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1 Introduction

DATA FILTERING FOR THE INTELLIGENCE COMMUNITY. As our motivating exam-
ple, we examine one the tasks of the intelligence community: to collect “potentially useful” infor-
mation from huge streaming sources of data. The data sources are vast, and it is often impractical to
keep all the data. Thus, streaming data is typically sieved from multiple data streams in an on-line
fashion, one document/message/packet at a time, where most of the data is immediately dismissed
and dropped to the ground, and only some small fraction of “potentially useful” data is retained.
These streaming data sources, just to give a few examples, include things like packet traffic on
some network routers, on-line news feeds (such as Reuters.com), some internet chat-rooms, or
potentially terrorist-related blogs or web-cites. Of course, most of the data is totally innocent and
is immediately dismissed except for some data that raises “red flags” is collected for later analysis
“on the inside”.

In almost all cases, what’s “potentially useful” and raises a “red flag” is classified, and sat-
isfies a secret criteria (i.e., a boolean decision whether to keep this document or throw it away).
The classified “sieving” algorithm is typically written by various intelligence community analysts.
Keeping this “sieving” algorithm classified is clearly essential, since otherwise adversaries could
easily avoid their messages from being collected by simply avoiding criteria that is used to collect
such documents in the first place. In order to keep the selection criteria classified, one possible
solution (and in fact the one that is used in practice) is to collectall streaming data “on the inside”
—in a secure environment— and then filter the information, according to classified rules, throwing
away most of it and keeping only a small fraction of data-items that are interesting according to
the secret criteria, such as a set of keywords that raise a red-flag. While this certainly keeps the
sieving information private, this solution requirestransferring all streaming data to a classified
environment, adding considerable cost, both in terms of communication cost and a potential delay
or even loss of data, if the transfer to the classified environment is interrupted or dropped in transit.
Furthermore, it requires considerable cost ofstorageof this (un-sieved) data in case the transfer to
the classified setting is delayed.

Clearly, a far more preferable solution, is to sieve all these data-streams at their sources (even
on the same computers or routers where the stream is generated or arrives in the first place). The
issue, of course, is how can we do it while keeping sieving criteria classified, even if the computer
where the sieving program executes falls into enemy’s hands? Perhaps somewhat surprisingly, we
show how to do just that while keeping the sieving criteria provably hidden from the adversary,
even if the adversary gets to experiment with the sieving executable code and/or tries to reverse-
engineer it. Put differently, we construct a “compiler” (i.e. of how to compile sieving rules) so
that it is provably impossible to reverse-engineer the classified rules from the executable complied
sieving code. Now, we state our results in a more general terms, that we believe are of independent
interest:
PUBLIC-KEY PROGRAM OBFUSCATION: Very informally, given a programf from a
complexity classC, and a security parameterk, a public-key program obfuscator compilesf
into (F, Dec), whereF on any input computes an encryption of whatf would compute on the
same input. The decryption algorithmDec decrypts the output ofF . That is, for any inputx,
Dec(F (x)) = f(x), but given code forF it is impossible to distinguish for any polynomial time
adversary whichf from complexity classC was used to produceF . We stress that in our defini-
tion, the program encoding length|F |must polynomially depend only on|f | andk, and the output
length of |F (x)| must polynomially depend only on|f(x)| andk. It is easy to see that Single-
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Database Private Information Retrieval (including keyword search) can be viewed as a special case
of public-key program obfuscator.
OBFUSCATING SEARCHING ON STREAMING DATA: We consider how to public-key
program obfuscate Keyword Search algorithms on streaming data, where the size of the query (i.e.
complied executable) must beindependentof the size of stream (i.e., database), and that can be
executed in an on-line environment, one document at a time. Our results also can be viewed as
improvement and a speedup of the best previous results of single-round PIR with keyword search of
Freedman, Ishai, Pinkas and Reingold [12]. In addition to the introduction of the streaming model,
this paper also improves the previous work on keyword PIR by allowing for the simultaneous
return of multiple documents that match a set of keywords, and also the ability to more efficiently
perform different types of queries beyond just searching for a single keyword. For example, we
show how to search for the disjunction of a set of keywords and several other functions.
OUR RESULTS: We consider a dictionary of finite size (e.g., an English dictionary)D that serves
as the universe for our keywords. Additionally, we can also have keywords that must be absent
from the document in order to match it. We describe the various properties of such filtering
software below. A filtering programF stores up to some maximum numberm of matching docu-
ments in an encrypted bufferB. We provide several methods for constructing such softwareF that
saves up tom matching documents with overwhelming probability and saves non-matching docu-
ments with negligible probability (in most cases, this probability will be identically 0), all without
F or its encrypted bufferB revealing any information about the query thatF performs. The re-
quirement that non-matching documents are not saved (or at worst with negligible probability) is
motivated by the streaming model: in general the number of non-matching documents will be vast
in comparison to those that do match, and hence, to use only small storage, we must guarantee that
non-matching documents from the stream do not collect in our buffer. Among our results, we
show how to execute queries that search for documents that match keywords in a disjunctive man-
ner, i.e., queries that search for documents containing one or more keywords from a keyword set.
Based on the Paillier cryptosystem, [21], we provide a construction where the filtering softwareF
runs inO(l ·k3) time to process a document, wherek is a security parameter, andl is the length of a
document, and stores results in a buffer bounded byO(m · l · k2). We stress again thatF processes
documents one at a time in an online, streaming environment. The size ofF in this case will be
O(k · |D|) where|D| is the size of the dictionary in words. Note that in the above construction,
the program size is proportional to the dictionary size. We can in fact improve this as well: we
have constructed a reduced program size model that depends on theΦ-Hiding Assumption[6]. The
running time of the filtering software in this implementation is linear in the document size and is
O(k3) in the security parameterk. The program size for this model is onlyO(polylog(|D|)). We
also have an abstract construction based on any group homomorphic, semantically secure encryp-
tion scheme. Its performance depends on the performance of the underlying encryption scheme,
but will generally perform similarly to the above constructions. As mentioned above, all of these
constructions have size that is independent of the size of the data stream. Also, using the results
of Boneh, Goh, and Nissim [3], we show how to execute queries that search for an “AND” of two
sets of keywords (i.e., the query searches for documents that contain at least one word fromK1

andat least one word fromK2 for sets of keywordsK1, K2), without asymptotically increasing the
program size.

Our contributions can be divided into three major areas: Introduction of the streaming model;
having queries simultaneously return multiple results; and the ability to extend the semantics of
queries beyond just matching a single keyword.
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COMPARISON WITH PREVIOUS WORK: A superficially related topic is that of “searching
on encrypted data” (e.g., see [4] and the references therein). We note that this body of work is in
fact not directly relevant, as the data (i.e. input stream) that is being searched is not encrypted in
our setting.

The notion of obfuscation was considered by [2], but we stress that our setting is different, since
our notion of public-key obfuscation allows the output to be encrypted, whereas the definition of
[2] demands the output of the obfuscated code is given in the clear, making the original notion of
obfuscation much more demanding.

Our notion is also superficially related to the notion of “crypto-computing” [22]. However,
in this work we are concerned with programs that contain loops, and where we cannot afford to
expand this program into circuits, as this will blow-up the program size.

Our work is most closely related to the notion of Single-database Private Information Re-
trieval (PIR), that was introduced by Kushilevitz and Ostrovsky [16] and has received a lot of
subsequent attention in the literature [16, 6, 9, 20, 17, 5, 23, 18, 12]. (In the setting of multiple,
non-communicating databases, the PIR notion was introduced in [8].) In particular, the first PIR
with poly-logarithmic overhead was shown by Cachin, Micali and Stadler [6], and their construc-
tion can be executed in the streaming environment. Thus the results of this paper can be viewed
as a generalization of their work as well. The setting of single-database PIR keyword search was
considered in [16, 7, 15] and more recently by Freedman, Ishai, Pinkas and Reingold [12]. The
issue of multiple matches of a single keyword (in a somewhat different setting) was considered by
Kurosawa and Ogata [15].

There are important differences between previous works and our work on single-database PIR
keyword search: in the streaming model, the program size must beindependentof the size of the
stream, as the stream is assumed to be an arbitrarily large source of data and we do not need to
know the size of the size of the stream when compiling the obfuscated query. In contrast, in all
previous non-trivial PIR protocols, when creating the query, the user of the PIR protocol must
know the upper bound on the database size while creating the PIR query. Also, as is necessary in
the streaming model, the memory needed for our scheme is bounded by a value proportional to the
size of a document as well as an upper bound on the total number of documents we wish to collect,
but is independent of the size of the stream of documents. Finally, we have also extended the
types of queries that can be performed. In previous work on keyword PIR, a single keyword was
searched for in a database and a single result returned. If one wanted to query an “OR” of several
keywords, this would require creating several PIR queries, and then sending each to the database.
We however show how to intrinsically extend the types of queries that can be performed, without
loss of efficiency or with multiple queries. In particular, all of our systems can efficiently perform
an “OR” on a set of keywords and its negation (i.e. a document matches if certain keyword is absent
from the document). In addition, we show how to privately execute a query that searches for an
“AND” of two sets of keywords, meaning that a document will match if and only if it contains at
least one word from each of the keyword sets without the increase in program (or dictionary) size.

2 Definitions and Preliminaries

2.1 Basic Definitions

For a setV we denote the power set ofV byP(V ).
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Definition 2.1 Recall that a functiong : N → R+ is said to benegligibleif for any c ∈ N there
existsNc ∈ Z such thatn ≥ Nc ⇒ g(n) ≤ 1

nc .

Definition 2.2 Let C be a class of programs, and letf ∈ C. We define apublic key program
obfuscator in the weak senseto be an algorithm

Compile(f, r, 1k) 7→ {F (·, ·), Decrypt(·)}

wherer is randomness,k is a security parameter, andF and Decrypt are algorithms with the
following properties:

• (Correctness)F is a probabilistic function such that

∀x, PrR,R′

[
Decrypt(F (x, R′)) = f(x)

]
≥ 1− neg(k)

• (Compiled Program Conciseness) There exists a constantc such that

|f | ≥ |F (·, ·)|
(|f |+ k)c

• (Output Conciseness) There exists a constantc such that For allx, R

|f(x)| ≥ |F (x, R)|
kc

• (Privacy) Consider the following game between an adversaryA and a challengerC:

1. On input of a security parameterk, A outputs two functionsf1, f2 ∈ C.

2. C chooses ab ∈ {0, 1} at random and computesCompile(fb, r, k) = {F, Decrypt}
and sendsF back toA.

3. A outputs a guessb′.

We say that the adversary wins ifb′ = b, and we define the adversary’s advantage to be
AdvA(k) = |Pr(b = b′) − 1

2
|. Finally we say that the system is secure if for allA ∈ PPT ,

AdvA(k) is a negligible function ink.

We also define a stronger notion of this functionality, in which the decryption algorithm does
not give any information aboutf beyond what can be learned from the output of the function alone.

Definition 2.3 Let C be a class of programs, and letf ∈ C. We define apublic key program
obfuscator in the strong senseto be a triple of algorithms(Key-Gen, Compile, Decrypt) defined
as follows:

1. Key-Gen(k): Takes a security parameterk and outputs a public key and a secret key
Apublic, Aprivate.

2. Compile(f, r, Apublic, Aprivate): Takes a programf ∈ C, randomnessr and the public and
private keys, and outputs a programF (·, ·) that is subject to the same Correctness and
conciseness properties as in Definition 2.2.
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3. Decrypt(F (x), Aprivate): Takes output ofF and the private key and recoversf(x), just as
in the correctness of Definition 2.2.

Privacy is also defined as in Definition 2.2, however in the first step the adversaryA receives
as an additional inputApublic and we also require thatDecrypt reveals no information aboutf
beyond what could be computed fromf(x): Formally, for all adversariesA ∈ PPT and for all
history functionsh there exists a simulating programB ∈ PPT that on inputf(x) andh(x) is
computationally indistinguishable fromA on input(Decrypt, F (x), h(x)).

Now, we give instantiations of these general definitions to the class of programsC that we
show how to handle: We consider a universe of wordsW = {0, 1}∗, and a dictionaryD ⊂ W
with |D| = α < ∞. We think of a document just to be an ordered, finite sequence of words inW ,
however, it will often be convenient to look at the set of distinct words in a document, and also to
look at some representation of a document as a single string in{0, 1}∗. So, the termdocumentwill
often have several meanings, depending on the context: ifM is said to be adocument, generally
this will meanM is an ordered sequence inW , but at times, (e.g., whenM appears in set theoretic
formulas)documentwill mean (finite) element ofP(W ) (or possiblyP(D)), and at other times
still, (say when one is talking of bit-wise encrypting a document) we’ll viewM asM ∈ {0, 1}∗.
We define aset of keywordsto be any subsetK ⊂ D. Finally, we define astreamof documentsS
just to be any sequence of documents.

We will consider only a few types of queries in this work, however would like to state our
definitions in generality. We think of aquery type, Q as a class of logical expressions in∧,∨,
and¬. For example,Q could be the class of expressions using only the operation∧. Given a
query type, one can plug in the number of variables, call itα for an expression, and possibly
other parameters as well, to select a specific boolean expression,Q in α variables from the class
Q. Then, given this logical expression, one can inputK ⊂ D whereK = {ki}α

i=1 and create
a function, call itQK : P(D) → {0, 1} that takes documents, and returns 1 if and only if a
document matches the criteria.QK(M) is computed simply by evaluatingQ on inputs of the form
(ki ∈ M). We will call QK aquery over keywordsK.

We note again that our work does not show how to privately execute arbitrary queries, de-
spite the generality of these definitions. In fact, extending the query semantics is an interesting
open problem.

Definition 2.4 For a queryQK on a set of keywordsK, and for a documentM , we say thatM
matchesqueryQK if and only ifQK(M) = 1.

Definition 2.5 For a fixed query typeQ, a private filter generatorconsists of the following proba-
bilistic polynomial time algorithms:

1. Key-Gen(k): Takes a security parameterk and generates public keyApublic, and a private
keyAprivate.

2. Filter-Gen(D, QK , Apublic, Aprivate, m, γ): Takes a dictionaryD, a queryQK ∈ Q for the
set of keywordsK, along with the private key and generates a search programF . F searches
any document streamS (processing one document at a time and updatingB) collects up to
m documents that matchQK in B, outputting an encrypted bufferB that contains the query
results, where|B| = O(γ) throughout the execution.
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3. Filter-Decrypt(B, Aprivate): Decrypts an encrypted bufferB, produced byF as above, using
the private key and produces outputB∗, a collection of the matching documents fromS.

Definition 2.6 (Correctness of a Private Filter Generator)
Let F = Filter-Gen(D, QK , Apublic, Aprivate, m, γ), whereD is a dictionary,QK is a query for
keywordsK, m, γ ∈ Z+ and(Apublic, Aprivate) = Key-Gen(k). We say that a private filter gener-
ator iscorrectif the following holds:

LetF run on any document streamS, and setB = F (S).
LetB∗ = Filter-Decrypt(B, Aprivate). Then,

• If |{M ∈ S | QK(M) = 1}| ≤ m then

Pr
[
B∗ = {M ∈ S | QK(M) = 1}

]
> 1− neg(γ)

• If |{M ∈ S | QK(M) = 1}| > m then

Pr
[
(B∗ ⊂ {M ∈ S | QK(M) = 1}) ∨ (B∗ = ⊥)

]
> 1− neg(γ)

where⊥ is a special symbol denoting buffer overflow, and the probabilities are taken over
all coin-tosses ofF , Filter-Gen and ofKey-Gen.

Definition 2.7 (Privacy) Fix a dictionaryD. Consider the following game between an adversary
A, and a challengerC. The game consists of the following steps:

1. C first runsKey-Gen(k) to obtainApublic, Aprivate, and then sendsApublic to A.

2. A chooses two queries for two sets of keywords,Q0K0
, Q1K1

, with K0, K1 ⊂ D and sends
them toC.

3. C chooses a random bitb ∈ {0, 1} and executesFilter-Gen(D, QbKb
, Apublic, Aprivate, m, γ)

to createFb, the filtering program for the queryQbKb
, and then sendsFb back toA.

4. A(Fb) can experiment with the code ofFb in an arbitrary non-black-box way, and finally
outputsb′ ∈ {0, 1}.

The adversary wins the game ifb = b′ and loses otherwise. We define the adversaryA’s
advantage in this game to be

AdvA(k) =
∣∣∣Pr(b = b′)− 1

2

∣∣∣
We say that a private filter generator issemantically secureif for any adversaryA ∈ PPT we
have thatAdvA(k) is a negligible function, where the probability is taken over coin-tosses of the
challenger and the adversary.
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2.2 Combinatorial Lemmas

We require in our definitions that matching documents are saved with overwhelming probability
in the bufferB (in terms of the size ofB), while non-matching documents are not saved at all (at
worst, with negligible probability). We accomplish this by the following method: If the document
is of interest to us, we throw it at randomγ times into the buffer. What we are able to guarantee is
that if only one document lands in a certain location, and no other document lands in this location,
we will be able to recover it. If there is a collision of one or more documents, we assume that
all documents at this location are lost (and furthermore, we guarantee that we will detect such
collisions with overwhelming probability). To amplify the probability that matching documents
survive, we throw eachγ times, and we make the total buffer size proportional to2γm, wherem
is the upper bound on the number of documents we wish to save. Thus, we need to analyze the
following combinatorial game, where each document corresponds to a ball of different color.

Color-survival game: Let m, γ ∈ Z+, and suppose we havem different colors, call them
{colori}m

i=1, andγ balls of each color. We throw theγm balls uniformly at random into2γm
bins, call them{binj}2γm

j=1 . We say that a ball “survives” inbinj, if no other ball (of any color)
lands inbinj. We say thatcolori “survives” if at least one ball of colorcolori survives. We say that
the gamesucceedsif all m colors survive, otherwise we say that itfails.

Lemma 2.8 The probability that thecolor-survival game failsis negligible inγ.

Proof: We need to compute the probability that at least one of them colors does not survive,
i.e., allγ balls of one or more colors are destroyed, and show that this probability is negligible inγ.
To begin, let us compute the probability that a single ball survives this process. Since the location
of each ball is chosen uniformly at random, clearly these choices are independent of one another.
Hence,

Pr(survival) =
(2γm− 1

2γm

)γm−1

Also recall that

limx→∞

(x− 1

x

)x

=
1

e
and hence

limγ→∞

(2γm− 1

2γm

)γm−1

=
1√
e
≈ .61

Furthermore, asγ increases, this function decreases to its limit, so we always have the probability
of survival of a single ball isgreaterthan 1√

e
for anyγ > 0.

Now, what is the probability of at least one out of them colors having all of itsγ balls destroyed
by the process? First we compute the probability for just a single color. Let{Ej}γ

j=1 be the events
that thej-th ball of a certain color does not survive. Then the probability that allγ balls of this
color do not survive is

Pr
( γ⋂

j=1

Ej

)
= Pr(E1)Pr(E2|E1) · · · Pr(Eγ|Eγ−1Eγ−2 · · · E1) <

(1

2

)γ

We know the final inequality to be true since each of the probabilities in the right hand product
are bounded above by1

2
as the probability of losing a particular ball was smaller than(1− 1√

e
) ≈
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.39 < 1/2, regardless the choice ofγ > 0, and given that collisions have already occurred only
further reduces the probability that a ball will be lost. Now, by the union bound we have that the
probability of losing all balls of at least one color is less than or equal to the sum of the probabilities
of losing each color separately. So, we have

Pr(at least one color does not survive) ≤
m∑

i=1

Pr(colori does not survive) <
m

2γ

which is clearly negligible inγ, which is what we wanted to show.�

Another issue is how to distinguish valid documents in the buffer from collisions of two or
more matching documents in the buffer. (In general it is unlikely that the sum of two messages
in some language will look like another message in the same language, but we need to guarantee
this fact.) This can also be accomplished by means of a simple probabilistic construction. We will
append to each documentk bits, partitioned intok/3 triples of bits, and then randomly set exactly
one bit in each triple to 1, leaving the other two bits 0. When reading the buffer results, we will
consider a document to be good if exactly one bit in each of thek/3 triples of appended bits is a 1.
If a buffer collision occurs between two matching documents, the buffer at this location will store
the sum of the messages, and the sum of 2 or more of thek-bit strings.1 We need to analyze the
probability that the sum of any numbern > 1 of suchk-bit stringsstill has exactly one bit in each
of thek/3 triples set to 1, and show that this probability is negligible ink. We will assume that the
strings add together bitwise, modulo 2 as this is the hardest case.2 We first prove the following
lemma.

Lemma 2.9 Let {ei}3
i=1 be the three unit vectors inZ3

2, i.e., (ei)j = δij. Letn be an odd integer,
n > 1. For v ∈ Z3

2, denote byTn(v) the number ofn-element sequences{vj}n
j=1 in theei’s, such

that
∑n

j=1 vj = v. Then,

Tn((1, 1, 1)) =
3n − 3

4

Proof: We proceed by induction onn. For n = 3, the statement is easy to verify. Clearly
there are6 such sequences, as they are obviously in one to one correspondence with the set of all
permutations of 3 items, and of course|S3| = 6. Finally note that6 = (33 − 3)/4.

Now assume that for some odd integern the statement is true. Note that the only possible sums
for such sequences are(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) since the total number of bits equal to 1
in the sum must be odd sincen is odd. Note also that by symmetry,(1, 0, 0), (0, 1, 0) and(0, 0, 1)
must all have the same number of sequences that sum to these values (since permuting coordinates
induces a permutation of the set of all sequences). So,Tn((1, 0, 0)) = Tn((0, 1, 0)) = Tn((0, 0, 1)).
Call this numberR. Since the total number of sequences of lengthn is 3n, and since they are
partitioned by their sums, we have that

R =
3n − Tn((1, 1, 1))

3
=

3n + 1

4
= Tn((1, 1, 1)) + 1

1If a document does not match, it will be encrypted as the 0 message, as will its appended string ofk bits, so
nothing will ever be marked as a collision with a non-matching document.

2In the general group homomorphic encryption setting, one will use a fixed non-identity element in place of 1 and
the identity in place of zero, performing the same process. If the order of the non-identity element is 2, then this is the
exact same experiment, and as the order increases, the strings add together more and more like a bitwise OR in which
case this problem is trivial.
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Now, we analyze the sums of the sequences of lengthn + 1 from this data. For each sequence
of lengthn that summed to(1, 0, 0), (0, 1, 0) or (0, 0, 1), there is exactly one sequence of length
n + 1 that sums to(0, 0, 0). Hence,Tn+1((0, 0, 0)) = 3R. Then by symmetry again, we have
thatTn+1((0, 1, 1)) = Tn+1((1, 0, 1)) = Tn+1((1, 1, 0)) = 3R − 1. Again, we have the sequences
partitioned by their sums, so using the same methods, we can computeTn+2((1, 1, 1)). For each
sequence of lengthn + 1 that sums to(0, 1, 1), (1, 0, 1) or (1, 1, 0) there is exactly one sequence of
lengthn + 2 that sums to(1, 1, 1). Hence

Tn+2((1, 1, 1)) = 3(3R− 1) = 9
(3n + 1

4

)
− 3 =

3n+2 − 3

4

This completes the proof.�

Lemma 2.10 Let H be a collection ofk-bit strings, partitioned intok/3 triples of bits, chosen
uniformly at random subject to the constraint that each triple contains exactly one bit that is set to
1. Then, if|H| > 1, the probability that the sum of all strings inH also satisfies the property that
each triple has exactly one bit set to 1 is negligible ink.

Proof: Let n = |H|. Forn odd, this is an immediate corollary to Lemma 2.9. And of course if
n is even, the probability is uniformly 0 since each triple would have an even number of bits set to
1 in this case.�

2.3 Organization of the Rest of this Paper

In what follows, we will give several constructions of private filter generators, beginning with our
most efficient construction using a variant of the Paillier Cryptosystem [21],[10]. We also show
a construction with reduced program size using the Cachin-Micali-Stadler PIR protocol [6], then
we give a construction based on any group homomorphic semantically secure encryption scheme,
and finally a construction based on the work of Boneh, Goh, and Nissim [3] that extends the query
semantics to include a single “AND” operation without increasing the program size.

3 Paillier-Based Construction

Definition 3.1 Let (G1, ·), (G2, ∗) be groups. LetE be the probabilistic encryption algorithm and
D be the decryption algorithm of an encryption scheme with plaintext setG1 and ciphertext set
G2. The encryption scheme is said to begroup homomorphicif the encryption mapE : G1 → G2

has the following property:

∀ a, b ∈ G1, D(E(a · b)) = D(E(a) ∗ E(b))

Note that since encryption is in general probabilistic, we have to phrase the homomorphic property
usingD, instead of simply saying thatE is a homomorphism. Equivalently, ifE is ontoG2, one
could say that the mapD is a homomorphism of groups (in the usual sense), with each coset of
ker(D) corresponding to the set of all possible encryptions of an element ofG1. Also, as standard
notation when working with homomorphic encryption as just defined, we will useidG1 , idG2 to be
the identity elements ofG1, G2, respectively.
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3.1 Summary

We believe this construction to be our most practical and efficient solution. The running time is rea-
sonable, and the program size is proportional to the size of the dictionary. In addition, the encrypted
buffer can remain very small, due to the excellent plaintext-ciphertext ratio of the Damgård-Jurik
extension to the Paillier system. This system can be used to perform queries consisting of any
finite number of “OR” operations.

3.2 Brief Basics of the Paillier Cryptosystem

Recall that the plaintext and ciphertext in the Paillier cryptosystem are represented as elements of
Zn andZ∗n2 respectively, wheren = pq is an RSA number such thatp < q and with the additional
minor assumption thatp - q − 1. Recall also the extensions of Paillier by Damgård and Jurik in
which the plaintext and ciphertext are represented as elements ofZns andZ∗ns+1 respectively for
anys > 0. We will be using this extension in our work. Finally, recall that these cryptosystems
are homomorphic, so in this case multiplying ciphertexts gives an encryption of the sum of the
plaintexts.3

3.3 Private Filter Generator Construction

We now formally present theKey-Gen, Filter-Gen, andBuffer-Decrypt algorithms. The classQ
of queries that can be executed is the class of all boolean expressions using only∨. By doubling
the program size, it is easy to handle an∨ of both presence and absence of keywords. For
simplicity of exposition, we describe how to detect collisions separately from the main algorithm.

Key-Gen(k)
Execute the key generation algorithm for the Paillier cryptosystem to find an appropriate RSA
number,n and its factorizationn = pq. We will make one additional assumption onn = pq: we
require that|D| < min{p, q}. (We need to guarantee that any number≤ |D| is a unit modns.)
Saven asApublic, and save the factorization asAprivate.

Filter-Gen(D, QK , Apublic, Aprivate, m, γ)
This algorithm outputs a search programF for the queryQK ∈ Q. So,QK(M) =

∨
w∈K(w ∈ M).

We will use the Damg̊ard-Jurik extension [10] to constructF as follows. Choose an integers > 0
based upon the size of documents that you wish to store so that each document can be represented
as a group element inZns . ThenF contains the following data:

• A buffer B consisting of2γm blocks with each the size of two elements ofZ∗ns+1 (so, we
view each block ofB as an ordered pair(v1, v2) ∈ Z∗ns+1 × Z∗ns+1). Furthermore, we will
initialize every position to(1, 1), two copies of the identity element.

• An array D̂ = {d̂i}|D|i=1 where eacĥdi ∈ Z∗ns+1 such thatd̂i is an encryption of1 ∈ Zns

if di ∈ K and is an encryption of 0 otherwise. (Note: We of course use re-randomized
encryptions of these values for each entry in the array.)

3For completeness, an exposition of the Paillier cryptosystem is provided in the appendix.
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F then proceeds with the following steps upon receiving an input documentM from the stream:

1. Construct a temporary collection̂M = {d̂i ∈ D̂ | di ∈ M}.

2. Compute
v =

∏
d̂i∈M̂

d̂i

3. ComputevM and multiply(v, vM) into γ random locations in the bufferB, just as in our
combinatorial game from section 2.2.

Note that the private key actually is not needed. The public key alone will suffice for the
creation ofF .

Buffer-Decrypt(B, Aprivate)
First, this algorithm simply decryptsB one block at a time using the decryption algorithm for
the Paillier system. Each decrypted block will contain the 0 message (i.e.,(0, 0)) or a non-zero
message,(w1, w2) ∈ Zns × Zns . Blocks with the 0 message are discarded (collisions can easily
be detected and discarded using Lemma 2.10, and Lemma 3.2). A non-zero message(w1, w2)
will be of the form(c, cM ′) if no collisions have occurred at this location, wherec is the number
of distinct keywords fromK that appear inM ′. So to recoverM ′, simply computew2/w1 and
add this to the arrayB∗. (We know that any non-zerow1 will be a unit as we required that
|D| < min{p, q}.) Finally, outputB∗.

In general, the filter generation and buffer decryption algorithms will make use of Lemma 2.10,
having the filtering software append a validation string to each message and having the buffer
decryption algorithm save documents to the outputB∗ only when the validation string is valid.
In any of our constructions, this can be accomplished by addingr extra blocks the size of the
security parameter to an entry in the buffer to represent the bits of the validation string, however
this will be undesirable in many settings where the plaintext group is large (e.g., our Paillier-based
construction) as this would cause a significant increase in the size of the buffer. But of course, there
will generally be efficient solutions in these cases, as shown below for the Paillier-based system.

Lemma 3.2 WithO(k) additional bits added to each block ofB, we can detect all collisions of
matching documents with probability> 1− neg(k).

Proof: Sincelog(|D|) will be much smaller than the security parameterk, we can encode the
bits from Lemma 2.10 usingO(k) bits via the following method. Lett = log(|D|), which is
certainly an upper bound for the number of bits ofc, and will be considerably smaller thank. Let r
= k/t. Let (v, vM) be as described in the filter generation algorithm, so thatv is an encryption ofc,
the number of keywords present inM . Pick a subsetT ⊂ {0, 1, 2, ..., r− 1} of sizer/3, uniformly
at random in the format of Lemma 2.10 (so that exactly one of every three consecutive numbers is
selected, i.e. among allj ∈ {0, 1, ..., r− 1} having the same quotient when divided by 3, only one
suchj will be in T ). Then compute

x =
∑
j∈T

2tj andh = vx

11



Now, h will encrypt a value that has exactlyr/3 of ther, t-bit blocks containing non-zero bits as
in Lemma 2.10. So, the filtering software would now write(v, vM , h) to the buffer instead of just
(v, vM). The decryption ofh can now be used as in Lemma 2.10 to distinguish collisions from
valid documents, with only one more ciphertext per block.4 Also, if one wishes to increase this
security parameterr beyondk/t, then of course additional ciphertexts can be added to each block
of the buffer, using them in the same manner.�

3.4 Correctness

We need to show that if the number of matching documents is less thanm, then

Pr
[
B∗ = {M ∈ S | QK(M) = 1}

]
> 1− neg(γ)

and otherwise, we have thatB∗ is a subset of the matching documents (or contains the overflow
symbol,⊥). Provided that the buffer decryption algorithm can distinguish collisions in the buffer
from valid documents (see above remark) this equates to showing that non-matching documents are
saved with negligible probability inB and that matching documents are saved with overwhelming
probability inB. These two facts are easy to show.

1. Are non-matching documents stored with negligible probability? Yes. In fact, they are
stored with probability 0 since clearly a non-matching documentM never affects the buffer:
if M does not match, thenv from step 2 will be an encryption of 0, as will bevM . So, the
private filter will multiply a encryptions of 0 into the buffer at various locations which by the
homomorphic property of our encryption scheme has the effect of adding 0 to the plaintext
corresponding to whatever encrypted value was inB. So clearly, non-matching documents
are saved with probability 0.�

2. Are all matching documents saved with overwhelming probability? IfM does match, i.e., it
containsc > 0 keywords fromK, thenv computed in step 2 will be an encryption ofc > 0.
So,vM will be an encryption ofcM . This encryption is then multiplied into the buffer just
as in the color-survival game from 2.2, which we have proved saves all documents with
overwhelming probability inγ. But we have written an encryption ofcM and not ofM in
general. However, this will not be a problem asc < min{p, q} sincec ≤ |K| < |D|, and
hencec ∈ Z∗ns . So, theBuffer-Decrypt algorithm will be able to successfully divide byc
and recover the messageM . �

3.5 Buffer Overflow Detection

For this construction, it is quite simple to create an overflow flag for the encrypted buffer. For a
documentM , define

vM =
∏

d̂i∈M̂

d̂i

4This does not follow the form of Lemma 2.10 exactly, as exclusive OR is not the operation that is performed on
the plaintext upon multiplying ciphertexts. However, having them added as they are here obviously further decreases
the probability that a collision will look valid.
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just as above. Note thatvM encrypts the number of distinct keywords present inM . Then the value

V =
∏
M∈S

vM

will of course be an encryption of an upper bound on the number of matching documents that have
been written to the buffer, where hereS is the document stream. This encrypted value can be
stored and maintained as a prefix of the buffer. If a reasonable estimate for the average number of
keywords per matching document is available, then of course a more accurate detection value can
be obtained. Note that although one may be tempted to use this value interactively to determine
when to retrieve the buffer contents, this is potentially dangerous as this interaction between the
parties could be abused to gain information about the keywords.

3.6 Efficiency in Time and Space

We compute now the efficiency of the software in relation to the security parameterk, the size of
the dictionaryD, the number of documents to be savedm, and the size of a documentM .

1. Time Efficiency. For the software to process a given document it performs a number of
multiplications proportional to the size of a document, followed by a single modular ex-
ponentiation, and then followed by2γ additional multiplications. Modular exponentiation
takesO(k3) time which is clearly the dominating term since the multiplications take at worst
quadratic time ink (using long multiplication) for a fixed document size. So we conclude
that our private filter takes timeO(k3) for fixed document size. If you instead fix the security
parameter and analyze the filter based on document size,|M |, the running time will again be
cubic as the modular exponentiation takes cubic time in the number of bits of a document.
However, the running time could of course be changed to linear in the document length if
you process documents in blocks, instead of as a whole. (I.e., computev by examining the
entire document, just as before, and then write the document to the buffer in smaller blocks.)
So, the running time would be quadratic ink times linear in document length. Note: for
k = 1024, modular exponentiation on a somewhat modern computer (2 GHz Pentium pro-
cessor) can be accomplished in less than 0.03 seconds, so it seems that such a protocol could
be practically implemented.

2. Space Efficiency. The largest part of the program is the arrayD̂. If you process documents
in blocks, this array will take approximatelyk · |D| bits. However, if documents are pro-
cessed as a whole, then the array will takeO(|M | · |D|). The rest of the program size remains
constant in terms of the variables we’re studying, so these estimates hold for the size of the
entire program. The size of the buffer,B(γ) was set to be4γm times the size of a ciphertext
value. However, since the ciphertext-plaintext size ratio approaches 1 as the message size
increases (they differ by a constant number of bits) in the Damgård-Jurik system, this solu-
tion seems near optimal in terms of buffer size. Example: a buffer of size 60 times that of
the documents you expect to store (i.e.,γ = 15) produces probabilities of success above .99
for m as large as 300.

Theorem 3.3 Assuming that the Paillier (and Damgård-Jurik) cryptosystems are semantically se-
cure, then the private filter generator from the preceding construction is semantically secure ac-
cording to Definition 2.7.

13



Proof: Denote byE the encryption algorithm of the Paillier/Damgård-Jurik cryptosystem. Sup-
pose that there exists an adversaryA that can gain a non-negligible advantageε in our semantic
security game from Definition 2.7. ThenA could be used to gain an advantage in breaking the
semantic security of the Paillier encryption scheme as follows: Initiate the semantic security game
for the Paillier encryption scheme with some challengerC. C will send us an integern for the
Paillier challenge. For messagesm0, m1, we choosem0 = 0 ∈ Zns and choosem1 = 1 ∈ Zns .
After sendingm0, m1 back toC, we will receiveeb = E(mb), an encryption of one of these two
values. Next we initiate the private filter generator semantic security game withA. A will give us
two queriesQ0, Q1 in Q for some sets of keywordsK0, K1, respectively. We use the public key
n to compute an encryption of0, call it e0 = E(0). Now we pick a random bitq, and construct
filtering software forQq as follows: we proceed as described above, constructing the arrayD̂ by
using re-randomized encryptions,E(0) of 0 for all words inD \ Kq, and for the elements ofKq,
we useE(0)eb, which are randomized encryptions ofmb. Now we give this program back toA,
andA returns a guessq′. With probability 1/2,eb is an encryption of 0, and hence the program that
we gaveA does not search for anything at all, and in this event clearlyA’s guess is independent of
q, and hence the probability thatq′ = q is 1/2. However, with probability 1/2,eb = E(1), hence
the program we’ve sentA is filtering software that searches forQq, constructed exactly as in the
Filter-Gen algorithm, and hence in this case with probability1/2 + ε, A will guessq correctly, as
our behavior here was indistinguishable from an actual challenger. We determine our guessb′ as
follows: if A guessesq′ = q correctly, then we will setb′ = 1, and otherwise we will setb′ = 0.
Putting it all together, we can now compute the probability that our guess is correct:

Pr(b′ = b) =
1

2

(1

2

)
+

1

2

(1

2
+ ε

)
=

1

2
+

ε

2

and hence we have obtained a non-negligible advantage in the semantic security game for the
Paillier system, a contradiction to our assumption. Therefore, our system is secure according to
Definition 2.7. �

4 Reducing Program Size Below Dictionary Size

In our other constructions, the program size is proportional to the size of the dictionary. By relax-
ing our definition slightly, we are able to provide a new construction using Cachin-Micali-Stadler
PIR [6] which reduces the program size. Security of this system depends on the security of [6]
which uses theΦ-Hiding Assumption.5

The basic idea is to have a standard dictionaryD agreed upon ahead of time by all users,
and then to replace the arraŷM in the filtering software with PIR queries that execute on a
database consisting of the characteristic function ofM with respect toD to determine if keywords
are present or not. The return of the queries is then used to modify the buffer. This will reduce
the size of the distributed filtering software. However, as mentioned above, we will need to relax
our definition slightly and publish an upper boundU for |K|, the number of keywords used in a
search.

5It is an interesting open question how to reduce the program size under other cryptographic assumptions.
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4.1 Private Filter Generation

We now formally present theKey-Gen, Filter-Gen, andBuffer-Decrypt algorithms of our con-
struction. The classQ of queries that can be executed by this protocol is again just the set of
boolean expressions in only the operator∨ over presence or absence of keywords, as discussed
above. Also, an important note: for this construction, it is necessary to know the set of key-
words being used during key generation, and hence what we achieve here is only weak public key
program obfuscation, as in Definition 2.2. For consistency of notation, we still present this as 3
algorithms, even though the key generation could be combined with the filter generation algorithm.
For brevity, we omit the handling of collision detection, which is handled using Lemma 2.10.

Key-Gen(k,K, D)
The CMS algorithms are run to generate PIR queries,{qj} for the keywordsK, and the resulting
factorizations of the corresponding composite numbers{mj} are saved as the key,Aprivate, while
Apublic is set to{mj}.

Filter-Gen(D, QK , Apublic, Aprivate, m, γ)
This algorithm constructs and outputs a private filterF for the queryQK , using the PIR queriesqj

that were generated in theKey-Gen(k, K, D) algorithm. It operates as follows.
F contains the following data:

• The array of CMS PIR queries,{qj}U
j=1 from the first algorithm, which are designed to

retrieve a bit from a database having size equal to the number of words in the agreed upon
dictionary,D. Only |K| of these queries will be meaningful. For eachw ∈ K, there will be a
meaningful query that retrieves the bit at index corresponding tow’s index in the dictionary.
Let {pj,l}|D|l=1 be the primes generated by the information inqj, and letmj be composite
number part ofqj. The leftoverU − |K| queries are set to retrieve random bits.

• An array of buffers{Bj}U
j=1, each indexed by blocks the size of elements ofZ∗mj

, with every
position initialized to the identity element.

The program then proceeds with the following steps upon receiving an input documentM :

1. Construct the complement of the characteristic vector for the words ofM relative to the
dictionaryD. I.e., create an array of bits̄D = {d̄i} of size|D|, such that̄di = 0 ⇔ di ∈ M .
We’ll use this array as our database for the PIR protocols.

Next, for eachj ∈ {1, 2, ..., U}, do the following steps:

2. Execute queryqj on D̄ and store the result inrj.

3. Bitwise encryptM , usingrj to encrypt a 1 and using the identity ofZ∗mj
to encrypt a 0.

4. Take thejth encryption from step 3 and position-wise multiply it into a random location in
bufferBj γ-times, as described in our color-survival game from section 2.

Buffer-Decrypt(B, Aprivate)
Simply decrypts each bufferBj one block at a time by interpreting each group element withpj,ith
roots as a 0 and other elements as 1’s, wherei represents the index of the bit that is searched for
by queryqj. All valid non-zero decryptions are stored in the outputB∗.
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4.2 Correctness of Private Filter

Since CMS PIR is not deterministic, it is possible that our queries will have the wrong answer
at times. However, this probability is negligible in the security parameter. Again, as we’ve seen
before, provided that the decryption algorithm can distinguish valid documents from collisions in
buffer, correctness equates to storing non-matching documents inB with negligible probability
and matching documents with overwhelming probability. These facts are easy to verify:

1. Are non-matching documents stored with negligible probability? Yes. With overwhelming
probability, a non-matching documentM will not affect any of the meaningful buffers. If
M does not match, then the filtering software will (with very high probability) compute
subgroup elements for all of the importantrj ’s. So, the encryption using theserj ’s will
actually be an encryption of the 0 message, and by our above remarks, will have no effect on
the buffer.

2. Are matching documents saved with overwhelming probability? IfM does match, i.e., it
contains a keyword fromK, then with very high probability, we will have at least onerj

that is not in the specified subgroup, and hence, the message will be properly encrypted
and stored in the buffer. And since we used the method from our combinatorial game in
section 2.2 to fill each buffer with documents, with overwhelming probability all matching
documents will be saved.

4.3 Efficiency of Filtering Software in Time and Space

We compute now the efficiency of the software in relation to the security parameterk, the size of
the dictionaryD, the upper bound on the keywordsU , and the number of documents to be saved
n.

1. Time Efficiency. For the software to process a given document it needs to runU CMS
PIR queries. To answer each query requires a number of modular exponentiations equal to
the size of the dictionary, and each modular exponentiation takes aboutO(k3) time. This
procedure is at worst linear in the number of words of a document (to construct the database
for the PIR queries) so, we conclude that the running time is in factO(k3).

2. Space Efficiency. The only variable-sized part of the program now is the PIR queries. Each
CMS PIR query consists of only polylogarithmic bits in terms of the dictionary size,|D|.
So, in general this could be an advantage.

Theorem 4.1 Assuming that theΦ-Assumption holds, the Private Filter Generator from the pre-
ceding construction is semantically secure according to Definition 2.2.

Proof: If an adversary can distinguish any two keyword sets, then the adversary can also distin-
guish between two fixed keywords, by a standard hybrid argument. This is precisely what it means
to violate the privacy definition of [6], which is proven under theΦ-Assumption. �
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5 Eliminating the Probability of Error with Perfect Hash Func-
tions

In this section, we present ways to reduce the probability of collisions in the buffer by using
perfect hash functions. Recall the definition of perfect hash function. For a setS ⊂ {1, ...,m}, if
a functionh : {1, ...,m} → {1, ..., n} is such thath|S (the restriction ofh to S) is injective, then
h is called aperfect hash functionfor S. We will be concerned with families of such functions.
We say thatH is an(m,n, k)-family of perfect hash functionsif ∀S ⊂ {1, ...,m} with |S| = k,
∃h ∈ H such thath is perfect forS.

We will apply these families in a very straightforward way. Namely, we definem to be the
number of documents in the stream andk to be the number of documents we expect to save. Then,
since there exist polynomial size(m,n, k)-families of perfect hash functionsH, then our system
could consist of|H| buffers, each of sizen documents, and our protocol would just write each
(potential) encryption of a document to each of the|H| buffers once, using the corresponding hash
function fromH to determine the index in the buffer. Then, no matter which of the

(
m
k

)
documents

were of interest, at least one of the functions inH would be injective on that set of indexes, and
hence at least one of our buffers would be free of collisions.

We note that the current proven upper bounds on the sizes of such families do not neces-
sarily improve our results; the purpose of this section is theoretical, the point being that we can
eliminatethe probability of losing a matching document in a non-trivial way.

In the work of Mehlhorn [19], the following upper bound for the size of perfect hash function
families is proved, whereH is an(m, n, k)-family as defined above:

|H| ≤
⌈ log

(
m
k

)
log(nk)− log(nk − k!

(
n
k

)
)

⌉
This result could be used in practice, but would generally not be as space efficient as our other

models. However, if the lower bounds proved in [11] were achieved, then we could make such
a system practical. For example, if one wanted to save 25 documents from a stream of tens of
thousands of documents (say≈ 60000), then 7 buffers the size of 250 documents each could be
used to save 25 documents without any collisions in at least one of the buffers.

6 Construction Based On Any Homomorphic Encryption

We provide here an abstract construction based upon an arbitrary homomorphic, semantically se-
cure public key encryption scheme. The class of queriesQ that are considered here is again,
all boolean expressions in only the operation∨, over presence or absence of keywords, as dis-
cussed above. This construction is similar to the Paillier-based construction, except that since we
encrypt bitwise, we incur an extra multiplicative factor of the security parameterk in the buffer
size. However, both the proof and the construction are somewhat simpler and can be based on any
homomorphic encryption.
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6.1 Preliminaries

Throughout this section, letPKE = {KG, E ,D} be a public key encryption scheme. Here,
KG, E ,D are key generation, encryption, and decryption algorithms, respectively.

Semantically Secure Encryption
For an encryption scheme, we define semantic security in terms of the following game between an
adversaryA and a challengerC, consisting of the following steps:

1. C runs the key generation algorithmKG(k), and sends all public parameters toA.

2. A chooses two messages of equal length,M0, M1 and sends them toC.

3. C chooses a random bitb ∈ {0, 1}, computesc = E(Mb), an encryption ofMb, and sends
this ciphertextc to A.

4. A outputs a guessb′ ∈ {0, 1}.

We say thatA wins the game ifb′ = b and loses otherwise. We define the adversaryA’s
advantage in this game to be

AdvA(k) = |Pr(b = b′)− 1

2
|

The encryption scheme is said to besemantically secureif for any adversaryA ∈ PPT we have
that AdvA(k) is a negligible function.

6.2 Construction of Abstract Private Filter Generator

Let PKE = {KG, E ,D} be a group homomorphic, semantically secure, public key encryption
scheme, satisfying Definition 3.1. We describe theKey-Gen, Filter-Gen, andBuffer-Decrypt
algorithms. We will write the group operations ofG1 andG2 multiplicatively. (As usual,G1, G2

come from a distribution of groups in some class depending on the security parameter, but to avoid
confusion and unnecessary notation, we will always refer to them simply asG1, G2 where it is
understood that they are actually sampled from some distribution based onk.)

Key-Gen(k)
ExecuteKG(k) and save the private key asAprivate, and save the public parameters ofPKE as
Apublic.

Filter-Gen(D, QK , Apublic, Aprivate, m, γ)
This algorithm constructs and outputs a filtering programF for QK , constructed as follows.
F contains the following data:

• A buffer B(γ) of size2γm, indexed by blocks the size of an element ofG2 times the docu-
ment size, with every position initialized toidG2 .

• Fix an elementg ∈ G1 with g 6= idG1 . The program contains an arraŷD = {d̂i}|D|i=1 where
eachd̂i ∈ G2 such thatd̂i is set toE(g) ∈ G1 if di ∈ K and it is set toE(idG1) otherwise.
(Note: we are of course re-applyingE to compute each encryption, and not re-using the same
encryption with the same randomness over and over.)
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F then proceeds with the following steps upon receiving an input documentM :

1. Construct a temporary collection̂M = {d̂i ∈ D̂ | di ∈ M}.

2. Choose a random subsetS ⊂ M̂ of sized|M̂ |/2e and compute

v =
∏
s∈S

s

3. Bitwise encryptM using encryptions ofidG1 for 0’s and usingv to encrypt 1’s to create a
vector ofG2 elements.

4. Choose a random location inB, take the encryption of step 3, and position-wise multiply
these two vectors storing the result back inB at the same location.

5. Repeat steps 2-4( c
c−1

)γ times, where in general,c will be a constant approximately the size
of G1.

Buffer-Decrypt(B, Aprivate)
DecryptsB one block at a time using the decryption algorithmD to decrypt the elements ofG2,
and then interpreting non-identity elements ofG1 as 1’s andidG1 as 0, storing the non-zero, valid
messages in the outputB∗.

6.3 Correctness of Abstract Filtering Software

Again, provided that the decryption algorithm can distinguish valid documents from collisions in
buffer, correctness equates to storing non-matching documents inB with negligible probability
and matching documents with overwhelming probability, which can be seen as follows:

1. Are non-matching documents stored with negligible probability? Yes. In fact, they are stored
with probability 0 since clearly if a documentM does not match, then all of the values in
M̂ will be encryptions ofidG1 and hence so will the valuev. So, the buffer contents will be
unaffected by the program executing on inputM .

2. Are all matching documents saved with overwhelming probability? First of all, observe that
if M contains at least one keyword, step 2 will computev to be an encryption of a non-
identity element ofG1 with probability at least1/2, regardless of whatG1 is (as long as
|G1| > 1). So, by only repeating steps 2-4 a small number of times, the probability that
a matching document will be written at least once becomes exponentially close to 1. We
will choose the number of times to repeat steps 2-4 so that the expected number of non-
identity v’s that we will compute will be equal toγ. Then, we will essentially be following
the method in our “color-survival” game from section 2.2 for placing our documents in the
buffer, and hence all documents will be saved with overwhelming probability inγ.

Theorem 6.1 Assuming that the underlying encryption scheme is semantically secure, the Private
Filter Generator from the preceding construction is semantically secure according to Definition
2.7.
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Proof: Suppose that there exists an adversaryA that can gain a non-negligible advantageε in
our private data collection semantic security game. ThenA could be used to gain an advantage in
breaking the semantic security ofPKE as follows: We initiate the semantic security game forPKE
with some challengerC, and for the plaintext messagesm0, m1 in this game, we choosem0 = idG1

and choosem1 to beg ∈ G1, whereg 6= idG1. After sendingm0, m1 to our opponentC in the
semantic security game, we will receiveeb = E(mb), an encryption of one of these two values.
Next we initiate the private data collection semantic security game withA, where we play the role
of the challenger.A will give us two sets of keywordsK0, K1 ⊂ D. We assume that we have
access toE since the system was assumed to be public key, so we can computeeid = E(idG1).

6

Now we pick a random bitq, and construct filtering software forKq as follows: we proceed
as described above, constructing the arrayD̂ by using re-randomized encryptionsE(idG1) of the
identity7 for all words inD \ Kq, and for the elements ofKq, we useE(eid)eb, which will be a
randomized encryption ofmb by our assumption that the system was homomorphic.8 Now we give
this program back toA, andA returns a guessq′. With probability 1/2, the program that we gave
A does not search for anything at all, and in this event, clearlyA’s guess is independent ofq, and
hence the probability thatq′ = q is 1/2. However, with 1/2 probability, the program we’ve sentA
searches forKq (and is in fact indistinguishable from programs that are actually created with the
Filter-Gen algorithm), and hence in this case with probability1/2 + ε, A will guessq correctly.
We determine our guessb′ as follows: ifA guessesq′ = q correctly, then we will setb′ = 1, and
otherwise we will setb′ = 0. Putting it all together, we can now compute the probability that our
guess is correct:

Pr(b′ = b) =
1

2

(1

2

)
+

1

2

(1

2
+ ε

)
=

1

2
+

ε

2

and hence we have obtained a non-negligible advantage in the semantic security game forPKE , a
contradiction to our assumption. Therefore, our system is secure according to Definition 2.7.�

7 Construction For a Single AND

7.1 Handling Several AND Operations by Increasing Program Size

We note that there are several simple (and unsatisfactory) modifications that can be made to our
basic system to compute an AND. For example a query consisting of at most ac AND operations
can be performed simply by changing the dictionaryD to a dictionaryD′ containing all|D|c c-
tuples of words inD, which of course comes at a polynomial blow-up9 of program size.10 So,

6In most cases, just having an encryption ofidG1 , without access toE will suffice.
7Usinger

id for randomr would generally suffice
8Again, one could generally get away with usinger

ideb if the group has simple enough (e.g., cyclic) structure. We
just need to ensure that the distribution of encryptions we produce here is truly indistinguishable from the distributions
created theFilter-Gen algorithm. This is the main reason why we required the underlying system to be public key- it
in general will not be necessary, but at this level of abstraction, how else can one come up with uniform encryptions?

9Asymptotically, if we treat|D| as a constant, the above observation allows a logarithmic number of AND opera-
tions with polynomial blow-up of program size. It is an interesting open problem to handle more than a logarithmic
number of AND operations, keeping the program size polynomial.

10A naive suggestion that we received for an implementation of “AND” is to keep track of several buffers, one for
each keyword or set of keywords, and then look for documents that appear in each buffer after the buffers are retrieved,
however this will put many non-matching documents in the buffers, and hence is inappropriate for the streaming model.
Furthermore, it really just amounts to searching for an OR and doing local processing to filter out the difference.
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only constant, or logarithmic size keyword sets can be used in order to keep the program size
polynomial.

7.2 Brief Basics of the Boneh, Goh, Nissim Cryptosystem

In [3], the authors make use of groups that support a bilinear map. In what follows, letG, G1 be
two cyclic groups of ordern = q1q2, a large composite number, and letg be a generator ofG.
A map e : G × G → G1 is called a bilinear map if for allu, v ∈ G anda, b ∈ Z, we have that
e(ua, vb) = e(u, v)ab. Also, we require that〈e(g, g)〉 = G1 for any choice of a generatorg ∈ G.
This bilinear map will serve as our multiplication operator for encrypted values, and hence only
one such multiplication is possible.

The security of the system is based on a subgroup indistinguishability assumption, related to
the difficulty of computing discrete logs in the groupsG, G1. More formally, it is as follows.

Let G(k) be an algorithm that returns(q1, q2, G, G1, e) as described above, wherek is the
number of bits of the primesq1, q2. Then the subgroup decision problem is simply to distinguish the
distribution(n, G, G1, e, x) from the distribution(n, G, G1, e, x

q2), wherex is uniformly random
in G, and the other variables come from a distribution determined byG. Clearly this is a stronger
assumption than the hardness of factoring, and it is also a stronger assumption than the hardness of
discrete logs.11 For an algorithmA ∈ PPT, the hardness assumption is formalized by first defining
the advantage of the adversary to be:

AdvA(k) =
∣∣∣Pr

[
A(n, G, G1, e, x) = 1

]
− Pr

[
A(n, G, G1, e, x

q2) = 1
]∣∣∣

where the probabilities are taken over samples ofG(k) to generate the(n, G, G1, e) and overx
which was uniformly random inG. One then says thatG satisfies the subgroup decision problem
if AdvA(k) is negligible ink.

7.3 Executing AND Without Increasing Program Size

Using the results of Boneh, Goh, and Nissim [3], we can extend the types of queries that can be
privately executed to include queries involving a single AND of an OR of two sets of keywords
without increasing the program size. This construction is very similar to the abstract construction,
and hence several details that would be redundant will be omitted from this section. The authors
of [3] build an additively homomorphic public key cryptosystem that is semantically secure under
this subgroup decision problem. The plaintext set of the system isZq2 , and the ciphertext set can be
eitherG or G1 (which are both isomorphic toZn). However, the decryption algorithm requires one
to compute discrete logs. Since there are no known algorithms for efficiently computing discrete
logs in general, this system can only be used to encrypt small messages.12 Using the bilinear map
e, this system has the following homomorphic property. LetF ∈ Zq2 [X1, ..., Xu] be a multivariate
polynomialof total degree 2and let{ci}u

i=1 be encryptions of{xi}u
i=1, xi ∈ Zq2. Then, one can

compute an encryptioncF of the evaluationF (x1, ..., xu) of F on thexi with only the public key.
This is done simply by using the bilinear mape in place of any multiplications inF , and then

11One could just pick a generatorg of G, compute the log of the last parameter (x or xq2) with respect to the base
g, and then compute the gcd withn to distinguish.

12Small message size is clearly a fundamental limitation of the construction since efficiently computing arbitrary
discrete logs would violate the security of the system.
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multiplying ciphertexts in the place of additions occurring inF . I.e., if E is the encryption map
and if

F =
∑

1≤i≤j≤u

aijXiXj

then from{cl = E(xl)}u
l=1, xl ∈ Zq2 we can compute

E(F (x1, ..., xu)) =
∏

1≤i≤j≤u

e(ci, cj)
aij

where all multiplications (and exponentiations) are in the groupG1. Once again, since decryption
is feasible only when the plaintext values are small, one must restrict the message space to be a
small subset ofZq2. (In our application, we will always havexi ∈ {0, 1}.) Using this cryptosystem
in our abstract construction, we can easily extend the types of queries that can be performed.

7.4 Construction of Private Filter Generator

More precisely, we can now perform queries of the following form, whereM is a document and
K1, K2 ⊂ D are sets of keywords:

(M ∩K1 6= ∅) ∧ (M ∩K2 6= ∅)

We describe theKey-Gen, Filter-Gen, andBuffer-Decrypt algorithms below.

Key-Gen(k)
Execute the key generation algorithm of the BGN system to produceApublic = (n, G, G1, e, g, h)
whereg is a generator,n = q1q2, andh is a random element of orderq1. The private key,Aprivate

is the factorization ofn. We make the additional assumption that|D| < q2.

Filter-Gen(D, QK1,K2
, Apublic, Aprivate, m, γ)

This algorithm constructs and outputs a private filterF for the queryQK1,K2, constructed as
follows, where this query searches for all documentsM such that(M ∩K1 6= ∅)∧(M ∩K2 6= ∅).
F contains the following data:

• A buffer B(γ) of size2γm, indexed by blocks the size of an element ofG1 times the docu-
ment size, with every position initialized to the identity element ofG1.

• Two arraysD̂l = {d̂l
i}
|D|
i=1 where eacĥdl

i ∈ G, such thatd̂l
i is an encryption of1 ∈ Zn if

di ∈ Kl and an encryption of 0 otherwise.

F then proceeds with the following steps upon receiving an input documentM :

1. Construct temporary collectionŝMl = {d̂l
i ∈ D̂l | di ∈ M}.

2. Forl = 1, 2, compute

vl =
∏

d̂l
i∈M̂l

d̂l
i

and
v = e(v1, v2) ∈ G1
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3. Bitwise encryptM using encryptions of0 in G1 for 0’s and usingv to encrypt 1’s to create
a vector ofG1 elements.

4. Chooseγ random locations inB, take the encryption of step 3, and position-wise multiply
these two vectors storing the result back inB at the same location.

Buffer-Decrypt(B, Aprivate)
DecryptsB one block at a time using the decryption algorithm from the BGN system, interpreting
non-identity elements ofZq2 as 1’s and0 as 0, storing the non-zero, valid messages in the output
B∗.13

7.5 Correctness of Filtering Software

As usual, we show the following two facts, which equate to correctness:

1. Are non-matching documents stored with negligible probability? Yes. In fact, they are stored
with probability 0 since clearly if a documentM does not match, then it either did not match
K1 or it did not matchK2. Hence, all of the values in̂M1 or M̂2 will be encryptions of0
and hence so will the valuev. So, the buffer contents will be unaffected by the program
executing on inputM .

2. Are all matching documents saved with overwhelming probability? Clearly, if a document
M satisfies(M ∩K1 6= ∅)∧ (M ∩K2 6= ∅), thenv1 andv2 will be encryptions of non-zero
elements ofZq2 (as we ensured that|D| < q2), and so willv, asZq2 is a domain. Then,
we will be following the method in our “color-survival” game from section 2.2 for placing
our documents in the buffer, and hence all documents will be saved with overwhelming
probability inγ.

Theorem 7.1 Assuming that the subgroup decision problem of [3] is hard, then the Private Filter
Generator from the preceding construction is semantically secure according to Definition 2.7.

Proof: Note that if an adversary can distinguish two queries, then the adversary has successfully
distinguished one of the sets of keywords in the first query from the corresponding set in the second
query. Now, it is a minor reduction to apply the abstract proof of Theorem 6.1, since this system is
essentially the abstract construction built around the BGN cryptosystem.�

8 Remarks on Buffer Overflow

We would like to take note of the fact that one can easily detect buffer overflow with overwhelming
probability in the correctness parameterγ. In the work of Kamath, Motwani, Palem and Spirakis
[14], a Chernoff-like bound is shown for the number of empty bins in the occupancy problem
(where a number of balls are thrown uniformly and independently inton bins). I.e., asn increases,
the probability that the number of empty bins after the process is a fixed proportion away from the
mean is negligible inn. Hence, one could proceed as follows to detect overflow:

13See footnote 3.
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Let m be the maximum number of documents to save. Double the buffer size from2γm to
4γm. Let n = 4γm. Let r be the number of matching documents written to the buffer. Overflow
is defined as the conditionr > m. Note that we can detect with probability 1 whether or notany
documents have landed in a specific buffer location just by checking to see if it encrypts the identity
or not. So, we can count the exact number of occupied bins. In the event thatm < r ≤ 2m, then
by Lemma 2.8, we will in fact be able to recover at least one copy of allr documents, and hence
be aware of an overflow. In the event thatr > 2m, then we will throw more than2γm = n/2 balls
into our bins, and the expected number of occupied bins will be≥ .4n. Applying the results of
[14], it will be negligibly likely that the number of occupied bins is less thann/4, which is always
true if overflow has not occurred. So, if one modifies the filtering software to return overflow in
the event that

1. more thanm valid documents are recovered, or

2. the number of occupied bins is more thann/4 = γm

then it will correctly detect overflow with overwhelming probability in the correctness param-
eterγ.
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9 Appendix

9.1 A Brief Review of the Paillier Cryptosystem

For the sake of completeness, we include a simple review of the Paillier Cryptosystem [21].
The Pailler system is based on an intractability assumption called the “Composite Residuosity

Assumption”, which as we will see before is something of a generalization of the hardness of dis-
tinguishing quadratic residues, and also can be reduced to the RSA problem [1]. This assumption
(which we will abbreviate as CRA) is about distinguishing higher order residue classes. The Pail-
lier system and its extensions (see [10]) are additively homomorphic, and have very low ciphertext
to plaintext ratio.

9.1.1 Preliminaries

Let n = pq be an RSA number, withp < q. We will make the additional minor assumption that
p - q − 1, i.e., that(n, ϕ(n)) = 1. The plaintext for the Paillier system will be represented as
elements ofZn and the ciphertext will be elements ofZ∗n2. Note the following:

Z∗n2 ' Zn × Z∗n

This can be proved using nothing more than elementary facts from number theory and group theory.
(See Lemma 9.1 below and the corollary.) Given this structure ofZ∗n2 , it is not hard to see that
the factor of the direct product that is isomorphic toZ∗n is in fact theuniquesubgroup of order
(p − 1)(q − 1). Let H < Z∗n2 denote this subgroup of order(p − 1)(q − 1). Now defineG to be
the quotient,

G = Z∗n2/H

Then by our above remarks, we have the structure ofG to be cyclic of ordern: G ' Zn. We are
now ready to state the Composite Residue Class Problem.

9.1.2 The Composite Residuosity Class Problem

Let g ∈ Z∗n2 such that〈gH〉 = G and letw be an arbitrary element inZ∗n2. Then, sincegH
generatesG = Z∗n2/H, we havew = gih for somei ∈ {0, 1, 2, ...n− 1} andh ∈ H. Giveng and
w, the Composite Residuosity Class Problem is simply to findi.

Note that there is also a decisional version of this problem: givenw, g as above, andx ∈
{0, ..., n − 1}, determine ifw = gxh for someh ∈ H. This decision version of the problem is
clearly equivalent to distinguishingn-th residues modn2 (which is the special case ofx = 0) since
H is exactly the subgroup ofn-th residues. (Proof of this is given below- see Lemma 9.3.)

Note also that these problems have several random self-reducibility properties. Any instance
of the problem can be converted to a uniformly random instance of the problem with respect tow
(just by multiplying bygabn, with a ∈ Zn, b ∈ Z∗n and subtractinga from the answer). Also, the
problem is self-reducible with respect to the generatorg. In fact, one can show that any instance
with generatorg can be transformed into an instance with generatorg′. So, the choice ofg has no
effect on the hardness of this problem- if there areanyeasy instances, thenall instances are easy.
Now that we have formalized the hardness assumptions, one can build a cryptosystem as follows:
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9.1.3 The Cryptosystem

As mentioned before, there are several variants and extensions of this cryptosystem. I will state
below a variant of the system that I believe to be the clearest and most simple. Let(K, E ,D) be
the key generation, encryption, and decryption algorithms respectively. They are implemented as
follows:

• K(s) This algorithm randomly selects ans-bit RSA numbern = pq, with p < q and the
additional property thatp - q − 1 (which is satisfied with overwhelming probability when
p, q are randomly chosen). It outputsn as the public parameters, and saves the factorization
as the private key.

• E(m) For a plaintext messagem < n, chooser ∈ Z∗n at random and set the ciphertext,c
as follows:

c = (1 + n)mrn ∈ Z∗n2

Recoveringm from c is precisely an instance of CRCP sincern is a random element in the
subgroupH, and the coset(1 + n)H will generate all ofG. (See Lemma 9.5.)
Note 1: Due to the random self-reducibility of CRCP,1 + n is just as good of a choice ofg
as any other. Note 2: although it may seem more natural to chooser ∈ Z∗n2 , lettingr ∈ Z∗n
is just as good. (See Lemma 9.4.)

• D(c) Let ciphertextc = (1 + n)mrn mod n2. To recover the messagem, first look at this
equation modn rather thann2:

c = (1 + n)mrn mod n

becomes
c = rn mod n

Now this equation is something familiar... findingr from c is an instance of the RSA problem
(since we are givenn which is relatively prime toϕ(n) and an exponentiation ofr mod n).
And since the factorizationn = pq is known to us, we can just use RSA decryption as a
subroutine to recoverr. Now that we haver, it is a simple process to obtainm.
To begin, computern mod n2 and dividec by this value:

c

rn
= (1 + n)m mod n2

Now use the binomial theorem:

(1 + n)m =
m∑

i=0

(
m

i

)
ni

Reducingmod n2 gives us

(1 + n)m =
1∑

i=0

(
m

i

)
ni = 1 + mn (mod n2)

So finally, we have

m =
c

rn − 1

n
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9.1.4 A few words about extensions to the system

Recently Mads Jurik and Ivan Damgård [10] made a very natural extension to the Paillier System
that uses larger groups for its plaintext and ciphertext. This extension works for anys ∈ Z+. In the
extended system, the plaintext is represented by an element inZns , and the ciphertext is an element
of Z∗ns+1 . There are two very appealing properties of this system: First, the ratio of plaintext length
to ciphertext length approaches1 ass tends to∞. Second, just as in the original Paillier scheme,
the public and private information can be simplyn and its factorization, respectively. You need
not shares ahead of time. In fact, the sender of a message can chooses to his/her liking based
on the length of the message to be sent. Then, except with negligable probability, the receiver
can deduces from the length of the ciphertext. So, the public (and private) parameters remain
extremely simple.

9.1.5 Lemmas and Proofs

Lemma 9.1 Letp ∈ Z be a prime. ThenZ∗p2 ' Zp × Z∗p

Proof: First note that|Z∗p2| = ϕ(p2) = p(p − 1) wherep is prime andϕ is the Euler phi-
function. So, by Cauchy’s Theorem, there is an element of orderp insideZ∗p2 (in fact,p+1 is such
an element). So, there is a subgroup of orderp in Z∗p2. Call this subgroupHp. Recall thatZ∗p is
cyclic of orderp − 1, and letg be a generator ofZ∗p. Notice that the order of g inside ofZ∗p2 is at
leastp − 1 since equivalence modp2 implies equivalence modp. (So, the firstp − 1 powers ofg
remain distinct modp2). But this severely limits the possibilities for the order ofg inside ofZ∗p2.
The only options that remain are|g| = p − 1 or |g| = p(p − 1) sincep is prime. In the first case,
we have found a cyclic subgroup〈g〉 of orderp− 1, and sincegcd(p, p− 1) = 1, we have

Hp ∩ 〈g〉 = {1}

and therefore,
Z∗p2 ' Hp × 〈g〉 ' Zp × Z∗p

which is exactly what we wanted. Or in the second case,〈g〉 is all of Z∗p2 , hence

Z∗p2 ' Zp(p−1) ' Zp × Zp−1 ' Zp × Z∗p

which is again, exactly what we wanted to prove.�

Corollary 9.2 Letn = pq, wherep, q ∈ Z are primes. Then,Z∗n2 ' Zn × Z∗n.

Proof: First note thatZn2 ' Zp2 ×Zq2 and henceZ∗n2 ' Z∗p2 ×Z∗q2 . Now applying Lemma 9.1,
we have that

Z∗n2 ' Zp × Z∗p × Zq × Z∗q
' (Zp × Zq)× (Z∗p × Z∗q) ' Zn × Z∗n

which completes the proof.�

Lemma 9.3 Then-th residues modn2 are exactly the subgroupH.
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Proof: We would like to show that an elementh of Z∗n2 has ann-th root (i.e., can be written
ash = gn mod n2 for someg ∈ Z∗n2) if and only if h ∈ H. Defineφ : Z∗n2 → Z∗n2 by x 7→ xn.
Certainlyφ is a homomorphism:φ(ab) = (ab)n = anbn = φ(a)φ(b). Clearly,im(φ) is precisely
the group ofn-th residues, so hopefully we can showim(φ) = H. What isker(φ)? Well, an
element is in the kernel if and only if it has an order that dividesn (i.e., elements of order1, p, q, n).
Recall from the corollary thatZ∗n2 ' Zn × Z∗n. TheZn component of this product consists of all
of the elements of orders1, p, q, n since we have that(n, ϕ(n)) = 1. So,ker(φ) ' Zn and hence
|im(φ)| = |H|, which is enough to showim(φ) = H asH is the unique subgroup of this order.
�

Lemma 9.4 If r ∈ Z∗n is chosen uniformly at random, thenrn modn2 is uniformly random inH.

Proof: Let φ : Z∗n → Z∗n2 be then-th power map (composed first with the injection intoZ∗n2 if
you like). Then of course,im(φ) ⊂ H, given what we have already proved. But in factim(φ) = H
asφ is injective (and therefore surjective as|Z∗n| = |H|): recall that(n, ϕ(n)) = 1, so then-th
power map is 1 to 1 onZ∗n, and since equivalence modn2 implies equivalence modn it must be that
φ is also 1 to 1. So indeed,φ is a bijection ofZ∗n andH, so uniformly random inZ∗n is uniformly
random inH. �

Lemma 9.5 The coset(1 + n)H generates the factor groupG = Z∗n2/H.

Proof: To see this, first look at the order of1 + n inside ofZ∗n2 . Using the binomial theorem
just as in our decryption specification, we have that(1 + n)m = 1 + mn (mod n2). So, clearly
the order of1 + n is n, and hence(1 + n) /∈ H. Suppose for somek ∈ {2, ..., n} that (1 + n)k

lies in H. Now, under any homomorphism, the order of the image of an element must divide the
order of the element itself. Applying this to the homomorphism defined by raising elements to the
kth power, we would have that the order of(1 + n)k must dividen. But (1 + n)k ∈ H and|H| is
relatively prime ton, so this forces the order of(1 + n)k to be 1, i.e.,k = n. Hence(1 + n)H has
ordern in G as well. So,〈(1 + n)H〉 = G. �
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