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Abstract. Certificateless public key cryptography was introduced to
overcome the key escrow limitation of the identity-based cryptography.
Most of the existing certificateless public key encryption schemes are
based on Boneh and Franklin’s identity-based encryption scheme (BF-
IBE). In this paper, we construct a new certificateless public key en-
cryption scheme from the efficient SK-IBE which has been proved to be
IND-ID-CCA secure [8]. The new scheme is more efficient on computa-
tion complexity or published public key information than the existing
schemes.

1 Introduction

Traditionally, a Public Key infrastructure (PKI) is used to provide an assurance
to the user about the relationship between a public key and the identity of
the holder of the corresponding private key by certificates. However, a PKI faces
may challenges in the practice, especially the scalability of the infrastructure and
the management of the certificates. To simplify the management of certificates,
Shamir [1] proposed identity-based public key cryptography (ID-PKC) in which
the public key of each party is derived directly from certain aspects of its identity,
for example, an IP address belonging to a network host, or an e-mail address
associated with a user. Private keys are generated for entities by a trusted third
party called Key Generation Center (KGC). For a long while it was an open
problem to obtain a secure and efficient identity based encryption (IBE) scheme.
Until 2001, Boneh and Franklin [2] presented an efficient and provably secure
identity-based encryption scheme (BF-IBE) using the bilinear pairings on elliptic
curves.

The direct derivation of public keys in ID-PKC eliminates the need for certifi-
cates and some of the problems associated with them. However, the dependence
on a KGC who can generate private keys inevitably introduces key escrow to
the identity-based cryptography. Then in [3] Al-Riyami and Patersion introduced
the notion of Certificateless Public Key Cryptography (CL-PKC). CL-PKC can
overcome the key escrow limitation of ID-PKC without introducing certificates
and the management overheads that this entails. It combines the advantages of
the ID-PKC and the PKI.
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In this paper, we concentrate on the certificateless public key encryption (CL-
PKE) schemes. So far almost all the CL-PKE schemes [3,4,5,6] are based on the
BF-IBE scheme. In 2003 Sakai and Kasahara [7] proposed another method of
constructing identity-based keys, also using pairings, which has the potential to
improve performance. Later, Chen and Cheng [8] gave a provably secure identity-
based scheme (SK-IBE) using this second construction. In this paper, we propose
a new CL-PKE scheme based on the efficient SK-IBE scheme. The new scheme
is more efficient on computation or published public key information than the
existing schemes.

The paper is organized as follows: First we review the concepts of CL-PKE
and its security model. In section 3, we introduce some mathematic basis of
bilinear maps. Then we present our new efficient CL-PKE scheme in section 4
and analyze its security. In section 5, we compare our scheme with the existing
CL-PKE schemes on performance. Finally, section 6 gives conclusions.

2 Certificateless Public Key Encryption

In this section, we review the definition and security model for CL-PKE from
[3].

Definition 1. [3] A CL-PKE scheme is specified by seven algorithm (Setup,
Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key,
Encrypt, Decrypt) such that:

– Setup is a probabilistic algorithm that takes security parameter κ as input
and returns the system parameters params and the masterkey. The system
parameters include a description of the message space M and ciphertext
space C.

– Partial-Private-Key-Extract is a deterministic algorithm which takes
params, masterkey and an identifier for entity A, IDA ∈ {0, 1}n, as inputs.
It returns a partial private key DA .

– Set-Secret-Value is a probabilistic algorithm that takes as input params
and outputs a secret value xA.

– Set-Private-Key is a deterministic algorithm that takes params, DA and
xA as inputs. The algorithm returns SA, a (full) private key.

– Set-Public-Key is a deterministic algorithm that takes params and xA as
inputs and outputs a public key PA.

– Encrypt is a probabilistic algorithm that takes params, M ∈ M, xA and
IDA as inputs and returns either a ciphertext C ∈ C or the null symbol ⊥
indicating an encryption failure.

– Decrypt is a deterministic algorithm that takes as inputs params, C ∈ C
and SA. It returns a message M ∈M or a message ⊥ indicating a decryption
failure.

Algorithms Set-Private-Key and Set-Public-Key are normally run by
an entity A for himself, after running Set-Secret-Value. Usually, A is the only
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entity in possession SA and xA. Algorithms Setup and Partial-Private-Key-
Extract are usually run by a trusted third party, called Key Generation Center
(KGC) [3].

2.1 Security Model for CL-PKE

Al-Riyami and Patersion presented the full IND-CCA security model for CL-
PKE in [3]. The following is the actions that an general adversary A against a
CL-PKE scheme may carry out and discuss how each action should be handled
by the challenger C for that adversary.

1. Extract partial private key of entity A: Challenger C responds
by running algorithm Partial-Private-Key-Extract to generate the partial
private key DA for entity A.

2. Extract private key for entity A: If A’s public key has not been
replaced then C can respond by running algorithm Set-Private-Key to generate
the private key SA for entity A. But it is unreasonable to expect C to be able to
respond to such a query if A has already replaced A’s public key.

3. Request public key of entity A: C responds by running algorithm
Set-Public-Key to generate the public key PA for entity A (first running Set-
Secret-Value for A if necessary).

4. Replace public key of entity A: The adversary A can repeatedly
replace the public key PA for any entity A with any value P0 of its choice. The
current value of an entity’s public key is used by C in any computations or
responses to the adversary’s requests.

5. Decryption query for ciphertext C and entity A: In the model of
[3], adversary can issue a decryption query for any entity and any ciphertext.
It is assumed in [3] that C should properly decrypt ciphertexts, even for those
entities whose public keys have been replaced. This is a rather strong property
for the security model (after all, the challenger may no longer know the correct
private key). However, it ensures that the model captures the fact that changing
an entity’s public key to a value of the adversary’s choosing may give that
adversary an advantage in breaking the scheme. For further discussion of this
feature, see [3].

The IND-CCA security model of [3] distinguishes two types of adversary. A
type I adversary AI is able to change public keys of entities at will, but does not
have access to the masterkey. A Type II adversary AII is equipped with the
masterkey but is not allowed to replace public keys of entities. This adversary
models security against an eavesdropping KGC.

CL-PKE Type I IND-CCA Adversary: Such an adversary AI does not
have access to the masterkey. However, AI may request public keys and replace
public keys with values of its choice, extract partial private and private keys and
make decryption queries, all for identities of its choice. As discussed above, we
make several natural restrictions on such a Type I adversary:

1. Adversary AI cannot extract the private key for IDch at any point.
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2. Adversary AI cannot request the private key for any identifier if the cor-
responding public key has already been replaced.

3. AdversaryAI cannot both replace the public key for the challenge identifier
IDch before the challenge phase and extract the partial private key for IDch in
some phase.

4. In Phase 2, AI cannot make a decryption query on the challenge cipher-
text C∗ for the combination (IDch, Pch) that was used to encrypt Mb.

CL-PKE Type II IND-CCA Adversary: Such an adversary AII does
have access to the masterkey, but may not replace public keys of entities. AII

can compute partial private keys for himself, given the masterkey. It can also
request public keys, make private key extraction queries and decryption queries,
both for identities of its choice. The restrictions on this type of adversary are:

1. Adversary AII cannot replace public keys at any point.
2. Adversary AII cannot extract the private key for IDch at any point.
3. In Phase 2, AII cannot make a decryption query on the challenge cipher-

text C∗ for the combination (IDch, Pch) that was used to encrypt Mb.

Definition 2. A CL-PKE scheme is said to be IND-CCA secure if no polyno-
mially bounded adversary A of Type I or Type II has a non-negligible advantage
in the following game:

Setup: The challenger C takes a security parameter κ as input and runs
the Setup algorithm. It gives A the resulting system parameters params. If A
is of Type I, then C keeps the masterkey to himself, otherwise, he gives the
masterkey to A.

Phase 1: A issues a sequence of requests described above. These queries may
be asked adaptively, but are subject to the rules on adversary behavior defined
above.

Challenge Phase: Once A decides that Phase 1 is over it outputs the
challenge identifier IDch and two equal length plaintexts M0,M1 ∈ M. Again,
the adversarial constraints given above apply. C now picks a random bit b ∈ {0, 1}
and computes C∗, the encryption of Mb under the current public key Pch for
IDch. Then C∗ is delivered to A.

Phase 2: Now A issues a second sequence of requests as in Phase 1, again
subject to the rules on adversary behavior above.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The adversary wins the game if
b = b′. We define A’s advantage in this game to be Adv(A) := 2|Pr[b = b′]−1/2|.

3 Mathematic Basic

Before presenting the new CL-PKE scheme, we first review a few concepts related
to bilinear maps [8].

– G1, G2 and GT are cyclic groups of prime order q.
– P1 is a generator of G1 and P2 is a generator of G2.



5

– ψ is an isomorphism from G2 to G1 with ψ(P2) = P1.
– ê is a map ê: G1 ×G2 → GT .

The map must have the following properties.
Bilinear: For all P ∈ G1, all Q ∈ G2 and all a, b ∈ Z∗q we have ê(aP, bQ) =

ê(P, Q)ab.
Non-degenerate: ê(P1, P2) 6= 1.
Computable: For all P ∈ G1 and all Q ∈ G2, ê(P, P ) is computable in

polynomial time.
From [11], we can either assume that ψ is efficiently computable or make our

security proof relative to some oracle with computes ψ.

In the following, we consider the computational Diffie-Hellman (CDH) prob-
lem and the k-bilinear Diffie-Hellman inverse (k-BDHI) problem [8,12].

CDH Assumption: For a, b ∈ Z∗q , given P, aP, bP ∈ G∗2, to compute abP
is hard.

k-BDHI Assumption: For an integer k and x ∈R Z∗q , P2 ∈ G∗2, P1 ∈ ψ(P2),
ê : G1 ×G2 → GT , given (P1, P2, xP2,x2P2,...xkP2), to compute ê(P1,P2)1/x is
hard.

Theorem 1: k-BDHI problem is not harder than CDH problem.
Proof: CDH problem ⇒ k-BDHI problem
Given P1, P2, xP2, ..., x

kP2, k ≥ 1,
set the input of CDH problem to be

P = P2, aP = xP2, bP = xP2,
CDH problem outputs

abP = x2P2.
Then set the input of CDH problem to be

P = x2P2, aP = xP2 = x−1P, bP = P2 = x−2P ,
CDH problem outputs

abP = x−3P .
Hence, compute

ê(P1, x
−3P ) = ê(P1, x

−1P2) = ê(P1, P2)x−1
.

4 A New CL-PKE Scheme

In this section, we present a new CL-PKE scheme and study its security. The
scheme is constructed using the SK-IBE scheme of [8] and a variant of the ElGa-
mal public key encryption [9] strengthened using Fujisaki-Okamoto’s transform
[10].

Setup: Given a security parameter κ, the generator takes the following steps.
1. Generate three cyclic groups G1, G2 and GT of prime order q, an isomor-

phism ψ, and a bilinear pairing map ê: G1×G2→GT . Pick a random generator
P2 ∈ G∗2 and set P1 = ψP2 .

2. Pick a random s ∈ Z∗q and compute Ppub = sP1.
3. Compute g = ê(P1, P2).
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4. Pick five cryptographic hash functions H1 : {0, 1}∗ → Z∗q and H2 : GT →
{0, 1}n, H3 : {0, 1}n × {0, 1}n → Z∗q , H4 : {0, 1}n → {0, 1}n and H5 : G1 →
{0, 1}n for some n.

The message space isM = {0, 1}n. The ciphertext space is C = G∗1×{0, 1}n×
{0, 1}n. The system parameters are params =< q, G1, G2, GT , ê, n, P1, P2, g, Ppub,
H1,H2,H3,H4,H5 >. The masterkey is s.

Partial-Private-Key-Extract: The algorithm takes as input an identifier
IDA ∈ {0, 1}∗ for entity A, params and the masterkey s and returns the partial
private key DA = (H1(IDA) + s)−1P2.

Set-Secret-Value: The algorithm takes as inputs params and identifier
IDA . It selects a random xA ∈ Z∗q and outputs xA as A’s secret value.

Set-Private-Key: The algorithm takes an inputs params, entity A’s partial
private key DA and A’s secret value xA. The output of the algorithm is the pair
SA =< DA, xA > .

Set-Public-Key: The algorithm takes params and entity A’s secret value
xA as inputs and constructs A’s public key as PA = xA(H1(IDA)P1 + Ppub) =
xAQA

Encrypt: To encrypt M ∈M for entity A with identifier IDA and a public
key PA, perform the following steps:

1. Check that PA is in G∗1, if not output ⊥. This checks the validity of the
public key.

2. Compute QA = H1(IDA)P1 + Ppub.
3. Choose a random value σ ∈ {0, 1}n and compute r = H3(σ,M).
4. Compute and output the ciphertext:

C =< rQA, σ ⊕H2(ê(g)r)⊕H5(rPA),M ⊕H4(σ) >

Decrypt: Suppose C = (U, V,W ). To decrypt this ciphertext using the pri-
vate key SA =< DA, xA >:

1. Compute σ′ = V ⊕H2(ê(U,DA))⊕H5(xAU).
2. Compute M ′ = W ⊕H4(σ′).
3. Set r′ = H3(σ′,M ′) and test if U = r′(H1(IDA)P + Ppub) = r′QA where

QA can be pre-computed. If not, output ⊥ and reject the ciphertext. Otherwise,
output M ′ as the decryption of C.

4.1 Security of the New CL-PKE

In order for us to prove the security of the new CL-PKE we need to introduce
two PKE schemes: SK-IBE [8] and ElG-PKE.

SK-IBE From [8], we can see that the SK-IBE scheme is an efficient identity-
based encryption scheme which consists of the following four algorithms:

Setup: Generate the public parameters < q, G1, G2, GT , ê, n, P1, P2, g, Ppub,H1,
H2,H3,H4 > and the masterkey s . This parameters are identical to the ones
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in the above CL-PKE scheme. The message and ciphertext spaces for SK-IBE
are M = {0, 1}n and C = G∗1 × {0, 1}n × {0, 1}n.

Extract: The algorithm takes as input an identifier IDA ∈ {0, 1}∗ for entity
A, public parameters and the masterkey s and returns the private key DA =
(H1(IDA) + s)−1P2.

Encrypt: To encrypt M ∈ M for entity A with identifier IDA, perform the
following steps:

1. Compute QA = H1(IDA)P1 + Ppub ∈ G∗1
2. Choose a random value σ ∈ {0, 1}n and compute r = H3(σ,M).
3. Compute and output the ciphertext:

C =< rQA, σ ⊕H2(ê(g)r),M ⊕H4(σ) >

Decrypt: Suppose C = (U, V,W ). To decrypt this ciphertext using the private
key DA:

1. Compute σ′ = V ⊕H2(U,DA).
2. Compute M ′ = W ⊕H4(σ′).
3. Set r′ = H3(σ′,M ′) and test if U = r′(H1(IDA)P + Ppub) = r′QA where

QA can be pre-computed. If not, output ⊥ and reject the ciphertext. Otherwise,
output M ′ as the decryption of C.

Theorem 2: [8] SK-IBE is secure against IND-ID-CCA [2] adversaries pro-
vided that Hi(1 ≤ i ≤ 4) are random oracles and the k-BDHI assumption is
sound.

ElG-PKE ElG-PKE which is similar with the ElG-HybridPub in [13] is speci-
fied by four algorithms:

Setup: Given a security parameter κ, generate the public parameters <
q, G1, G2, GT , ê, n, H3,H4,H5 >. This parameters are identical to the ones in
the above CL-PKE. Pick a random P ∈ G∗1. The message and ciphertext spaces
for ElG-PKE are M = {0, 1}n and C = G∗1 × {0, 1}n × {0, 1}n.

Key-Generation: Choose a random x ∈ Z∗q and set R = xP . Set the public
key Kpub to be < q, G1, G2, GT , ê, n, P,H3,H4,H5, R > and the private key Kpri

to be x.
Encrypt: To encrypt M ∈M, perform the following steps:
1. Choose a random value σ ∈ {0, 1}n and compute r = H3(σ,M).
2. Compute the ciphertext:

C =< rP, σ ⊕H5(rR),M ⊕H4(σ) >.

Decrypt: To decrypt the ciphertext C =< U, V, W >∈ C using the private
key x, do the follows:

1. Compute σ′ = V ⊕H5(xU).
2. Compute M ′ = W ⊕H4(σ′).
3. Set r′ = H3(σ′,M ′) and test if U = r′P . If not, output ⊥ and reject the

ciphertext. Otherwise, output M ′ as the decryption of C.
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Theorem 3: [13] ElG-PKE is secure against IND-CCA adversaries provided
that Hi(3 ≤ i ≤ 5) are random oracles and the CDH assumption is sound.

According to the security of the above SK-IBE scheme and the ElG-PKE
scheme, we can prove the security of our new CL-PKE scheme formally in the
similar method in [13]. For the limited space, we skip the detailed formal proof
here and only analyze the security of our CL-PKE scheme heuristically accord-
ing to the security model in section 2.

Type I adversary AI : AI does not know the masterkey but he can replace
public keys of entities with values of his choice. Suppose AI selects x ∈ Z∗q
randomly and replaces the public key of entity A with P ′A = xQA. If a sender
wants to encrypt a message M ∈ M for entity A, he computes the CL-PKE
ciphertext as:

C =< rQA, σ ⊕H2(ê(g)r)⊕H5(rP ′A),M ⊕H4(σ) >=< U, V, W >.
Then AI with x can compute

C ′ =< U, V ⊕H5(xU),W >=< rQA, σ ⊕H2(ê(gr)),M ⊕H4(σ) >
which is the SK-IBE encryption for the message M . Hence, the security of the
CL-PKE can be reduced to the security of the SK-IBE scheme which is based
on the hardness of the k-BDHI problem.

Type II adversary AII : AII does have access to the masterkey s but he may
not replace public keys of entities. With s, AII can compute the partial private
key DA for the entity A. If a sender wants to encrypt a message M ∈ M for
entity A, he computes the CL-PKE ciphertext as:

C =< rQA, σ ⊕H2(ê(g)r)⊕H5(rPA),M ⊕H4(σ) >=< U, V, W >.
Then AI with DA can compute

C ′ =< U, V ⊕H2(ê(U,DA)),W >=< rQA, σ ⊕H5(rPA),M ⊕H4(σ) >
which is the ElG-PKE encryption for the message M with R = PA. Hence the
security of the CL-PKE can be reduced to the security of the ElG-PKE which
is based on the hardness of the CDH problem.

From theorem 1, we know that the k-BDHI problem is not harder than the
CDH problem. Therefore, we say that the security of the new CL-PKE scheme
is based on the hardness of the k-BDHI problem.

Theorem 4: The new CL-PKE scheme is secure against IND-CCA adver-
saries provided that Hi(1 ≤ i ≤ 5) are random oracles and the k-BDHI assump-
tion is sound.

5 Performance Analysis

In this section, we will show that our proposed CL-PKE scheme has the best
performance, comparing with other existing CL-PKE schemes [3,4,5,6]. All the
schemes have three major operations, i.e., Pairing (p), Scalar(s) and Exponen-
tiation (e). Without considering the pre-computation, the properties and per-
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formance of the CL-PKE schemes are listed in Table 1, where we compare the
schemes on the computation complexity, public key length (Pubkey Len) and
the hardness assumption.

We know that pairing computation is more time-consuming than scalar and
exponentiation computation [14]. From Table 1 we can see that our new scheme
requires no pairing computation in Encrypt and the public key consists of only
one element of G1 rather than two required in AP’s scheme I and CC’s scheme
I. Hence, our scheme is more efficient than the existing CL-PKE schemes.

Table 1. Comparison of the CL-PKE Schemes

Schemes Encrypt Decrypt Pubkey Len Assumption

AP’s scheme I [3] 3p+1s+1e 1p+1s 2 GBDH
CC’s scheme I [5] 3p+1s+1e 1p+1s 2 BEQ
AP’s scheme II [4] 1p+2s+1e 1p+2s 1 BDH
CC’s scheme II [6] 1p+2s+1e 1p+2s 1 BDH
New scheme 3s+1e 1p+2s 1 k-BDHI

6 Conclusions

In this paper, we present an efficient CL-PKE scheme which is constructed by
the provable efficient SK-IBE rather than BF-IBE. Based on the security of
the SK-IBE scheme and the ElG-PKE scheme, we analyze the security of our
scheme heuristically. In fact, we can prove the security of our new CL-PKE
scheme formally in the similar method in [13]. Furthermore, our scheme is more
efficient than the existing CL-PKE schemes on computation or published public
key information.
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