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Abstract. In this paper, we introduce a powered Tate pairing on a supersingular elliptic

curve that has the same shortened loop as the modified Tate pairing using the eta pairing

approach by Barreto et al. The main significance of our approach is to remove the condition

which the latter should rely on. It implies that our method is simpler and potentially general

than the eta pairing approach, although they are equivalent in most practical cases.
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1 Introduction

Currently, one of the most active areas in elliptic curve cryptography is the construction of cryp-
tographic protocols based on bilinear maps. These protocols depend on the existence of efficiently
computable, non-degenerate bilinear maps over certain groups. The Weil or Tate pairing is an
example of a method to realize a bilinear map on certain pairs of points on elliptic curves. So
efficient computation of pairings is essential to practical applications in pairing-based cryptosys-
tems. There has been a lot of work on the efficient implementation of pairings on elliptic curves
with a sufficiently small security multiplier such as supersingular curves or MNT curves [3–5, 8].
These results are based in some manner on the algorithm of Miller [11]. It is an extension of the
well-known double-and-add method of performing point scalar multiplication on elliptic curves,
so it is usually presented as a loop through the binary expansion of the group order. To improve
this algorithm, one focused on how to perform elimination of irrelevant factors and denominators
during the computation of pairings, which were rendered conceptually simpler and substantially
more efficient. Along with these techniques, a new type of improvement to shorten the loop oc-
curring in the Miller algorithm was introduced by Duursma and Lee [7]. Recently, Barreto et al.
developed a general technique for computing pairings on supersingular Abelian varieties, called
the η pairing approach. It is thought of as a generalized version of the result by Duursma and Lee
on supersingular elliptic curves in characteristic three. Taking a step forward, they presented ηT

pairing which is expected to provide the improvement of the total computation for the Tate pairing
by a factor close to 2. Barreto et al.’s approaches, however, require a condition: the existence of
an automorphism λ such that λψq(Q) = ψ(Q) where Q ∈ E(Fq) and ψ is a distortion map.

⋆ This work was done while the first author was studying in the University of Maryland, USA.
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Our Contributions Here, we have paid our attention to the fact that Barreto et al. were not
able to prove whether the condition for the η pairing is necessary or not. Our idea to answer this
question is to use another map instead of the automorphism λ. As a candidate, we consider the
multiplication by q, denoted by [q]-map. At a first glance, it does not seem to be the proper map
in replacement of the automorphism because it is just an endomorphism. However, it leads us to
have the derived q-th powered Tate pairing 3 which has the same shortened loop as the η pairing
without any conditions. This is a simpler proof of bilinearity and potentially more general as well.
In other words, our results can be extended to implement the reduced Tate pairing that contains
the modified pairing defined by distortion maps. The η pairing seems to be realized only in the case
of the modified pairing because the condition requires a distortion map 4. From efficiency point
of view, however, our results are equivalent with those of Barreto et al. in most known practical
cases based on elliptic curves because both of them work over the same defined set. So the main
significance of our works is to provide flexibility to already efficient algorithm.

Organizations This paper is organized as follows. In Section, 2 we briefly review the Tate pairing
and the Miller algorithm. In Section 3, after giving well known propositions about elliptic curves,
we define the ζ pairing and propose the q-th powered Tate pairing. New pairing computation
algorithm derived from the ζT pairing which saves of a factor by 2 is proposed in Section 4. At
last, our conclusion is drawn in Section 5 with comments about further works.

2 Preliminaries

2.1 Elliptic curves

Let q be a prime or prime power and let Fq denote the finite field with q elements and let p be a
characteristic of Fq. An elliptic curve E defined over Fq can be described as the set of points (x, y)
satisfying the Weierstrass equation y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, where ai ∈ Fq. Let
x(P ) and y(P ) denote the rational functions mapping P ∈ E to its affine x- and y-coordinates,
respectively. If K is an extension of the field Fq, the set of K-rational points of E, which we denote
by E(K), is the set of points P such that x(P ), y(P ) ∈ K, together with a special element O,
called point at infinity. There exists an abelian group law on E. Explicit formulas for computing
the coordinates of a point P3 = P1 + P2 from the coordinates of P1 and P2 are well known [12].
For any r ∈ Z, denote r times addition of P as [r]P . Let K = Fqk . Then the q-th power Frobenius
endomorphism of E is the mapping σ : E(Fqk) → E(Fqk), where (x, y) 7→ (xq, yq). Thus a point
P ∈ E(Fqk) is defined over Fqi if and only if σi(P ) = P . Using the Frobenius map, we can define
the trace map

Tr : E(Fqk) → E(Fq) as Tr(R) =
k−1∑
i=0

σi(R),

for any point R ∈ E(Fqk).
The Hasse bound states that the number of points, say order is #E(Fq) = q + 1 − t, where

|t| ≤ 2
√

q. Here t is called the trace of the Frobenius endomorphism. Curves whose trace t is a
multiple of the characteristic p are called supersingular. The order of a point P ∈ E is the least
3 As noted in [10], there is no difference as a bilinear map used for any cryptographic application if the

pairing is replaced by its m-th power, where m is a fixed integer not divisible by r.
4 The use of distortion maps may differ cryptographic properties [1].
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nonzero integer r such that [r]P = O, where [r]P is the sum of r terms equal to P . The order of a
point divides the curve order, so r|#E(Fq). For a given integer r, the set of all points P ∈ E(K)
such that [r]P = O is denoted E(K)[r] and E[r] denotes E(Fq)[r].

A subgroup G of an elliptic curve E(Fq) is said to have security multiplier k if its order r

divides qk − 1, but does not divide qi − 1 for any 0 < i < k. If E is supersingular, the value of k

is bounded by k ≤ 6.
A divisor on E is a formal sum D =

∑
P∈E(F

qk ) nP (P ) where nP ∈ Z. The set of points
P ∈ E(Fqk) such that nP ̸= 0 is called the support of D. The degree of D is the value deg(D) =∑

P nP . The zero divisor has all nP = 0. An abelian group structure is defined on the set of divisors
Div(E) by the addition of corresponding coefficients in their formal sums. Let f : E(Fqk) → Fqk

be a function on the curve and let deg(D) = 0. We define f(D) ≡
∏

P f(P )nP . The divisor of a
function f is div(f) ≡

∑
P ordP (f)(P ) where ordP (f) is referred to as the order or valuation at

P . It follows from this definition that div(f) = 0 if and only if f is a nonzero constant. A divisor
D is called principal if D = div(f) for some function f . A divisor D is principal if and only if
deg(D) = 0 and

∑
P [nP ]P = O. We say two divisors D and D′ are equivalent, D′ ∼ D if there

exists a function g such that D′ = D + div(g).

2.2 The Tate pairing

Let P ∈ E(Fqk)[r] and Q ∈ E(Fqk) and let fP be the rational function with divisor div(fP ) =
r(P ) − r(O). The existence of this function is well known [8]. Take a point S ∈ E(Fq) such that
AQ = (Q + S) − (S) and (fP ) have disjoint supports. Then the Tate pairing τ : E(Fqk)[r] ×
(E(Fqk)/rE(Fqk)) → F∗

qk/(F∗
qk)r is defined as

τ(P, Q) := fP (AQ),

where Q is the equivalence class in E(Fqk)/rE(Fqk) containing Q, and fP (AQ) is the equiva-
lence class in F∗

qk/(F∗
qk)r containing fP (AQ). Using the isomorphism between F∗

qk/(F∗
qk)r and the

elements of order r in F∗
qk , and assuming k > 1, we can define the reduced Tate pairing [3, 4, 2]

τ(P,Q) = fP (Q)
qk−1

r .

This means that the function fP is now evaluated on a point rather than on a divisor, and
has a unique value. If E is supersingular, this definition can be modified via a distortion map
ψ : E(Fq) → E(Fqk). This means that the group G2 can be selected in E(Fq) instead of a non-
optimal choice E(Fqk). It is called the modified Tate pairing.

2.3 Miller’s algorithm

An essential part in computing the Tate pairing is the evaluation of fP . Miller showed how to
compute fP iteratively, using the divisors of the lines drawn by the secant-and-tangent addition
rule [11]. Throughout this paper, we define gU,V : E(Fqk) → Fqk to be the line through points
U, V ∈ E. The shorthand gU stands for gU,−U which is the vertical line passing through U . If
U = (u, v) and Q = (x, y), then gU (Q) = x − u.

It is also well known [8] that there exists a rational function fc,P on E with divisor div(fc,P ) =
c(P ) − ([c]P ) − (c − 1)(O), c ∈ Z. Since [r]P = O, Miller’s algorithm computes fP (Q) = fr,P (Q),
Q ̸= O by building up these functions fc,P according to the following formula

fi+j,P (Q) = fi,P (Q) · fj,P (Q) · g[i]P,[j]P (Q)/g[i+j]P (Q).



4 B.G. Kang and J.H. Park

Several optimization techniques to reduce computational efforts of the Miller algorithms have
been proposed [3, 4, 2]. They focused on how to perform elimination of irrelevant factors and
denominators during the computation of pairings, which is rendered conceptually simpler and
substantially more efficient. Independently, the loop shortening approach for supersingular curves
was introduced by Duursma and Lee [7] and then generalized by Barreto et al. [2] using the η

pairing.

2.4 The η pairing

Here, we review the η pairing by Barreto et al. [2]. Let q = pm and consider supersingular curves
over Fq with the security multiplier k = 2d (d > 1) and with suitable distortion maps ψ. Define
fpi,[pj ]P to be functions on E such that

div(fpi,[pj ]P ) = pi([pj ]P ) − ([pi+j ]P ) − (pi − 1)(O).

Then one can choose the function fpi,[pj ]P such that

fpi+1,P = fp
pi,P fp,[pi]P .

Using this relation, we obtain

〈P,ψ(Q)〉qd+1 := fqd,P (ψ(Q)) =
dm−1∏
i=0

fp,[pi]P (ψ(Q))pdm−1−i

which leads us to have modified Tate pairing τ by exponentiating to the power (qk − 1) [2]. Then
the η pairing is defined as

η(P,Q) := fq,P (ψ(Q)).

Then it is easily checked that

〈P,ψ(Q)〉qd+1 := fqd,P (ψ(Q)) = η(P,Q)qd−1
η([q]P,Q)qd−2

· · · η([qd−1]P,Q).

Barreto et al. [2] showed that if ψ satisfies

λ(ψq(Q)) = ψ(Q) (1)

for some automorphism λ on the curve, then

η([q]P,Q) = η(P,Q)q

and so
〈P,ψ(Q)〉qd+1 = η(P,Q)dqd−1

.

So the loop occurring in the Miller algorithm to compute the Tate pairing can be shortened from
a product of dm terms to a product of m terms.

The authors in [2] mentioned that they are not sure whether the bilinearity of the η pairing
holds without the condition (1) in [2]. Their intuition tells us that it does not seem to be satisfied,
but they could not prove it. From this point forward, we focus our efforts on showing the other
possible pairings which have the same shortened loop as the η pairing. They can be improved by a
factor of roughly 2 in parallel with ηT in terms of generalized parameters of supersingular elliptic
curves.
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3 Powered Tate Pairings

Our idea is simply induced by the question: what if we use another map instead of the auto-
morphism λ in the condition (1). As a candidate for possible maps in replacement of λ, we use
the multiplication by q, say [q]-map which has useful properties in case of supersingular curves.
First, we briefly introduce some well known results that are necessary to handle the [q]-map on
supersingular curves. Through these, we can derive Lemma 1, which yields an efficient formula of
q-th powered pairing in Theorem 1. Let φ be an endomorphism and P ∈ E(Fq). We refer to [6,
12] for the followings.

Definition 1. The ramification index of φ at P is defined by

eφ(P ) = ordP (u ◦ φ)

where u is an uniformizing parameter for φ(P ).

We define φ∗ : Div(E) → Div(E) to be the homomorphism with

φ∗
(∑

nQ(Q)
)

=
∑
Q

∑
P∈φ−1(Q)

nQeφ(P )(P ).

Proposition 1. Suppose g to be a nonzero rational function. Then

div(g ◦ φ) = φ∗(div(g)).

Proof. See [6, Prop.11.9]. ⊓⊔

Proposition 2. Let E be a supersingular curve. Then [q]-map (multiplication by q) is purely
inseparable which means e[q] = q2 and E[q] = {O}.

Proof. See [12, Chap. III, Coro.6.4]. ⊓⊔

Lemma 1. Let E be a supersingular curve and let P ∈ E(Fq). Then

div(fq,[q]P ◦ [q]) = div(fq2

q,P )

Proof. It is sufficient to show that both rational functions have the same number of zeros and
poles at the same point. By Propositions 1 and 2, and the properties of the [q]-map, we have

div(fq,[q]P ◦ [q]) = [q]∗(div(fq,[q]P ))

= [q]∗
(
q([q]P ) − ([q2]P ) − (q − 1)(O)

)
= e[q](P )q(P ) − e[q]([q]P )([q]P ) − e[q](O)(q − 1)(O)

= q2
(
q(P ) − ([q]P ) − (q − 1)(O)

)
= q2 div(fq,P ) = div(fq2

q,P ).

⊓⊔

Let ψ be a distortion map from E(Fq) to E(Fqk). Let P ∈ E(Fq)[r]. By definition of a distortion
map [13], {P,ψ(P )} is a generating set for E[r]5. Recall that the modified Tate pairing is defined
5 It is known that in cases of supersingular elliptic curves, we can pick generators of E[r] as representatives

of E(Fqk)/rE(Fqk) [8].
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by τ(P,ψ(P )), which is a special case of the reduced Tate pairing denoted by τ(P,R) where R is
a random point in E(Fqk)[r]. Our following results hold not only for the modified pairing, but can
be extended to the reduced pairing. Especially, R can be transformed into a point Q = R−σd(R)
whose trace is zero [4] if the trace of R is not zero. This means that Q is contained in the q-
eigenspace of σ and so we have σ(Q) = [q]Q. By defining

ζ(P,Q) := fq,P (σ(Q)) =
m−1∏
i=0

fp,[pi]P (σ(Q))pm−1−i

,

the bilinear property of the ζ pairing is obtained as follows.

Lemma 2. For Q = R − σd(R) where P ∈ E(Fq)[r] and R ∈ E(Fqk)[r] with R ̸∈ E(Fqd),

ζ([q]P,Q) = ζ(P,Q)q

Proof. By Lemma 1, we have fq,[q]P ◦ [q] = fq2

q,P (up to scalar multiple). Then

ζ([q]P,Q) = fq,[q]P (σ(Q)) = fq,[q]P ◦ [q](Q)

= fq,P (Q)q2
= fq,P (σ2(Q)) = fq,P (σ(Q))q

= ζ(P,Q)q.

⊓⊔

The trace zero subgroup and the image of distortion map in eta pairing approach are the same
sets. So this proof can be applied to prove the bilinearity of the η pairing [9] in much simpler way.
The following theorem gives a result as comparable to the eta pairing approach.

Theorem 1. Let P ∈ E(Fq)[r] and let R ∈ E(Fqk)[r] with R ̸∈ E(Fqd). Let Q = R−σd(R). Then
we have

τ(P,Q)q = ζ(P,Q)dqd−1(qd−1) = fq,P (−Q)d(qd−1).

Proof. By Lemma 2, P ∈ E(Fq) and the property of Q whose trace is zero, it is easily checked
that

〈P,Q〉q
qd+1

= 〈P, σ(Q)〉qd+1 = fq,P (σ(Q))qd−1
fq,[q]P (σ(Q))qd−2

· · · fq,[qd−1]P (σ(Q))

= ζ(P,Q)qd−1
ζ([q]P,Q)qd−2

· · · ζ([qd−1]P,Q)

= ζ(P,Q)dqd−1
.

Raise both sides to the (qd − 1)-th power, we have the first equality as

τ(P,Q)q = τ(P, σ(Q)) = ζ(P,Q)dqd−1(qd−1).

Additionally, since qd ≡ −1 (mod r) induces

ζ(P,Q)dqd−1
= fq,P (σ(Q))dqd−1

= fq,P ([qd]Q)d = fq,P (−Q)d,

the second equality is completed by exponentiating both sides to the (qd − 1)-th power. ⊓⊔

Corollary 1. Let P ∈ E(Fq)[r] and let R ∈ E(Fqk)[r] with R ̸∈ E(Fqd). Let Q = R − σd(R).
Then we have

τ(P,R)2q = τ(P,Q)q = fq,P (−Q)d(qd−1)
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Proof. By Galois invariance of [8, Chap.I, Thm.1.7] and P ∈ E(Fq), we have

τ(P,R)qd

= τ(σd(P ), σd(R)) = τ(P, σd(R)).

This implies

τ(P,Q) = τ(P,R − σd(R)) = τ(P,R)τ(P, σd(R))−1 = τ(P,R)τ(P,R)−qd

= τ(P,R)1−qd

.

Since qd ≡ −1 (mod r), 1 − qd ≡ 2 (mod r) holds, and so we obtain τ(P,R)2 = τ(P,Q). By
Theorem 1, after exponentiating to the power q, the proof is completed. ⊓⊔

Since (2q, r) = 1, τ(P,R)2q is sufficient to be used in real applications instead of τ(P,R). As
a side effect, x(−Q) ∈ Fqd , a denominator elimination technique is also applicable to compute
fq,P (−Q)d(qd−1). Most of all, on the contrary to the η pairing which requires additional condition
(1), Theorem 1 and Corollary 1 do not rely on any special conditions, except supersingular curves.

4 Extension

Barreto et al. [2] proposed the ηT pairing induced from the η pairing and claimed that it is about
twice as fast as the technique by Duursma and Lee [7], because the loop in the Miller’s algorithm
can be shortened from log(q) to log(t) ∼ 1

2 log(q). In this section, we propose new pairing formulae
that have comparable efficiency to the ηT pairing. Ours is originally derived from the idea of the
ζ pairing, thus, the same advantage as the ζ pairing obtained by independence from the condition
(1) can be guaranteed.

Let N = hr = q + 1 − t be the order of E(Fq). Denote n = q − N = t − 1, then since q =
t−1 mod N , we have (t−1)k = 1 mod N . By definition of security parameter k, (t−1)i ̸= 1 mod r

for any i < k. Since N is a multiple of r, it can be reduced to (t − 1)i ̸= 1 mod N . This implies
that (t − 1)d = −1 mod N . Namely,

nd = (t − 1)d = aN − 1

for a constant a. Then we have

div(fnd,P · gP ) = aN(P ) − aN(O) = div(faN,P ) = div(fa
N,P ) (2)

where div(gP ) = (P ) + (−P ) − 2(O). In parallel with the ηT , denote

ζT (P,Q) = fn,P (σ(Q)).

Through the following lemmas, we show that ζT is sufficient to compute the Tate pairing.

Lemma 3. Let P ∈ E(Fq)[r]. Then

div(fn,[n]P ◦ [q]) = div(fq2

n,P )

Proof. Let φ = [q]. Then we can consider φ−1([n]P ) = φ−1([q]P ) = P since [n]P = [q]P . By
Propositions 1 and 2,

div(fn,[n]P ◦ [q]) = [q]∗(div(fn,[n]P ))

= [q]∗
(
n([n]P ) − ([n2]P ) − (n − 1)(O)

)
= e[q](P )n(P ) − e[q]([n]P )([n]P ) − e[q](O)(n − 1)(O)

= q2
(
n(P ) − ([n]P ) − (n − 1)(O)

)
= q2 div(fn,P ) = div(fq2

n,P ).

⊓⊔
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Lemma 4. Let P ∈ E(Fq)[r] and let R ∈ E(Fqk)[r] with R ̸∈ E(Fqd). Let Q = R − σd(R). Then

fn,[n]P (σ(Q))M = (fn,P (σ(Q))nM

when M = (qk − 1)/N .

Proof. By Lemma 3, we have fn,[n]P ◦ [q] = fq2

n,P (up to scalar multiple). Then

fn,[n]P (σ(Q)) = fn,[n]P ◦ [q](Q)

= (fn,P (Q))q2
= fn,P ([q2]Q) = fn,P (σ(Q))q.

Because of q = n + N and NM = qk − 1, we have

fn,P (σ(Q))qM = fn,P (σ(Q))(n+N)M = fn,P (σ(Q))nM . (3)

The proof is thus completed. ⊓⊔

Theorem 2. Let P ∈ E(Fq)[r] and let R ∈ E(Fqk)[r] with R ̸∈ E(Fqd). Let Q = R−σd(R). Then

τ(P,Q)aq = ζT (P,Q)dnd−1M (4)

Proof. Since N does not divide qi − 1 for any i < k in cases of supersingular curves, the value
of qd − 1 is a factor of M . This enables gP (σ(Q)) to be dropped off by being raised to the M -th
power. Also, by a standard recurrence relation, it is written as

fnd,P =
d−1∏
i=0

fnd−1−i

n,[ni]P .

Thus combining these with Lemma 4, we have

τ(P, σ(Q))a = fN,P (σ(Q))aM

=
(
fnd,P (σ(Q)) · gP (σ(Q))

)M

=
(
fn,P (σ(Q))nd−1

fn,[n]P (σ(Q))nd−2
· · · fn,[nd−1]P (σ(Q))

)M

= fn,P (σ(Q))dnd−1M = ζT (P,Q)dnd−1M .

Because of τ(P, σ(Q))a = τ(P,Q)aq, the proof is completed. ⊓⊔

The left hand side of Eq. (4) is a certain proper powered Tate pairing. So it is naturally derived
that ζT has somehow potential bilinear property. Hasse bound tells that t2 ≤ 4q [12], thus the
loop is shortened to log(n) ∼ log(t) which is roughly one half of log(q).

Remark 1. As mentioned in [2], the final powering of ηT requires a more complicated formula than
that of the η pairing. One reason is that the cost of raising to the power n over Fqk is usually more
expensive than just a q-th Frobenius map. However, ζT can provide a much simper powering by
Eq. (3). Note that qd−1 = (n + N)d−1 = nd−1 + cN for a constant c. Since fn,P (σ(Q))NM = 1,
we have

fn,P (σ(Q))dqd−1M = fn,P (σ(Q))d(nd−1+cN)M = fn,P (σ(Q))dnd−1M

which results in
τ(P,Q)aq = fn,P (σ(Q))dqd−1M .

By the same argument, this technique is applicable to ηT as well. So the loss of efficiency occurring
by the final powering of ζT and ηT compared with ζ and η is almost compensated for through our
observation.
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Remark 2. As explored in our paper, our approach is more general than the eta pairing approach
in principle. But S. Galbraith pointed out that two methods are equally applicable for the most
important examples [9], because the trace zero subgroup and the image of our distortion map is
the same. He commented that one has always been able to find a distortion map with satisfying
the condition (1) and so it is quite possible that such distortion maps always exist.

5 Conclusion

We proposed a new pairing ζ that is not affected by a certain condition such as the existence
of the appropriate automorphism and distortion map. Additionally, we derived a loop shortening
version of the ζ pairing, called ζT which is parallel to the ηT pairing. Our q-th powered Tate
pairing derived from the ζ pairing provides the same efficiency comparison with the plain Tate
pairing using the η pairing, but the former is simpler and potentially general than the latter.
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