ has also to record the
pair (mi, Ri) in hisH-List so as to make sure that each query has distinct answer.
In other words, F ′ has to make sure that Ri �= Ri′ if mi �= mi′ . It is obvious that
H is a random oracle if q >> n. Further, each time when A asks a signature
σj by providing a signer UXj (with public key VXj (= xjP), a verifier UYj (with
public key VYj (= yjP) and a message mj where H(mj) = Rj ← G \ PKℵ, then
F ′ requests to the reveal oracle Rev by providing < VXj , VYj , Rj >. The reply
from Rev, which is Ej(= xjyjrjP) is assigned by F ′ as the reply of σj . Since each
σj is uniformly distributed in G and Rj is randomly picked from G\PKℵ, so F ′

simulates the signing oracle indistinguishably from a real oracle. Finally, after
qH hash queries and qΣ signing queries, A requests its challenge by providing
< UΩ0 , UΓ , M > and < UΩ1 , UΓ , M > to F ′ where H(M) = RM (= rMP) has
already been requested. To respond the query, F ′ requests its BDDH challenge
by providing two triples < VΩ0 , VΓ , RM > and < VΩ1 , VΓ , RM > to L, where
VΩi is the public key of UΩi , Ωi ∈ {Ω0, Ω1}, VΓ is the public key of UΓ . The
output E∗(= ω∗γrMP) from L, ω∗ ∈ {ω0, ω1}, is assigned by B as the output
of A’s challenge. Then, when A returns an entity UΩs with s = 0 or s = 1 as
the answer of his challenge, F ′ also returns < VΩs , VΓ , RM > as the answer of
his BDDH challenge. Consequently, if A breaks the privacy of signer’s identity
of the proposed scheme with advantage ε, then F ′ breaks the BDDH problem
with the same advantage.

Obviously, F ′’s running time exceeds A’s by the amount it takes to answer
A’s hash queries and signing queries. So, if A runs in time t, then F ′ runs in
time t + qHO(1)H + qΣO(1)Σ . This ends the proof. �.

Theorem 3. Non-transferability: The proposed scheme provides non - trans-
ferability of a signature.

This is straightforward since the operation of a signature and a verifier is done
symmetrically. Since both entities (signer and verifier) are capable of creating
this signature, no any third party can distinguish a signer from a designated
verifier even if he knows all secrets. In other words, no any third party can
determine who from the original signer or the designated verifier performed this
signature, even if he knows all secrets.

4 Modified Scheme (Probabilistic)

In this section, we modify our basic scheme from deterministic to probabilistic
so as to provide the security requirement of signer’s forward security.

11

The system setting and key generation are the same as the basic scheme.

Signature generation: When Alice wants to sign a message m ∈ {0, 1}∗ while
designates Bob to be the verifier. Alice executes the Sign algorithm and does
the following steps:

• Pick r
R← Z∗

q and Q← rP .
• Given r, Alice’s private key a, and Bob’s public key Vb, compute (a + r)Vb.
• Compute h((a + r)Vb), H(m) and ς ← h((a + r)Vb)H(m).
• The SDVS for m is σ ← (Q, ς).

Verification: With the knowledge that the signature σ is signed by Alice, then
only Bob can verify the validity of the signature. Bob executes the V eri algorithm
and does the following steps:

• Given Q, Bob’s private key b and Alice’s public key Va, compute b(Va + Q)
and h(b(Va + Q)).
• Given the message m, compute H(m) and ς̃ ← h(b(Va + Q))H(m).
• Accept σ as a valid signature if and only if ς = ς̃.

4.1 Security Reduction

The modified scheme provides the same security requirement as our basic scheme.
In addition, this scheme provides signer’s forward security so the consistency of
a signature cannot be verified by any third party even if he/she knows a signer’s
private key. With this property, the secrecy of previously signed signature will
not be affected and a signer’s privacy can be protected even if a signer’s private
key is disclosed. Unfortunately, although the property is important, it has been
less considered in the previously proposed SDVS schemes.

The proof of non-transferability is straightforward since both entities are
capable of creating such a signature so no any third party can distinguish a signer
form a designated verifier, even if he knows all secrets. The security proofs of
unforgeability against existential forgery under adaptive chosen message attack
and indistinguishability of signer’s identity can be reduced to the security of the
basic scheme.

Theorem 4. Unforgeability: If there exists an adversary A which can break
our modified SDVS scheme via EF-ACMA defined in Definition 5, then there
exists another adversary A′ which can break our basic scheme via the same
attack.

This is trivial since if an adversary A can successfully forge a message/signature
pair (m∗, σ ← (Q, ς)) with a signer’s public key Vi, and a designated verifier’s
public key Vj , then (m∗, ς) is a valid message/signature pair of our basic scheme
where the signer’s public key becomes Vi +Q and the designated verifier’s public
key is Vj . Thus, we found a contradiction.

12

Theorem 5. Privacy of signer’s identity: If there exists an adversary A
which can break the indistinguishability of signer’s identity of our modified
scheme with non-negligible probability, then there exists another adversary B
which can break the indistinguishability of signer’s identity of our basic scheme
with the same probability.

Proof:(sketch) We show how B can break our basic scheme by utilizing A.

• B is given all the public information of our basic scheme constructed by
an challenger L. B is allowed to access the H-oracle and signing oracle of
the basic scheme which are controlled by L. B ’s purpose is to break the
indistinguishability of signer’s identity of our basic scheme.
• A is given the same public information as B and is also allowed to make H

queries and signing queries of the modified scheme, where B is responsible
for replying these queries. A ’s purpose is to break the indistinguishability
of signer’s identity of the modified scheme.
• Any time when A makes a H query by providing a signer’s public key pki, a

designated verifier’s public key pkj , and a message m, B in turn asks to the

H-oracle by selecting Q
R← G, pk′

i ← pki + Q, and providing < m, pk′
i, pkj >

to the H-oracle. The reply ς from the H-oracle and Q is assigned as the reply
of A’s query (i.e., σ ← (Q, ς)).
• At the end, when A requests its full-anonymity challenge in the modified

scheme by providing
- two signer’s public keys pksign0 , pksign1 ,
- one designated verifier’s public key pkveri, and
- a message M

to B, then B in turn requests his full-anonymity challenge in the basic scheme
by selecting Q′ R← G, computing pk′

sign0
← pksign0 +Q′, pk′

sign1
← pksign1 +

Q′, and providing
- two signer’s public keys pk′

sign0
, pk′

sign1
,

- one designated verifier’s public key pkveri, and
- a message M

to the challenger L. The output from L (which is ς ′) and Q′ is thus the
output (i.e., σ∗ ← (Q′, ς)) from B to A.
• Finally, if A can solve his challenge with non-negligible probability and re-

veals the signer’s public key pksign∗ of the modified scheme, then pk′
sign∗ =

pksign∗ + Q′ is thus the signer’s public key of our basic scheme. Therefore B
also solves his challenge with non-negligible probability. �

The following theorem proves that to break the signer’s forward security in
this modified scheme implies to break the BDDH problem in G.

Theorem 6. Signer’s forward security: If there exists an algorithm A which
can (t, qH, qΣ , ε)-break the signer’s forward security, then there exists another
algorithm F which can (t+qHO(1)H+qΣO(1)Σ , ε)-break the BDDH Problem in
G. Here h-query and PrivateKey query are omitted since they are not controlled
by F ′ in the following proof.

13

Proof: We need only to prove that any adversary without the knowledge of
r or Bob’s private key Vb cannot verify the consistency of a Bob-designated
signature signed by Alice, even if he/she knows Alice’s private key a. This can
be proved using the same technique in the proof of Theorem 2. Here A’s purpose
is to distinguish a Q∗ ∈ {Q0, Q1} in a signature σ∗ ← h((a + r∗)Vb)H(m),
r∗ ∈ {r0, r1}, by providing < a, Vb, m, Q0(= r0P), Q1(= r1P) > to F at its
choice. F ’s purpose is to find the solution of a BDDH problem by providing two
three-tuple < Va +Q0, Vb,H(m) > and < Va +Q1, Vb,H(m) > to the outsider L.
Finally, the challenge outputted from L is assigned to A by F as A’s challenge
σ∗. Therefore, F solves its BDDH challenge successfully if A outputs a correct
Q∗ ∈ {Q0, Q1}. We omit this proof (see details of the proof of Theorem 2).

5 Efficiency and Performance Comparison

In this section, we give the comparison results of our schemes with other schemes
in efficiency and performance, which are shown in Table 1. In Table 1, in order
for the results to be compared effectively, we only consider the operations of
Pairing computation (P), Elliptic Curve Multiplication (ECM), Exponentional
computation (Exp) and Inversive operation (Inv), which are the most time-
consuming operations. In addition, the size of nr is about 111 bits (|nr| ≈ 111)
according to [7] and we can set |p| = 512, |G| = |Zq| with |q| = 160 in Table 1
so that they can have comparable security.

In out basic scheme, since the randomize is depended on the hash H(m) of
a message m instead of a random parameter, it realized the low communication
cost. The data flow of our basic scheme consists of only one parameter in G, while
previously proposed (strong)DVS schemes consists of at least two parameters.
On the other hand, this scheme is very efficient in computation. If we neglect the
hashing operations which does not cost a lot of time, then the time-consuming
operations in this scheme consists of only two multiplicative operations on G
for each signer and verifier. In addition, one of the two operations can be pre-
computed off-line. Our modified scheme is as efficient as the basic scheme except
that all of the computation has to be computed on-line. The data flow increases
to two parameters in G but this sacrifice increased its security.

From the performance comparison, we conclude that our schemes are superior
to other schemes in almost every aspects.

6 Designated Verifier Signcryption

In some circumstances, in addition to preserve the privacy of a sender Alice, she
may also wish (or asked) to encrypt the message so as to avoid any third party
to read it (if the message is concerned with confidential matters). Obviously,
this can be done by encrypting the message using a designated verifier’s public
key or combining a DVS scheme with any key agreement scheme. This, however,
requires additional complex operations and sometimes increases the data flow
in number. In our scheme, it is obvious that if a message m is a secret, than

14

Table 1. Performance Comparison I

Data Flow Sign Verify Type Forward
off-line on-line off-line on-line Security

Basic Scheme 1 in G 1 ECM 1 ECM 1 ECM 1 ECM SDVS No

Mod. Scheme 2 in G − 2 ECM − 2 ECM SDVS Yes

JIS [6]
3 in Zq

3 in Zp
− 4 ECM − 4 ECM DVS No

LV [7]
1 in nr

1 in Zq
− 1 P − 1 P

1 ECM
SDVS No

SKM [11] 3 in Zq − 1 Exp
1 Inv

− 3 Exp SDVS No

SZM [13]
2 in Zq

1 in G
− 1 P

3 ECM
1 P

2 P
2 Exp

SDVS No

h(m) is also a secret from the viewpoint of a third party. But Alice and Bob can
get h(m) because they both know the value aVb = abP = bVa. Consequently,
h(m) can be used as a session key in our scheme to encrypt m with virtually no
additional cost.

To avoid a deterministic encryption of any message m, we concatenate m with
a random number r ∈ {0, 1}l where l is a security parameter for a symmetric
encryption algorithm E. In the following algorithm, we introduce our designated
verifier signcryption algorithm using our basic scheme. We emphasize that our
modified scheme can also be changed into a signcryption scheme using the same
technique.

Assume the system setting and key generation are the same as those in
Section 3, then, when Alice wants to signcrypt a message m ∈ {0, 1}∗ to B, he
does as follows:

Signcryption:

• Given Alice’s private key a, and Bob’s public key Vb, compute aVb.
• Pick r

R← {0, 1}l, compute h(aVb) and H(m||r).
• Compute σ ← h(aVb)H(m||r).
• Compute k ← H(m||r).
• Compute c← Ek(m||r).

Then the signcryption for message m is (c, σ).

Un-signcryption: Knowing that the signcrypted message is originated from
Alice, then only Bob can decrypt c and verify the validity of the signature σ.

• Given Bob’s private key b, and Alice’s public key Va, compute bVa.
• Compute h(bVa)−1.
• Compute k̃ ← h(bVa)−1σ

• Compute m̃||r ← D
�k(c)

15

Table 2. Performance Comparison II

Data Flow Signcrypt Unsigncrypt Forward
off-line on-line off-line on-line Security

Basic Scheme 2 1 ECM 1 ECM
1 ECM
1 Inv

1 ECM No

Mod. Scheme 3 − 2 ECM 1 Inv 2 ECM Yes

SKM [11] 4 − 1 Exp
1 Inv

− 3 Exp No

Zheng [14] 3 − 1 Exp
1 Inv

− 2 Exp No

• Extract m̃ from m̃||r

where D is the corresponding decryption algorithm of E and Bob accepts the
message m̃ = m and the signature if and only if H(m̃||r) = k̃.

The security of this signcryption scheme is depended on the security of the
proposed SDVS scheme and the symmetric encryption scheme E. Also note that
without knowing h(aVb) or m, the probability of extracting a correct k = h(m||r)
from σ is 1/q, which is negligible.

Table 2 shows the performance comparison of our scheme with two previously
proposed schemes. The scheme proposed in [11] is also a designated verifier
signcryption scheme modified from a SDVS scheme.

7 conclusion

In this paper, we first introduced a simple SDVS scheme which is much more
efficient than previously proposed SDVS schemes. Based on this scheme, we
proposed our modified scheme which provides an additional security requirement
called signer’s forward security. With this additional property, the secrecy of
previously signed signature will not be affected and a signer’s privacy can be
protected even if a signer’s private key is disclosed. In addition, our schemes
can be modified into designated verifier signcryption schemes with virtually no
additional cost comparing to the original SDVS schemes, which is useful in the
case if the message is required to be kept secret from any third party. In the
appendix, we give concrete security proofs to show that our schemes are provable
secure in the random oracle model.

References

1. Y. Aumann, and M. Rabin, Efficient deniable authentication fo long
messages, International Conference on Theoretical Computer Science in
Honor of Professor Manuel Blum’s 60th Birthday (1998), avaible at
http://www.cs.cityu.edu.hk/dept/video.html.

16

2. D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, Ad-
vances in cryptology –CRYPTO’01, Lecture Notes in Comput Sci. 2139 (2001),
213–229.

3. D. Boneh, B. Lynn and H. Shacham, Short signatures from the Weil pairing, Ad-
vances in cryptology –CRYPTO’01, Lecture Notes in Comput Sci. 2248 (2001),
514–532.

4. L. Fan, C. X. Xu, and J. H. Li, Deniable authentication protocol based on Diffie-
Hellman algorithm, Electronics Letters 38(4) (2002), 705–706.

5. S. Goldwasser, S. Micali and R. L. Rivest, A digital signature scheme secure against
adaptive chosen-message attacks, SIAM Journal of Computing 17(2) (1988), 281–
308.

6. M. Jakkobsson, K. Sako and T. Impagliazzo, Designated verifier proofs and their
applications, Advances in cryptology –EUROCRYPTO’96, Lecture Notes in Com-
put Sci. 1070 (1996), 143–154.

7. F. Laguillaumie, D. Vergnaud, Designated verifier signatures: anonymity and effi-
cient construction from any bilinear map, SCN’04, Lecture Notes in Comput Sci.
3352 (2005), 107–121.

8. L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone, An efficient protocol
for authenticated key agreement, Designs, Codes and Cryptogr. 28 (2003), no. 2,
119–134.

9. T. Okamoto, R. Tso and E. Okamoto, One-way and two-party authenticated ID-
based key agreement protocols using pairing, MDAI’05, Lecture Notes in Artificial
Intelligence 3558 (2005), 122–133.

10. R. L. Rivest, A. Shamir and Y. Tauman, How to leas a secret
11. S. Saeednia, S. Kremer and O. Markowitch, An efficient strong designated verifier

signature scheme, ICISC’03, Lecture Notes in Comput Sci. 2971 (2003), 40–54.
12. Z. Shao, Efficient deniable authentication protocol based on generalized ElGamal

signature scheme, Computer Standards & Interfaces, 26 (2004), 449–454.
13. W. Susilo, F. Zhang and Y. Mu, Identity-based strong designated verifier signature

schemes, ACISP’04, Lecture Notes in Comput Sci. 3108 (2004), 313–324.
14. Y. Zheng, Digital signcryption or how to achieve cost(signature & encryption) <<

cost(signature)+cost(encryption), Advances in cryptology –CRYPTO’97, Lecture
Notes in Comput Sci. 1294 (1997), 165–179.

17

