
The topology of overt onitShishir Nagaraja, Ross AndersonComputer LaboratoryJJ Thomson Avenue, Cambridge CB3 0FD, UKforename.surname � l.am.a.ukAbstrat. Often an attaker tries to disonnet a network by destroying nodes or edges, whilethe defender ounters using various resiliene mehanisms. Examples inlude a musi industry bodyattempting to lose down a peer-to-peer �le-sharing network; medis attempting to halt the spreadof an infetious disease by seletive vaination; and a polie ageny trying to deapitate a terror-ist organisation. Albert, Jeong and Barab�asi famously analysed the stati ase, and showed thatvertex-order attaks are e�etive against sale-free networks. We extend this work to the dynamiase by developing a framework based on evolutionary game theory to explore the interation ofattak and defene strategies. We show, �rst, that naive defenes don't work against vertex-orderattak; seond, that defenes based on simple redundany don't work muh better, but that de-fenes based on liques work well; third, that attaks based on entrality work better against liquedefenes than vertex-order attaks do; and fourth, that defenes based on omplex strategies suh asdelegation plus lique resist entrality attaks better than simple lique defenes. Our models thusbuild a bridge between network analysis and evolutionary game theory, and provide a frameworkfor analysing defene and attak in networks where topology matters. They suggest de�nitions ofeÆieny of attak and defene, and may even explain the evolution of insurgent organisations fromnetworks of ells to a more virtual leadership that failitates operations rather than direting them.Finally, we draw some onlusions and present possible diretions for future researh.1 IntrodutionMany modern onits turn on onnetivity. In onventional war, muh e�ort is expendedon disrupting the other side's ommand, ontrol and ommuniations by jamming or de-stroying his failities. Counterterrorism operations involve a similar e�ort but with di�er-ent tools: traÆ analysis to trae ommuniations, oupled with surveillane of the ows ofmoney, material and reruits, followed by the arrest and interrogation of individuals whoappear to be signi�ant nodes. Terrorists are aware of this, and take measures to preventtheir networks being traed. Usama bin Laden desribed his strategy on the videotapeaptured in Afghanistan as `Those who were trained to y didn't know the others. Onegroup of people didn't know the other group' (see [14℄, whih desribes the hijakers'networks).Connetivity matters for soial dominane too, as a handful of leading individualsdo muh of the work of holding a soiety together. Subverting or killing these leaders islikely to be the heapest way to make an invaded ountry submit. When the NormanFrenh invaded England in the eleventh entury, they killed or impoverished most of theindigenous landowners; when the Turks, and then the Mongols, invaded India, they killedboth landowners and priests; when England suppressed the Sottish highlands after the1745 uprising, landowners were indued to move to Edinburgh or London; and in manyof the dreadful events of the last entury, rulers targeted the elite (Russian kulaks, PolishoÆers, Tutsi shoolteahers, . . . ).Moving from politis to ommere, the musi industry spends a lot of money attempt-ing to disrupt peer-to-peer �le-sharing networks. Tehniques range from tehnial attaksto aggressive litigation against individuals believed to have been running major nodes.



Networks of personal ontats are important in other appliations too. In publi health,for example, it often happens that a small number of individuals aount for muh of thetransmission of a disease. Thus Senegal has been more e�etive at takling the spread ofHIV/AIDS than other Afrian ountries, as they targeted prostitutes [19℄. In fat, interestin soial networks has grown greatly over the last 15 years in the humanities and soialsienes [20, 9℄.Reent advanes in the theory of networks have provided us with the mathematialand omputational tools to understand suh phenomena better. One striking result is thata network muh of whose onnetivity omes from a small number of highly-onnetednodes an be very eÆient, but at the ost of extreme vulnerability. As a simple example,if everyone in the ounty ommuniates using one telephone exhange, and that burnsdown, then everyone is isolated.This paper starts to explore the tatial and strategi options open to ombatants insuh onits. What strategies an one adopt, when building a network, to provide goodtrade-o�s between eÆieny and resiliene? We are partiularly interested in omplexnetworks, involving thousands or millions of nodes, whih are so ompliated (or undersuh dispersed ontrol) that the resiliene rules an only be implemented loally, ratherthan by a entral planner who deliberately designs a network with multiple redundantbakbones.Is it possible, for example, to reate a virtual high-degree node, by ombining a num-ber of nodes whih appear on external inspetion to have lower degree? For example, anumber of individuals might join together in a ring, and use some overt ommuniationshannel to route sensitive information round the ring in a manner shielded from asualexternal inspetion. There is a loose preedent in Chaum's `dining ryptographers' on-strution [10℄, in whih a number of ryptographers pass messages round a ring in suha way as to mask, from insiders, the soure and destination of enrypted traÆ. Can webuild a similar onstrution, but in whih the fat of systemati message routing is on-ealed from outsiders, with the result that the partiipants appear to be `ordinary' nodesmaking a modest ontribution in the network, rather than important nodes that shouldbe targeted for lose inspetion and/or destrution?2 Previous WorkThere has been rapid progress in reent years in understanding how networks an developorganially, how their growth inuenes their topology, and how the topology in turna�ets both their apaity and their robustness. There is now a substantial literature: fora book-length introdution, see Watts [21℄, while literature surveys are [1, 17℄Early work by Erd�os and Renyi modelled networks as random graphs [11, 7℄; this ismathematially interesting but does not model most real-world networks aurately. Inreal networks, path lengths are generally shorter; it is well known that any two people arelinked by a hain of maybe half a dozen others who are pairwise aquainted { known asthe `small-world' phenomenon. This idea was popularised by Milgram in the 60s [16℄. Anexplanation started to emerge in 1998 when Watts and Strogatz produed the alpha model.Alpha is a parameter that expresses the tendeny of nodes to introdue their neighboursto eah other; with � = 0, eah node is onneted to its neighbours' neighbours, so thenetwork is a set of disonneted liques, while with � = 1, we have a random graph.4



They disovered that, for ritial values of �, a small-world network resulted. The alphamodel is rather omplex to analyse, so they next introdued the beta network: this isonstruted by arranging nodes in a ring, eah node being onneted to its r neighbourson either side, then replaing existing links with random links aording to a parameter�; for � = 0 no links are replaed, and for � = 1 all links have been replaed, so that thenetwork has again beome a random graph [22℄. The e�et is to provide a mix of loaland long-distane links that models observed phenomena in soial and other networks.How do networks with short path lengths ome about in the real world? The simplestexplanation involves preferential attahment. Barab�asi and Albert showed in 1999 how,if new nodes in a network prefer to attah to nodes that already have many edges, thisleads to a power-law distribution of vertex order whih in turn gives rise to a sale-freenetwork [6℄, whih turns out to be a more ommon type of network than the alpha or betatypes. In a soial network, for example, people who already have many friends are usefulto know, so their friendship is partiularly sought by newomers. In friendship terms, therih get riher. There are many eonomi ontexts in whih suh dynamis are also ofinterest [13℄.The key paper for our purposes was written by Albert, Jeong, and Barab�asi in 2000.They observed that the onnetivity of sale-free networks, whih depends on the highly-onneted nodes, omes at a prie: the destrution of these nodes will disonnet thenetwork. If an attaker removes the best-onneted nodes one after another, then pastsome threshold point the size of the largest omponent of the graph ollapses [2℄.Later work by Holme, Kim, Yoon and Han in 2002 extended this from attaks on ver-ties to attaks on edges; here, the attaker removes edges onneting high-degree nodes,and again, past some ritial point, the network beomes disonneted [15℄. They also sug-gested using entrality { tehnially, this is the `betweenness entrality' of Freeman [12℄{ as an alternative to degree for attak targeting. (A node's entrality is, roughly speak-ing, the proportion of paths on whih it lies.) Computing entrality is harder work forthe attaker than observing vertex degree, but it enables him to attak networks (suhas beta networks) where there is little or no variability in vertex order. Finally, in 2004,Zhao, Park and Lai modelled the irumstanes in whih a sale-free network an su�erasading breakdown from the suessive failure of high-onnetivity nodes [23℄. Theseideas �nd some resonane in the �eld of strategi studies: for example, Soviet dotrinealled for destroying a third of the enemy's network, jamming a further third, and hopingthat the remaining third would ollapse under the inreased weight of traÆ.3 Naive Defenes Don't WorkGiven the obvious importane of the subjet, and the fat that the Albert-Jeong-Barab�asipaper appeared in 2000, one obvious question is why there has been no published worksine on how a network an defend itself against a deapitation attak. Here is one possibleexplanation: the two obvious defenes don't work.One of these is simply to replenish destroyed nodes with new nodes, and furnish themwith edges aording to the same sale-free rule that was used to generate the networkinitially. One might hope that some equilibrium would be found between attak anddefene. 5



The other obvious defene is to replenish destroyed nodes, but to wire their edgesaording to a random graph model. In this way, we might hope that, under attak, anetwork would evolve from an eÆient sale-free struture into a less eÆient but moreresilient random struture. In a real appliation, this might happen either as a resultof nodes learning new behaviour, or by seletive pressure on a node population withheterogeneous onnetivity preferenes: in peaetime the nodes with higher degree wouldbeome hubs, while in wartime they would be early asualties.Nie as these ideas may seem in theory, they do not work at all well in pratie. Figure 1shows �rst (solid line) how the vertex-order attak of Albert, Jeong and Barab�asi worksagainst a simulated network with no replenishment, then with random replenishment,then with salefree replenishment. In the vanilla ase the attak takes two rounds todisonnet the network; with random replenishment it takes three, and with sale-freereplenishment it takes four.
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Scalefree replenishmentFig. 1. Naive defenes against vertex-order deapitation attakIt seems that, to defend against these kinds of deapitation attaks on networks, wewill need smarter defene strategies. But how should these be evolved, and what sort offramework should we use to evaluate them?4 A Model from Evolutionary Game TheoryPrevious researhers onsidered disruptive attaks on networks to be a single-round game.Suh a model is suitable for appliations suh as a onventional war, in whih the attakerhas to expend a ertain amount of e�ort to destroy the defender's ommand, ontrol andommuniations, and one wishes to estimate how muh; or a single epidemi in whih aertain amount of resoure must be spent to bring the disease under ontrol.However, there are many appliations in whih attak and defense evolve throughmultiple rounds: terrorism and musi-sharing are only two examples. We now develop6



a framework for onsidering this more general ase. We apply ideas from evolutionarygame theory developed by Axelrod and others [3, 4℄. This theory studies how games ofmultiple rounds di�er from single-round games, and it has turned out to have signi�antexplanatory power in appliations from ethology to eonomis.We now formalise a model in whih a game is played with a number of rounds. Eahround onsists of attak followed by reovery. Reovery in turn onsists of two phases:replenishment and adaptation.In the attak phase, the attaker destroys a number of nodes (or, in a variant, ofedges); this number is his budget. He selets nodes for destrution aording to some rule,whih is his strategy. For example, he might at eah round destroy the ten nodes withthe largest number of edges onneted to them. He exeutes this strategy on the basis ofinformation about the network topology.In the replenishment phase, the defending nodes reruit a number of new nodes,and go through a phase of establishing onnetions { again, aording to given strategiesand information.In the adaptation phase, the defending nodes may rewire links within eah onnetedomponent of the network, in aordane with some defensive strategy. The adaptationphase is applied one at the start of the game, before the �rst round of attak; thereafterthe game proeeds attak { replenish { adapt.An attak strategy is more eÆient, for a given defense strategy, if an attaker usingit requires a smaller budget to disrupt the network. Similarly, a defense strategy is moreeÆient if, for a given attak strategy, it ompels the attaker to expend a higher budgetto ahieve network disruption. (We will larify this later one we have presented anddisussed a few simulations.)We assume initially that the attaker has perfet information about the network topol-ogy, and that her goal is simply to partition the network { that is, divide it into two ormore nontrivial disjoint omponents. We assume that the defender has only loal infor-mation, that it, eah node shares the information available to those nodes with whih itis onneted. Thus, for example, if the attaker manages to split the network into twoomponents, there is no way for them to reonnet. We also start o� by assuming that thedefene strategy a�ets only the adaptation phase, as only one nodes have onneted toa network an they be programmed to follow it; so the replenishment phase is exogenous.A further initial assumption is that the attak and defene budgets are roughly equal.By this we will mean that for eah node destroyed in the attak phase, one node will bereplaed in the resoure addition phase. Thus the network will neither grow or shrink inabsolute size and we an onentrate on onnetivity e�ets. We will disuss other possibleassumptions later, but the stati budgets and global attak / loal defene assumptionswill get us started.5 Defene Evolution { First RoundTo analyse the vulnerability of a network, the seletion of network elements (nodes oredges) destroyed in eah round is the attaker's hoie and onstitutes her strategy. Theattaker wishes to maximize the network damage aused per unit of work.We will start o� by onsidering a stati attaker, using what we know to be a reasonableattak (vertex-order), and examine how the defene strategy an adapt. Then we will see7



what better attaks an be found against the best defene we found. Then we will lookfor a defene against the best attak we found in the last round, and so on. There is noguarantee that the proess onverges { there may be a speialised attak that works wellagainst eah defene, and vie versa { but if evolutionary games on networks behave likemore traditional evolutionary games, we may expet to �nd some strategies that do welloverall, as `tit for tat' does in multi-round prisoners' dilemma. We may also expet togain useful insights in the proess.5.1 Defense strategy 1 { random replenishmentOur �rst defensive strategy is the simplest of all, and is one of the naive defenes introduedin the above setion. New nodes are joined to the graph at random. We assume that eahattak round removes r nodes, and the replenishment round adds exatly r nodes, eahof whih is joined to the surviving verties with probability p. r remains onstant for eahrun of the simulation, while p inreases from k=(N�r) to k=(N �1) as the replenishmentproeeds. In this strategy, the defender does nothing in the adaptation phase.This models the ase where new reruits to a subversive network simply ontat anyother subversives they an �nd; no attempt is made to reshape the network in responseto the apture of leaders but the network is simply allowed to beome more amorphous.5.2 Defense strategy 2 { dining steganographersOur seond defensive strategy is more sophistiated, and is inspired by the theory of anony-mous ommuniation as developed by omputer sientists, most notably Chaum [10℄. Anode that aquires a high vertex order, and thus ould be threatened by a vertex-orderattak, splits itself into n nodes, arranged in a ring. The rings have two funtions. First,they provide resiliene: a ring broken at one point still supports ommuniations betweenall its surviving nodes, and it is the simplest suh struture. Seond, nodes an routeovert traÆ between appropriate input and output links, and use enryption and otherinformation-hiding mehanisms to oneal the traÆ. This model was originally presentedin Chaum's seminal `dining ryptographers' paper ited above, so we might refer to it asthe `dining steganographers'. The ollaborating nodes in eah ring annot oneal theexistene of ommuniation between them, as the over traÆ is visible to the attaker.However, from the attaker's viewpoint it is not obvious that these n nodes are ating asa virtual supernode.Our fous here is on the e�ets of network topology, rather than on the higher-layermehanisms that atually implement the overtness property and that provide any on-�dentiality of ontent or of routing data. We assume a world in whih there is suÆientenrypted traÆ (SSL, SSH, DRM, . . . ) that enrypted traÆ is not of itself suspiious solong as it is wrapped in a ommon iphertext type. The attaker's input onsists of traÆdata olleted from the bakbone or from ISPs, and her output onsists of deisions tosend polie oÆers to raid the premises assoiated with partiular IP addresses. Her prob-lem is this: given an observed pattern of ommuniations, whom should she investigate�rst?The preise mehanism of ring formation in our simulation is as follows. A vulnerablenode deides to reate a ring and reruits for the purpose a further n� 1 nodes from thenew nodes introdued in the most reent replenishment round, or, if they are inadequate,8



from among its immediate neighbours. Existing ring members annot be reruited, sorings may not overlap. Finally, reruits to a ring relinquish any existing links with therest of the network, and the ring-forming node shares its external links uniformly amongall the members of the ring.5.3 Defense strategy 3 { revolutionary ellsOur third defensive strategy is inspired by ells of revolutionaries, along the model favouredhistorially by a number of insurgent organisations. A node that aquires a high vertexorder splits itself into n nodes, all linked with eah other, with the previous outside on-netions split uniformly between them. In graph-theoreti language, eah supernode is alique.As in ring formation, a node that onsiders itself vulnerable is allowed to split itselfinto a lique of nodes. The new nodes are drawn either from the pool of new nodes, or,if they are insuÆient, from low-vertex-order neighbours of the lique-forming node. Asbefore, this node's external edges are distributed uniformly among members, while othermember nodes' former external edges are deleted.Simulations { �rst set For our �rst set of simulations, we onsider a salefree networkof N = 400 nodes. We use a Barab�asi-Albert network reated by the following algorithm:1. Growth: Starting with m0 = 40 nodes, at eah round we add m = 10 new nodes, eahwith 3 edges.2. Preferential Attahment: The probability that a new node onnets to node i is �(ki)= ki=Pj kj where ki is the degree of node i.Having reated the salefree network, we then ran eah of the above defensive strategiesagainst a vertex-order attak.Results The results of the initial three simulations are given in Figure 2.The blak graph in Figure 2 provides a alibration baseline. As seen in the abovesetion, random replenishment without adaptation is ine�etive: within three rounds thesize of the largest onneted omponent has fallen by a half, from 400 nodes to well under200.The green graph shows that rings give only a surprisingly short-term defene bene�t.They postpone network ollapse from about two rounds to about a dozen rounds. There-after, the network is almost ompletely disonneted. In fat, the outome is even worsethan with random replenishment.Cliques, on the other hand, work well. A few verties are disonneted at eah attakround, but as the yan graph shows, the network itself remains robustly onneted. Thismay provide some insight into why, although rings have seemed attrative to theoretiians,those real revolutionary movements that have left some trae in the history books haveused a ell struture instead.6 Attak Evolution { First RoundHaving tried a number of defene strategies and found that one of them { liques { ise�etive, the next step is to try out a number of attak strategies to see if any of them ise�etive against our defenes, and in partiular against liques.9
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Fig. 2. blak: Vertex order attak, no adaptation green: Vertex order attak, rings yan: Vertex order attak,liquesOf the attak strategies we tried against a lique defene, the best performer is anattak based on entrality. We used the entrality algorithm of Brandes [8℄ to selet thehighest-entrality nodes for destrution at eah round. As before, our alibration baselineis random replenishment. For this, the red and blak graphs show performane againstvertex-order and entrality attaks respetively. Both are equally e�etive; within two orthree rounds the size of the largest onneted omponent has been halved.The green and blue graphs show that the same holds for rings: the network ollapsesompletely after about a dozen rounds. Centrality attaks are very slightly more e�etivebut there is not muh in it.
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Fig. 3. blak: Vertex order attak, no adaptation red: Centrality attak, no adaptation green: Vertex orderattak, rings blue: Centrality attak, rings yan: Vertex order attak, liques magenta: Centrality attak,liques 10



The most interesting results from these simulations ome from the magenta and yangraphs, whih show how liques behave. Cyan shows, as before, a vertex-order attak withseveritym= 10 being ine�etive against a lique defene. Magenta shows the e�et on suha network of a entrality attak. Here the largest onneted omponent retains about 400nodes until the network suddenly partitions at 14 rounds, whereafter a largest-omponentsize of about 200 is maintained stably.
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Fig. 4. red: Centrality attak, no adaptation blue: Centrality attak, rings magenta: Centrality attak, liquesSome insight into the internal mehanis an be gleaned from Figure 4. This showsthe average inverse geodesi length. For eah node, we �nd the length of the shortest pathto eah other node, and take the inverse (we take the length to be in�nite, and thus theinverse to be zero, if the nodes are in disjoint omponents). We average this value overall n(n� 1)=2 pairs of nodes. This value falls sharply for defense without adaptation, andfalls steadily for defense with rings. These falls reet inreasing diÆulty in internodeommuniation. With liques, the vertex-order attak has little e�et, while the entralityattak makes steadily inreasing progress on a graph of 400 verties, until it ahievespartition and redues the largest omponent to about 200 verties. But it makes onlyslow progress thereafter.6.1 Clique sizesWe next ran a simulation omparing how well defense works when using di�erent sizesof rings and liques. Ring size appears to make little di�erene; rings are just not ane�etive defene other than in the very short term. However, varying the lique size yieldsthe results displayed in Figure 5.This shows that under a entrality attak, the performane of the defense inreasessteadily with the size of the lique. There is still a phase transition after about 14 roundsor so after whih the largest onneted omponent beomes signi�antly smaller, but thesize of this equilibrium omponent inreases steadily from about 150 with lique size 8 toalmost 300 at lique size 20. 11
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size 5 size 8 size 11 size 14 size 17 size 20Fig. 5. Clique reovery with di�erent lique sizes under a entrality attak7 Defene Evolution { Seond RoundNow that we know entrality attaks are powerful, we have tried a number of otherpossible defenes. The most promising at present appears to be a ompound defenebased on liques and delegation.The idea behind delegation is fairly simple. A node that is beoming too well-onnetedselets one of its neighbours as a `deputy' and onnets it to a seond neighbour, withwhih it then disonnets. This reets normal human behaviour even in peaetime: busyleaders pass new reruits on to olleagues. In wartime, and with an enemy that mightresort to vertex-order attaks, the inentive to delegate is even greater. Thus a terroristleader who gets an o�er from a wealthy businessman to �nane an attak might simplyintrodue him to a young militant who wants to arry one out. The leader need nowmaintain ommuniations with at most one of the two.Delegation on its own is rather slow; it takes dozens of rounds for delegation to `im-munise' a network against vertex-order attak. If a vanilla sale-free network is going tobe exposed to either a vertex-order or entrality attak from the next round, then drastiation (suh as lique formation) is needed at one; else it will be disonneted within twoor three rounds. Slower defenes like delegation an however play a role, provided theyare started from network formation or a reasonable time period (say 20 rounds) beforethe attak begins.It turns out that the delegation defene, on its own, is rather like the rings of diningsteganographers. Network fragmentation is postponed (about 14 rounds with the param-eters used here) though not ultimately averted.What is interesting, however, is this. If we form a network and immunise it by runningthe delegation strategy, then run a lique defene as well from the initiation of hostilities,this ompound strategy works rather better than ordinary liques. Figure 6 shows thesimulation results.Figure 7 may give some insight into the mehanisms. Delegation results in shorterpath lengths under attak: it postpones and slows down the growth of path length thatotherwise results from hub elimination. As a result, equilibrium is ahieved later, and witha larger minimum onneted omponent. 12
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Fig. 7. red: Centrality attak, no adaptation pink: lique defene brown: immunisation by delegation (20%)yellow: delegation plus lique
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8 Conlusions and Future WorkIn this paper, we have built a bridge between network siene and evolutionary gametheory.For some years, people have disussed what sort of ommuniations topologies mightbe ideal for overt ommuniation in the presene of powerful adversaries, and whethernetwork siene might be of pratial use in overt onits { whether to insurgents orto ounterinsurgeny fores [5, 18℄. Our work makes a start on dealing with this questionsystematially.Albert, Jeong and Barab�asi showed that although a salefree network provides betteronnetivity, this omes at a ost in robustness { an opponent an disonnet a networkquikly by onentrating its �repower on well-onneted nodes. In this paper, we haveasked the logial next questions. What sort of defene should be planned by operators ofsuh a network? And what sort of framework an be developed in whih to test suessivere�nements of attak, defense, ounterattak and so on?First, we have shown that naive defenes don't work. Simply replaing dead hubs withnew reruits does not slow down the attaker muh, regardless of whether link replaementfollows a random or sale-free pattern.Moving from a single-shot game to a repeated game provides a useful framework. Itenables onepts of evolutionary game theory to be applied to network problems.Next, we used the framework to explore two more sophistiated defensive strategies. Inone, potentially vulnerable high-order nodes are replaed with rings of nodes, inspired bya standard tehnique in anonymous ommuniations. In the other, they are replaed byliques, inspired by the ell struture often used in revolutionary warfare. To our surprisewe found that rings were all but useless, while liques are remarkably e�etive. This maybe part of the reason why ell strutures have been widely used by apable insurgentgroups.Next, we searhed for attaks that work better against lique defenes. We found thatthe entrality attak of Holme et al does indeed appear to be more powerful, althoughit an be more diÆult to mount as evaluating node entrality involves knowledge ofthe entire topology of the network. Centrality attaks may reet the modern realityof ounterinsurgeny based on pervasive ommuniations intelligene and, in partiular,traÆ analysis.Now we are searhing for defenes that work better against entrality attaks. Apromising andidate appears to be the delegation defene, ombined with liques. Thisombination may in some ways reet the reported `virtualisation' strategies of somemodern insurgent networks.Above all, this work provides a systemati way to evolve and test seurity oneptsrelating to the topology of networks. Clearly the oevolution of attak and defense an betaken muh further. Further work inludes testing:1. networks that grow or shrink, maybe with endogenous replenishment (urrent reruit-ment a funtion of past operational suess)2. imperfetly informed attakers, suh as poliemen who have aess to the reords ofsome but not all phone ompanies or email servie providers, or who must use purelyloal measures of entrality3. perfetly informed defenders, who an oordinate onnetivity globally14
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