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Abstract

We develop a new computer assisted technique for lower bounding the minimum distance of
linear codes similar to those used in SHA-1 message expansion. Using this technique, we prove
that a modified SHA-1 like code has minimum distance at least 82, and that too in just the
last 64 of the 80 expanded words. Further the minimum weight in the last 60 words (last 48
words) is at least 75 (52 respectively). We propose a new compression function which is identical
to SHA-1 except for the modified message expansion code. We argue that the high minimum
weight of the message expansion code makes the new compression function resistant to recent
differential attacks.

1 Introduction

Recall the SHA-1 message expansion code: 512 information bits are packed into 16 32-bit words
〈W0, · · · ,W15〉, and 64 additional words are generated by the recurrence:

Wi = (Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) <<< 1 for i = 16, · · · , 79 (1)

The 80 words 〈W0, · · · ,W79〉 can be seen as constituting a linear code over F2 with the above parity
check equations. Unfortunately, this code has a minimum distance or weight of no more than 44.
Further, the weight restricted to the last 64 words is only 30. This has been exploited in [WYY05b]
to give a differential attack on SHA-1 with complexity 269 hash operations.

In this paper, we show that it is possible to devise codes similar to the above code of SHA-1,
but with a much better minimum distance. We give a computer assisted proof that the following
code has minimum distance 82, and that too in just the last 64 words:

Wi =

{

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15) <<< 13) if 16 ≤ i < 36

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15 ⊕ Wi−20) <<< 13) if 36 ≤ i ≤ 79

(2)
Of course, since the dimension of this code is 32 × 16, a brute force search of 232×16 is infeasible.
Thus, we have to come up with an intelligent search, and prove that all 232×16 cases have been
considered. Not all such codes are amenable to such a tractable search, which in our case is about
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248 computer instructions. Thus, we have to carefully pick the coefficients of the above parity check
equations, so as to keep the search feasible and the minimum distance large.

We next propose a new variant of SHA-1, which replaces the SHA-1 message expansion code
with the above code. We argue below that this leads to a compression function which is resistant
to recent differential attacks. We also argue in Section 4 that this expansion code is better than the
expansion code of SHA-256, for which there is no known provable lower bound on the minimum
distance.

A preliminary evaluation has shown that the new proposed compression function has at most a
5% overhead in speed over SHA-1 in a software implementation, and at most a 10% overhead in
gate count in a high performance hardware implementation.

Recent attacks on MD-5, SHA-0 and SHA-1 (see [Riv92, CJ98, BC04b, BC04a, WYY05a,
WYY05b]) have capitalized on the poor message expansion of these compression functions. Essen-
tially, all three hash functions follow the same underlying design principle: the 512-bit message is
first expanded linearly into N words, and then the N words are used as step keys (sometimes known
as round keys) in N steps of a (non-linear) block cipher invoked on an initial vector. The output
of the block cipher is the output of the compression function.

The most effective attack against such compression functions is to launch a differential attack,
where a difference in the messages leads to a zero difference in the output of the block cipher, thus
leading to a collision. Unfortunately, in MD-5, SHA-0 and SHA-1, it is possible to start with a
message difference which leads to a small difference in the N expanded keys. This in turn allows
for a manageable overall differential characteristic of the above kind, hence leading to a collision
attack.

In particular, in MD-5 a 3 bit difference in the 512-bit message leads to a difference of only 12
bits in the expanded (N = 64) keys. In SHA-0, there exists a message difference which leads to a
28 bit difference in the expanded (N = 80) keys. It turns out that the differential characteristic
corresponding to the first 16 (and sometimes even first 20) steps can be assured with probability
1. Thus effectively, only the differences in latter steps contribute to lowering the probability of the
differential characteristic holding. In SHA-0, the difference in the last 60 keys can be as low as 17
bits. Similarly, in SHA-1, there exists a message difference which leads to only a 27 bit difference
in the last 60 keys.

Thus, the main reason that these hash functions have been undermined is their poor message
expansion. With the new proposed code, any difference in messages leads to at least 82 bits of
difference in the latter 64 keys. These (at least) 82 bit differences are injected into the update func-
tion of SHA-1 in the latter 64 steps, and any differential characteristic must account for canceling
all (or most) of these differences. A useful heuristic that is often used in the analysis of SHA-0
and SHA-1 is that each bit difference in the key (in the latter 64 rounds) lowers the probability
of success on average by a factor of 2−2.5. Thus, we expect our proposed compression function to
have a differential collision characteristic of probability close to 2−82×2.5. We also prove that the
minimum weight of our proposed code in the last 60 keys is at least 75. The technique is general
enough to obtain lower bounds on minimum weight of further front truncations. Note that, because
of the change in the recurrence relation at i = 36, the codewords restricted to say the last 56 words,
cannot be described as easily as the recurrence relation in Equation 2.

Organization: The rest of the paper is organized as follows: In section 2 we briefly review
SHA-0, SHA-1. In section 3 we propose a new code and prove that it has good minimum distance.
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We then use this new code to propose SHA1-IME, a modified version of SHA-1. In section 4 we
compare SHA1-IME with SHA-256 ([Uni02]) and then make a few concluding remarks.

2 SHA-0 and SHA-1

2.1 SHA-0 Message Expansion Code

In this sub-section we describe the message expansion scheme used in SHA-0. Let 〈M0, · · · ,M15〉
be the 512 bits input to SHA, where each Mi is a word of 32 bits. Then the message expansion
phase of SHA-0 outputs 80 words 〈W0, · · · ,W79〉 that are computed as follows:

SHA-0 :
Wi = Mi for i = 0, 1, · · · , 15, and

Wi = Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 for i = 16, · · · , 79.
(3)

Notice that the above can be seen as a linear code. Also notice that the expansion process
applied to different bits is independent, that is there is no interleaving. This in fact makes the code
rather weak and SHA-0 an easier target for the differential collision attack. Not surprisingly then
that collision (and near-collision) attacks on SHA-0 have been the most successful in recent years
(see [CJ98, BC04b, WYY05a]).

2.2 SHA-1 Message Expansion Code

Two years after the standard was set to SHA-0 [Uni93], an addendum was released in [Uni95],
altering the message expansion scheme, and thus setting the standard to SHA-1. The change was
attributed to correcting a technical weakness though no formal justification was given. The change
may be interpreted as an attempt to improve the code by introducing mild interleaving. Precisely,
the code in SHA-1 is the following: Let 〈M0, · · · ,M15〉 be the 512 bits input to SHA-1, where each
Mi is a word of 32 bits. Then the message expansion phase outputs 80 words 〈W0, · · · ,W79〉 that
are computed as follows:

SHA-1 :
Wi = Mi for i = 0, 1, · · · , 15, and

Wi = (Wi−3⊕Wi−8⊕Wi−14⊕Wi−16) <<< 1 for i = 16, · · · , 79.
(4)

The notation “<<< 1” (“<<< i”) denotes a one bit (i bit, respectively) rotation to the left.
Note that the above code is linear too. Moreover if 〈W0, · · · ,W79〉 is a codeword, then so is
〈W0 <<< j, · · · ,W79 <<< j〉 for all j = 1, 2, · · · , 31. This can further be interpreted as follows:
view the code-word as

〈W 0
0 ,W 0

1 , · · · ,W 0
79,W

1
0 , · · · ,W 1

79, · · · ,W 32
79 〉,

where W j
i denotes the jth bit of Wi. Then it is clear that this code is invariant under a rotation

of 80 bits. These linear codes, a natural generalization of cyclic codes, are known as quasi-cyclic
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codes in the literature. Quasi-cyclic codes have been studied extensively over the last 40 years.
(See [TW67, Che92, Lal03, LS05] and the references therein.)

Unfortunately, the interleaving process in SHA-1 is not quite good. This is observed indepen-
dently in [RO05] and in [MP05]. To explain it further we rewrite Equation 4 as follows:

∀i, 0 ≤ i ≤ 63, Wi = Wi+2 ⊕ Wi+8 ⊕ Wi+13 ⊕ (Wi+16 >>> 1), (5)

where “>>> 1” (“>>> i”) denotes a one bit (i bit respectively) rotation to the right. The
above clearly shows that a difference created in the last 16 words propagates to only up to 4
different bit positions. This observation allows the authors in [BC04a, RO05, MP05] to generate
low-weight differential patterns. These patterns are then used to create collisions or near-collisions
in reduced version of SHA-1 with complexity better than the birthday-paradox bound. Extending
this further [WYY05b] reports the first attack on the full 80-step SHA-1 with complexity close to
269 hash functions. In there, the authors critically observe that the code not only has small weight
codewords (≤ 44, [RO05, WYY05b]) but also that these small weight codewords are even sparser
in the last 60 words (for example, [WYY05b] reports a codeword with weight 27 in the last 60
words).

3 SHA1-IME: A modified SHA proposal with a provably good

code

In this section we propose a new hash function SHA1-IME (IME stands for “Improved Message
Expansion”). We use the same state update transformation as in SHA-1 or SHA-0. However, we
replace the SHA-1 message expansion code by an equally simple code that has minimum distance
provably at least 82, and that too in the last 64 words. The code, we denote it by C, can be
described as follows: Let M0, · · · ,M15 be the input message blocks. Then

SHA1-IME :
for i = 0, 1, · · · , 15, Wi = Mi and
for i = 16 to 79

Wi =

{

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15) <<< 13) if 16 ≤ i < 36

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15 ⊕ Wi−20) <<< 13) if 36 ≤ i ≤ 79

(6)

We now briefly describe the state update function used in SHA-1 (for details see [Uni95]). It
comprises of total 80 steps divided in four rounds. Five 32-bits registers, conveniently denoted as
A,B,C,D and E, are used. Their initial state is fixed and we denote it by 〈A0, B0, C0,D0, E0〉
(and in general, 〈Ai, Bi, Ci,Di, Ei〉 after i steps). At step i, Wi is used to alter the state of these
registers. Each step uses a fixed constant Ki and a bit-wise boolean function fi that depends on
the specific round. Formally,

for i = 0 to 79,
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Ai+1 = Wi + (Ai <<< 5) + fi(Bi, Ci,Di) + Ei + Ki,
Bi+1 = Ai,
Ci+1 = Bi <<< 30,
Di+1 = Ci,
Ei+1 = Di,

Round Step(i) fi(X,Y,Z)

1 0-19 XY ∨ XZ

2 20-39 X ⊕ Y ⊕ Z

3 40-59 XY ⊕ XZ ⊕ Y Z

4 60-79 X ⊕ Y ⊕ Z

where ‘+′ denotes the binary addition modulo 232.

We propose the following modified version of SHA-1 : SHA1-IME. In the message expansion
phase it uses the code described in Equation 6. Then it uses the same state update function.
How does SHA1-IME perform compared to existing SHA-1? It is virtually the same. We used a
Pentium(R) 4, 3.06 GHz machine to execute 228 many hash function. The existing SHA-1 took

time in sec: 567.016000, time per sha1:2.112299e-06

whereas SHA1-IME took

time in sec: 585.719000, time per sha2: 2.181973e-06

We stress that the performance of the new hash operation remains virtually the same.

3.1 Intuition behind the code

As mentioned in subsection 2.2, Equation 5 shows that the SHA-1 code does not propagate well
across different bit positions. One way to remedy this situation is to let Wi = (Wi+2 >>>
1)⊕Wi+8⊕Wi+13⊕ (Wi+16 >>> 1). Now Equation 4 becomes Wi = (Wi−3⊕Wi−8⊕Wi−16) <<<
1 ⊕ Wi−14. Thus, whether you consider the evaluation in the forward direction or in the reverse
direction, the spread of differences to the neighboring columns (i.e. neighboring bits) is more fre-
quent. However, it is not enough to just have a good intuition about the code, but one also needs
to prove a good lower bound on the minimum weight of such codes.

The strategy we use to prove lower bounds on such codes is to divide the proof into two main
cases. We argue that either there are no zero columns in a codeword (a column in the codeword is
the codeword projected on a particular bit position) or starting from an all zero column, the first
neighboring non-zero column is actually a codeword in a good code, and so on.

Elaborating on the first case, i.e., when there are no zero columns, if every column has at least
3 bits ON, we are done. So, assume that there is some column which has 1 or 2 bits ON. Thus,
there are (64 × 63)/2 + 64 choices for picking these bits in the column. Having picked these bits,
the neighboring column is completely specified by at most 16 bits in that column. Now the two
columns together have either weight 6, in which case we are maintaining an average of 3 per column,
or the weight of these two columns is at most 5. Thus, our search is quite restricted. We continue
in this fashion, noting that the code has to be designed carefully so as to satisfy a property as in
Claim 3.3.

As for the second case, we consider a contiguous band of zero columns, bordered on both sides
with non-zero columns (we prove that they cannot be same; in fact we prove by a rank argument
that there must be at least four consecutive non-zero columns). We have to assure that when a
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column is zero, and the neighboring column is non-zero (whether to the right or left), the resulting
code for the neighboring column is a good code, i.e., with a good minimum weight. Note that this
is important since we may possibly have at most 5-6 non-zero columns. Therefore it is desired that
the disturbance propagates fast across columns. Unfortunately, this is impossible for the codes we
are considering so far.

Consider a SHA-1 like code, with dimension 16 × 32, and which is invariant under column
rotations. Moreover, suppose that the code is of the form

Wi =

16
∑

j=1

ajWi−j +









16
∑

j=1

bjWi−j



 <<< 1



 ,

where a1, · · · , a16, b1, · · · , b16 are boolean. If a16 and b16 are both zero, then there is a codeword
which is zero everywhere, except for W0 which is the all 1 32-bit word. Thus for the sake of the
argument, assume that b16 = 0 and a16 = 1. However in this case, suppose j′ < 16 is the largest
j such that bj′ is non-zero. First note that if a column, say Ci, is zero, then in the column to its
right, say Ci−1, Ci−1

k (for k = 0 to 15 − j′ ) can take any value (i.e., are free variables), and the
rest of the column Ci−1 can be all zero. Further, the propagation to columns Ci−2, Ci−3 etc. can
be rather weak.

A similar situation arises when the code is evaluated in the backward direction. The trick is to
keep the above free variables few in number, so that the subspace of such pathological cases is of
a relatively small dimension. This small dimension is absolutely necessary to keep the exhaustive
search over this space tractable. One way to get rid of these pathological free variables is to include
a term like Wi−20, as we do in our code. This in fact gets rid of all the pathological variables in
the forward direction and thereby yields a fast expansion. In the backward direction at least one
pathological free variable per column remains, and we must search over such subspaces.

3.2 A lower bound on the minimum distance

In this subsection, we give a computer assisted proof to conclude that the code proposed in Equa-
tion 6 has minimum distance at least 82 in just the last 64 words. First of all observe that C
(described in Equation 6) too is a quasi-cyclic code. To see this observe that viewed appropriately
a rotation by 80 bits leaves the code invariant. Establishing lower bound on the minimum distance
of a quasi-cyclic code is a hard problem and has drawn considerable attention (see [Che92, Lal03]).
Unfortunately, when the index (that is the minimum amount of rotation that leaves the code in-
variant) is as large as 80 (or even 64), the presently known bound seems computationally infeasible.
In general, it is known that computing minimum weight of an arbitrary linear code is NP-hard (see
[Var97]), and that approximating within a constant factor is NP-hard under randomized reduction
(see [DMS03]). An interesting approach is taken in [RO05] where they restrict their search by keep-
ing most columns zero. This allows them to find a codeword with low weight for SHA-1; however,
they do not give a technique to lower bound the minimum weight of such codes.

Secondly, observe that the code C in SHA1-IME uses a left rotation by 13 bit. However, it is
easy to see that as long as the amount of rotation is relatively prime to 32, the code remains the
same up to a permutation of its columns. In particular, its minimum weight does not change if
left rotate by 13 is replaced by a left rotate by 1. Therefore instead of C, we consider the following
code C′ which is equivalent up to a permutation in the codeword positions : Let M0, · · · ,M15 be
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the message blocks. Then

for i = 0, 1, · · · , 15, Wi = Mi and
for i = 16 to 79

Wi =

{

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15) <<< 1) if 16 ≤ i < 36

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15 ⊕ Wi−20) <<< 1) if 36 ≤ i ≤ 79

(7)

In fact the following explicit permutation applied to the columns in C yields C′:

π : {0, 1, · · · , 31} → {0, 1, · · · , 31} where j 7→ (5 · j) mod 32

since 5 is the inverse of 13 modulo 32.

Since we will be arguing about the weight of this code in the last 64 words, we instead consider
the following code C64 : Let M0, · · · ,M15 be the message blocks. Then

for i = 0, 1, · · · , 15, Wi = Mi and
for i = 16 to 63

Wi =

{

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ (Wi−1 ⊕ Wi−2 ⊕ Wi−15) <<< 1 if 16 ≤ i < 20

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ (Wi−1 ⊕ Wi−2 ⊕ Wi−15 ⊕ Wi−20) <<< 1 if 20 ≤ i ≤ 63

(8)

We first prove that this is indeed sufficient.

Lemma 3.1 If the code C64 described above has minimum weight at least 82, then C has minimum
weight at least 82 in its last 64 words.

Proof : Consider any nonzero codeword in C′, say U = 〈U0, · · · , U79〉. Denote X = 〈U0, · · · , U15〉
and Y = 〈U16 · · · , U31〉 and Z = 〈U32 · · · , U79〉. Therefore U = 〈X,Y,Z〉. From Equation 7 observe
that the code C′ is completely determined by specifying any consecutive 16 words block provided
the block starts anywhere in 0 to 20, since the rest can then be obtained by solving the recurrence
relation. We therefore choose to specify Y = 〈U16, · · · , U31〉, that is we treat Y as the message
symbols. Note that a fixed choice of Y also fixes X and Z. Following this observation it is now
clear that 〈Y,Z〉 is a codeword in C64 .

Assume that the minimum weight of C64 is d. Then we need to show that any non-zero code-
word in C′, has weight at least d in its last 64 words. This follows provided X being non-zero
implies Y is non-zero. However, Y being zero implies X is zero, as X is a linear function of X.
Therefore the minimum weight of C64 is exactly the minimum weight of code C′ in its last 64 words.
Since C and C′ is the same code up to a permutation of the co-ordinate positions, the minimum
weight of C64 is exactly the minimum weight of code C′ in its last 64 words. (Observe that the
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permutation permutes only the columns, that is ith word in C translates into the ith permuted word
of C′.)

Next we prove a lower bound on the minimum distance of C64 . We break down the proof into
several sub-cases. In each sub-case, we argue often following an exhaustive search over a small
space that the minimum weight of the code is at least 82. We mention that a naive algorithm may
require to search a space as large as 232×16 which is clearly not feasible. Therefore the novelty in our
approach lies in a careful sub-division of the problem into a small number of tractable cases. We
mention that this approach is very general and may be used to give lower bounds on the minimum
distance of similar quasi-cyclic codes or nearly-quasi-cyclic codes.

Theorem 3.2 The code C64 as defined by Equation 8 has minimum distance at least 82.

Proof : It is easy to notice that the code C64 is a quasi-cyclic code by noting that it is invariant
under a 64 bit cyclic shift. From now onwards, we view the codewords of C64 as a matrix that
has 32 columns where each column is 64-bit long. The quasi-cyclic property then just mean that
the code is invariant under column rotations. Unless otherwise specified, the arithmetic in the
superscript will be modulo 32.

Now consider any non-zero codeword. Since the code is a linear code, it suffices to prove that it
has weight at least 82. We break down the proof into two main cases depending upon whether or
not a codeword has zero columns.

1. (All Columns Non-Zero Case:) Consider any such codeword. Also, consider any non-zero
column, w.l.o.g., let it be C0. Denote the columns, to the left of it by C1, C2, · · · , C31. Note
that all Ci’s are non-zero. In this case the following claim holds.

Claim 3.3 For any non-zero column Ci, there exists k, 0 ≤ k ≤ 7 such that the combined
weight of columns Ci, Ci+1, · · · , Ci+k is at least 3 · (k + 1).

Proof : This is easily verified by a computer program. We mention that for k ≤ 6, an average
of 3 cannot be assured (see Appendix B for an example).

Next we create a partition of the 32 columns into several groups. We pick a non-zero column
Ci. Now following Claim 3.3, there exists (k + 1)-columns (0 ≤ k ≤ 7) such that the average
weight of each column is at least 3. Consider the smallest k that achieves this. Then put these
(k + 1) columns Ci, Ci+1, · · · , Ci+k into a group. Call these columns good columns and the
group a good group. We then choose Ck+i+1 and form another group. We continue like this
till no more good groups can be created. The remaining columns are then grouped together.
Call this group a bad group. Note that the bad group has average weight at least 1. Now let
e be the size of this bad group. Then we have (32 − e) good columns. Also following Claim
3.3, e could be at most 7. Therefore the total weight of the codeword is at least

3 · (32 − e) + e = 96 − 2 · e ≥ 82.

2. (At Least One Column Zero Case:) Assume that there is at least one zero column.
W.l.o.g. let C0 be a zero column such that the column to the left of it is non-zero (note
that such a column always exists since we are considering a non-zero codeword). Denote the
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columns to the left of C0 as C1, C2, · · · (see figure).

Also, going towards the right of C0, denote the first
non-zero column by E1 and thereafter E2, E3, · · · .
Denote the column to the left of E1 by E0. (Note
that it may be possible that C0 and E0 are the same
column.) We argue that a few columns to the left
and right of a band of zero columns must contribute
a total weight of at least 82.

O

C

C

C

2

3

1

0C

2E

E0

1E

E3Z
E
R

It will be immaterial in our analysis below if there are some non-zero columns between C0

and E0. All we require in our analysis is that C0 and E0 are zero.

Next consider C1, C2, · · · . How soon can the sequence yield a zero column, i.e., what is the
smallest value of j such that Cj = E0? In order to answer this question, first note that since
C0 is everywhere zero, C1 is essentially generated by the code whose parity check equations
over F2 are given as follows: Denote C1 = 〈y0, · · · , y63〉. Then

∀i, 16 ≤ i ≤ 63, 0 = yi + yi−3 + yi−8 + yi−14 + yi−16. (9)

Similarly for a fixed C1, the column C2 is generated by the code whose parity check equations
over F2 are given as follows: Denote C2 = 〈x0, · · · , x63〉. Then

0 =

{

xi + xi−3 + xi−8 + xi−14 + xi−16 + yi−1 + yi−2 + yi−15 for 16 ≤ i ≤ 19

xi + xi−3 + xi−8 + xi−14 + xi−16 + yi−1 + yi−2 + yi−15 + yi−20 for 20 ≤ i ≤ 63
(10)

On the other hand E1 is generated by the code whose parity check equations over F2 are
given as follows: Denote E1 = 〈w0, · · · , w63〉. Then

0 =

{

wi−1 + wi−2 + wi−15 for 16 ≤ i ≤ 19

wi−1 + wi−2 + wi−15 + wi−20 for 20 ≤ i ≤ 63
(11)

Similarly for a fixed E1, the column E2 is generated by the code whose parity check equations
over F2 are given as follows: Denote E2 = 〈z0, · · · , z63〉. Then

0 =

{

wi + wi−3 + wi−8 + wi−14 + wi−16 + zi−1 + zi−2 + zi−15 for 16 ≤ i ≤ 19

wi + wi−3 + wi−8 + wi−14 + wi−16 + zi−1 + zi−2 + zi−15 + zi−20 for 20 ≤ i ≤ 63

(12)
The following claim shows that at least four consecutive columns have to be non-zero.

Claim 3.4 If C0 is everywhere zero, and C1 is non-zero, then so is C2, C3 and C4.

Proof : Suppose for a j it is the case that Cj = E1, i.e., Cj+1 is all zero. Then a homogeneous
system of linear equations over F2 can be set up. Consider the 64 × j variables in column
C1 through Cj. There are 48 equations for each of the columns C1 through Cj. Also, there
are 48 more equations for Cj+1. It is well known that such a system can have a non-trivial
solution if and only if the rank of the co-efficient matrix is strictly smaller than the number
of variables. It can easily be verified by a computer program that for j = 1, 2, 3, the system
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has full rank, that is exactly 64 × j. This can also be proved algebraically for j = 1, 2. We
give a simple algebraic proof in the appendix (see Appendix A).
This proof also highlights that for the rank to be full the recurrence relation must satisfy nice
properties. Ranks of all linear systems considered in this paper have been computed using
Gaussian elimination. We now divide the proof into two cases.

(a) (Number Of Consecutive Non-Zero Columns Is At Most Five):
By the claim above, we can safely assume that
we have at least four consecutive non-zero
columns. Also, if we assume C4 = E1, then
the number of nontrivial solutions can be at
most 216 − 1 (since the co-rank or nullity of
the matrix is 16, as verified by implementing
a Gaussian elimination program). Similarly,
assuming C5 = E1, the number of nontrivial
solutions can be at most 232 − 1. We do
an exhaustive search to conclude that the
minimum weight in the latter case is at
least 90. (Note that this latter case alone is
sufficient.)

5

C

O

R

E

Z

}}

> 90

O

R

E

Z

C1
C2

CC 4
3

Case 2(a)

(b) (Number Of Consecutive Non-Zero Columns Is At Least Six): If case 1 and
case 2(a) do not hold then, the only case that remains to be considered is the one where
at least six consecutive columns are non-zero. Note that C1, C2, C3 are then distinct
from E1, E2, E3. We use a computer program to verify that in this case the combined
weight of C1, C2 and C3 is at least 42.
Now recall Equation 11, the constraints induced on E1. A quick observation reveals
that its free variables are the first 15 bits and the very last bit. Depending on the values
taken by E1s first 15 bits we sub-divide our proof into two cases:

i. (Non-Pathological Case:) Here not all the first 15 bits of E1 are zero.

This is the simpler case. In this case, the
recurrence induces a good expansion. By an
exhaustive search we obtain that in this case
the combined weight of E1, E2 and E3 is at
least 40. Since the combined weight of C1, C2

and C3 is at least 42, and that Ci, Ei are all
distinct, together they establish this case.

0

C

C

C

2

3

1

0C

2E

E0

1E

E3Z
E
R
O

}> 42 }> 4

Case 2(b)i

ii. (Pathological Case:) Here we assume that the first 15 variables of E1 are all zero.
This is the most subtle and difficult case. Going back to Equation 11, we note that
in this case it must hold that w63 = 1 and for all 0 ≤ i ≤ 62, wi = 0. We call such
w pathological.
Now consider Equation 12. We can have two cases here.
In the first case, assume that the first 15 variables of z are zero. In that case, it
must hold that z62 = 1. (Plugging in i = 16 to 62 in Equation 12 will yield zj = 0
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for all 15 ≤ j ≤ 61 since wi = 0 for these values.) Also note that z63 is free. In this
case, we also call z pathological. In fact this may continue along the diagonal i.e.,
E3, E4, · · · may be pathological. If that happens then it is easy to show that the
first non-zero bits of E3 will be its 61st bit, that of E4 will be 60th bit and so on.
Also each column will have a free variable in its 63rd bit.
In the second case, we assume that not all of its first 15 variables are zero. We call
such z’s to be non-pathological.
We now sub-divide into many small cases depending primarily on the number of
pathological columns (and thus on the number of free variables).

A. (# Pathological Columns ≤ 8) We break this case into two sub-cases. That
each of these sub-cases holds has been verified using a computer program.

(I). 6th and earlier non-pathological columns are non-zero :

In this case, we verify that the combined
weight of the pathological columns and
the first three non-pathological columns to
the right of the pathological columns is at
least 40. This ensures that in this case the
minimum weight is at least 82.

O

}}}

1E

<

R

E

Z

O

C

C

C

2

> 42

....
E2

3

1

8#

> 40

Z
E

R

}

Case 2(b)(ii)(A)(I)
We mention that the search space dimension can be estimated as

# of Pathological variables + # of Non-Pathological Columns × 16,

which is at most 40 in this case.
We next consider the case where the non-pathological columns are same as one
of C1, C2 or C3.

(II). 6th or earlier non-pathological column is identically zero: Firstly note
that it suffices to check the case where the 6th non-pathological column is iden-
tically zero (that is E3 = C3), since other cases do fall in this case.
Now we consider the parity check equations
induced on the pathological columns and
the six non-pathological columns. Note
that C1 satisfies Equation 9 and that E1

satisfies Equation 11. Also note that in
between columns satisfy equations similar
to Equations 10 and 12. These equations
then set up a homogeneous system of linear
equations whose nullity can be verified (by a
computer program) to be at most 40.

O

}}

3C

E1 O

R

E

Z

<

C1
C2

    ..E2

CC 45

O

R

E

Z

  8#

8> 2

Z
E

R

}

Case 2(b)(ii)(A)(II)
Let the number of pathological columns be p and the number of non-pathological
columns be n. Specifically then the nullity of the system can then be shown to
be exactly (see Appendix A Claim A.3)

p + 64 × n − 48 × (n + 1) = p + 16 · n − 48,
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which is at most 40 in this case. We do an exhaustive search over the null space
to establish that the min-weight is at least 82.

B. (8 < # Pathological Columns ≤ 16) We also break this case into two sub-
cases. That each of these sub-cases holds has been verified using a computer
program.

(I). 5th and earlier non-pathological columns are non-zero

In this case, we verify that the combined
weight of the pathological columns and
the first two non-pathological columns to
the right of the pathological columns is at
least 40. This ensures that in this case the
minimum weight is at least 82.

O

8<#<16

} }}

E1

R

E

Z

O

C

C

C

2

> 42 }

3

1

> 40

    ..E2

Z
E

R

Case 2(b)(ii)(B)(I)
Therefore the case that remains to be considered is the one where the non-
pathological columns are same as one of C2 or C3 which leads us to the next
case.

(II). 5th or earlier non-pathological column is identically zero:

Firstly, note that it suffices to check the
case when the 5th non-pathological column
is identically zero (that is E2 = C3), since
other cases do fall in this case. As in the
2nd sub-case of the previous case (i.e., Case
2(b)(ii)(A)(II)), we verify that the min-weight
is at least 82.

O

} }

3C

E1 O

R

E

Z

8<#<16

C1
C2

    ..E2

C4

O

R

E

Z

8> 2

Z
E

R

}
Case 2(b)(ii)(B)(II)

C. (16 < Pathological Columns ≤ 28) First of all, notice that 28 columns is
enough, since by our assumption there is at least one zero column and three
non-pathological column (i.e., C1, C2, C3). Now, we also break this case into
two sub-cases. That each of these sub-cases holds has been verified using a
computer program.

(I). 4th and earlier non-pathological columns are non-zero
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In this case, we verify that the combined
weight of the pathological columns and the
first non-pathological column to the right of
the pathological columns is at least 40. This
ensures that in this case the minimum weight
is at least 82.

O

}}

E1

R

E

Z

O

C

C2

> 42 }

    ..E2

3

C1

<16 #<28

> 40

Z
E

R

}

Case 2(b)(ii)(C)(I)
Therefore the case that remains to be considered is the one where the 1st non-
pathological column is the same as C3.

(II). 4th non-pathological column is identically zero:

As in the 2nd sub-case of the previous case
(or Case 2(b)(ii)(A)(II)), we verify that the
min-weight is at least 82.

O

} }

E1
O

R

E

Z

3C

    ..E2

<16 #<28

C1
C2

8> 2

O

R

E

Z Z

R
E

}

Case 2(b)(ii)(C)(II)

We remark that the minimum weight of this code can at most be 82 and therefore our result
is tight. We found the following codeword while searching for Case 2(b)(ii)(A)(II). Below we only
give eight columns that includes six non-zero and two zero columns. The rests are all zero columns.
Below the columns are placed horizontally.

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0011110010011110 1000000001101001 1101001001010110 0000110010010000

1011000101000100 0010111101001000 1011100010101100 1101000000101111

1010101000111011 0010100100110010 1000000101001000 0110011000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000100

0000000000000000 0000000000000000 0000000000000000 0000000000000011

0000000000000000 0000000000000000 0000000000000000 0000000000000001

0000000000000000 0000000000000000 0000000000000000 0000000000000000

3.3 The Last Sixty Words

In this subsection, we prove that the minimum weight of the code C in the last 60 words is at
least 75. In general, our proof strategy is robust, i.e., it can in principle be adapted to estimate
the minimum weight of this code in the last 4 · n (where n is an integer) number of steps, though
the dimension of the search space increases by an additive factor of (64 − 4 · n) and may make it
computationally infeasible. On the other hand, when n gets smaller, say n ≤ 12, we may only need
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to show an average 2 per column viz a viz Claim 3.3. Since most of our search is conducted using
early-stopping, the large dimension is not expected to be a problem.

Next, observe that the minimum weight of the code C64 in the last 60 words yields a lower bound
on the minimum weight of the code C in the last 60 words. Reviewing the proof of Theorem 3.2,
it may be observed that in case 2 (i.e., At Least One Column Zero Case) we either consider a
codeword (case 2(b)(ii)(A)(II), case 2(b)(ii)(B)(II) and case 2(b)(ii)(C)(II)) or consider few columns
(in the remaining cases) which can always be extended to get a valid codeword. Therefore in these
cases just counting the weight of the last 60 words gives a lower bound on the minimum weight
of the code in the last 60 words. However, the same is not true for case 1 (i.e., All Columns

Non-zero Case). We handle this case carefully. This then allows us to prove the following
theorem.

Theorem 3.5 The code C64 , as defined by Equation 8, has minimum weight at least 75 in its last
60 words.

Proof : Consider any column of length 64 bits. A column restricted to its bottom most 60 bits will
henceforth be referred to as a reduced column (see figure).

Unless otherwise mentioned, we will use the same name, eg., C0, to
denote a column and its reduced column. We divide the proof into
three main cases.

0

o
l
u
m
n

c
o
l
u
m
n

rdcd.

4 bits

C

c

A Reduced Column

1. (All Columns Are Non-zero But Reduced Column Can Be Zero Case): Consider
any such codeword. Also consider any non-zero column, w.l.o.g., let it be C0. Denote the
columns, to the left of C0 by C1, C2, · · · , C31. Note that by assumption all columns are
non-zero.
Then observe that due to this assumption no
two consecutive reduced columns can be zero
everywhere. To see this let C0 and C1 be the
columns such that their reduced columns are
everywhere zero. Let C1 be the column left to
C0. Denote C0 by x = 〈x0, x1, · · · , x63〉 and
C1 by y = 〈y0, y1, · · · , y63〉. Note that by the
assumption xi = yi = 0 for all i = 4, · · · , 63.
Now consider the parity check equations of
C64 and set i = 20.

0

4bits

60 bits

0

0

We get
y20 + y17 + y12 + y6 + y4 + x19 + x18 + x5 + x0 = 0,
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which implies x0 = 0. Similarly by setting i = 21, 22, 23, it can be seen that x is everywhere
zero.

We can therefore safely assume that no two consecutive reduced columns are zero. Then, the
following can be easily verified by a computer program.

Claim 3.6 For any non-zero column Ci, there exists k, 0 ≤ k ≤ 7 such that the combined
weight of the reduced columns Ci, Ci+1, · · · , Ci+k is at least 3 · (k + 1).

Note that although we restrict ourselves to at most 2 bits ON in reduced C0, we must consider
all 16 possibilities for the first 4 bits of C0 to be able to define reduced column C1 (from
16 bits in reduced column in C1 and all the bits in C0). Despite this the search is easily
conducted.

Then, following the same line of argument as in Case 1 (All Columns Non-Zero Case)
of Theorem 3.2, it can be shown that the total weight of the reduced columns is at least 78.
This is because 25 columns yield at least 75 and the remaining seven columns yield at least
3 (since two consecutive reduced columns contribute at least 1).

2. (At Least One Column Zero Case): This case can be handled as the Zero Case in the
proof of theorem 3.2. We consider the same number of cases and we count only the last 60
bits in a column. We skip the details and summarize below the results we obtain.

(a) Number Of Consecutive Non-Zero Columns Is At Most Five:

The combined weight of the 5 non-zero col-
umn is then at least 78.

8

C

O

R

E

Z

O

R

E

Z

}}
C1

C2

CC 45

> 7

3

Case 3(a)

(b) Number Of Consecutive Non-Zero Columns Is At Least Six: The combined
weight of three reduced columns to the left of a zero band is at least 38.

i. (Non-Pathological Case) The combined weight of three reduced columns to
the right of a zero band is at least 38.
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Therefore the combined weight of three
reduced columns to the left of a zero column
and that of three reduced columns to the
right of a zero column yields (assuming they
are distinct) at least 75.

7

C

C

C

2

3

1

0C

2E

E0

1E

E3Z
E
R
O

} }> >38 3

Case 3(b)(i)

ii. (Pathological Case)

A. # of Pathological columns ≤ 8

(I). 6th and earlier non-pathological columns are non-zero : The com-
bined weight of the pathological reduced columns and the first three non-
pathological reduced columns to the right of the pathological columns is at
least 37.

(II). 6th or earlier non-pathological column is zero: The combined mini-
mum weight of these reduced columns is at least 75.

B. 8 < # of Pathological columns ≤ 16

(I). 5th and earlier non-pathological columns are non-zero : The com-
bined weight of the pathological reduced columns and the first two non-
pathological reduced columns to the right of the pathological columns is at
least 37.

(II). 5th or earlier non-pathological column is zero: The combined mini-
mum weight of these reduced columns is at least 75.

C. 16 < # of Pathological columns ≤ 28

(I). 4th and earlier non-pathological columns are non-zero : The com-
bined weight of the pathological reduced columns and the first non-pathological
reduced columns to the right of the pathological columns is at least 37.

(II). 4th or earlier non-pathological column is zero: The combined mini-
mum weight of these reduced columns is at least 75.

Therefore, in all these cases the combined weight of the reduced column is at least 75. This estab-
lishes the theorem.
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Case 2(b)(ii)(A)(I)

O

}}
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8<#<16

R

E

Z

O

C

C

C
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> }

3

1
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    ..E2

Z
E
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}

Case 2(b)(ii)(B)(I)

Z
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E1

R

E

Z

O

C

C2

> }

    ..E2

3

C1

<16 #<28

38 > 37

E
R

O

}

Case 2(b)(ii)(C)(I)

O

}}

3C

E1

<

C1
C2

    ..E2

CC 45
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> 75
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O
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E
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Case 2(b)(ii)(A)(II)

} }

3C

E1 O

R

E

Z

8<#<16

C1
C2

    ..E2

C4

O

R

E

Z

> 75

Z
E

R
O

}

Case 2(b)(ii)(B)(II)

E

} }

E1

3C

O

R

E

Z

    ..E2

<16 #<28

C1
C2

> 75

O

R

E

Z Z

R
O

}

Case 2(b)(ii)(C)(II)

Various Cases in the proof of Theorem 3.5
(weights referred to the combined weights of the reduced columns)

Note that our result is tight. The codeword we cite in the previous subsection achieves this
bound.

3.4 The Last Forty-Eight Words

In this subsection, we prove that the code C64 has minimum weight at least 52 in its last 48 words.
As mentioned previously, this proof is more computation intensive as the dimension of the search
space increases by an additive factor of 16. The good thing is that we need to show an average 2
per column, viz a viz Claim 3.3. This makes our search, conducted using early-stopping, feasible
in spite of the apparent large dimension.

It is easy to observe that the minimum weight of the code C64 in the last 48 words yields
a lower bound on the minimum weight of the code C in the last 48 words. The proof uses the
same technique as in the proof of Theorem 3.5. Recall that in that proof (that is the proof of
Theorem 3.5) there are cases where we either consider a codeword or consider few columns which
can always be extended to get a valid codeword. In those cases, just counting the weight of the last
48 words suffices to give a lower bound on the minimum weight of the code in the last 48 words.
In the remaining case, mimicking the proof of Theorem 3.5, we consider reduced columns (here
restricted to last 48 entries). We then can verify that under the assumption that all columns are
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non-zero, the reduced columns cannot be too sparse. This then allows us to prove the following
theorem.

Theorem 3.7 The code C64 as defined by Equation 8 has minimum weight at least 52 in its last
48 words.

Proof : Consider any column of length 64 bits. Here a column restricted to its bottom most 48 bits
will henceforth be referred as a reduced column.
Unless otherwise mentioned, we will use the same name, eg., C0, to denote a column and its reduced
column. We divide the proof into two main cases, depending on the existence of a zero column.

1. (All Columns Are Non-Zero But Reduced Column Can Be Zero Case ): Consider
any such codeword. Also consider any non-zero reduced column, w.l.o.g., let it be C0. Denote
the reduced columns, to the left of C0 by C1, C2, · · · , C31. Note that if five consecutive
reduced columns are zero, then the first column must be everywhere zero.

This is easily obtained by setting i suitably
in the parity check equations of the code
C64 (see figure). We handle that case latter.
Therefore we can safely assume that no five
consecutive reduced columns are zero.

48 bits

4bits

00000

0
0
0
0

0
0
0

0
0

0

Then the following is easily verified by a computer program.

Claim 3.8 For any non-zero column Ci, there exists k, 0 ≤ k ≤ 6 such that the combined
weight of the reduced columns Ci, Ci+1, · · · , Ci+k is at least (k+1). Furthermore, there exists
ℓ, 0 ≤ ℓ ≤ 8 such that the combined weight of the reduced columns Ci, Ci+1, · · · , Ci+ℓ is at
least 2 · (ℓ + 1).

Note that although we restrict ourselves to at most 1 bit ON in reduced C0, we must consider
all 216 possibilities for the first 16 bits of C0 to be able to define reduced column C1 (from 16
bits in reduced column in C1 and all the bits in C0). Since we rely heavily on early stopping,
these bits must be guessed in a lazy fashion to make the search feasible. Then following the
same line of argument as in Case 1 (All Columns Non-Zero Case) of Theorem 3.5, it can
be shown that the total weight of the reduced columns is at least 53 (since 24 columns yield
at least 48 and the remaining eight columns yield at least 8, or 25 columns yield at least 50
and the remaining 7 yields 7, or 26 columns yield 52 and remaining 6 at least 1).

2. At Least One Column Zero Case: In this case the first column must be everywhere zero.
This case can then be handled as the Zero Case in the proof of theorem 3.2. We consider
the same number of cases and we count only the last 48 bits in a column. We remark that in
each such cases, it can be shown that the weight in the last 48 rounds is at least 52. We skip
the details.
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4 Conclusion

4.1 Our proposed code vs. SHA-256 code

The code in SHA-256 ([Uni02]) is the following: Let 〈W0, · · · ,W15〉 be the 512 bits input to SHA-
256, where each Wi is a word of 32 bits. Then the message expansion phase outputs 〈W0, · · · ,W63〉
where

∀i, 16 ≤ i ≤ 63, Wi = σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16, (13)

where σ0 and σ1 are as follows:

σ0(x)
def
= (x >>> 7) ⊕ (x >>> 18) ⊕ (x >> 3).

σ1(x)
def
= (x >>> 17) ⊕ (x >>> 19) ⊕ (x >> 10);

In the above, “>> i” denotes a right shift by i bit and ‘+’ denotes binary addition modulo 232.
Note that the binary addition makes the code non-linear. We do not see how to lower bound the
minimum weight of the above code. In spite of the complex description, we do not know how to
formally argue about the security that this code offers.

One property that the SHA-256 code has which might be useful against [CJ98] and [WYY05b]
attacks is that the code is not quasi-cyclic. These attacks require that a codeword rotated (along
columns) is again a codeword. Similarly, the attacks require that the codewords shifted (along
rows) is again a codeword. In fact, even our proposed code, although quasi-cyclic, is not invariant
under shifts along rows. This is because the recurrence relation changes from step 36 onwards.
However, claiming security on this basis maybe short-lived, and arguably there is no substitute to
actually proving that the code has a high minimum weight.

4.2 Alternate codes

Notice that the code C64 has a sliding window of size 20, that is to encode a message using this
code, an LFSR would require 20 registers. The following code has a sliding of size 17. This may be
useful for direct LFSR-type hardware implementation, since this would require three less registers
than what the code C64 requires.

Remark 4.1 We mention here that using our technique, it can be shown that the following code
has similar good minimum weight parameters as that of C64 .

Alternative1 :
for i = 0, 1, · · · , 15, Wi = Mi and
for i = 16 to 63

Wi =

{

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−11) <<< 13) if 16 ≤ i < 17

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−11 ⊕ Wi−17) <<< 13) if 17 ≤ i ≤ 63

(14)
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We expect the following code too to have equally good properties as the codes we have consid-
ered/mentioned previously. However, because of additional pathological variables, the analysis
becomes more complex and we defer the complete analysis to a later time.

Remark 4.2 〈W0, · · · ,W79〉 are computed from the message 〈M0, · · · ,M15〉 as follows:

Alternative2 :
for i = 0, 1, · · · , 15, Wi = Mi and
for i = 16 to 63

Wi = Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−11 ⊕ Wi−15) <<< 1)

⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−11 ⊕ Wi−15) >>> 1) for i = 16, · · · , 63.
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A Rank proofs

Claim A.1 If C0 is zero, and C1 is non-zero, then C2 is non-zero.

Proof : Assume otherwise i.e., that C2 is zero. Consider the following 48 × 64 dimensional parity
check matrices (essentially Equations 9 and 11) over F2















1010000010000100100000 · · · 000000000000000000
0101000001000010010000 · · · 000000000000000000

. . . · · ·
. . .

0000000000000000000000 · · · 010100000100001001















H1
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0100000000000011000000 · · · 000000000000000000000
0010000000000001100000 · · · 000000000000000000000
0001000000000000110000 · · · 000000000000000000000
0000100000000000011000 · · · 000000000000000000000

1000010000000000001100 · · · 000000000000000000000
0100001000000000000110 · · · 000000000000000000000

. . . · · ·
. . .

0000000000000000000000 · · · 100001000000000000110



































H2

Then we need to show that H =

(

H1

H2

)

has full rank. To do that it is enough to show that

there are 64 linearly independent rows. We consider the 48 rows of H1 and 16 additional rows,
namely 5th through 20th rows of H2. We reduce the problem to showing that a certain equation
over polynomial ring F2[x] does not have solutions in a restricted set of polynomials. We associate
with the vector c = 〈c0, · · · , c63〉 in F64

2 the polynomial c(s) =
∑

63

i=0
cis

i in F2[s]. Then the following
polynomials can be associated with the 1st and 5th rows of matrix H1 and H2, respectively:

p(s)
def
= s16 + s13 + s8 + s2 + 1,

r(s)
def
= s19 + s18 + s5 + 1.

Further note that the ith (note 1 ≤ i ≤ 48) row of H1 then gets associated with si−1p(s). Similarly
the jth (note we restrict ourselves to 5 ≤ j ≤ 20) row of H2 then gets associated with sj−5r(s).
Therefore, observe that if the 80 rows that we are considering were dependent then we can translate
that to a non-zero solution of the following polynomial equation:

p(s)α(s) + β(s)r(s) = 0,

with additional constraints that degree(α) ≤ 47 and degree(β) ≤ 15. However, it is well known
that p(s) is irreducible, therefore if such a equation holds then it must be the case that p(s) divides
r(s). However, it is easy to check that p(s) does not divide r(s), thus leading to a contradiction.
Therefore H has full rank.

Claim A.2 If C0 is zero, and C1 is non-zero, then C2, C3 is non-zero.

Proof : Consider the following polynomials :

p(x)
def
= x16 + x13 + x8 + x2 + 1,

q(x)
def
= x15 + x14 + x,

r(x)
def
= x19 + x18 + x5 + 1 = x4 · q(x) + 1.

Let H1 and H2 be as above.
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First of all note that H2 has full rank. (This is clear from the matrix. Otherwise, note that we
could have an identity

q(x) · a(x) + r(x) · b(x) = 0

with degree(a) ≤ 3 and degree(b) ≤ 43. Since degree(q · a) < degree(r), this cannot happen.) Now
we will show that the rank of the matrix





H2 0
H1 H2

0 H1





is at least 128. Since H1 has full rank, observe that

(

H1 H2

0 H1

)

has rank at least 96. So consider the following 92 independent rows from the above matrix, namely
5th row onwards. We also argue that another additional 5th through 40th rows of the top H2 are
also independent. If not, then they would satisfy the following polynomial equations

α(x)p(x) + β(x)r(x) = 0 (15)

x4β(x)p(x) + γ(x)r(x) = 0 (16)

with restrictions
degree(α) ≤ 47,
degree(β) ≤ 43, and
degree(γ) ≤ 35.

Since p(x) is an irreducible polynomial, and p(x) ∤ r(x), observe from Equation 15 that p(x)|β(x).
Hence, set β(x) = µ(x)p(x). Substituting in Equation 16 we get

x4p(x)2µ(x) + γ(x)r(x) = 0.

Since p(x) is irreducible, and p(x) ∤ r(x), and x ∤ r(x), it must hold that x4p(x)2|γ(x). But that is
impossible, since degree(γ) ≤ 35 < 36 =degree(x4p(x)2).

Recall that we used E0 to denote a column that is zero everywhere. Also, recall that the columns
left to E0 are denoted E1, E2 and so on. In the following claim, we will assume 3 ≤ n.

Claim A.3 Let E1, E2, · · · , Ep be p pathological columns. Also, let Ep+1, Ep+2, · · · , Ep+n be n
non-pathological columns. Further assume that Ep+n+1 = C0 is everywhere zero. If the nullity of
the parity check equations resulting from these columns with p = 0 is 16 ·n− 48, then the nullity of
the parity check equations resulting from these columns with any p ≤ 28 is

p + 16 · n − 48.

Proof : Let Ni,j, (1 ≤ i ≤ n, 0 ≤ j ≤ 63) denote the entries in the non-pathological columns. Also
let Pi,j , (1 ≤ i ≤ p, for each i, 64 − i ≥ j ≤ 63) be the pathological variables. We will denote
Ni = 〈Ni,0, · · · , Ni,63〉 and Pi = 〈Pi,64−i, · · · , Pi,63〉. Let H1|i denote the matrix H1 restricted to the
last i columns. (Note that only the last i rows will be non-zero.) Also let H2|i denote the matrix
H2 restricted to the last i columns. (Note that only the last i−1 rows will be non-zero.) Note that
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〈P1, · · · , Pp, N1, · · · , Nn〉 must belong to the null space of the following matrix:

H =

































H1|1 H2|2

H1|2 H2|3

. . .
. . .

H1|p−1 H2|p

H1|p H2

H1 H2

. . .
. . .

H1 H2

H1

































Note that when we restrict H1 or H2 to the last few columns, the top rows in that restricted
entries may become zero row. We remove such rows if the entire row in the above matrix H
becomes everywhere zero. Note that with this modification, the following sub-matrix is already in
the echelon form:

H1 =











H1|1 H2|2

H1|2 H2|3

. . .
. . .

H1|p−1 H2|p





























(p − 1) blocks

(Observe that first block corresponding to (H1|1 H2|2) reduces to (1 10), and that corresponding to

(H1|2 H2|3) reduces to

(

10 100
01 110

)

.)

Furthermore, since by assumption the following sub-matrix has full rank:

H2 =















H2

H1 H2

. . .
. . .

H1 H2

H1









































(n + 1) blocks

the matrix H has full rank. Note here that in the top 48 − p rows, H1|p is entirely zero. However
these rows in H are independent since H2 has full rank. In the remaining rows H1|p is in echelon
form and hence independent. Note that it has number of rows i.e., constraints:

48 × (n + 1) +

p−1
∑

i=1

i = 48(n + 1) +
p(p − 1)

2
.

Also, note the number of variables i.e., columns is

64 × n +

p
∑

i=1

i = 64 · n +
p(p + 1)

2
.

Thus the nullity of the system is

64 · n +
p(p + 1)

2
−

(

48(n + 1) +
p(p − 1)

2

)

= p + 16 · n − 48.

This completes the proof.
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B Examples

We cite below an example where over 7 columns an average of 3 does not hold. Below we only give
8 columns and the columns are placed horizontally. Note that the 8 columns yield 29, whereas the
first 7 columns yield only 14.

0000000000000000000000000000000000000000000000000000000001000000

0000000000000000000000000000000000000000000000000000000000110110

0000000000000000000000000000000000000000000000000000000000010100

0000000000000000000000000000000000000000000000000000000000001110

0000000000000000000000000000000000000000000000000000000000000100

0000000000000000000000000000000000000000000000000000000000000011

0000000000000000000000000000000000000000000000000000000000000001

1000101010000000001001000010000010000100101100000010001000010000
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