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Abstract. Identity Based Encryption (IBE) has attracted a lot of attention since the publica-
tion of the scheme by Boneh and Franklin. So far, only indistinguishability based security notions
have been considered in the literature, and it has not been investigated whether these definitions
are appropriate. For this purpose, we define the goals of semantic security and non-malleability
for IBE. We then compare the security notions resulting from combining those goals with the
attacks previously considered in the literature (full and selective-identity attacks), providing ei-
ther an implication or a separation. Remarkably, we show that the strongest security levels with
respect to selective-identity attacks (i.e. chosen-ciphertext security) do not imply the weakest
full-identity security level (i.e. one-wayness). With the aim of comprehensiveness, notions of se-
curity for IBE in the context of encryption of multiple messages and/or to multiple receivers are
finally presented, as well as their relationship with the standard IBE security notion. The results
obtained substantiate indistinguishability against full-identity chosen ciphertext attacks as the
appropriate security notion for IBE.

Keywords: foundations, identity-based encryption, one-wayness, indistinguishability, non-malleability,
semantic security, selective-identity attacks, full-identity attacks, implications and separations.

1 Introduction

The concept of Identity Based Encryption (IBE) was proposed by Shamir in [Sha85], aimed
at simplifying certificate management in e-mail related systems. The idea is that an arbitrary
string such as an e-mail address or a telephone number could serve as a public key for an
encryption scheme. Once a user U receives a communication encrypted using its identity idU ,
the user authenticates itself to a Key Generation Center (KGC) from which it obtains the
corresponding private key dU .

The problem was not satisfactorily solved until the work by Boneh and Franklin [BF03].
They proposed formal security notions for IBE systems and designed a secure IBE scheme.
Since then, IBE has attracted a lot of attention, and a large number of IBE schemes and re-
lated systems (such as [Gen03,AP03]) have been proposed. So far, only the indistinguishability
based security notions proposed in [BF03], as well as the variations obtained from [CHK03],
have been considered in the literature, and it has not been investigated whether these defi-
nitions are appropriate. To better understand what does mean the “appropriateness” of an
encryption security notion it is worthwhile to remind how the standard security notion for
Public Key Encryption (PKE) was adopted.

A look at PKE security notions. A useful way to describe the security of a cryptographic
scheme is by combining the possible goals and attack models. In the case of PKE schemes,
the most important goals considered are: indistinguishability (IND), semantic security (SS)
[GM84] and non-malleability (NM) [DDN00]. Semantic security formalizes the inability of an



adversary to learn any information about the plaintext m hidden in a challenge ciphertext c,
while indistinguishability is a technical goal, aimed at capturing a strong form of privacy and
being easier to work and reason with than semantic security. Non-malleability formalizes that
an adversary can not build up a ciphertext c′ 6= c whose decryption is meaningfully related to
m. This notion models the tamper-proofness of a scheme. Regarding attacks, chosen-plaintext
attacks (CPA) [GM84] and chosen-ciphertext attacks (CCA) [RS92] are the most well-known
models. Under CPA the adversary is given the public key of the scheme, and thus can encrypt
messages on its own, while in CCA the adversary gets in addition access to a decryption
oracle, to which it can submit any ciphertext of its choice except for the challenge ciphertext
c. Combining these goals and attacks one obtains six security notions: IND-CPA, IND-CCA,
SS-CPA, SS-CCA, NM-CPA, NM-CCA.

The equivalence between IND-CPA and SS-CPA was studied in [GM84], and the relations
between IND and NM under any form of attack were presented in [BDPR98]. In particular,
they showed that NM implies IND under any attack form considered there, but that the
opposite direction only holds for the CCA case. For this reason, IND-CCA was considered the
right notion of security for general purpose PKE. However, in [BDPR98] was emphasized
that a definition for SS-CCA had not been proposed yet, and thus was not known if IND-CCA
and SS-CCA were actually equivalent notions. Despite this fact, it became “cryptographic
folklore” that those notions were equivalent, and this equivalence was even explicitly used
in the literature, for instance in [SJ00,KI01,DT03]. Finally, it was not until [WSI02,GLN02]
that an SS-CCA definition was given and proved to be equivalent to IND-CCA.

State of the art on IBE security notions. The first IBE security notions were proposed in
[BF03]. These new notions were inspired on the existing PKE definitions, with the novelties
that the adversary, regardless of the attack model, is given access to an extraction oracle,
which on input an identity id ∈ {0, 1}∗ outputs the corresponding private key. Moreover,
the adversary selects the identity idch on which it wants to be challenged, so that now the
challenge consists of a pair (idch, c), where c denotes a ciphertext encrypted under identity
idch. In [BF03] the adversary is allowed to adaptively select idch, probably depending on the
information received so far (such as decryption keys), while in [CHK03] the adversary must
commit ahead of time to the challenge identity. The latter model is referred to as selective-
identity attacks (sID), while the original model is called full-identity attacks (ID). With respect
to IBE goals, only one-wayness and indistinguishability [BF03] have been defined so far. Thus,
the security definitions mostly considered up to now in the literature are: IND-ID-CPA, IND-
sID-CPA,IND-ID-CCA,IND-sID-CCA.

Currently, IND-ID-CCA is thought to be the right security notion for IBE. However, there
is no work, in the sense of [BDPR98], aiming at establishing the strength of this security
notion, and it also lacks to relate the full-identity and the (purportedly) weaker selective-
identity models. Moreover, although no definition for semantic security in the context of
IBE encryption has been given to the best of our knowledge, in the original work by Boneh
and Franklin the security notions IND-ID-CPA, (IND-ID-CCA) are presented as equivalent to
SS-ID-CPA, (SS-ID-CCA).

Our contributions. Building from the works [BDPR98,GLN02,BF03], we investigate the
security foundations underlying IBE encryption. For this purpose, we define the goals of se-
mantic security and non-malleability for IBE, building from well-known public key encryption
goals. These definitions are presented in Section 3.
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With respect to the relation between selective and full-identity attacks, we show in Section
4 that the strongest security levels with respect to sID attacks (i.e. chosen-ciphertext security)
do not even imply the weakest ID security level (i.e. one-wayness). It turns out then that
selective-identity security is a strictly weaker security requirement than full-identity security.
Notwithstanding, sID security suffices for other purposes, for instance for building IND-CCA
PKE schemes [CHK04], and there exists an efficient generic transformation in the Random
Oracle Model [BR93] from sID security to ID security [BB04a]. There are several efficient
schemes in the literature meeting full-identity security in the Random Oracle Model [BR93],
such as [BF03,BB04a,LQ05,Gal05,CC05]. Currently, only the works [BB04a,BB04b,Wat05]
show schemes with ID security in the standard model.

In Section 5, we compare the full-identity security notions resulting from our work, pro-
viding either an implication or a separation. Our results are summarized in Table 1. As in
[BDPR98], this diagram must be seen as a directed graph. An arrow is an implication, and
there is path between A and B if and only if the security notion A implies the security notion
B. A hatched arrow represents a separation which is proved in this paper. Dotted arrows
refer to trivial implications. For each pair of notions we obtain an implication or a separation,
which is either explicitly found in the diagram or deduced from it. For instance, it turns out
that IND-ID-CPA does not imply IND-ID-CCA. Otherwise, following the arrows in the dia-
gram, there would be a path between IND-ID-CPA and NM-ID-CPA, which is impossible due
to Theorem 11. As a particular case, we show that SS-ID-CCA and IND-ID-CCA are equivalent
under our definition, thus proving the intuition stated in [BF03]. Recently it has come to our
attention that in an independent work, [ACH+05] shows similar results to those we present
in this section.
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Table 1. Relations among security notions

In the last place, we study in Section 6 the robustness of IND-ID-CCA secure schemes
in the context of encryption of multiple messages and/or to multiple receivers. Concretely,
inspired by [GLN02], we propose several new attack models for the case of active adversaries:
multiple-identity (mID-CCA) attacks (the adversary can adaptively query for encryptions of

3



the same plaintext under different identities)1; multiple-plaintext (ID-mCCA) attacks (the ad-
versary chooses one fixed identity, and can adaptively query encryption of different plaintexts
under that identity) and multiple-identity-plaintext attacks (mID-mCCA) (the adversary can
adaptively query encryption of different plaintexts under different identities ). It is shown
that any IND-ID-CCA scheme also meets those stronger security levels.

The proof techniques used throughout the paper are indebted to the techniques used in
[BDPR98] and [GLN02]. Still, the fact that PKE and IBE are essentially different crypto-
graphic primitives, makes some subtleties to appear, which demand to be carefully examined.
For instance, a strong separation such as the one we present between sID and ID security, is
not known for PKE security notions. As a general conclusion, the broad body of evidences pre-
sented in this work confirm indistinguishability against full-identity chosen-ciphertext attacks
as the appropriate security notion for IBE.

2 Preliminaries

We start by fixing some notation and recalling basic concepts.

Algorithmic notation. Assigning a value a to a variable x will be in general denoted by
x← a. If A is a non-empty set, then x← A denotes that x has been uniformly chosen in A.
If D is a probability distribution over A, then x ← D means that x has been chosen in A
by sampling the distribution D. Finally, if A is an algorithm, x← A means that A has been
executed on some specified input and its output has been assigned to the variable x.

Negligible functions. The class of negligible functions on a parameter ℓ ∈ Z
+, denoted

as negl(ℓ), is the set of the functions ǫ : Z
+ → R

+ such that, for any polynomial p ∈ R[ℓ],
there exist M ∈ R

+ such that ǫ(ℓ) < M
p(ℓ) for all ℓ ∈ Z

+. Let poly(ℓ) the class of functions

p : Z
+ → R

+ upper bounded in Z
+ by some polynomial in R[ℓ]. Hereafter, U(ℓ) denotes the

uniform distribution on {0, 1}ℓ.

Set sequences. As usual, {0, 1}⋆ and {0, 1}ℓ will respectively denote the set of all finite binary
strings and the set of binary strings with length ℓ. If m ∈ {0, 1}⋆, then |m| denotes its length.
A string set sequence, M = {Mℓ}ℓ∈Z+ , is a polynomial size set (hereafter simply named as
set) if there exist an integer valued function pM(ℓ) ∈ poly(ℓ) such that Mℓ ⊆ {0, 1}pM(ℓ) for
all ℓ ∈ Z

+. The cardinality of a set sequence A (as a function of ℓ) will be denoted by |A|.
Miscellaneous notations. We denote a sequence of bit strings by

−→
− symbol. For example,

the notation −→m ← D(mk, idch,
−→c ) means that −→m is the sequence of the results when we apply

the algorithm D(mk, idch,−) to each component of −→c . The bitwise complement of a bit string
x is denoted by x.

Identity based encryption (IBE). An IBE scheme is specified by four probabilistic poly-
nomial time (PPT) algorithms:

Setup (S) takes a security parameter 1ℓ and returns the system parameters pms and master-
key mk. The parameters pms include includes the security parameter 1ℓ; the description
of sets ID,M, C, which denote the set of identities, messages and ciphertexts respectively.
pms is publicly available, while the mk is kept secret by the KGC.

Extract (X) takes as inputs pms, mk and id ∈ IDℓ; it outputs the private key did corre-
sponding to the identity id.

1 This security definition has been previously considered in [BSS05], but no proof of equivalence to IND-ID-

CCA was given. Moreover, the attack we consider is stronger since it gives more power to the adversary.
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Encrypt (E takes as inputs pms, an identity id ∈ IDℓ and m ∈Mℓ. It returns a ciphertext
c ∈ Cℓ.

Decrypt (D) takes as inputs pms, a private key did and c ∈ Cℓ, and it returns m ∈ Mℓ or
reject when c is not a legitimate ciphertext. For the sake of consistency, these algorithms
must satisfy that for all id ∈ IDℓ, m ∈Mℓ,

D(pms, did, c) = m, where c = E(pms, id, m) and did = X(pms, mk, id)

2.1 Attacks models for identity based encryption

The attack models mostly used for IBE in the literature can be classified by combining the
following items:

– The adversary is given/not-given to access a decryption oracle;
– The adversary can adaptively select the identity it wants to attack or it is forced to commit

ahead of time to the identity under attack,

which results then in 4 different attacks models. Regardless of the attack model under con-
sideration, the adversary is supposed to have access to an extraction oracle, which on input
an identity id it outputs the corresponding decryption key did. The decryption oracle, on
inputs an identity id and a ciphertext c, it outputs D(pms, did, c). The adversary can query
these oracles polynomially many times and in an adaptive manner [BF03]. There is no need
to include in the attack model an encryption oracle, since in an IBE scheme the adversary
is able to simulate this oracle after knowing the public parameters pms of the scheme. The
attack models under consideration are referred to as sID-CPA,ID-CPA,sID-CCA,ID-CCA.

2.2 One-wayness - OW

In the following, one-wayness security definitions for IBE are presented. As far as we know,
only one-wayness against full-identity chosen-plaintext attacks (referred to as OW-ID-CPA
in the following definition) has been previously considered in the literature. Following the
notation in [BDPR98], Oi = ε means Oi is the function which returns the empty string ε on
any input.

Definition 1 (OW-{ID, sID}-{CCA, CPA}) Let Π = (S, X, E, D) be an IBE scheme, and let
A = (A0,A1,A2) be any 3-tuple of PPT oracle algorithms. For ATK = sID-CPA, ID-CPA,
sID-CCA, ID-CCA, we say Π is OW-ATK secure if for any 3-tuple of PPT oracle algorithms A
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6
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˛
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˛

˛

˛

˛

˛

˛

˛

(id, γ)← A0(1
ℓ)

(pms, mk)← S(1ℓ);

(idch, σ)← A
O1,O2
1 (pms, id, γ)

m← P (Upoly(ℓ)); c← E(pms, idch, m);

m′ ← A
O1,O2
2

`

σ, (idch, c)
´

3

7

7

7

7

7

5

∈ negl(ℓ),

and
If ATK=sID-CPA then O1(·) = X(pms, mk, ·), O2(·) = ε and idch := id
If ATK=ID-CPA then O1(·) = X(pms, mk, ·), O2(·) = ε
If ATK=sID-CCA then O1(·) = X(pms, mk, ·), O2(·) = D(pms, mk, ·) and idch := id
If ATK=ID-CCA then O1(·) = X(pms, mk, ·), O2(·) = D(pms, mk, ·)
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In the above expression σ and γ denote some state information. By giving mk as input to
the decryption algorithm D we mean that it can decrypt ciphertexts related to any identity.
Additional requirements are that neither A1 nor A2 are allowed to query O1 on the challenge
identity idch, and A2 can not query O2 on the challenge pair (idch, c). These queries may
be asked adaptively, that is, each query may depend on the answers obtained to the previous
queries.

2.3 Indistinguishability - IND

In the following we recall the indistinguishability security notions obtained from the attacks
previously considered in the literature.

Definition 2 (IND-{ID, sID}-{CCA, CPA}) Let Π = (S, X, E, D) be an IBE scheme, and let
A = (A0,A1,A2) be any 3-tuple of PPT oracle algorithms. For ATK = sID-CPA, ID-CPA,
sID-CCA, ID-CCA, we say Π is IND-ATK secure if for any 3-tuple of PPT oracle algorithms
A,
∣

∣

∣
p
(1)
ℓ − p

(2)
ℓ

∣

∣

∣
∈ negl(ℓ), where

p
(i)
ℓ = Pr















v = 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(id, γ)← A0(1
ℓ)

(pms, mk)← S(1ℓ);

((m(1), m(2), idch), σ)← A
O1,O2
1 (pms, id, γ)

c← E(pms, idch, m
(i));

v ← A
O1,O2
2 (σ, (idch, c))















In the last expression, the oracles O1,O2 as well as the access to them are as in Definition
1. Additionally, m(1) and m(2) are required to have the same length; neither A1 nor A2 are
allowed to query O1 on the challenge identity idch, and A2 can not query O2 on the challenge
pair (idch, c). These queries may be asked adaptively, that is, each query may depend on the
answers obtained to the previous queries.

3 Semantic Security and Non-Malleability for Identity Based Encryption

In this section, semantic security as well as non-malleability for IBE schemes are defined
for the first time to the best of our knowledge. These definitions are obtained by adapting
the definitions of semantic security [GM84,GLN02] and non-malleability [BDPR98,BS99] for
PKE to the attack scenario proposed in [BF03].

3.1 Semantic Security - SS

In the following we rephrase the definitions in [GLN02] for the IBE setting. In our scenario, a
CPA attacker is given access to one oracle for extraction of private keys, while a CCA adversary
is additionally given access to a decryption oracle. The attack is broken in two stages:

Stage 1: The adversary conducts some computation using its oracles, and terminates this
stage by giving a challenge template. This template consists of challenge identity idch and
three circuits (P, L, F ): P is a sampling circuit, and L, F are circuits with a number of

6



input bits that equals the number of output bits in P . The idea is that P specifies a prob-
ability space on plaintexts, while L specifies partial information (i.e., “information leak”)
regarding the plaintext that is given to the adversary, and F specifies partial information
(regarding the plaintext) that the adversary claims to be able to learn.

Stage 2: In the second stage the adversary is given an encryption c of a plaintext m under an
identity idch along with L(m), where m is selected according to P and the adversary does
not know the decryption key for idch. Both CPA and CCA adversaries are not allowed to
query the extraction oracle on idch, while the CCA adversary can not query the decryption
oracle on the pair (idch, c).

Roughly speaking, an IBE scheme is said to be semantically secure under CPA (respec-
tively CCA) if for every efficient CPA (respectively CCA) attacker as above, there exists a
corresponding benign adversary that “performs as well” without seeing the ciphertexts. Con-
cretely, the benign adversary is not given any oracle access, it produces a challenge template
(P, L, F ) and is supposed to guess F (m) given L(m). Additional requirements are that the
benign adversary is supposed to produce (P, L, F ) according to the same distribution as the
real adversary, and to be as successful as the real adversary in guessing F (m).

Note that the benign adversary models an ideal situation in which it produces the same
challenge template as the real adversary, but it is given a “perfectly secure encryption” of the
plaintext m, that is, it is given nothing [Gol93].

Definition 3 (SS-{ID, sID}-{CCA, CPA}) Let Π = (S, X, E, D) be an IBE scheme, and
let B = (B0,B1,B2) be a 3-tuple of PPT oracle algorithms. For ATK = sID-CPA, ID-CPA,
sID-CCA, ID-CCA, we say Π is SS-ATK secure if for any 3-tuple of PPT oracle algorithms B
there exists a 3-tuple of PPT algorithms B′ = (B′0,B

′
1,B

′
2), such that the following conditions

hold:

Pr
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
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


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

v = F (m)
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(id, γ)← B0(1
ℓ);

(pms, mk)← S(1ℓ);
(

(P, idch, L, F ), σ
)

← B
O1,O2
1 (pms, id, γ)

(c, β)←
(

E(pms, idch, m), L(m)
)

, where
m← P (Upoly(ℓ));

v ← B
O1,O2
2

(

σ, (idch, c), β
)



















< Pr



v = F (m)

∣

∣

∣

∣

∣

∣

(

(P, L, F ), σ′
)

← B′1(1
ℓ);

m← P (Upoly(ℓ));

v ← B′2
(

σ′, L(m)
)



 + ε(ℓ),

where ε(ℓ) ∈ negl(ℓ), and for every ℓ the (P, L, F ) part in the random variables B′1(1
ℓ)

and BO1,O2
1 (pms, id) are identically distributed. The oracles O1,O2 as well as the access to

them are as in Definition 1. Additionally, neither B1 nor B2 are allowed to query O1 on the
challenge identity idch, and B2 can not query O2 on the challenge pair (idch, c). These queries
may be asked adaptively.

3.2 Non-malleability - NM

The notion of non-malleability for PKE was introduced in [DDN00]. In [BDPR98] an alterna-
tive definition was proposed, which was shown to be equivalent to the original one [BS99]. The
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new definition was simpler since it did not use simulators. Intuitively, an encryption scheme
is non-malleable if, given a ciphertext, the adversary cannot conjure up another ciphertext
whose decryption is meaningfully related to the decryption of the given one. This notion
models the tamper-proofness of a scheme.

In this paper non-malleability is defined without using simulators, adapting the definition
for public-key schemes in [BDPR98] to the IBE framework. After receiving a challenge pair
(idch, c), the aim of the adversary is to output the description of a relation R and a vector of
ciphertexts −→c (no component of which is the challenge ciphertext c) such that the relation
R(m,−→m) holds, where −→m ← D(mk, idch,

−→c ) and m is the plaintext hidden in the challenge
ciphertext. The adversary is successful if it can do this with probability significantly greater
than that with which R(m0,

−→m) holds for some random m0 of the same length as m. In the
following the notation D(mk, idch, c) = ⊥ means that c is not a legitimate ciphertext,

Definition 4 (NM-{ID, sID}-{CCA, CPA}) Let Π = (S, X, E, D) be an IBE scheme, and
let C = (C0, C1, C2) be any 3-tuple of PPT oracle algorithms. For ATK = sID-CPA, ID-CPA,
sID-CCA, ID-CCA, we say Π is NM-ATK secure if for any 3-tuple of PPT oracle algorithms
C, the advantage

Pr
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









v = 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(id, γ)← C0(1
ℓ); (pms, mk)← S(1ℓ);

(P, idch, σ)← C
O1,O2
1 (pms, id, γ);

m← P (Upoly(ℓ)); c← E(pms, idch, m);

(R,−→c )← C
O1,O2
2 (σ, (idch, c));

−→m ← D(mk, idch,
−→c );

if c 6∈ −→c ∧ ⊥ 6∈ −→m ∧R(m,−→m) then v ← 1 else v ← 0;















− Pr















v = 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(id, γ)← C0(1
ℓ); (pms, mk)← S(1ℓ);

(P, idch, σ)← C
O1,O2
1 (pms, id, γ);

m, m0 ← P (Upoly(ℓ)); c← E(pms, idch, m);

(R,−→c )← C
O1,O2
2 (σ, (idch, c));

−→m ← D(mk, idch,
−→c );

if c 6∈ −→c ∧ ⊥ 6∈ −→m ∧R(m0,
−→m) then v ← 1 else v ← 0;















is negligible as a function on ℓ. In the last expression, the oracles O1,O2 as well as the access
to them is defined as in Definition 1, and P specifies a probability space onMℓ. Additionally,
neither C1 nor C2 are allowed to query O1 on the challenge identity idch, and C2 can not query
O2 on the challenge pair (idch, c). These queries may be asked adaptively.

Remark 1. The security notions described here and in the previous section can be easily de-
fined in the Random Oracle Model [BR93], where all parties have access to a random function
H from strings to strings. The definitions are modified by including in the experiments defin-
ing the advantage an initial step, in which some random functions H are chosen from the
set of all functions from some appropriate domain to appropriate range. Then H-oracles are
provided to the algorithms and they may depend on H. It is easily verified that all of the
implications and separations provided in this work also hold in the Random Oracle Model.

4 A separation between selective-identity and full-identity security

notions

In this section we show a strong separation between selective-identity and full-identity attack
scenarios. The separation is as follows: for any goal ∈ {IND, SS, NM}, it turns out that goal-
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sID-CCA does not imply OW-ID-CPA, that is, the strongest selective-identity security levels
are strictly weaker than the weakest full-identity security level.

Theorem 5 For any goal ∈ {IND, SS, NM}, goal-sID-CCA does not imply OW-ID-CPA.

Proof : Assume that there exists an IBE scheme Π = (S, X, E, D) which is goal-sID-CCA
secure for some goal ∈ {IND, SS, NM} (otherwise the claim is trivially true). We construct
another IBE scheme Π ′ = (S′, X ′, E′, D′) which is goal-sID-CCA but not OW-ID-CPA, whose
existence proves the theorem. The scheme Π ′ is defined as follows:

S′(1ℓ) X ′(pms′, mk′, id) E′(pms′, id, m) D′(pms′, did, C)

(pms, mk)← S(1ℓ); return return return

id+ ← IDℓ; X(pms, mk, id); E(pms, id, m) D(pms, did, C)
d+ ← X(pms, mk, id+);
pms′ ← (pms, id+, d+);
return

`

pms′, mk
´

It is trivial to check that Π ′ qualifies as an IBE scheme if Π does. From the definition of Π ′ and
the definition of sID attacks2, it also holds that ID′ = ID :=

{

IDℓ

}

ℓ∈Z+ =
{

{0, 1}p(ℓ)
}

ℓ∈Z+

for a certain p(ℓ) ∈ poly(ℓ). Π ′ is not OW-ID-CPA due to the following successful adversary
A = (A0,A1,A2):

Algorithm A
O′

1
,O′

2

1 (pms′)
idch ← id+; σ ← (d+, pms);

m(1), m(2) ←Mℓ, s.t. |m(1)| = |m(2)|;

return
`

(m(1), m(2), idch), σ
´

Algorithm A
O′

1
,O′

2

2

`

σ, idch, c
´

return D(pms, d+, c)

A simple calculation shows that the OW-ID-CPA advantage of the adversary A = (A0,A1,A2)
is 1. The basic idea is that A1 knows the decryption key related to id+ once it gets pms′. Then
it sets idch := id+, it qualifies as a OW-ID-CCA adversary (A1 did not query id+ to its oracle
O′

1) and finally it can decrypt any ciphertext related to the challenge identity, thus effectively
breaking the one-wayness of Π ′. It remains to show that the new scheme Π ′ is secure in
the sense of goal-sID-CCA. We argue by contradiction: if we have a successful goal-sID-CCA
attacker C = (C0, C1, C2) for this new scheme, then from that we can construct a successful
goal-sID-CCA B = (B0,B1,B2) attacker for the original scheme Π. The details are given in
Appendix ??. ⊓⊔

Notice that in the previous proof, the algorithm A0 was not specified, since it is useless in
full-identity attack scenarios. In the following we will focus on full-identity scenarios, so the
algorithm with subscript 0 in every adversary tuple is dropped for the sake of simplicity.

5 Relations between full-identity security notions

In this section implications and separations for one-wayness, indistinguishability, semantic
security and non-malleability for full-identity chosen-plaintext and chosen-ciphertext attacks
are presented.

Theorem 6 OW-ATK does not imply IND-ATK, for ATK = ID-CPA, ID-CCA.

2 See for instance Definition 4 in [CHK04,BK05].
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Proof : This proof is straightforward, and the reader is referred to the final version of the
paper. ⊓⊔

Theorem 7 IND-ATK entails SS-ATK, for ATK = ID-CPA, ID-CCA.

Proof : We present the proof for the ID-CCA case. The modification for the ID-CPA case is
easy by dropping the access to decryption oracle.

Given an SS-ID-CCA adversary (B1,B2), we construct its benign simulator (B′1,B
′
2) as

follows. The algorithm B′2 simulates B2 by feeding the encryption of “fake plaintext” 1|m|

instead of a real plaintext m ← P (Upoly(ℓ)): since the scheme is IND-ID-CCA this should not
affect the advantage.

Algorithm B′1(1
ℓ)

(pms, mk)← S(1ℓ);
(

(P, idch, L, F ), σ
)

← B
O1,O2
1 (pms);

n← (the number of output bits in P );
return

(

(P, L, F ),
(

σ, pms, mk, idch, 1
n)

)

Algorithm B′2
(

(σ, pms, mk, idch, 1
n), β

)

v ← B
O1,O2
2 (σ, (idch, (E(pms, idch, 1

n), β)) ;
return v

It is obvious that the (P, L, F ) part of the output of B1 and B′1 are identically distributed.
We shall show that the simulator thus defined is as successful as the actual adversary. The
advantage of the simulator (B′1,B

′
2) is evaluated as follows.

Pr











v = F (m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(pms, mk)← S(1ℓ);
(

(P, idch, L, F ), σ
)

← B
Xmk, Dmk
1 (pms);

m← P (Upoly(ℓ));

v ← B
Xmk, Dmk
2 (σ, idch,

(

E(pms, idch, 1
|m|), L(m)

)

)











(1)

This probability is the same as the advantage of the original adversary (B1,B2), except
that B2 is given the encryption of 1|m| instead of m.

Claim 1 The two ensembles Vℓ =
[(

σ, idch, (E(pms, idch, 1
|m|), L(m)), F (m)

) ∣

∣ Exp
]

,
Wℓ =

[(

σ, idch, (E(pms, idch, m), L(m)), F (m)
)
∣

∣ Exp
]

, under the following experiment

Experiment Exp

(pms, mk)← S(1ℓ); m← P (Upoly(ℓ));
(

(P, idch, L, F ), σ
)

← B
Xmk, Dmk
1 (pms);

cannot be distinguished by any PPT algorithm T Xmk, Dmk
(

σ, idch, (α, β), γ
)

which is not al-
lowed to query Xmk(idch) nor Dmk(idch, α).

It suffices to show Claim 1: if it is true, in particular the following T does not distinguish
Vℓ and Wℓ.

Algorithm T O1,O2
(

σ, idch, (α, β), γ
)

v ← AO1,O2
2 (σ, idch, (α, β)); if v = γ then d← 1 else d← 0;

return d

10



Hence the advantage of the simulator and that of the actual adversary are indistinguishable.
This proves the theorem.

Claim 1 is proved by contradiction, using indistinguishability. Assume a successful distin-
guisher T of Vℓ and Wℓ exists. Then we can construct a successful IND-ID-CCA distinguisher
(A1,A2).

Algorithm AO1,O2
1 (pms)

(

(P, idch, L, F ), σ
)

← BO1,O2
1 (pms);

m← P (Upoly(ℓ));

return
(

(1|m|, m, idch), (σ, L, F, m)
)

Algorithm AO1,O2
2

(

(σ, L, F, m), (idch, α)
)

v ← T O1,O2(σ, idch, (α, L(m)), F (m));
return v

(A1,A2) does not make those oracle queries an IND-ID-CCA distinguisher is prohibited to
make, because B1 or T does not.

For probabilities p
(1)
ℓ , p

(2)
ℓ in the definition of IND-ID-CCA, the following equations are

straightforward.

p
(1)
ℓ = Pr

[

T Xmk, Dmk(Vℓ) = 1
]

p
(2)
ℓ = Pr

[

T Xmk, Dmk(Wℓ) = 1
]

Therefore the success of T implies the success of (A1,A2), which is a contradiction. ⊓⊔

Theorem 8 SS-ATK entails IND-ATK, for ATK = ID-CPA, ID-CCA.

Proof : The proof is presented for ATK=ID-CCA. The modification for ID-CPA case is easy.

We argue by contradiction. Assume that an IBE scheme (S, X, E, D) has a successful IND-
ID-CCA distinguisher (A1,A2). We shall construct an SS-ID-CCA adversary whose advantage
is distinguishably larger than that of any benign simulator. The construction is rather obvious:
the first part of the adversary outputs a challenge template (P, idch, L, F ) such that

– P chooses one out of m(1) and m(2), the two challenge plaintexts A1 outputs, with the
uniform probability;

– L outputs the constant value so that the benign simulator cannot gain any information
about the plaintext;

– F (m(1)) = 1 and F (m(2)) = 0.

However in the formal proof some subtle details need careful consideration, which can be
found below.

We can assume without loss of generality that A2 always outputs either 0 or 1. If it is
not the case we define a new oracle PPT A′

2 which invokes A2 and outputs 1 if B2 outputs
1, and outputs 0 otherwise: obviously the pair (A1,A

′
2) is again a successful distinguisher.

We can also assume, from the success of IND-ID-CCA distinguisher (A1,A2), that for some

polynomial q and infinitely many ℓ’s the following holds: p
(1)
ℓ − p

(2)
ℓ ≥ 1

q(ℓ) . Note that we no
longer take the absolute value.

Additionally, for the technical reason, we assume that the algorithm A1 always outputs
distinct challenge plaintexts (i.e. m(1) 6= m(2)). Otherwise we define a new distinguisher

11



(A′
1,A

′
2) as follows.

Algorithm A′O1,O2
1 (pms)

(

(m(1), m(2), idch), σ
)

← AO1,O2
1 (pms);

if m(1) 6= m(2) then d← 0 else d← 1;

if d = 0 then m′ ← m(2) else m′ ← m(1);

return
(

(m(1), m′, idch), (σ, d)
)

Algorithm A′O1,O2
2

(

(σ, d), (idch, c)
)

if d = 0 then v ← AO1,O2
2 (σ, (idch, c)) else v ← U1;

return v

Obviously the advantage of (A′
1,A

′
2) is identical to that of (A1,A2), and A′

1 is ensured to
output distinct challenge plaintexts,

Using the distinguisher we construct an SS-ID-CCA adversary (B1,B2) as follows.

Algorithm BO1,O2
1 (pms)

(

(m(1), m(2), idch), σ
)

← AO1,O2
1 (pms);

n←
∣

∣m(1)
∣

∣ ;

P ← a circuit with one input bit such that P (0) = m(1) and P (1) = m(2);
L← a circuit with n input bits, which outputs constantly 0;

F ← a circuit which outputs 1 for input m(1), 0 for the other inputs;
return

(

(P, idch, L, F ), σ
)

Algorithm BO1,O2
2 (σ, idch, (α, β))

v ← AO1,O2
2 (σ, (idch, α));

return v

Note that, by our assumption that m(1) 6= m(2) in the output ofA1, for an output
(

(P, idch, L, F ), σ
)

of B1 we always have F (P (0)) = F (m(1)) = 1 and F (P (1)) = F (m(2)) = 0. (B1,B2) does not
make prohibited oracle queries because (A1,A2) does not.

Let us denote the following experiments by Exp(i) for i = 1, 2, where i denotes which
plaintext is chosen.

Experiment Exp(i)

(pms, mk)← S(1ℓ); ((m(1), m(2), idch), σ)← A
Xmk, Dmk
1 (pms);

c← E(pms, idch, m
(i)); v ← A

Xmk, Dmk
2 (σ, (idch, c));

Obviously p
(i)
ℓ (as in the definition of IND-ID-CCA) is equal to Pr[v = 1 | Exp(i)]. Now the

advantage of the above adversary (B1,B2) for given ℓ is calculated as follows.

Pr











v = F (m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(pms, mk)← S(1ℓ);

((P, idch, L, F ), σ)← B
Xmk, Dmk
1 (pms);

m← P (Upoly(ℓ));

v ← B
Xmk, Dmk
2 (σ, idch, (E(pms, idch, m), L(m)))











(†)
=

1

2
Pr

[

v = 1
∣

∣

∣
Exp(1)

]

+
1

2
Pr

[

v = 0
∣

∣

∣
Exp(2)

]

(‡)
=

1

2
Pr

[

v = 1
∣

∣

∣
Exp(1)

]

+
1

2

(

1− Pr
[

v = 1
∣

∣

∣
Exp(2)

])

=
1

2
+

1

2

(

p
(1)
ℓ − p

(2)
ℓ

)

.
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Here (†) holds because m(1) 6= m(2), and (‡) holds because B2 always outputs either 0 or 1.
By assumption, the last quantity is distinguishably larger than 1/2, as a function on ℓ.

Let (B′1,B
′
2) be an arbitrary benign simulator of (B1,B2). Its advantage is evaluated as

follows, using the fact that the (P, L, F ) part in the outputs of B1 and B′1 are identically
distributed.

Pr



v = F (m)

∣

∣

∣

∣

∣

∣

((P, L, F ), σ′)← B′1(1
ℓ);

m← P (Upoly(ℓ));

v ← B′2(σ
′, L(m))





=
1

2
Pr



v = 1

∣

∣

∣

∣

∣

∣

(

(P, L, F ), σ′
)

← B′1(1
ℓ);

m← P (0);
v ← B′2(σ

′, 0)



 +
1

2
Pr



v = 0

∣

∣

∣

∣

∣

∣

(

(P, L, F ), σ′
)

← B′1(1
ℓ);

m← P (1);
v ← B′2(σ

′, 0)





≤
1

2
Pr

[

v = 1

∣

∣

∣

∣

(

(P, L, F ), σ′
)

← B′1(1
ℓ);

v ← B′2(σ
′, 0)

]

+
1

2

(

1− Pr

[

v = 1

∣

∣

∣

∣

(

(P, L, F ), σ′
)

← B′1(1
ℓ);

v ← B′2(σ
′, 0)

])

=
1

2
.

Hence the success rate of the actual adversary is distinguishably larger than that of any benign
simulator, which contradicts our assumption of SS-ID-CCA. This concludes the proof. ⊓⊔

Theorem 9 NM-ATK entails IND-ATK, for both ATK = ID-CPA, ID-CCA.

Proof : The proof is presented for the case ATK = ID-CCA. For ATK = ID-CPA the modification
is easy by just dropping oracle accesses.

By contradiction. Assume we have a successful IND-ATK distinguisher (A1,A2). Then
using them we can construct a successful NM-ATK adversary (C1, C2) as follows.

Algorithm CO1,O2
1 (pms)

(

(m(1), m(2), idch), σ
)

← AO1,O2
1 (pms);

P ← a circuit with one input bit such that P (0) = m(1) and P (1) = m(2);

return
(

P, idch, (σ, m(1), m(2))
)

Algorithm CO1,O2
2

(

(σ, m(1), m(2)), idch, c
)

v ← AO1,O2
2

(

σ, (idch, c)
)

;

if v = 1 then d← E(pms, idch, m(1)) else d← E(pms, idch, m(2));

R← Comp, where Comp(x, y)
def.
⇐⇒ x = y ;

return (R, d)

The pair (C1, C2) thus defined does not make prohibited oracle queries (as an NM-ID-CCA
adversary) because (A1,A2) does not (as an IND-ID-CCA distinguisher).

The trick is that we take as R a relation other than the equality: this ensures that the
ciphertext d output by C2 is distinct from the challenge ciphertext c given to C2. It is straight-
forward to show that this pair (C1, C2) is indeed successful: details follow next.

As in the proof of Theorem 8 we can assume that, the successful IND-ID-CCA distinguisher

(A1,A2) is such that: 1) A2 always outputs either 0 or 1; and 2) the function p
(1)
ℓ −p

(2)
ℓ over ℓ

(rather than its absolute value) is not negligible; and 3) A1 always outputs distinct challenge
plaintexts m(1) 6= m(2). Let us denote the following experiment by Exp(i), for i = 1, 2. The
parameter i represents which plaintext is chosen by the challenger.
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Experiment Exp(i)

(pms, mk)← S(1ℓ);
(

(m(1), m(2), idch), σ
)

← A
Xmk, Dmk
1 (pms);

c← E(pms, idch, m
(i)); v′ ← A

Xmk, Dmk
2 (σ, (idch, c));

if v′ = 1 then c′ ← E(pms, idch, m(1)) else c′ ← E(pms, idch, m(2));
m′ ← D(mk, idch, c

′);

Now for the NM-ID-CCA adversary (C1, C2) constructed using (A1,A2), its advantage is
calculated as follows.

1

2

∑

i=1,2

Pr
[

c 6= c′ ∧ ⊥ 6= m′ ∧ Comp(m(i), m′)
∣

∣

∣
Exp(i)

]

−
1

4

∑

i,j=1,2

Pr
[

c 6= c′ ∧ ⊥ 6= m′ ∧ Comp(m(j), m′)
∣

∣

∣
Exp(i)

]

(∗)
=

1

4

∑

i=1,2

Pr
[

Comp(m(i), m′)
∣

∣

∣
Exp(i)

]

−
1

4

∑

(i,j)=(1,2),(2,1)

Pr
[

c 6= c′ ∧ Comp(m(j), m′)
∣

∣

∣
Exp(i)

]

(†)

≥
1

4
p
(1)
ℓ +

1

4
(1− p

(2)
ℓ )−

1

4
(1− p

(1)
ℓ )−

1

4
p
(2)
ℓ =

1

2
(p

(1)
ℓ − p

(2)
ℓ ) .

In the equality (∗) we use the facts that m′ in Exp(i) must be either m(1) or m(2) hence not ⊥,
and that if Comp(m(i), m′) then c ← E(pms, idch, m

(i)) and c′ ← E(pms, idch, m
′) cannot be

identical.3 For the inequality (†) we first drop the condition c 6= c′ in the second probability,

and then use the equalities such as Pr
[

Comp(m(2), m′) | Exp(2)
]

= Pr
[

v′ 6= 1 | Exp(2)
]

= 1−

p
(2)
ℓ . By the success of (A1,A2) this function is not negligible, which contradicts that the

scheme is NM-ID-CCA. ⊓⊔

Theorem 10 IND-ID-CCA implies NM-ID-CCA.

Proof : Assume the existence of a successful NM-ID-CCA adversary (C1, C2). Using it we
construct a successful IND-ID-CCA distinguisher (A1,A2) as follows. The point is, since A2

has an access to decryption oracle, it can decrypt the ciphertexts output by C2 which are
related to the challenge ciphertext.

Algorithm AO1,O2
1 (pms)

(P, idch, σ)← CO1,O2
1 (pms);

m(1) ← P (Upoly(ℓ)); m(2) ← P (Upoly(ℓ));

return
(

(m(1), m(2), idch), (m
(1), m(2), σ)

)

Algorithm AO1,O2
2

(

(m(1), m(2), σ), (idch, c)
)

(R,−→c )← CO1,O2
2

(

σ, idch, c
)

; −→m ← O2(idch,
−→c );

if
(

⊥ 6∈ −→m ∧R(m(1),−→m)
)

then v ← 1 else v ← 0;
return v

3 Note that Comp(m(j), m′) does not ensure c 6= c′ when j 6= i. Here c ← E(pms, idch, m
(i)), c′ ←

E(pms, idch, m
′) and it is possible that m(i) = m′ = m(j).
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We can assume that in every execution (R,−→c ) ← CO1,O2
2 (σ, idch, c) we have c 6∈ −→c .4 This

yields that (A1,A2) thus defined does not make prohibited oracle queries. The advantage of

(A1,A2) (before taking the absolute value), p
(1)
ℓ − p

(2)
ℓ , is identical to that of (C1, C2), hence

must be non-negligible. This is a contradiction. ⊓⊔

Theorem 11 IND-ID-CPA does not imply NM-ID-CPA.

Proof : Assume that there exists an IBE scheme (S, X, E, D) which is IND-ID-CPA (otherwise
the claim is trivially true). We construct another IBE scheme (S, X, E′, D′) which is IND-ID-
CPA but not NM-ID-CPA, whose existence proves the theorem.

Algorithm E′(pms, id, m)
c1 ← E(pms, id, m); c2 ← E(pms, id, m);
return (c1, c2)

Algorithm D′
(

mk, id, (c1, c2)
)

m← D(mk, id, c1);
return m;

The algorithms E′, D′ thus defined obviously satisfy the condition that a ciphertext, when
decrypted, yields the original plaintext.

The scheme (S, X, E′, D′) is not NM-ID-CPA due to the following successful adversary: a
simple calculation shows that the advantage of this adversary (C1, C2) is 1− 1/2ℓ, where 1/2ℓ

is the probability a random (fake) plaintext m0 is accidentally equal to the real plaintext m.

Algorithm CO1,O2
1 (pms)

P ← the identity circuit with ℓ input bits;
idch ← Uℓ; σ ← the empty string;
return (P, idch, σ)

Algorithm CO1,O2
2

(

σ, idch, (c1, c2)
)

return
(

Comp, (c2, c1)
)

It remains to show that the new scheme (S, X, E′, D′) is IND-ID-CPA. We argue by contra-
diction: if we have a successful IND-ID-CPA distinguisher (A1,A2) for this new scheme, then
from that we can construct a successful distinguisher for the original scheme (S, X, E, D). For

the notational convenience, let us denote by q
(i,j)
ℓ the following probability, for each i = 1, 2

and j = 1, 2.

q
(i,j)
ℓ = Pr






v = 1

∣

∣

∣

∣

∣

∣

∣

(pms, mk)← S(1ℓ);
(

(m(1), m(2), idch), σ
)

← A
Xmk
1 (pms);

c1 ← E(pms, idch, m
(i)); c2 ← E(pms, idch, m(j));

v ← A
Xmk
2

(

σ, (idch, (c1, c2))
)

;






.

Then the advantage of the distinguisher (A1,A2) is now denoted by

q
(1,1)
ℓ − q

(2,2)
ℓ =

(

q
(1,1)
ℓ − q

(1,2)
ℓ

)

+
(

q
(1,2)
ℓ − q

(2,2)
ℓ

)

.

Since this probability is non-negligible, either q
(1,1)
ℓ − q

(1,2)
ℓ or q

(1,2)
ℓ − q

(2,2)
ℓ must be non-

negligible. We shall show that in either case we can construct a successful IND-ID-CPA dis-
tinguisher (A′

1,A
′
2) for (S, X, E, D) using (A1,A2), which contradicts our assumption.

4 We can modify C2 such as, if c ∈ −→c then the output is (Empty, c), where Empty is the empty relation.
Obviously this modification does not affect the advantage of the adversary.
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If the former probability is non-negligible, define (A′
1,A

′
2) as follows. It is straight forward

to see that its advantage is equal to q
(1,1)
ℓ − q

(1,2)
ℓ hence non-negligible.

Algorithm A′O1
1 (pms)

(

(m(1), m(2), idch), σ
)

← AO1
1 (pms);

return
(

(m(1), m(2), idch), (m
(1), m(2), σ)

)

Algorithm A′O1
2

(

(m(1), m(2), σ), (idch, c)
)

c1 ← E(pms, idch, m
(1)); c2 ← c;

v ← AO1
2

(

σ, (idch, (c1, c2))
)

;
return v

If the latter probability q
(1,2)
ℓ − q

(2,2)
ℓ is non-negligible, (A′

1,A
′
2) is defined as follows. Its

advantage is equal to q
(1,2)
ℓ − q

(2,2)
ℓ hence non-negligible.

Algorithm A′O1
1 (pms)

(

(m(1), m(2), idch), σ
)

← AO1
1 (pms);

return
(

(m(1), m(2), idch), (m
(1), m(2), σ)

)

Algorithm A′O1
2

(

(m(1), m(2), σ), (idch, c)
)

c1 ← c; c2 ← E(pms, idch, m(2));

v ← AO1
2

(

σ, (idch, (c1, c2))
)

;
return v

This concludes the proof. ⊓⊔
The proof for the next theorem is substantially more complex than the analogous result for

public-key schemes [BDPR98, Theorem 3.6]. This is due to an important difference between
IBE and PKE attack models, namely the existence of extraction oracles.

Theorem 12 NM-ID-CPA does not imply IND-ID-CCA.

Proof : Assume we have an IBE scheme (S, X, E, D) which is NM-ID-CPA. Using this we
construct a new scheme (S′, X ′, E′, D′) which is NM-ID-CPA but not IND-ID-CCA.

We can assume that, for each ℓ ∈ Z
+, we have a family of pseudo-random functions

F ℓ =
{

FK | K ∈ {0, 1}ℓ
}

, where FK : {0, 1}poly(ℓ) → {0, 1}poly(ℓ). Notice this does not imply
an extra assumption, since the existence of a NM-ID-CPA secure IBE implies a IND-ID-CPA
secure IBE by Theorem 9. This implies secure public key signature schemes [BF03], and this in
turn implies one-way functions. Finally the existence of a family of pseudo-random functions
is obtained by applying classical results such as [GGM86].

The idea of the construction is as follows. The new decryption algorithm, when queried
on the value FK(id), reveals the decryption key for id. The value FK(id), which is unique
to each id and kept secret, can only be known by making a decryption query on a publicly
known value e. We have these two steps (e to FK(id) to the decryption key), instead of only
one step (e to the decryption key), so that the scheme is easily shown to be NM-ID-CPA.
This procedure of obtaining the decryption key can be done only by an ID-CCA adversary: an
ID-CPA adversary can try extraction queries, but it is prohibited to make it on the challenge
identity hence the values FK(id) it obtains are irrelevent to the desired FK(idch).

Algorithm S′(1ℓ)
(pms, mk)← S(1ℓ); e← Uℓ; K ← Uℓ;
return

(

(pms, e), (mk, e, K)
)

Algorithm X ′
(

pms, (mk, e, K), id
)

d← X(mk, id);
return

(

d, e, FK(id)
)

Algorithm E′
(

(pms, e), id, m
)

c← E(pms, id, m);
return (0, c)

Algorithm D′
(

pms, (d, e, g), (i, c)
)

if i = 0 then m← D(d, c)
else if c = e then m← g

else if c = g then m← d
else m← ⊥;

return m

16



Note that in the actual use the value g in D′ above will be FK(id). The scheme (S′, X ′, E′, D′)
is not IND-ID-CCA due to the existence of the following successful distinguisher (A1,A2). The
oracles O′

1, O
′
2 will be X ′

(mk,e,K), D
′
(mk,e,K), respectively, where the decryption oracle D′

(mk,e,K)

is defined by D′
(mk,e,K)(id, c) = D′

(

pms, X ′((mk, e, K), id), c
)

.

Algorithm A
O′

1,O′
2

1

(

(pms, e)
)

m(1) ← (the uniform distribution over the message set specified in pms);
idch ← Uℓ;

return
(

(m(1), m(1), idch), (m
(1), e)

)

Algorithm A
O′

1,O′
2

2

(

(m(1), e), (idch, (0, c))
)

a← O′
2

(

idch, (1, e)
)

; b← O′
2

(

idch, (1, a)
)

; m← D(b, c);

if m = m(1) then v ← 1 else v ← 0;
return v

In the description of A2, the value a will be FK(idch) and b will be X(mk, id) in an actual
attack. D is the decryption algorithm of the original IBE scheme. Obviously the advantage
of this distinguisher (A1,A2) is 1, which is non-negligible.

It remains to show that the new scheme (S′, X ′, E′, D′) is NM-ID-CPA. We argue by con-
tradiction. Let (C1, C2) be a successful NM-ID-CPA adversary for (S′, X ′, E′, D′). We construct
an NM-ID-CPA adversary (C′1, C

′
2) for (S, X, E, D) as follows, and the adversary (C′1, C

′
2) will

be shown to be successful.

Algorithm C′O1
1

(

pms
)

e← Uℓ; K ← Uℓ;

(P, idch, σ)← C
O′e,K

1
1

(

(pms, e)
)

;
return

(

P, idch, (σ, pms, e, K)
)

Algorithm C′O1
2

(

(σ, pms, e, K), idch, c
)

(R,−→c )← C
O′e,K

1
2

(

σ, idch, (0, c)
)

;
for 1 ≤ i ≤ |−→c | do

if
−→c [i] = (0, c′) then

−→
d [i]← c′

else if
−→c [i] = (1, e) then

−→
d [i]← O2

(

idch, FK(idch)
)

else
−→
d [i]← c;

return (R,
−→
d )

Here, O′e,K
1 (meant to be X ′

(mk,e,K)) is emulated using O1 (meant to be Xmk) as O′e,K
1 (id) =

(

O1(id), e, FK(id)
)

.

We shall show that the NM-ID-CPA adversary (C′1, C
′
2) for (S, X, E, D) defined above is

successful. We denote by Exp1 the experiment under which the advantage of (C′1, C
′
2) (attacking

(S, X, E, D)) is evaluated, and by Exp2 the one for (C1, C2) (attacking (S′, X ′, E′, D′)). By
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expanding the definition we obtain the following description.

Experiment Exp1

(pms, mk)← S(1ℓ); e← Uℓ; K ← Uℓ;

(P, idch, σ)← C
X ′

(mk,e,K)
1

(

(pms, e)
)

;
m, m0 ← P (Upoly(ℓ)); c← E(pms, idch, m);

(R,−→c )← C
X ′

(mk,e,K)
2

(

σ, idch, (0, c)
)

;
−→
d ← (constructed from −→c as in C′2);
−→m ← D(mk, idch,

−→
d );

Experiment Exp2

(pms, mk)← S(1ℓ); e← Uℓ; K ← Uℓ;

(P, idch, σ)← C
X ′

(mk,e,K)
1

(

(pms, e)
)

;
m, m0 ← P (Upoly(ℓ)); c← E(pms, idch, m);

(R,−→c )← C
X ′

(mk,e,K)
2

(

σ, idch, (0, c)
)

;
−→m ← D′

(

(mk, e, K), idch,
−→c

)

;

In the sequel we denote a probability function evaluated under Exp1 by Pr1[·], and one eval-
uated under Exp2 by Pr2[·].

We make case-distinction: under Exp1 or Exp2, exactly one of the following events E1, E2, E3

happens.

E1
def.
= (−→c contains only (0, ∗) or (1, e)) ,

E2
def.
= (−→c contains only (0, ∗) or (1, e) or (1, FK(idch)), but not E1) ,

E3
def.
= (neither E1 nor E2) .

It is easy to see Pr1[Ej ] = Pr2[Ej ] for each j = 1, 2, 3.
For notational convenience we define the following probabilities, for j = 1, 2, 3.

p(1, j) = Pr1

[

c 6∈
−→
d ∧ ⊥ 6∈ −→m ∧R(m,−→m) | Ej

]

− Pr1

[

c 6∈
−→
d ∧ ⊥ 6∈ −→m ∧R(m0,

−→m) | Ej

]

,

p(2, j) = Pr2 [(0, c) 6∈ −→c ∧ ⊥ 6∈ −→m ∧R(m,−→m) | Ej ]− Pr2 [(0, c) 6∈ −→c ∧ ⊥ 6∈ −→m ∧R(m0,
−→m) | Ej ] .

The probability p(1, j) is the (conditional) advantage of (C′1, C
′
2) under the event Ej , and

p(2, j) is that of (C1, C2). Hence, by the case-distinction, the advantage of (C′1, C
′
2) is equal to

∑3
j=1 p(1, j) · Pr1[Ej ], and that of (C1, C2) is

∑3
j=1 p(2, j) · Pr2[Ej ].

First we consider the case E1 happens. In that case, the sequence of plaintexts −→m ob-

tained from −→c via
−→
d in Exp1 is directly obtained by −→m ← D′

(

(mk, e, K), idch,
−→c

)

. Hence

the gap between p(1, 1) and p(2, 1) comes only from the conditions c 6∈
−→
d in p(1, 1) and

(0, c) 6∈ −→c in p(2, 1). More precisely, only the case that, −→c contains (1, e) and moreover
c = E

(

pms, idch, FK(idch)
)

, contributes to the gap. In this case the plaintext m must be iden-
tical to FK(idch): this happens with only a negligible probability since the value FK(idch)
remains secret to the adversary. Therefore we conclude that |p(1, 1)− p(2, 1)| is negligible.

Next we consider the case E2 happens. In this case −→c must contain
(

1, FK(idch)
)

. However,
just like in the previous paragraph, the algorithms C1 and C2 have no information about
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FK(idch) hence this happens with only a negligible probability. To summarize, the probability
Pr1[E2] = Pr2[E2] are both negligible.

Finally, we show that p(1, 3) = p(2, 3) = 0. The probability p(1, 3) is 0 because, by the

definition of C′2 (especially the construction of
−→
d from −→c ),

−→
d contains c when E3 happens.

The probability p(2, 3) is 0 because, when E3 happens, −→c contains illegitimate ciphertext so
⊥ ∈ −→m.

Combining the previous three paragraphs and that Pr1[Ej ] = Pr2[Ej ], we have shown
that the advantage

∑3
j=1 p(1, j) ·Pr1[Ej ] of (C′1, C

′
2) and

∑3
j=1 p(2, j) ·Pr2[Ej ] of (C1, C2) have

only a negligible gap. By assumption the latter is non-negligible the former must also be
non-negligible. This concludes the proof. ⊓⊔

6 Semantical security of IBE schemes under multiple-challenge CCA

In this section we present three notions of semantic security under multiple-challenge CCA,
following the public-key version [GLN02]. Here an adversary is allowed to make polynomially
many challenge templates. Moreover each template is answered with a challenge ciphertext
immediately (not after making all the templates), and the next challenge template can be
generated according to the preceding templates and their answers. After this stage of asking
many challenge templates adaptively and in a related manner, the adversary tries to guess
information about the unrevealed plaintexts which have been used in answering challenge
templates.

We shall introduce three different types of multiple-challenge chosen ciphertext attacks:

– In the multiple-identity version (mID-CCA), the challenger chooses one fixed plaintext, and
the adversary can adaptively query its encryption under different identities polynomially
many times.

– In the multiple-plaintext version (ID-mCCA), the adversary chooses one fixed identity, and
can adaptively query encryption of different plaintexts under that identity polynomially
many times.

– In the multiple-identity-plaintext version (mID-mCCA), the adversary can adaptively query
encryption of different plaintexts under different identities polynomially many times.

Obviously the first two are special cases of the last one. For each attack model we introduce
the notion of semantic security, namely SS-mID-CCA, SS-ID-mCCA, and SS-mID-mCCA. We
show that these three notions are all equivalent to semantic security under single-challenge
CCA, and hence also to the technical notion of indistinguishability.

In the definition of SS-ID-CCA an adversary consists of two oracle PPT’s B1 and B2, in
such a way that B1 outputs a challenge template, the challenger chooses a plaintext and
presents its encryption, and then B2 tries to guess information about the plaintext. In the
multiple-challenge case this interaction is modelled by providing the adversary with a “tester”
algorithm Tr,pms or Tr as its oracle. Tr,pms is given to an actual adversary (which obtains a
ciphertext in addition to information leak), while Tr is given to its benign simulator (which
only sees information leak). A challenge template is then sent to one of these oracles as a
query (called “challenge query”).

Algorithm Tr,pms(P, idch, L)
return

(

E(pms, idch, P (r)), L(r)
)

Algorithm Tr(P, L)
return L(r)

19



Intuitively the parameter r of a tester is understood as the multiple-challenge version of the
coin tosses that the challenger uses to select plaintexts. It is a sufficiently long sequence
of coin tosses (r1, r2, . . . , rt) which is unrevealed to the adversary. Given the i-th challenge
template (P i, idi

ch, L
i) (or (P i, Li) from a simulator), the challenger chooses a plaintext by

P i(r1, r2, . . . , ri) using the first i coin tosses in r. Note that now L leaks information on coin
tosses r rather than plaintexts P i(r1, r2, . . . , ri).5

For multiple-challenge CCA adversaries, it is quite natural to put the same restrictions
on the adversary’s oracle invocations as in the single-challenge version, namely:

– Extraction queries on challenge identities cannot be made;
– Decryption queries on challenge ciphertexts (obtained as answers to challenge queries)

cannot be made.

However, as is shown in [GLN02], the second restriction is not necessary under multiple-
plaintext CCA: such a decryption query by an actual adversary can be simulated by a benign
simulator (which has only access to a tester oracle Tr) by making a challenge query on a
extremely informative information leak L, namely L = P . For the sake of simplicity, we
ignore this point of lifting restriction on decryption queries for the time being: this point is
explained in detail in Appendix A.1. It seems that the first restriction on extraction queries
is still necessary.

Definition 13 (Semantic security under multiple-challenge CCA) An IBE scheme
(S, X, E, D) is said to be semantically secure under multiple-identity multiple-plaintext chosen
ciphertext attacks (SS-mID-mCCA) if the following holds. For every oracle PPT algorithm D
(“SS-mID-mCCA adversary”) with the following restriction on oracle queries: in any execution
of DO1,O2,O3(pms), for each challenge query (c, b) ← O3(P, idch, L) by D, D is prohibited to
make

– the extraction query O1(idch) regardless of before or after the challenge query, or
– the decryption query O2(idch, c) after the challenge query

there exists a PPT algorithm D′ (“benign simulator of D”) which is equally successful as D,
in the following sense.

1. The difference between the advantage of the actual adversary D and that of the benign
simulator D′, namely

Pr

[

v = F (r)

∣

∣

∣

∣

∣

(pms, mk)← S(1ℓ); r ← Upoly(ℓ);

(F, v)← DXmk, Dmk, Tr,pms(pms)

]

− Pr

[

v = F (r)

∣

∣

∣

∣

∣

r ← Upoly(ℓ);

(F, v)← D′Tr(1ℓ)

]

is negligible as a function over ℓ.
2. The two ensemples over ℓ ∈ Z

+:
[

(t, F )

∣

∣

∣

∣

∣

(pms, mk)← S(1ℓ); r ← Upoly(ℓ);

(F, v)← DXmk, Dmk, Tr,pms(pms) with trace t

]

and

[

(t, F )

∣

∣

∣

∣

∣

r ← Upoly(ℓ);

(F, v)← D′Tr(1ℓ) with trace t

]

5 As is shown in the later definition, the same goes to the information to guess: it is about the coin tosses r

(i.e. F (r) to guess) rather than plaintexts (i.e. F (P (r)) to guess).
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are computationally indistinguishable (i.e. indistinguishable by any PPT algorithm). Here
the trace of an execution of the actual adversary D is the sequence of (P, L)-part of the
challenge queries (P, idch, L) made by D. The trace of an execution of the simulator D′ is
simply the sequence of challenge queries D′ makes.

Semantic security under multiple-identity chosen ciphertext attacks (SS-mID-CCA) is de-
fined analogously except that an adversary D is restricted to have the same plaintext circuit
P and the same information leakage circuit L in all the challenge queries in the trace of an
execution of D (the challenge identity idch can vary).6

Semantic security under multiple-identity chosen ciphertext attacks (SS-ID-mCCA) is anal-
ogous to SS-mID-mCCA except that an adversary D must have the same challenge identity idch

in all the challenge queries in the trace of an execution of D (P and L can vary).

Remark 2. Note that our mID-CCA attack is stronger than the attack consider in [BSS05],
since in the latter case the adversary has to commit at once to the identities on which it wants
to be challenged, while in the present case the i-th identity can be chosen depending on the
challenges received so far.

Fig. 1. Implications between security notions (hence all equivalent)

SS-mID-CCA SS-mID-mCCA

IND-ID-CCA SS-ID-CCA SS-ID-mCCA

Theorem 14 The five security notions in Figure 1 for identity-based encryption schemes
under a-posteriori chosen ciphertext attacks are all equivalent.

It is obvious that SS-mID-mCCA entails SS-mID-CCA and SS-ID-mCCA. We shall show the
remaining implications in the following lemmas.

Lemma 15 SS-mID-CCA entails SS-ID-CCA. Also, SS-ID-mCCA entails SS-ID-CCA.

Proof : The proof (by contradiction) is much like that for Theorem 8. Assume that the
IBE scheme is not SS-ID-CCA. By Theorem 7 we have a successful IND-ID-CCA distinguisher
(A1,A2), with which we construct a multiple-challenge adversary D. It is shown that D always
has a trace of length 1 (hence qualifies as both SS-mID-CCA and SS-ID-mCCA adversaries),
and that D is distinguishably more successful than any benign simulator.

6 Note that, since P is deterministic, the plaintext P (r) which is encrypted by the tester oracle Tr,pms stays
the same throughout the execution.
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Assume that the IND-ID-CCA distinguisher (A1,A2) is successful. Using this we construct
the following multiple-challenge CCA adversary.

Algorithm DO1,O2,O3(pms)
(

(m(1), m(2), idch), σ
)

← AO1,O2
1 (pms);

P, L, F ← (the same as in the proof of Theorem 8);

(c, b)← O3(P, idch, L ◦ P ); v ← AO1,O2
2 (σ, (idch, c));

return (F ◦ P, v)

Here L ◦ P denotes the sequential composition of circuits in the order of P after L. This
D indeed qualifies both as an SS-mID-CCA adversary and as an SS-ID-mCCA adversary, due
to the following reason. If it makes both an extraction query O1(idch) and challenge query
O3(∗, idch, ∗) for some idch (which is prohibited), then the former is invoked by either A1 or
A2, while the latter is invoked on the fourth line of the description hence idch is in the output
of A1. This violates the condition of an IND-ID-CCA distinguisher. Similarly we can show that
D does not make a decryption query O2(idch, c) on a challenge ciphertext after a challenge
query (c, b) ← O3(∗, idch, ∗). Moreover, D makes a challenge query only once, which ensures
the condition that P and L (or idch) must stay the same in all the challenge queries.

We can assume the following additional properties of (A1,A2) as in Theorem 8:

– A2 always outputs either 0 or 1;

– p
(1)
ℓ −p

(2)
ℓ ≥ 1/q(ℓ) (instead of its absolute value) holds for some polynomial q and infinitely

many ℓ’s;
– A1 always outputs distinct challenge plaintexts (i.e. m(1) 6= m(2)).

For the multiple-challenge adversary D defined above and given ℓ, its advantage is calcu-
lated as follows.

Pr



v = F (r)

∣

∣

∣

∣

∣

∣

(pms, mk)← S(1ℓ);
r ← Upoly(ℓ);

(F, v)← DXmk, Dmk, Tr,pms(pms)



 =
1

2
+

1

2
(p

(1)
ℓ − p

(2)
ℓ ) ,

where the probabilities p
(i)
ℓ are as in the definition of IND-ID-CCA. By the assumption that

(A1,A2) is successful, the advantage of D is distinguishably larger than 1/2.
Let D′ be an arbitrary benign simulator of D. Its advantage is evaluated as follows.

Pr

[

v = F ′(r)

∣

∣

∣

∣

∣

r ← U1;

(F ′, v)← D′Tr(1ℓ)

]

(†)
=

1

2
Pr

[

v = 1
∣

∣

∣ (F ′, v)← D′T0(1ℓ)

]

+
1

2
Pr

[

v = 0
∣

∣

∣ (F ′, v)← D′T1(1ℓ)

]

(‡)
=

1

2
Pr

[

v = 1
∣

∣

∣ (F ′, v)← D′T0(1ℓ)

]

+
1

2
Pr

[

v = 0
∣

∣

∣ (F ′, v)← D′T0(1ℓ)

]

≤
1

2
.

Here (†) holds because the F ′-part of the output of D′ is by definition identically distributed
as that of D, hence F ′(0) = F (P (0)) = 1 and F ′(1) = F (P (1)) = 0. The equation (‡) holds
because Tr(P, L) = L(r) and the traces of D and D′ are identically distributed: the only
challenge query D′ makes is on the leakage circuit L in the definition of D, which outputs
the constant value, hence the tester oracles T0 and T1 gives the same answer. This inequality
yields that any simulator D′ can never be as successful as the actual adversary D, which is a
contradiction. ⊓⊔
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Lemma 16 SS-ID-CCA entails SS-mID-mCCA.

Proof : The proof follows the idea of [GLN02]. Assume that an IBE scheme (S, X, E, D) is
SS-ID-CCA, hence has IND-ID-CCA. For a given SS-mID-mCCA adversary D, we construct its
benign simulator D′ which invokes D emulating the tester oracle by giving encryption of the
fake plaintext 1n. Just as in the proof of Theorem 7 we use the indistinguishability between
the encryption of this fake plaintext and the actual challenge ciphertext.

The main technical challenge is that here the tester oracle is invoked polynomially many
times. To overcome we use a hybrid argument. Let Π i

r,pms be the history-dependent tester
oracle which answers using the actual plaintext for the first i challenge queries but answers
using the fake plaintext for the rest. If the difference between using Π i

r,pms as a tester oracle
and using Π i+1

r,pms instead is negligible (which is shown using indistinguishability), then so is
the difference between using Π0

r,pms (i.e. the emulated oracle given to the simulator D′) and

using Π
poly(ℓ)
r,pms (i.e. the oracle given to the actual adversary D). That is the main idea of the

proof, and the details are found next.
Given an SS-mID-mCCA adversary D, we shall construct its benign simulator D′. First we

define a “fake tester” T ′
r,pms by

T ′
r,pms(P, idch, L) =

(

E(pms, idch, 1
|P (r)|), Tr(P, L)

)

=
(

E(pms, idch, 1
|P (r)|), L(r)

)

.

It is emulated (using the oracle Tr) and plugged inD in the following definition of the simulator
D′.

Algorithm D′Tr(1ℓ)

(pms, mk)← S(1ℓ); (F, v)← DXmk, Dmk, T
′
r,pms(pms);

return (F, v)

We shall show that this simulator D′ has the same trace and is as successful as D. To that
end, let two experiments Exp, Exp′ be as follows:

Experiment Exp
(pms, mk)← S(1ℓ); r ← Upoly(ℓ);

(F, v)← DXmk, Dmk, Tr,pms(pms) with trace t;

Experiment Exp′

Same as Exp, except that we have T ′
r,pms in place of Tr,pms

And then consider the following random variables.

Vℓ =
[

(t, F, v, r)
∣

∣ Exp
]

Wℓ =
[

(t, F, v, r)
∣

∣ Exp′
]

The following equality follows from the definition of D′:

Wℓ =

[

(t, F, v, r)

∣

∣

∣

∣

r ← Upoly(ℓ);

(F, v)← D′Tr(1ℓ) with trace t

]

.

Hence to prove the lemma it suffices to show that the ensembles {Vℓ}ℓ∈Z+ and {Wℓ}ℓ∈Z+

are computationally indistinguishable.7

7 For example, to show that the simulator D′ is as successful as D, consider the algorithm T (t, F, v, r) which
outputs 1 only when v = F (r). If D is distinguishably more successful than D′ then this algorithm T
distinguishes Vℓ from Wℓ, which is a contradiction. The fact that (t, F ) is indistinguishably distributed for
D and D′ is shown similarly.
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To prove the indistinguishablity of {Vℓ}ℓ∈Z+ and {Wℓ}ℓ∈Z+ , we use an hybrid argument
as is already outlined. Let Π i

r,pms be a history-dependent i-th hybrid oracle (i ∈ N) which
behaves as Tr,pms for the first i queries, i.e. Π i

r,pms(P, idch, L) =
(

E(pms, idch, P (r)), L(r)
)

, and

then behaves as T ′
r,pms for the rest, i.e. Π i

r,pms(P, idch, L) =
(

E(pms, idch, 1
|P (r)|), L(r)

)

. Let us

denote the following i-th hybrid experiment (of Exp and Exp′) by Exp(i), for i ∈ N.

Experiment Exp(i)

Same as Exp, except that we have Π i
r,pms in place of Tr,pms

Define Y
(i)
ℓ

def.
= [(t, F, v, r) | Exp(i)]. This is the i-th hybrid of Vℓ and Wℓ. In particular

Y
(0)
ℓ = Wℓ and Vℓ = Y

(poly(ℓ))
l (since D queries its tester oracle only polynomially many

times). Hence it suffices to show: for i ∈ N, two ensembles {Y
(i)
ℓ }ℓ∈Z+ and {Y

(i+1)
ℓ }ℓ∈Z+ are

computationally indistinguishable.
We argue by contradiction. Assume that a PPT algorithm T distinguishes the two ensem-

bles. We construct a successful IND-ID-CCA distinguisher (A1,A2) using T , whose existence is
a contradiction. In the following the polynomial tD maps a natural number n to the maximal
number of steps in the execution of D with input of length n. Internal coin tosses that D makes
with input of length n are hence described as an element of {0, 1}tD(n). We denote by Ds the
algorithm D which executes according to specific coin tosses s (hence Ds is deterministic).

Algorithm AO1,O2
1 (pms)

r ← Upoly(ℓ); s← UtD(|pms|);

Execute D
O1, O2, Tr,pms
s (pms) until it makes the (i + 1)-th query

to the oracle Tr,pms, and stop before its answer is obtained;
h← (all the oracle queries and their answers obtained

in the course of the execution);
if (the (i + 1)-th query to Tr,pms is indeed made)

[

(P, idch, L)← (the (i + 1)-th query to Tr,pms);

return
(

(P (r), 1|P (r)|, idch), (r, s, h, pms)
)

]

else
[

return
(

(0, 0, 0), (r, s, h, pms)
)]

Algorithm AO1,O2
2

(

(r, s, h, pms), (idch, c)
)

Execute D
O1, O2, Tr,pms
s (pms) until it makes the (i + 1)-th query

to Tr,pms, using the coin tosses s and emulating the oracles by the record h
(hence this execution of D is exactly the same as that in A1);

For (i + 1)-th query (P, idch, L) to Tr,pms by D, feed D with the answer (c, L(r));
Continue execution of D using the oracles O1, O2, T

′
r,pms

(note that the tester oracle is now replaced by the fake one);
(F, v)← (the output of the above execution of D);
t← (the trace of the above execution of D);
d← T (t, F, v, r); return d

In the above we explicitly specify the coin tosses s and the record of oracle invocations h so
that in A2 we can get exactly the same execution of D as in A1. We need the record h since
some oracles are probabilistic.
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In the execution of A2, the first two (extraction and decryption) oracles given to D are
such that:

– at first they answer according to the record h;
– after runnding out of the record h, queries are answered by invoking A2’s oracles O1 or

O2, respectively.

We denote these (history-dependent) oracles by O1|h and O2|h, respectively. Similarly, in the
execution of A2, the fourth “tester” oracle given to D is such that:

– the first i queries are answered using the record h;
– the (i + 1)-th query (P, idch, L) is answered with (c, L(r));
– the rest are answered by T ′

r,pms.

We denote this oracle by ∆r,pms,i,h,c.
First we check that the pair (A1,A2) thus defined indeed qualifies as an IND-ID-CCA

distinguisher, in that each of algorithms does not make prohibited queries. A2 does not

query O1(idch): if it does, then in the execution of DO1|h, O2|h, ∆r,pms,i,h,c(pms) the algo-
rithm D makes both queries ∆r,pms,i,h,c(P, idch, L) (which is the (i + 1)-th query on that
oracle)8 and O1|h(idch). This violates the condition on the SS-mID-mCCA adversary D. Sim-
ilarly A1 is shown not to make a query O1(idch). A2 does not query O2(idch, c): if it does,

then DO1|h, O2|h, ∆r,pms,i,h,c(pms) queries O2|h(idch, c) after it makes the (i + 1)-th challenge
query (P, idch, L) to its tester oracle,9 and that challenge query is answered with (c, L(r)).
This violates the condition of the SS-mID-mCCA adversary D.

For the pair (A1,A2) thus defined, the probabilities p
(1)
ℓ and p

(2)
ℓ in the definition of

IND-ID-CCA is calculated as follows.

p
(1)
ℓ = Pr

[

T (Y
(i+1)
ℓ ) = 1

]

p
(2)
ℓ = Pr

[

T (Y
(i)
ℓ ) = 1

]

By the success of T , the distinguisher (A1,A2) is successful. This contradicts that the scheme
has IND-ID-CCA. The lemma follows. ⊓⊔

Acknowledgements. The first author thanks Eike Kiltz for helpful comments and for sim-
plifying the separation result in Theorem 5.

References

[ACH+05] N. Attrapadung, Y. Cui, G. Hanaoka, H. Imai, K. Matsuura, P. Yang and R. Zhang. Relations
among notions of security for identity based encryption schemes. Cryptology ePrint Archive, Report
2005/258, 2005. http://eprint.iacr.org/.

[AP03] S. AlRiyami and K.G. Paterson. Certificateless public key cryptography. In ASIACRYPT 2003,
vol. 2894 of LNCS, pp. 452–473, 2003. Full version available at http://eprint.iacr.org/.

[BB04a] D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption without Random
Oracles. In EUROCRYPT 2004, vol. 3027 of LNCS, pp. 223–238, 2004.

[BB04b] D. Boneh and X. Boyen. Secure identity based encryption without Random Oracles. In CRYPTO

2004, vol. 3152 of LNCS, pp. 443–459, 2004.
[BDPR98] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among notions of security for

public-key encryption schemes. In - CRYPTO 1998, vol. 1462 of LNCS, pp. 26–45, 1998.

8 If D halts before making the (i + 1)-th query to the tester oracle, then A2 makes no oracle queries because
all the oracle queries D makes are answered with the record h.

9 Otherwise D’s query to O2|h is answered using the record h, not by invoking A2’s oracle O2.

25



[BF03] D. Boneh and M. Franklin. Identity-Based encryption from the Weil pairing. SIAM Journal of

Computing, 32(3):586–615, 2003. This is the full version of an extended abstract of the same title
presented at Crypto’01.

[BK05] D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems built using identity based
encryption. In CT-RSA 2005, vol. 3376 of LNCS, pp. 87–103, 2005.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Proceedings of the 1st ACM CCS, pp. 62–73. ACM Press, 1993.

[BS99] M. Bellare and A. Sahai. Non-malleable encryption: Equivalence between two notions, and an
indistinguishability-based characterization. In CRYPTO 1999, vol. 1666 of LNCS, pp. 519–536,
1999.

[BSS05] J. Baek, R. SafaviNaini and W. Susilo. Efficient multi-receiver identity-based encryption and its
application to broadcast encryption. In PKC 2005, vol. 3386 of LNCS, pp. 380–397, 2005.

[CC05] L. Chen and Z. Cheng. Security proof of Sakai-Kasahara’s identity-based encryption scheme. In
IMA Int. Conf. 2005, LNCS, 2005. To appear.

[CHK03] R. Canetti, S. Halevi and J. Katz. A forward-secure public-key encryption scheme. In EUROCRYPT

2003, vol. 2656 of LNCS, pp. 255–271, 2003.
[CHK04] R. Canetti, S. Halevi and J. Katz. Chosen-ciphertext security from identity-based encryption. In

EUROCRYPT 2004, vol. 3027 of LNCS, pp. 207–222, 2004.
[DDN00] D. Dolev, C. Dwork and M. Naor. Non-malleable cryptography. SIAM Journal of Computing,

30(2):391–437, 2000. An extended version appeared in Proc. of the 23rd ACM Symposium on

Theory of Computing, 1991.
[DT03] X. Ding and G. Tsudik. Simple identity-based cryptography with mediated RSA. In CT-RSA 2003,

vol. 1992 of LNCS, pp. 193–210, 2003.
[Gal05] D. Galindo. Boneh-Franklin identity based encryption revisited. In ICALP 2005, vol. 3580 of LNCS,

pp. 791–802, 2005.
[Gen03] C. Gentry. Certificate-based encryption and the certificate revocation problem. In EUROCRYPT

2003, vol. 2656 of LNCS, pp. 272–293, 2003.
[GGM86] O. Goldreich, S. Goldwasser and S. Micali. How to construct random functions. Journal of the

ACM, 33(4):792–807, 1986.
[GLN02] O. Goldreich, Y. Lustig and M. Naor. On chosen ciphertext security of multiple encryptions.

Cryptology ePrint Archive, Report 2002/089, 2002. http://eprint.iacr.org/.
[GM84] S. Golwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences,

28:270–299, 1984.
[Gol93] O. Goldreich. A uniform-complexity treatment of encryption and zero-knowledge. Journal of Cryp-

tology, 6(1):21–53, 1993.
[KI01] K. Kobara and H. Imai. Semantically secure McEliece public-key cryptosystems-conversions for

McEliece PKC. In PKC 2001, vol. 1992 of LNCS, pp. 19–35, 2001.
[LQ05] B. Libert and J.J. Quisquater. Identity based encryption without redundancy. In ACNS 2005, vol.

3531 of LNCS, pp. 285–300, 2005.
[RS92] C. Rackoff and D.R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen cipher-

text attack. In CRYPTO 1991, vol. 576 of LNCS, pp. 433–444, 1992.
[Sha85] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO 1984, vol. 196 of

LNCS, pp. 47–53, 1985.
[SJ00] C.P. Schnorr and M. Jakobsson. Security of signed El-Gamal encryption. In ASIACRYPT 2000,

vol. 1976 of LNCS, pp. 73–89, 2000.
[Wat05] B. Waters. Efficient identity-based encryption without Random Oracles. In EUROCRYPT 2005,

vol. 3494 of LNCS, pp. 114–127, 2005.
[WSI02] Y. Watanabe, J. Shikata and H. Imai. Equivalence between semantic security and indistinguisha-

bility against chosen ciphertext attacks. In PKC 2003, vol. 2567 of LNCS, pp. 71–84, 2002.

A Appendix

A.1 Lifting restriction on decryption queries for SS-mID-mCCA adversary

As is shown in [GLN02] and briefly explained above, we can assume more powerful SS-mID-
mCCA adversaries, namely those without the restriction that they cannot make decryption

26



queries on challenge ciphertexts, and still we obtain the equivalent definition of the notion of
SS-mID-mCCA.

For that stronger adversary D, the definition of its trace is now augmented as follows:
when D makes a decryption query (idch, c) for a challenge ciphertext c (i.e. after making a
challenge query (c, ∗) ← O3(P, idch, ∗)), then we add to its trace a component (P, P ). This
modification is based on the idea that we can simulate this decryption query by replacing it
by a challenge query with extremely informative information leak, namely P itself.

The following lemma puts the idea precise.

Lemma 17 For a (stronger) SS-mID-mCCA adversary D without any restriction on decryp-
tion queries, then there exists a (weaker) SS-mID-mCCA adversary D̃ which:

– is as successful as D,
– has the same trace as D, and
– and follows the restriction on decryption queries, that is, after making a challenge query

(c, ∗)← Tr,pms(∗, idch, ∗) a decryption query Dmk(idch, c) is never made.10

Proof : We replace a pattern of oracle queries on the left by that on the right and obtain the

execution of D̃Xmk, Dmk, Tr,pms .

DXmk, Dmk, Tr,pms D̃Xmk, Dmk, Tr,pms

...
...

(c, b)← Tr,pms(P, idch, L); (c, b)← Tr,pms(P, idch, L);
...

...

p← Dmk(idch, c);
replaced by
7→

{

(c′, p′)← Tr,pms(P, idch, P );
p← p′;

...
...

On both sides c = E(pms, idch, P (r)), b = L(r) and p = P (r). Since P and L are circuits
(hence deterministic), on both sides the random variables (c, b, p) are identically distributed.
Hence we can take D̃ instead of D as an adversary, which proves the lemma. ⊓⊔

10 This weaker notion of adversary with restriction on decryption queries, which is used in the main text of
this paper for the simplicity reason, is called canonical in [GLN02].
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