
Cramer-Shoup is Plaintext-Aware in the
Standard Model

Alexander W. Dent

Information Security Group, Royal Holloway,
Egham, Surrey, TW20 0EX, U.K.

a.dent@rhul.ac.uk

Abstract. In this paper we examine the security criteria for a KEM
and a DEM that are sufficient for the overall hybrid encryption scheme
to be plaintext-aware in the standard model. We apply this theory to
the Cramer-Shoup hybrid scheme acting on fixed length messages and
deduce that the Cramer-Shoup scheme is plaintext-aware in the standard
model. This answers a previously open conjecture of Bellare and Palacio
on the existence of plaintext-aware encryption schemes.

1 Introduction

Plaintext awareness is a simple concept with a difficult explanation. An encryp-
tion scheme is plaintext aware if it is practically impossible for any entity to
produce a ciphertext without knowing the associated message. This effectively
renders a decryption oracle useless to an attacker, as any ciphertext submitted
for decryption must either be invalid or the attacker must already know the
decryption of that ciphertext and so does not gain any information by querying
the oracle. Thus a scheme that is plaintext aware and semantically secure should
be secure against adaptive attacks.

There are two problems with this simplistic approach. Firstly, if we wish to
achieve the IND-CCA2 definition of security for an encryption scheme, then we
have to be careful about how we define plaintext awareness, because, in this
model, the attacker is always given one ciphertext for which he does not know
the corresponding decryption (the challenge ciphertext). It is usually compara-
tively simple to achieve plaintext awareness when you do not have to consider
the attacker as able to get hold of ciphertexts for which he does not know the
corresponding decryption. We will follow the notation of Bellare and Palacio
[4] and term this PA1 plaintext-awareness. A scheme that is IND-CPA and
PA1 plaintext aware is only IND-CCA1 secure [4]. It is a lot harder to prove
plaintext-awareness in full generality, when the attacker has access to an oracle
that will return ciphertexts for which the attacker does not know the corre-
sponding decryption, especially if the attacker has some measure of control over
the probability distribution that the oracle uses to select the messages that it
encrypts. This is termed PA2 plaintext awareness.

The importance of this issue was highlighted by the OAEP padding scheme
[5]. This padding scheme was shown to be PA1 secure when combined with any



one-way trapdoor permutation, however it was not recognised at the time that
these scheme had to achieve PA2 plaintext awareness to guarantee full security
[11]. The PA2 security of the OAEP padding scheme was finally demonstrated
by Fujisaki et al. under a stronger security assumption [9].

The second problem is that it is difficult to formally define plaintext aware-
ness. The obvious way to define it is to say that for every attacker A that outputs
a challenge ciphertext C, there exists a plaintext extractor A∗ for A that outputs
the decryption of C when given C as input. However, any encryption scheme
that satisfies this definition of plaintext awareness in the standard model must
necessarily fail to be IND-CPA secure. Hence, such a definition is not useful.
For a satisfactory definition of plaintext awareness to be proposed, it is impera-
tive that the plaintext extractor A∗ be given some extra information about the
actions that the attacker A took in order to compute the challenge ciphertext.

The original definition of plaintext awareness [3] was only given in the ran-
dom oracle model and the plaintext extractor was given access to the oracle
queries that the attacker made when constructing ciphertexts. This definition
works well, but can only prove the security of a scheme in the random ora-
cle model. Recently, a definition of plaintext awareness has been given in the
standard model [4], where the plaintext extractor is also given access to the
random coins that the attacker used in constructing the challenge ciphertext;
thus the plaintext extractor can examine every action that the attacker took in
its execution. Unfortunately, Bellare and Palacio were unable to prove that any
scheme met their strongest (PA2) definition of plaintext awareness, although
they suggested that the Cramer-Shoup scheme [6] was a very likely candidate.

This paper proves that the Cramer-Shoup scheme is plaintext aware in the
standard model, under reasonable assumptions, thus proving the conjecture of
Bellare and Palacio. We also propose sufficient criteria for the KEM and the DEM
so that the overall hybrid scheme is plaintext aware. This work is similar to that
of Stam [12], who proposed a similar notion of plaintext awareness for KEMs.
However, Stam’s intent was to simplify the process of proving the security of a
KEM, and is not sufficient to show that a hybrid encryption scheme is plaintext
aware. It will be easy to see that Stam’s definition of security is generalised by
this paper.

2 Preliminaries

2.1 Asymmetric Encryption Schemes

We briefly recap the notion of an asymmetric cipher and of a KEM-DEM hybrid
cipher [6]. We will assume that the reader is familiar with the general theory of
hybrid ciphers and will concentrate on introducing notation that will be used in
this paper. An asymmetric encryption scheme is a triple of algorithms:

1. A probabilistic polynomial-time key generation algorithm, G, which takes as
input a security parameter 1k and outputs a public/private key pair (pk, sk).



The public key defines the message space M, which is the set of all possi-
ble messages that can be submitted to the encryption algorithm, and the
ciphertext space C, which is the set of all possible ciphertexts that can be
submitted to the decryption algorithm (and may be larger than the range of
the encryption algorithm).

2. A (possibly) probabilistic polynomial-time encryption algorithm, E , which
takes as input a message m ∈M and a public key pk, and outputs a cipher-
text C ∈ C. We will denote this as C = E(pk,m).

3. A deterministic polynomial-time decryption algorithm, D, which takes as
input a ciphertext C ∈ C and a secret key sk, and outputs either a message
m ∈M or the error symbol ⊥. We denote this as m = D(sk, C).

The security of an asymmetric encryption scheme is assessed via the following
game played between a two-stage attacker A = (A1,A2) and a hypothetical
challenger:

1. The challenger generates a valid public/private key pair (pk, sk) by running
G(1k).

2. The attacker runs A1 on the input pk. It terminates by outputting two
messages m0 and m1, as well as some state information state. During its
execution A1 may query an oracle O1.

3. The challenger picks a bit b ∈ {0, 1} uniformly at random and computes the
challenge ciphertext C∗ = E(pk, mb).

4. The attacker runs A2 on C∗ and state. It terminates by outputting a guess
b′ for b. Again, during its executions, A2 may query an oracle O2 subject to
the restriction that it may not query the oracle on the input C∗.

The attacker wins the game if b = b′. The attacker’s advantage is defined to be:

|Pr[b = b′]− 1/2| . (1)

Throughout this paper Null will be either the empty bit-string or the Turing
machine that returns the empty bit-string for any input. We trust the reader will
be able to differentiate between these two meanings by the context.

Definition 1. Suppose, for all polynomial-time attackers A, the advantage that
A has in breaking the above game for an encryption scheme (G, E ,D) is negligible
as a function of the security parameter k. The encryption scheme is said to be

– IND-CPA secure if O1 = O2 = Null.
– IND-CCA1 secure if O1 = D(sk, ·) and O2 = Null.
– IND-CCA2 secure if O1 = O2 = D(sk, ·).

For more information on the basic security models for an asymmetric encryp-
tion scheme, the reader is referred to [3].



2.2 KEMs and DEMs

A hybrid cipher is an asymmetric cipher which uses a keyed symmetric algorithm,
such as an encryption algorithm or a MAC, as a subroutine. Most hybrid ciphers
can be presented as the combination of an asymmetric key encapsulation method
(KEM) and a symmetric data encapsulation method (DEM). A KEM is a triple
of algorithms consisting of:

1. A probabilistic, polynomial-time key generation algorithm, Gen, which takes
as input a security parameter 1k and outputs a public/private key pair
(pk, sk).

2. A probabilistic, polynomial-time encapsulation algorithm, Encap, which takes
as input a public key pk, and outputs a key K and an encapsulation of that
key C. We denote this as (C, K) = Encap(pk).

3. A deterministic, polynomial-time decapsulation algorithm, Decap, which takes
as inputs the private key sk and an encapsulation C, and outputs a sym-
metric key K or the error symbol ⊥. We denote this as K = Decap(sk, C).

The security of a KEM is phrased in terms of a game played between a hypo-
thetical challenger and a two-stage attacker A = (A1,A2). The attack goal for
an attacker (against a KEM) is to distinguish the real key of an encapsulation
from a randomly generated key. This is known as the IND game and, for a given
security parameter k, works as follows:

1. The challenger generates a valid public/private key pair (pk, sk) by running
Gen(1k).

2. The attacker runs A1 on the input pk. It terminates by outputting some
state information state. During its execution A1 may query an oracle O1.

3. The challenger generates a valid encapsulation (C∗,K0) by running Encap(pk).
It also generates a random key K1 of the same length as K0. Next it chooses
a bit b ∈ {0, 1} uniformly at random and sets K∗ = Kb. The challenge
encapsulation is (C∗,K∗).

4. The attacker runs A2 on the input (C∗,K∗) and state. It terminates by
outputting a guess b′ for b. Again, during its executions, A2 may query an
oracle O2 subject to the restriction that it may not query the oracle on the
input C∗.

The attacker wins the game if b = b′. The attacker’s advantage is defined to be:

|Pr[b = b′]− 1/2| . (2)

Definition 2. Suppose, for all polynomial-time attackers A, the advantage that
A has in breaking the IND game for the KEM is negligible as a function of the
security parameter k. The KEM is said to be

– IND-CPA secure if O1 = O2 = Null.
– IND-CCA1 secure if O1 = Decap(sk, ·) and O2 = Null.
– IND-CCA2 secure if O1 = O2 = Decap(sk, ·).



A DEM is a pair of algorithms consisting of:

1. A deterministic, polynomial-time encryption algorithm, Enc, which takes as
input a message m ∈ {0, 1}∗ of any length and a symmetric key K of some
pre-determined length. It outputs an encryption C = EncK(m).

2. A deterministic, polynomial-time decryption algorithm, Dec, which takes
as input an encryption C ∈ {0, 1}∗ and a symmetric key K of some pre-
determined length, and outputs either a message m ∈ {0, 1}∗ or the error
symbol ⊥.

The security of a DEM is also phrased in terms of a game between a challenger
and a two-stage attacker A = (A1,A2). The IND game runs as follows:

1. The challenger randomly generates an appropriately sized symmetric key K.
Note that the key length of K will depend on the security parameter k.

2. The attacker runs A1 on the input 1k. The algorithm A1 terminates by
outputting a pair of equal length messages (m0, m1), as well as some state
information state.

3. The challenger chooses a bit b ∈ {0, 1} uniformly at random, and forms the
challenge ciphertext C∗ = EncK(mb).

4. The attacker runs A2 on the input (C∗, state). During its execution A2 may
query on oracle O. It may not query this oracle on the ciphertext C∗. This
algorithm outputs a guess b′ for b.

The attacker wins the game if b = b′. The attacker’s advantage is defined to be:

|Pr[b = b′]− 1/2| . (3)

Definition 3. Suppose for all polynomial-time attackers A, the advantage that
A has in breaking the IND game for the DEM is negligible as a function of the
security parameter k. The DEM is said to be

– IND-PA secure if O = Null.
– IND-CCA secure if O = DecK(·).

Theorem 1 (Cramer-Shoup). A hybrid encryption scheme composed of an
IND-CCA2 KEM and an IND-CCA DEM is IND-CCA2 as an encryption scheme.

We will also require that our DEMs are in some way “plaintext aware” too,
i.e. that it is impossible to find a valid DEM encryption except via an encryption
oracle. This idea is capture by the INT-CCA+ model of security of Dent [7].

Definition 4. INT-CCA+ security for a DEM (Enc,Dec) is defined using the
following game played between a challenger and an attacker A:

1. The challenger generates a sequence (K1,K2,K3, . . .) of random symmetric
keys of the correct length for use by the DEM.



2. The attacker runs A. During its execution A is allowed to query an encryp-
tion oracle with any input of the form (i,m) and the oracle will respond
with EncKi

(m). Similarly it may query a decryption oracle with any input
of the form (i, C) and the oracle will respond with DecKi(C). A terminates
by outputting a pair (i∗, C∗).

The attacker wins the game if DecKi∗ (C
∗) 6=⊥ and C∗ was never a response

of the encryption oracle queried with an input of the form (i∗,m) for some
message m. The DEM is said to be INT-CCA+ secure if, for every attacker,
the probability that that attacker wins the INT-CCA+ game is negligible as a
function of the security parameter.

All of the standard DEM constructions, including the Encrypt-then-MAC
scheme originally proposed as a DEM by Cramer and Shoup, are INT-CCA+
secure.

2.3 Plaintext-awareness

The notion of plaintext awareness in the standard model states that an en-
cryption scheme (G, E ,D) is plaintext aware in the standard model if, for all
ciphertext creators (attackers) A, there exists a plaintext extractor A∗ which
takes as input the random coins of A and can answer the decryption queries
of A in a manner that A cannot distinguish from a real decryption oracle. In
order that A can be given access to ciphertexts for which it does not know the
corresponding decryption, A will be allowed to query a plaintext creation oracle
P with some query information aux . The plaintext creation oracle will pick a
message at random (possibly from a distribution partially defined by aux ) and
returns the encryption of that message to the attacker1.

We will assume that all the algorithms described are polynomial-time, prob-
abilistic, state-based Turing machines, and that the random coins of the Turing
machine A are denoted R[A]. Plaintext awareness is formally defined using two
games. First we define the REAL game:

1. The challenger generates a random key pair (pk, sk) = G(1k) and creates an
empty list of ciphertexts CList.

2. The attacker executes A on pk.
– If the attacker queries the encryption oracle with query information aux ,

then the challenger generates a random message m = P(aux ) and com-
putes its encryption C = E(pk, m). It adds C to CList and returns C
to the attacker.

1 Technically, the plaintext creator will only generate a random message, and it will
be left to the challenge to compute the encryption of that message. However, since
the ciphertext creator and the plaintext extractor receive exactly the same inputs
regardless of whether the challenger or the plaintext creator encrypts the message,
we do not distinguish between the two cases.



– If the attacker queries the decryption oracle with a ciphertext C, then
the decryption oracle returns D(sk, C). The attacker may not query the
decryption oracle with any ciphertext appearing on CList.

The attacker terminates by outputting a bitstring x.

The FAKE game is defined as:

1. The challenger generates a random key pair (pk, sk) = G(1k) and creates an
empty list of ciphertexts CList.

2. The attacker executes A on pk.
– If the attacker queries the encryption oracle with query information aux ,

then the challenger generates a random message m = P(aux ) and com-
putes its encryption C = E(pk, m). It adds C to CList and returns C
to the attacker.

– If the attacker queries the decryption oracle with a ciphertext C, then
the decryption oracle returns A∗(C, pk,R[A],CList). The attacker may
not query the decryption oracle with any ciphertext appearing on CList.

The attacker terminates by outputting a bitstring x.

Definition 5 (Plaintext awareness). An asymmetric encryption scheme is
said to be plaintext aware (PA2) if for all ciphertext creators A, there exists a
plaintext extractor A∗ such that for all plaintext creators P and polynomial time
distinguishers Dist the advantage

|Pr[Dist(x) = 1|A plays REAL]− |Pr[Dist(x) = 1|A plays FAKE]| (4)

that Dist has in distinguishing whether A interacts with the REAL game or the
FAKE game is negligible as a function of the security parameter.

An asymmetric encryption scheme is said to be PA1 if for all ciphertext cre-
ators A that make no encryption oracle queries, there exists a plaintext extractor
A∗ such that for all polynomial time distinguishers Dist the advantage

|Pr[Dist(x) = 1|A plays REAL]− |Pr[Dist(x) = 1|A plays FAKE]| (5)

is negligible as a function of the security parameter.

For more information about plaintext awareness, the reader is referred to [4].

3 Simulatable Encryption Schemes

The aim of this paper is to show that the Cramer-Shoup scheme is plaintext-
aware. In order to do this we take advantage of a very useful property that
it possess: when instantiated with a suitable DEM, no attacker can distinguish
valid ciphertexts from completely random bit strings. By this we mean that there
exists a function f , which is in some sense invertible, that takes random bits as
input and outputs bit strings that look like ciphertexts to an attacker. These bit
strings are very unlikely to actually be valid ciphertexts (as we believe that the



Cramer-Shoup scheme is plaintext aware) but no attacker can distinguish them
from valid ciphertexts. We call this encryption simulation. For a simulatable
encryption scheme, an attacker’s ability to get hold of new ciphertexts in the
PA2 model is equivalent to an ability to get hold of blocks of random data. A
scheme that remains plaintext-aware even when the attacker can get hold new
fixed-length random strings on demand is said to be PA1+ plaintext aware. This
notion is strictly stronger than PA1, but conceptually weaker than PA2 plaintext
awareness.

3.1 Simulatable Encryption

We will wish to work with encryption schemes that are simulatable, by which
we mean that there exists a Turing machine f which take a string of random
bits as input and produces an output that cannot be distinguished from real
ciphertexts produced by the KEM (or DEM). The difference between f and the
real encryption function is that f must be in some sense invertible. We envisage
f taking long strings of random bits as input and producing a shorter output,
and so we insist on the existence of a probabilistic Turing machine f−1 which
acts as a perfect inverse for f when used on the right, i.e.

f(f−1(C)) = C for all C ∈ C . (6)

However, since f−1 cannot act as a perfect inverse for f when used on the left,
we merely require that f−1(f(r)) looks like a randomly generated bit string, i.e.
it is computationally infeasible to tell the difference between a random string
r of the appropriate length and f−1(f(r)). Hence, f−1 must be a probabilis-
tic polynomial-time Turing machine; while, for technical reasons, f must be a
deterministic polynomial-time Turing machine.

Definition 6 (Simulatable Encryption Scheme). An asymmetric encryp-
tion scheme (G, E ,D) is simulatable if there exist two polynomial-time Turing
machines (f, f−1) such that:

– f is a deterministic Turing machine that takes the public key pk and an
element r ∈ {0, 1}l as input, and outputs elements of C. For simplicity’s
sake, we shall often represent f as a function from {0, 1}l to C and suppress
the public key input.

– f−1 is a probabilistic Turing machine that takes the public key pk and an
element C ∈ C as input, and outputs elements of {0, 1}l. Again, we will
often represent f−1 as a function from C to {0, 1}l and suppress the public
key input.

– f(f−1(C)) = C for all C ∈ C.
– There exists no polynomial-time attacker A that has a non-negligible advan-

tage in winning the following game:
1. The challenger generates a key pair (pk, sk) = G(1k) and randomly

chooses a bit b ∈ {0, 1}.



2. The attacker executes A on the input pk. The attacker has access to an
oracle Of that takes no input, generates a random element r ∈ {0, 1}l,
and returns r if b = 0 and f−1(f(r)) if b = 1. The attacker terminates
by outputting a guess b′ for b.

The attacker wins if b = b′ and its advantage is defined in the usual way.
– There exists no polynomial-time attacker A that has a non-negligible advan-

tage in winning the following game:
1. The challenger generates a key pair (pk, sk) = G(1k), an empty list

CList, and a bit b chosen randomly from {0, 1}.
2. The attacker executes A on the input pk. The attacker has access to two

oracles:
* An encryption oracle that takes a message m ∈ M as input and

returns an encryption C. If b = 0, then the oracle returns C =
E(pk, m). If b = 1, then the oracle returns C = f(r), for some ran-
domly chosen r ∈ {0, 1}l. In either case C is added to CList.

* A decryption oracle that takes an encryption C ∈ C as input and re-
turns D(sk, C). The attacker may not query the decapsulation oracle
on any C ∈ CList.

The attacker terminates by outputting a guess b′ for b.
The attacker wins if b = b′ and its advantage is defined in the usual way.

At this stage, and for technical reasons that will become apparent in the next
section, we will restrict ourselves to encryption schemes that have fixed-length
ciphertext spaces, i.e. the ciphertext space C = {0, 1}n for some n. Normally, the
simplest way of producing a cipher with fixed-length ciphertexts is to restrict
the message space to fixed-length messages.

The following theorem makes it clear that the notion of encryption simulation
is useful.

Theorem 2. If (G, E ,D) is a simulatable encryption scheme then it is IND-
CCA2 secure.

Sketch Proof Let A be an IND-CCA2 attacker for the scheme, and let Game
1 be the game in which A interacts with the IND-CCA2 game properly. Let
Game 2 be the similar to Game 1 except that the challenge ciphertext is com-
puted using f rather than the proper encryption algorithm. Let Wi be the even
that A wins Game i. We have that |Pr[W1] − Pr[W2]| is negligible as the en-
cryption algorithm is simulatable. However, in Game 2, the challenge ciphertext
is completely independent of the messages supplied by the attacker. Therefore,
Pr[W2] = 1/2 and (G, E ,D) is IND-CCA2 secure. ut

Therefore, in some sense, the notion of encryption simulation is less useful
than one might hope. It should be easier to prove that a scheme is IND-CCA2
secure, than to show that it is simulatable; and if we can show that a scheme is
simulatable, then there is no need to consider whether it is plaintext aware, as
we have already shown that it is IND-CCA2. However, our goal in this paper is
to show that PA2 schemes exist, therefore we will continue to use the notion of
simulatability.



3.2 PA1+ Plaintext Awareness

For a simulatable encryption algorithm, a ciphertext creator’s ability to get hold
of new, randomly generated ciphertexts C (that are the encryption of messages
drawn from some distribution) is equivalent to being able to get hold of randomly
generated strings r = f−1(C) ∈ {0, 1}l. We define the PA1+ model as the
extension of the PA1 model in which a ciphertext creator has access to an oracle
which provides it with randomly generated bit strings of length l, and show that,
for a simulatable encryption algorithm, this is enough to imply that the scheme
is PA2 plaintext-aware.

We define the PA1+ model using the REAL and FAKE games as before.
For an attacker A and a hypothetical challenger, the REAL game works as
follows:

1. The challenger generates a random key pair (pk, sk) = G(1k) and creates an
(empty) list of the random blocks that the attacker has been given RList.

2. The attacker executes A on pk. The attacker has access to a decryption
oracle and to a randomness oracle.
– If the attacker queries the randomness oracle, then the challenger gen-

erates a random strong r ∈ {0, 1}l, and returns r to the attacker.
– If the attacker queries the decryption oracle with a ciphertext C, then

the decryption oracle returns D(sk, C).
The attacker terminates by outputting a bitstring x.

The FAKE game is defined in the obvious way:

1. The challenger generates a random key pair (pk, sk) = G(1k) and creates an
(empty) list of the random blocks that the attacker has been given RList.

2. The attacker executes A on pk. The attacker has access to a decryption
oracle and to a randomness oracle.
– If the attacker queries the randomness oracle, then the challenger gener-

ates a random strong r ∈ {0, 1}l, adds r to RList and returns r to the
attacker.

– If the attacker queries the decryption oracle with a ciphertext C, then
the decryption oracle returns A∗(C, pk, R[A],RList).

The attacker terminates by outputting a bitstring x.

Definition 7 (PA1+ Plaintext Awareness). An asymmetric encryption scheme
is said to be PA1+ plaintext aware if for all polynomial-time ciphertext cre-
ators A, there exists a polynomial-time plaintext extractor A∗ such that for all
polynomial-time distinguishing algorithms Dist the advantage

|Pr[Dist(x) = 1|A plays REAL]− |Pr[Dist(x) = 1|A plays FAKE]| (7)

that Dist has in distinguishing whether A interacts with the REAL game or the
FAKE game is negligible as a function of the security parameter.

Theorem 3. Let (G, E ,D) be a simulatable encryption algorithm. If (G, E ,D) is
PA1+ then it is PA2.



Proof This proof works in several stages. We wish to show that for any ciphertext
creator for the hybrid encryption schemeA, there exists a plaintext extractorA∗.
First we show that any PA2 ciphertext creator A for the encryption scheme can
be used to create a PA1+ ciphertext creator Ā. Since the encryption scheme is
PA1+ plaintext aware, there exist a plaintext extractor Ā∗ for Ā. We then show
that we can use the plaintext extractor Ā∗ for Ā to build a plaintext extractor
A∗ for A. We will use this technique liberally throughout this paper.

Let A be any PA2 ciphertext creator and let Ā be the PA1+ ciphertext
creator that runs as follows.

1. Execute A.
– If A makes a decryption oracle query, then Ā passes this query directly

on to its own decryption oracle.
– If A makes an encryption oracle query (with query information aux ),

then Ā queries its randomness oracle, receives back an l-bit block of
randomness r, and returns f(r) to A.

2. A terminates by outputting a bitstring x. Output x.

Let W0,Dist be the event that Dist(x) = 1 when A interacts with the PA2 model
and a real decryption oracle. Let W1,Dist be the event that Dist(x) = 1 when
Ā interacts with the PA1+ model and a real decryption oracle. It is clear that
any non-negligible difference between Pr[W0,Dist ] and Pr[W1,Dist ] can be used
to create an algorithm that can distinguish between ciphertexts and simulated
ciphertexts, contravening the final point of Definition 6. Thus,

|Pr[W0,Dist ]− Pr[W1,Dist ]|

is negligible as a function of the security parameter.
Since Ā is PA1+ ciphertext creator, there exists a plaintext extractor Ā∗ for

Ā. Let W2,Dist be the event that Dist(x) = 1 when Ā interacts with the PA1+
model and Ā∗ is used to simulate the decryption oracle. Since Ā∗ is a successful
plaintext extractor for Ā, we have that

|Pr[W1,Dist ]− Pr[W2,Dist ]|

is negligible as a function of the security parameter.
We now alter slightly the way that the randomness oracle works. Instead of

randomly generated a block of randomness r and returning this to Ā, consider
an oracle that randomly generates a block of randomness r ∈ {0, 1}l and returns
f−1(f(r)) to the ciphertext creator. Let W3,Dist be the event that Dist(x) = 1
when the randomness oracle behaves in this way. Clearly, any significant differ-
ence between Pr[W2,Dist ] and Pr[W3,Dist ] can be used to create an algorithm
that can distinguish between random blocks r and f−1(f(r)), thus contravening
the properties of f given in Definition 6. Hence,

|Pr[W2,Dist ]− Pr[W3,Dist ]|

is negligible as a function of the security parameter.



If we examine the architecture now, we notice that RList contains elements
of the form f−1(f(r)), and A (being run as a subroutine of Ā) is given elements
of the form f(f−1(f(r))) = f(r). Consider now a situation where

– the randomness oracle returns f(r) instead of f−1(f(r)),
– to the ciphertext creator A (instead of Ā)
– and decryption queries are answered using a plaintext extractorA∗.A∗ works

by executing Ā∗ on the input (pk, C,R[A],RList), where C is the ciphertext
to be decrypted and RList is the list of l-bit random blocks given by taking
the responses C ′ returned the randomness oracle and computing f−1(C ′).

Let W4,Dist be the event that Dist(x) = 1 in this model. Clearly, the functionality
of this model is identical to the previous model. Hence,

Pr[W3,Dist ] = Pr[W4,Dist ] .

We may now consider the model in which the randomness oracle reverts
to being an encryption oracle. I.e. instead of returning f(r) for some randomly
chosen l-bit block r, it returns the encryption E(m, pk) for message m = P(aux ).
Let W5,Dist(x) be the event that Dist(x) = 1 in this model. As before, if there
is any significant difference between Pr[W4,Dist(x)] and Pr[W5,Dist(x)], then we
may build an algorithm that distinguishes between ciphertexts and simulated
ciphertexts, contravening Definition 6. Therefore,

|Pr[W4,Dist(x)]− Pr[W5,Dist(x)]|
is negligible. However, this means that

|Pr[W0,Dist(x)]− Pr[W5,Dist(x)]|
is negligible as a function of the security parameter, and so that A has a suc-
cessful plaintext extractor A∗. Therefore, (G, E ,D) is PA2 plaintext aware. ut

3.3 Simulatable KEMs and DEMs

Since we wish to prove the security of the hybrid Cramer-Shoup scheme, we wish
to show that the hybrid scheme is simulatable if and only if the KEM and DEM
of which it is formed is (in some sense) simulatable.

Definition 8 (Simulatable KEM). A KEM (Gen,Encap,Decap) is simulat-
able if there exist two polynomial-time Turing machines (f, f−1) such that:

– f is a deterministic Turing machine that takes the public key pk and an
element r ∈ {0, 1}l as input, and outputs elements of C. For simplicity’s
sake, we shall often represent f as a function from {0, 1}l to C and suppress
the public key input.

– f−1 is a probabilistic Turing machine that takes the public key pk and an
element C ∈ C as input, and outputs elements of {0, 1}l. Again, we will
often represent f−1 as a function from C to {0, 1}l and suppress the public
key input.



– f(f−1(C)) = C for all C ∈ C.
– There exists no polynomial-time attacker A that has a non-negligible advan-

tage in winning the following game:
1. The challenger generates a key pair (pk, sk) = Gen(1k) and randomly

chooses a bit b ∈ {0, 1}.
2. The attacker executes A on the input pk. The attacker has access to an

oracle Of that takes no input, generates a random element r ∈ {0, 1}l,
and returns r if b = 0 and f−1(f(r)) if b = 1. The attacker terminates
by outputting a guess b′ for b.

The attacker wins if b = b′ and its advantage is defined in the usual way.
– There exists no polynomial-time attacker A that has a non-negligible advan-

tage in winning the following game:
1. The challenger generates a key pair (pk, sk) = G(1k), an empty list

CList, and a bit b chosen randomly from {0, 1}.
2. The attacker executes A on the input pk. The attacker has access to two

oracles:
* An encapsulation oracle that takes no input and returns a pair (C,K).

If b = 0, then the oracle returns (C, K) = Encap(pk). If b = 1, then
the oracle returns C = f(r), for some randomly chosen r ∈ {0, 1}l,
and a randomly chosen symmetric key K of the appropriate size. In
either case C is added to CList.

* A decapsulation oracle that takes an encapsulation C ∈ C as input
and returns Decap(sk, C). The attacker may not query the decapsu-
lation oracle on any C ∈ CList.

The attacker terminates by outputting a guess b′ for b.
The attacker wins the game if b = b′ and its advantage is defined in the usual
way.

Note that, just as in Theorem 2 for encryption schemes, a simulatable KEM is
necessarily IND-CCA2 secure. We know turn our attention to the DEMs (with
fixed length ciphertext spaces):

Definition 9 (Simulatable DEM). A DEM (Enc,Dec) is simulatable if there
exist two polynomial-time Turing machines (f, f−1) such that:

– f is a deterministic Turing machine that takes an element r ∈ {0, 1}l as in-
put, and outputs elements of C. For simplicity’s sake, we shall often represent
f as a function from {0, 1}l to C.

– f−1 is a probabilistic Turing machine that takes an element C ∈ C as input,
and outputs elements of {0, 1}l. Again, we will often represent f−1 as a
function from C to {0, 1}l.

– f(f−1(C)) = C for all C ∈ C.
– There exists no polynomial-time attacker A that has a non-negligible advan-

tage in winning the following game:
1. The challenger generates a symmetric key K of the appropriate length

and randomly chooses a bit b ∈ {0, 1}.



2. The attacker executes A on the input 1k. The attacker has access to an
oracle Of that takes no input, generates a random element r ∈ {0, 1}l,
and returns r if b = 0 and f−1(f(r)) if b = 1. The attacker terminates
by outputting a guess b′ for b.

The attacker wins if b = b′ and its advantage is defined in the usual way.
– There exists no polynomial-time attacker A that has a non-negligible advan-

tage in winning the following game:
1. The challenger generates a symmetric key K of the appropriate length,

an empty list CList, and a bit b chosen randomly from {0, 1}.
2. The attacker executes A on the input 1k. The attacker has access to two

oracles:
* An encryption oracle that takes a message m input and returns a

ciphertext C. If b = 0, then the oracle returns C = EncK(m). If
b = 1, then the oracle returns C = f(r), for some randomly chosen
r ∈ {0, 1}l. In either case C is added to CList.

* A decryption oracle that takes a ciphertext C ∈ C as input and re-
turns DecK(C). The attacker may not query the decryption oracle
on any C ∈ CList.

The attacker terminates by outputting a guess b′ for b.
The attacker wins the game if b = b′ and its advantage is defined in the usual
way.

Let (Kf ,Kf −1) be the Turing machines that are used to simulate a KEM,
and (Df ,Df −1) be the Turing machines that are used to simulate a DEM. We
may define a pair of Turing machines (f, f−1) to simulate the overall hybrid
encryption scheme as follows. Let f be the Turing machine take two inputs r1

and r2, where r1 is the correct length to be used with Kf and r2 is the correct
length to be used with Df , and outputs (Kf (r1),Df (r2)). Similarly, let f−1 act
on ciphertexts (C1, C2) ∈ C by outputting (Kf −1(C1),Df −1(C2)).

Lemma 1. A hybrid encryption scheme composed of a simulatable KEM and a
simulatable DEM is simulatable as an encryption scheme.

The proof of this lemma follows easily from the definitions.

4 Plaintext-Aware KEMs

In this section we will develop criteria for a KEM and a DEM that are sufficient
to guarantee that a KEM-DEM hybrid encryption scheme is plaintext aware. We
will not claim that these are necessary conditions: it seems perfectly plausible
that there exist plaintext-aware KEM-DEM encryption schemes that do not have
plaintext-aware KEMs or DEMs. Indeed, we rather hope that this is the case, as
our definitions will require that a hybrid encryption scheme is IND-CCA2 before
we attempt to prove that it is fully plaintext aware.



4.1 Partial (PA1) Plaintext-Awareness

We separate the (relatively simple) PA1 case from the more complex PA2 case.
We would expect the KEM to be PA1 if no ciphertext creator can produce an
encapsulation that its associated plaintext extractor cannot decapsulate. Con-
sider a KEM (Gen,Encap,Decap) with a ciphertext creator A and associated
plaintext extractor A∗. Formally, we define this notion using REAL and FAKE
games again. We define the REAL game as follows:

1. The challenger generates a random key pair (pk, sk) = Gen(1k).
2. The attacker executes A on pk. If the attacker queries the decapsulation ora-

cle with a ciphertext C, then the decapsulation oracle returns Decap(sk, C).
The attacker terminates by outputting a bitstring x.

The FAKE game is defined as follows:

1. The challenger generates a random key pair (pk, sk) = Gen(1k).
2. The attacker executes A on pk. If the attacker queries the decapsulation ora-

cle with a ciphertext C, then the decapsulation oracle returnsA∗(C, pk, R[A]).
The attacker terminates by outputting a bitstring x.

Definition 10. A KEM is said to be PA1 if, for all ciphertext creators A, there
exists a plaintext extractor A∗ such that for all polynomial time distinguishers
Dist the advantage

|Pr[Dist(x) = 1|A plays REAL]− |Pr[Dist(x) = 1|A plays FAKE]| (8)

that Dist has in distinguishing whether A interacts with the REAL game or the
FAKE game is negligible as a function of the security parameter.

Theorem 4. A hybrid encryption scheme composed of a PA1 KEM and an
arbitrary DEM is PA1.

Proof We show that any ciphertext creator A for the encryption scheme can be
used to create a ciphertext creator Ā for the KEM. Since the KEM is plaintext
aware, there exists a plaintext extractor Ā∗ for Ā. We then use Ā∗ to construct
a plaintext extractor A∗ for A.

Let A be a ciphertext creator for the hybrid encryption scheme. We define
the ciphertext creator Ā for the KEM as the algorithm that executes A. If A
queries the decryption oracle with a ciphertext (C1, C2), then Ā queries the de-
capsulation oracle with encapsulation C1. If the oracle returns ⊥ then Ā returns
⊥ to A. Otherwise the oracle returns a key K and Ā returns DecK(C2) to A.

Since Ā is a valid ciphertext creator for the KEM, there exists a plaintext
extractor Ā∗. We define a plaintext extractor A∗ for A as follows. On the sub-
mission of a ciphertext (C1, C2), A∗ executes Ā∗ on C1. If Ā∗ returns ⊥, then
A∗ returns ⊥ to A. Otherwise Ā∗ returns a key K, and Ā∗ returns DecK(C2).
It is easy to see that the system in which A interacts with its decryption oracle
(in the REAL or FAKE game) is the same as Ā interacting with its decryption
oracle in the same game. Hence, the outputs of A must be indistinguishable
regardless of the game which A is playing. ut

Therefore, using the result of Bellare and Palacio [4], we have that:



Corollary 1. A hybrid encryption scheme composed of an IND-CPA and PA1
KEM, and an IND-PA DEM, is IND-CCA1 secure.

Theorem 4 also provides necessary conditions.

Theorem 5. If the family of hybrid encryption schemes created by composing a
KEM (Gen,Encap,Decap) with any arbitrary DEM (that takes keys of the length
produced by the KEM) are all PA1, then the KEM is PA1.

Proof Consider the DEM (Enc,Dec) given by

EncK(m) = m⊕K DecK(C) = C ⊕K . (9)

The hybrid encryption scheme formed by composing the KEM (Gen,Encap,Decap)
with this DEM is PA1. Let A be any ciphertext creator for the KEM, and define
Ā to be the ciphertext creator for the overall hybrid encryption scheme that
runs as follows.

1. Execute A. If A requests the decapsulation of the encapsulation C1, then
Ā submits a the ciphertext (C1, 0l) to the decryption oracle, where l is the
(pre-defined) length of the symmetric keys produced by the KEM. The oracle
responds with a message m. Ā returns m to A.

2. A terminates by outputting a bit-string x. Ā terminates and outputs x.

Since m = 0l ⊕ K = K, it is clear that if there exists a successful plaintext
extractor Ā∗ for Ā, then there exists a successful plaintext extractor A∗ for A
which runs as follows.

1. Execute Ā∗ on the input (C, 0l) and receive a value m from this subroutine.
2. Output m.

ut

4.2 PA1+ Plaintext-Awareness

In order to show that the Cramer-Shoup scheme is PA2 plaintext aware, we will
show that it is PA1+ plaintext aware and that it is simulatable. In this section,
we will demonstrate analogous results to the previous section, and show that a
KEM/DEM scheme composed of a PA1+ KEM and an arbitrary DEM is PA1+.

We start by defining what we mean by a PA1+ KEM. The PA1+ model is
the obvious extension of the PA1 model given by allowing the ciphertext creator
access to a randomness oracle that returns fixed-length random strings. Formally,
we define the REAL game as:

1. The challenger generates a random key pair (pk, sk) = Gen(1k).
2. The attacker executes A on pk.

– If the attacker queries the randomness oracle, then the oracle generates a
fixed-length random string r ∈ {0, 1}l uniformly at random and returns
r to the attacker.



– If the attacker queries the decapsulation oracle with a ciphertext C, then
the decapsulation oracle returns Decap(sk, C).

The attacker terminates by outputting a bitstring x.

The FAKE game is defined as follows:

1. The challenger generates a random key pair (pk, sk) = Gen(1k).
2. The attacker executes A on pk.

– If the attacker queries the randomness oracle, then the oracle generates
a fixed-length random string r ∈ {0, 1}l uniformly at random, adds r to
RList and returns r to the attacker.

– If the attacker queries the decapsulation oracle with a ciphertext C, then
the decapsulation oracle returns A∗(C, pk, R[A],RList).

The attacker terminates by outputting a bitstring x.

Definition 11. A KEM is said to be PA1+ if, for all ciphertext creators A, there
exists a plaintext extractor A∗ such that for all polynomial time distinguishers
Dist the advantage

|Pr[Dist(x) = 1|A plays REAL]− |Pr[Dist(x) = 1|A plays FAKE]| (10)

that Dist has in distinguishing whether A interacts with the REAL game or the
FAKE game is negligible as a function of the security parameter.

Theorem 6. A hybrid encryption scheme composed of a PA1+ KEM and an
arbitrary DEM is PA1+.

The proof of this theorem can easily be adapted from the proof of Theorem 4.

4.3 Full (PA2) Plaintext-Awareness

The situation becomes more complex when we try to consider the use of an
encapsulation oracle. Stam [12] considers an encapsulation oracle that computes
(C,K) = Encap(pk) and returns C to the ciphertext creator A. Using the defini-
tion of PA2 given by augmenting the PA1 game with this encapsulation oracle,
he was able to show that:

Theorem 7 (Stam). A KEM that is IND-CPA and PA2 (in the random oracle
model) is IND-CCA2 secure.

This does not seem to be sufficient for our purposes. In order to show that
a hybrid encryption scheme composed of a PA2 KEM and a DEM (with certain
security properties) is a PA2 encryption algorithm, we are likely to wish to
show that any ciphertext creator A for which there exists no “good” plaintext
extractor can be adapted to create a ciphertext creator Ā for the KEM for which
there exists no good plaintext extractor, thus proving our result by contradiction.
This typically involves executing A as a subroutine of Ā. Suppose we adopt
Stam’s definition of PA2 plaintext awareness for a KEM. Now, whenever A



queries the encryption oracle, we may query the encapsulation oracle to find an
encapsulation C1 for which we do not know the associated symmetric key. How,
then, do we compute the DEM encryption required by the attacker A?

It may be thought that a solution lies in appealing to the fact that the KEM
is IND-CCA2 secure and using a random symmetric key K to compute the re-
maining part of the encryption. However, in this case, the ciphertext creator
Ā will have to randomly generate a symmetric key K and execute the (proba-
bilistic) plaintext extractor P. This gives any plaintext extractor Ā∗ for Ā a lot
more information than was given to any plaintext extractor A∗ for A. It seems
quite likely that a good plaintext extractor for Ā could exist, even when a good
plaintext extractor for A could not.

On the other hand, we may wish to consider an encapsulation oracle that
returns (C,K) = Encap(pk) to the ciphertext creator. In this case the ciphertext
creator will never be able to use this oracle to create encapsulations for which he
does not know the associated symmetric key. This means we can not model the
situation whereby the ciphertext creator produces a ciphertext (C1, C2) without
knowing the underlying message by obtaining an encapsulation C1 for which he
does not know the underlying symmetric key and forging a DEM encryption
without knowing the underlying message or key associated with it. Hence, we
cannot model the full range of IND-CCA2 attacks and it is possible for a hybrid
encryption scheme to not be plaintext aware, even if the underlying KEM is
PA2.

To solve this problem we introduce a new concept, which we term PA2[Φ].
We allow Φ to be any collection of state-based, polynomial-time probabilistic
Turing machines φ. The PA2[Φ] model is similar to the PA1 model, but is aug-
mented with an encapsulation oracle that, when given some query information
aux , computes (C,K) = Encap(pk) and returns (C, φ(K, aux )) to the ciphertext
creator. We will only be interested in the case where Φ is the set of functions

φ(K, aux ) = EncK(P(aux )) (11)

where P is a plaintext creator. Hence, φ takes the place of the plaintext cre-
ator and the DEM encryption algorithm. However, we note that if Null is the
Turing machine that terminates giving no output, then PA2[{Null}] security is
equivalent to Stam’s notion of PA2 security.

Consider a KEM (Gen,Encap,Decap), and a ciphertext creator A with as-
sociated plaintext extractor A∗. We define PA2[Φ] using REAL and FAKE
games. Let φ be any function in Φ. The REAL game is defined as follows:

1. The challenger generates a random key pair (pk, sk) = Gen(1k) and creates
an empty list of encapsulations CList.

2. The attacker executes A on pk.
– If the attacker queries the encryption oracle with query information aux ,

then the challenger generates an encapsulation (C, K) = Encap(pk) and
computes φ(K, aux ). It adds (C, φ(K, aux )) to CList and returns this
value to the ciphertext creator.



– If the attacker queries the decapsulation oracle with a ciphertext C, then
the decapsulation oracle returns D(sk, C). The attacker may not query
the decapsulation oracle with any encapsulation C for which there exists
a value α such that (C, α) ∈ CList.

The attacker terminates by outputting a bitstring x.

The FAKE game is defined as:

1. The challenger generates a random key pair (pk, sk) = G(1k) and creates an
empty list of ciphertexts CList.

2. The attacker executes A on pk.
– If the attacker queries the encryption oracle with query information aux ,

then the challenger generates an encapsulation (C, K) = Encap(pk) and
computes φ(K, aux ). It adds (C, φ(K, aux )) to CList and returns this
value to the ciphertext creator.

– If the attacker queries the decapsulation oracle with a ciphertext C, then
the decapsulation oracle returns A∗(C, pk, R[A],CList). The attacker
may not query the decapsulation oracle with any encapsulation C for
which there exists a value α such that (C, α) ∈ CList.

The attacker terminates by outputting a bitstring x.

Definition 12. A KEM is said to be PA2[Φ] if, for all ciphertext creators A,
there exists a plaintext extractor A∗ such that for all φ ∈ Φ and polynomial time
distinguishers Dist the advantage

|Pr[Dist(x) = 1|A plays REAL]− |Pr[Dist(x) = 1|A plays FAKE]| (12)

that Dist has in distinguishing whether A interacts with the REAL game or the
FAKE game is negligible as a function of the security parameter.

We will show that a PA2 KEM and an unforgeable DEM combine to form a
PA2 encryption scheme. We may answer encryption queries using the function
φ(K, aux ) = EncK(P(aux )). We may answer decryption queries as we do in
the PA1 case, except for decryption queries of the form (C1, C2) where C1 is an
encapsulation returned by the encapsulation oracle. In this case, we return ⊥
as it should be impossible for the attacker to find a new DEM ciphertext C2 as
the DEM is unforgeable. However, in order to prove this, we require that the
KEM returns random-looking symmetric keys whenever the encryption oracle is
queried. This is a generalisation of the normal IND-CCA2 security criterion for
a KEM. Thus, our approach is only useful in showing that a hybrid scheme is
plaintext-aware, and not that it is IND-CCA2, as our approach already requires
the use of an IND-CCA2 KEM and an IND-CCA DEM2. The generalised notion
of IND-CCA2 security we require is given below.
2 It may not be immediately obvious why the DEM must be IND-CCA secure. If we

are using plaintext awareness to prove the security of a scheme, then we still require
that the scheme is IND-CPA secure, which means that the DEM must be at least
IND-PA secure. The conditions of the theorem which allow the combination of a
secure KEM and a secure DEM to give a plaintext-aware encryption scheme insist
that the DEM be INT-CCA+ secure. Any DEM that is IND-CPA and INT-CCA+
secure must be IND-CCA secure.



Definition 13. Consider the following game played between a challenger and
an attacker A:

1. The challenger generates a key pair (pk, sk) = G(1k), prepares an empty list
of ciphertexts CList, and chooses a random bit b ∈ {0, 1}.

2. The attacker executes A on pk. The attacker has access to two oracles.
– If the attacker queries the encapsulation oracle, then the challenger com-

putes (C, K0) = Encap(pk). It also computes a random key K1 of the
same length as K0, adds C to CList and returns (C,Kb) to the attacker.

– If the attacker queries the decapsulation on C, then the challenger returns
Decap(sk, C). The attacker may not query the decapsulation oracle on
any ciphertext C ∈ CList.

The attacker terminates by outputting a guess b′ for b.

A KEM is said to be IND-CCA+ secure if every polynomial-time attacker’s
advantage

|Pr[b = b′]− 1/2| (13)

is negligible as a function of the security parameter.

Lemma 2. A KEM is IND-CCA2 if and only if it is IND-CCA+.

We may now prove the main theorem of this section.

Theorem 8. Suppose that a KEM-DEM encryption scheme is composed of an
INT-CCA+ secure DEM (Enc,Dec) and a KEM (Gen,Encap,Decap) that is
both IND-CCA+ and PA2[Φ] secure, where Φ is the set of functions

φ(K, aux ) = EncK(P(aux )) (14)

and P is any plaintext creator. Then the encryption scheme is PA2.

Sketch Proof We will use standard game-hopping techniques. Let A be a cipher-
text creator for the hybrid encryption scheme, P be the plaintext creator and
φ be the function defined above. Let Dist be any polynomial-time distinguisher
for A and let Game 1 be similar to the REAL game, but where decryption
oracle queries are responded to as follows.

– If A queries the decryption oracle with a ciphertext (C1, C2), then check
whether (C1, C

′
2) ∈ CList for some C ′2. If so, return ⊥ to A. Otherwise,

return D(sk, (C1, C2)).

Let W0,Dist is the event that Dist(x) = 1 when A interacts in the REAL game
and W1,Dist is the event that Dist(x) = 1 when A interacts with decryption
oracle in Game 1. Then there exists an attacker A1 for the IND-CCA+ game
for the KEM with advantage ε1 and an attacker A2 for the INT-CCA+ game
for the DEM with success probability ε2 such that

|Pr[W0,Dist ]− Pr[W1,Dist ]| ≤ 4ε1 + ε2 . (15)



This result is obtained by performing three separate game-hops. First we change
the way the encryption and decryption oracles work so that random keys are used
to encrypt and decrypt ciphertexts for which the encapsulation is the response
from the encryption oracle. Next we always respond to decryption queries where
the encapsulation is the same as in a response from the encryption oracle by
outputting ⊥, noting that if this is not the correct response, then the attacker
has forged a new DEM ciphertext. Lastly, we change the way the encryption
oracle works back to using the correct keys computed by the KEM, rather than
with random keys.

Now, we define the ciphertext creator Ā for the KEM as the algorithm that
executes A. We will assume, without loss of generality, that Ā maintains a copy
of CList. During A’s execution:

– If A queries the decryption oracle with a ciphertext (C1, C
′
2), then Ā checks

whether (C1, C2) ∈ CList for some value of C ′2. If so, Ā returns ⊥ to A.
Otherwise, Ā queries the encapsulation oracle with C1. If the oracle returns
⊥, then Ā returns ⊥ to A. Otherwise the oracle returns a symmetric key K,
and Ā returns DecK(C2) to A.

– If A queries the encryption oracle, then Ā passes the query directly to the
encapsulation oracle of the KEM and returns the result.

Since Ā is a valid ciphertext creator for the KEM, there exists a plaintext ex-
tractor Ā∗ and ε3 ≥ 0, such that:

|Pr[Dist(x) = 1|Ā plays REAL]− |Pr[Dist(x) = 1|Ā plays FAKE]| ≤ ε3 .
(16)

We define a plaintext extractor A∗ for A as follows. On the submission of a
ciphertext (C1, C2), A∗ checks whether (C1, C

′
2) ∈ CList for some value of C ′2.

If so, A∗ returns ⊥. Otherwise, A∗ executes Ā∗ on C1. If Ā∗ returns ⊥, then
A∗ returns ⊥ to A. If Ā∗ does not return ⊥, then it must return a key K, and
A∗ returns DecK(C2) to A. Let W2,Dist be the event that Dist(x) = 1 when A
interacts with A∗ instead of the proper decryption oracle.

It is easy to see thatA produces output x in Game 1 if and only if Ā produces
output x in REAL. Similarly, A produces output x when interacting with A∗
(i.e. in the FAKE game) if and only if Ā produces output x when interacting
with Ā∗ (i.e. in the FAKE game). Therefore |Pr[W1,Dist ] − Pr[W2,Dist ]| ≤ ε3
and so

|Pr[Dist(x) = 1|A plays REAL]−|Pr[Dist(x) = 1|A plays FAKE]| ≤ 4ε1+ε2+ε3 .
(17)
ut

4.4 Plaintext Awareness and IND-CCA2 KEMs

As a final note, we remark that the PA2[Φ] concept can also be used to prove
the IND-CCA2 security in the standard model. If we let

φ1(K, aux ) = K (18)



and
φ2(K, aux ) = K ′ (19)

where K ′ is a randomly generated bit-string of the same length as K, and set
Φ = {φ1, φ2}, then a KEM that is IND-CPA and PA2[Φ] secure is necessarily
IND-CCA2 secure (in the standard model). This generalises Stam’s earlier result,
given as Theorem 7. The proof of this can easily be adapted from Stam’s work
[12].

5 The Cramer-Shoup Scheme

In this section we will show that the Cramer-Shoup encryption scheme, when
applied to fixed length messages, is fully plaintext aware (PA2). This will prove
a conjecture of Bellare and Palacio [4] by showing PA2 schemes can exist in the
standard model. For our purposes, the Cramer-Shoup scheme will consist of the
Cramer-Shoup KEM and an Encrypt-then-MAC DEM using a suitably secure
encryption algorithm and MAC algorithm. We will define the Cramer-Shoup
KEM as working over an arbitrary group G: this will make it easier to separate
the properties required from the scheme and those that are required from the
group.

Definition 14 (Cramer-Shoup KEM). The Cramer-Shoup KEM is defined
by the following three algorithms:

– The key generation algorithm which runs as follows:
1. Generate a cyclic group G of order q and a generator g for G. Typically

this will be either a subgroup of the finite field GF (p) or a suitable elliptic
curve group.

2. Randomly select w ∈ Z∗q and set W = gw.
3. Randomly select elements x, y and z from Zq, and set X = gx, Y = gy,

and Z = gz.
4. The public key consists of (g, p, q,W,X, Y, Z). The private key consists

of (g, p, q, w, x, y, z). Note that both the encapsulation and decapsulation
algorithms also make use of a hash function Hash : G × G → Zq and a
key derivation function KDF : G × G → {0, 1}n, where n is the (fixed)
length of the required symmetric key.

– The encapsulation algorithm which runs as follows:
1. Randomly select u ∈ Zq and set A = gu, Â = Wu and B = Zu.
2. Set K = KDF (A,B).
3. Set v = Hash(A, Â).
4. Set D = XuY uv.
5. Output the key K and the encapsulation (A, Â, D).

– The decapsulation algorithm which runs as follows:
1. Set v = Hash(A, Â).
2. Check that D = Ax+yv and that Â = Aw. If not, output ⊥ and halt.
3. Otherwise, set B = Az.
4. Output K = KDF (A,B).



5.1 Cramer-Shoup is PA1+

In order to show that the Cramer-Shoup scheme is PA2, we need to show two
separate things: that it is PA1+ and that it is simulatable. A simple extension
of a theorem by Bellare and Palacio [4] demonstrates that Cramer-Shoup is PA1
secure under the DHK assumption. We now extend this theorem to the PA1+
case.

The DHK assumption states that any attacker given a random element W in
a group generated by g, can only compute a Diffie-Hellman triple (W, gu,Wu) if
they know u.

Definition 15 (DHK). Let G be a cyclic group G of order q and a generator
g for G. The DHK assumption for G is that for any polynomial-time algorithm
A there exists a polynomial-time extractor A∗ such that the probability that A
wins the following game is negligible.

1. The challenger randomly chooses an element W ∈ 〈g〉.
2. The attacker executes A on the input W . The attacker has access to an oracle

which, when given a triple (W,A, Â) ∈ 〈g〉3, executes A∗(W,A, Â,R[A]) and
returns the result.

The attacker wins the game if it submits a triple of the form (W, gu,Wu) to
the oracle and the oracle fails to return u. The challenger wins the game if A
terminates without this event occurring.

Theorem 9. The Cramer-Shoup KEM is PA1+ under the DHK assumption

Proof Let A be any PA1+ ciphertext creator and suppose that it makes at most
qD decryption oracle queries. We use the assumption that we can find algorithms
that solve the DHK problem to build a plaintext extractor A∗ for A.

Consider the following plaintext extractor A∗ for A that makes use of a DHK
oracle. When it is first invoked, A∗ receives the public key (W,X, Y, Z) and the
random coins R[A] of A. If A makes a decryption oracle query on the ciphertext
(A, Â,D) then A∗ proceeds as follows:

1. Query the DHK oracle with the triple (W,A, Â) and the coins (R[A],RList).
The oracle will return a value u ∈ Zq or the error symbol ⊥. If the oracle
returns ⊥, then return ⊥ and terminate.

2. Set v = Hash(A, Â).
3. Check that A = gu, Â = Wu and D = XuY uv . If not, return ⊥.
4. Set B = Zu.
5. Set K = KDF (A,B).
6. Return K.

It is clear that A∗ correctly simulates the decapsulation algorithm providing that
it obtains correct solutions to the DHK problem from the DHK oracle. The DHK
assumption states that there exists an algorithm A′ that can answer the queries
of the DHK oracle given the randomness that A used in creating these queries.
It is important to note that because the DHK oracle must give back answers



which are completely correct and not answers that are merely indistinguishable
from correct by A, it is enough to give A′ access to the random coins that A
used in creating its challenge. In other words, it is sufficient for A′ to take as
input the random coins R[A] and all the random blocks RList that have been
received by A up to the point at which the DHK oracle query was made. Hence,
by the DHK assumption, there exists an algorithm A′ that correctly responds
to the DHK oracles queries, and so there exists a plaintext extractor A∗ for A.
Hence, the Cramer-Shoup KEM is PA1+. ut

5.2 Cramer-Shoup is Simulatable

In order to show that the Cramer-Shoup scheme is PA2, it only remains to show
that it is simulatable, and, by Lemma 1, we know that it is enough to show that
the KEM and DEM are simulatable on their own.

We construct our DEM from a suitably secure block cipher running in counter
mode and from the EMAC MAC algorithm. Details of both of these schemes can
be found in, for example, [8]. By the work of Bellare et al. [2] and Petrank and
Rackoff [10] we have the following results:

Theorem 10 (Bellare et al.). If a block cipher is indistinguishable from a
random permutation, then the symmetric encryption scheme given by counter
mode encryption is simulatable.

Theorem 11 (Petrank and Rackoff). If a block cipher is indistinguishable
from a random permutation, then the EMAC message authentication code is
simulatable.

Therefore the DEM composed of these two primitives is simulatable. We
will now show that the Cramer-Shoup KEM is simulatable providing that it is
instantiated on a group that is simulatable.

Definition 16 (Simulatable Group). A group G is simulatable if there exist
two polynomial-time Turing machines (f, f−1) such that:

– f is a deterministic Turing machine that takes elements r ∈ {0, 1}l as input,
and outputs elements of G.

– f−1 is a probabilistic Turing machine that takes elements of h ∈ G as input,
and outputs elements of {0, 1}l.

– f(f−1(h)) = h for all h ∈ G.
– There exists no polynomial-time attacker A that has a non-negligible advan-

tage in winning the following game:
1. The challenger randomly chooses a bit b ∈ {0, 1}.
2. The attacker executes A on the input 1k. The attacker has access to an

oracle Of that takes no input, generates a random element r ∈ {0, 1}l,
and returns r if b = 0 and f−1(f(r)) if b = 1. The attacker terminates
by output a guess b′ for b.

The attacker wins if b = b′ and its advantage is defined in the usual way.



– There exists no polynomial-time attacker A that has a non-negligible advan-
tage in winning the following game:
1. The challenger randomly chooses a bit b ∈ {0, 1}.
2. The attacker executes A on the input 1k. The attacker has access to

an oracle Of that takes no input. If b = 0, then the oracle generates a
random r ∈ {0, 1}l and returns f(r). Otherwise the oracle generates a
random h ∈ G and returns h. The attacker terminates by outputting a
guess b′ for b.

The attacker wins if b = b′ and its advantage is defined in the usual way.

Theorem 12. The Cramer-Shoup KEM, when instantiated on a simulatable
group, is simulatable under security standard assumptions.

Proof Let A be any attacker for the simulation games and assume it makes at
most qE encapsulation oracle queries and qD decapsulation oracle queries. Let
Game 1 be the game in which interacts with correct encryption and decryption
oracles. Let Game 2 be the game in which, for its first query to the encapsulation
oracle, the attacker is interacting with the following algorithm rather than the
true encapsulation algorithm:

1. Randomly select u ∈ Zq and set A = gu.
2. Randomly select û ∈ Zq \ {u} and set Â = gû.
3. Randomly select K ∈ {0, 1}n.
4. Set v = Hash(A, Â) and D = XuY uv.
5. Output the encapsulation (A, Â,D) and the symmetric key K.

Let Wi be the event that the attacker A wins Game i. We use a result of Cramer-
Shoup [6] to take us most of the way towards our goal.

Lemma 3 (Cramer-Shoup).

|Pr[W1]−Pr[W2]| ≤ AdvDDH + AdvTCR + AdvDist(KDF ) + (qE + 3)/q (20)

These security notions are defined in Appendix A.
Let Game 3 be the game in which Â is computed as follows:

2. Randomly select û ∈ Zq and set Â = gû.

Clearly the two games are identical unless û = u, which occurs with probability
1/q. So,

|Pr[W2]− Pr[W3]| ≤ 1/q . (21)

Let Game 4 be the game in which D is computed as follows:

4. Randomly select r′ ∈ Zq and set D = gr′Y uv.

Clearly, any difference in behaviour of the attacker between Game 3 and Game
4 means that he has distinguished between the Diffie-Hellman triple (A,X, Xu)
and (A,X, gr′). [Note that the proof makes use of the fact that we may compute
Y uv as Avy in the case that we know y but do not know the discrete logarithm
of A.] Hence,

|Pr[W3]− Pr[W4]| ≤ AdvDDH . (22)

Let Game 5 be the game in which D is computed as follows:



4. Randomly select r′ ∈ Zq and set D = gr′ .

This difference is pure conceptual, and so Pr[W4] = Pr[W5].
Next, let Game 6 be the game in which the first encapsulation oracle is

given by

1. Randomly select A ∈ G.
2. Randomly select Â ∈ G.
3. Randomly select D ∈ G.
4. Randomly select K ∈ {0, 1}n.
5. Output the encapsulation (A, Â,D) and the symmetric key K.

Again, this difference is purely conceptual, and so Pr[W5] = Pr[W6]. Therefore,

|Pr[W1]−Pr[W6]| ≤ 2·AdvDDH +AdvTCR+AdvDist(KDF )+(qE+4)/q . (23)

Let Game 7 be the game in which each of the encapsulation oracle queries is
answered using the algorithm in Game 6, and not just the first one. By repeated
application of the previous results we have that:

|Pr[W1]−Pr[W7]| ≤ qE

{
2·AdvDDH +AdvTCR+AdvDist(KDF ))+(qE +4)/q

}
.

(24)
Lastly, suppose the group G can be simulated by the pair of Turing machines

(Gf ,Gf −1), and let Game 8 be the game in which the encapsulation oracle
computes the ciphertexts as follows.

1. Randomly select r1 ∈ {0, 1}l and set A = Gf (r1).
2. Randomly select r2 ∈ {0, 1}l and set Â = Gf (r2).
3. Randomly select r3 ∈ {0, 1}l and set D = Gf (r3).
4. Randomly select K ∈ {0, 1}n.
5. Output the encapsulation (A, Â,D) and the symmetric key K.

Since the group is simulatable, the difference between success probabilities when
the encapsulation is provided as in Game 6 and in Game 7 is negligible. However
this means that the difference between Pr[W1] and Pr[W8] is negligible, and so
the KEM is simulatable. ut

Lastly, we wish to show that simulatable groups exist. The obvious method
to attempt to simulate a cyclic group G of order q with generator g is to define

f : {0, 1}l → G by setting f(r) = gr (25)

where l À q. This provides a perfectly adequate definition of f , but leaves us
know way of computing a machine f−1 (with solving the discrete logarithm
problem in G!). We are therefore required to use sneakier techniques.

Lemma 4. If q and p are primes such that p = 2q + 1, and G is the subgroup
of Z∗p of order q, then G is simulatable.

Proof Suppose we let l be a large number, say α(dlog2(p)e+ β) for some integer
values α and β, and define f to work as follows:



1. Split the input x ∈ {0, 1}l into α blocks x1, . . . , xα of length dlog2(p)e+ β.
2. Compute X1 = x1 mod p.
3. Test whether X1 ∈ G. If so, output X1 and halt. Otherwise repeat with the

next input block.

For large enough values of β the value of each Xi will be (approximately) uni-
formly distributed over Zp. Furthermore, this algorithm will only fail to output
an (almost) randomly selected element of G if none of the Xi values are in G.
The probability that this occurs is bounded above by 1/2α as p = 2q + 1. This
value is negligible if, for example, α = k.

We also need to define f−1. Let g be a generator of G. For an input gx ∈ G,
f−1 can be computed as follows:

1. For each i with 1 ≤ i ≤ α, randomly choose a bit b ∈ {0, 1}.
2. If b = 0 then:

(a) Randomly select a bit string xi of length dlog2(p)e+ β.
(b) Compute Xi = xi mod p.
(c) Test whether Xi ∈ G. If not, output xi and continue the algorithm.
(d) Otherwise choose another bit string xi and start the subroutine again.

3. If b = 1 then:
(a) Randomly select a bit string xi of length dlog2(p)e+ β.
(b) Compute Xi = xi mod p.
(c) Compute δ = Xi − gx mod p.
(d) Let ∆ be the bit string of length dlog2(p)e+β that represents δ. If xi +∆

(consider as integers) is greater than 2dlog2(p)e+β then randomly select a
new bit string xi and start the subroutine again.

(e) Otherwise, compute x′i = xi + ∆.
(f) Output x′i.
(g) Output (α − i)(dlog2(p)e + β) random bits and terminate the whole

algorithm

We will allow the inner-loops to run at most k times. Each inner loop has a failure
probability that is bounded above by 1/2+1/2p. Therefore the probability that
the inner loop fails to produce an output is negligible. Similarly, the function
fails to produce a valid output if the bit b = 0 is continually selected. This occurs
with probability 1/2α, which is negligible if, for example, α = k. ut

6 Conclusion

We have shown that the Cramer-Shoup scheme is PA2 plaintext aware and there-
fore demonstrated the existence of fully plaintext aware encryption algorithms.
However, in order to do this, we have had to use results which demonstrate
that the Cramer-Shoup scheme is IND-CCA2 secure already. Therefore, if the
primary goal of plaintext awareness is to make proving the security of an en-
cryption scheme easier, then the results of this paper are of little use. We present
these results not as a practical tool, but as a proof that PA2 plaintext aware



schemes can be shown to exist. Given this knowledge, further research can be
done into showing that other schemes that are not currently known to be IND-
CCA2 secure in the standard model.

Another drawback of this research is that we have been forced to restrict our
attention to a variant of Cramer-Shoup that only encrypts messages of a fixed,
given length. Clearly it would be better if the need for this condition could be
removed.

We have also proposed a new technique for proving the PA2 plaintext aware-
ness of a scheme, which we have termed encryption simulation. The original
version of this paper suggested that encryption simulation might be useful in
proving that other encryption schemes were plaintext aware, and so IND-CCA2
secure. In particular, the paper discussed the possibility of showing that ECIES
[1] was plaintext aware. However, due to Theorem 2, this now seems unlikely
to work, as it should be simpler to show that a scheme is IND-CCA2 secure
than to show that it is simulatable. Nevertheless, it still seems like that ECIES
is plaintext-aware and this may provide an avenue by which one can prove that
ECIES is secure in the standard model and under standard assumptions. Such
a result would be a major step forward in the field of provable security.

Acknowledgements

The author would like to thank Martijn Stam of the University of Bristol for
his detailed and insightful comments on the several drafts of this paper. In
particular, Theorem 2 of Section 3.1 and the results of Section 4.4 are the direct
result of his comments and questions. Thanks should also be given to Nigel
Smart for his comments. The author also gratefully acknowledges the financial
support of the EPSRC.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. DHAES: An encryption scheme based
on the Diffie-Hellman problem. Submission to P1363a: Standard Specifications for
Public-Key Cryptography, Additional Techniques, 2000.

2. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In Proceedings of the 38th Symposium on Foundations
of Computer Science, IEEE, 1997.

3. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. In H. Krawczyk, editor, Advances
in Cryptology – Crypto ’98, volume 1462 of Lecture Notes in Computer Science,
pages 26–45. Springer-Verlag, 1998.

4. M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without
random oracles. In P. J. Lee, editor, Advances in Cryptology – Asiacrypt 2004,
volume 3329 of Lecture Notes in Computer Science, pages 48–62. Springer-Verlag,
2004.

5. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Alfredo De Santis,
editor, Advances in Cryptology – Eurocrypt ’94, volume 950 of Lecture Notes in
Computer Science, pages 92–111. Springer-Verlag, 1994.



6. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2004.

7. A. W. Dent. Hybrid cryptography. Available from
http://eprint.iacr.org/2004/210/, 2004.

8. A. W. Dent and C. J. Mitchell. User’s Guide to Cryptography and Standards.
Artech House, 2005.

9. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure
under the RSA assumption. In J. Kilian, editor, Advances in Cryptology – Crypto
2001, volume 2139 of Lecture Notes in Computer Science, pages 260–274. Springer-
Verlag, 2001.

10. E. Petrank and C. Rackoff. CBC MAC for real-time data sources. Journal of
Cryptography, 13(3):315–339, 2000.

11. V. Shoup. OAEP reconsidered. In J. Kilian, editor, Advances in Cryptology –
Crypto 2001, volume 2139 of Lecture Notes in Computer Science, pages 239–259.
Springer-Verlag, 2001.

12. M. Stam. A key encapsulation mechanism for NTRU. To Appear in Cryptography
and Coding – 10th IMA Conference, 2005.

A Security Notions for the Cramer-Shoup scheme

The Cramer-Shoup scheme uses several different security assumptions.

Definition 17 (DDH). Let p be a large prime, q be a large prime that divides
p − 1 and g ∈ Z∗p be an element of order q chosen in same way as in the key
generation algorithm of Cramer-Shoup. For any polynomial-time algorithm A
that outputs a single bit, we define AdvDDH to be

|Pr[A(p, q, g, gx, gy, gxy) = 1|x, y chosen randomly from Zq]
−Pr[A(p, q, g, gx, gy, gz) = 1|x, y, z chosen randomly from Zq]| (26)

We will assume that AdvDDH is negligible as a function of the security param-
eter for all polynomial-time algorithms.

Definition 18 (TCR). Let p be a large prime, q be a large prime that divides
p − 1 and g ∈ Z∗p be an element of order q chosen in same way as in the key
generation algorithm of Cramer-Shoup. Furthermore, let Hash be the hash func-
tion used within the Cramer-Shoup scheme. For any polynomial-time algorithm
A, we define AdvTCR to be

Pr[A(p, q, g, φ∗) 6= φ∗ ∧Hash(A(p, q, g)) = Hash(φ∗)
|φ∗ chosen randomly from 〈g〉 × 〈g〉] (27)

Here TCR stands for target collision resistance. We will assume that AdvTCR
is negligible as a function of the security parameter for all polynomial-time al-
gorithms.



Definition 19 (KDF). Let p be a large prime, q be a large prime that divides
p − 1 and g ∈ Z∗p be an element of order q chosen in same way as in the
key generation algorithm of Cramer-Shoup. Furthermore, let KDF be the key
derivation function used within the Cramer-Shoup scheme and l be the length of
symmetric keys that the scheme is required to produce. Let E1 be the event that
A and B are chosen randomly from 〈g〉 and E2 be the event that A is chosen
randomly from 〈g〉 and K is chosen randomly from {0, 1}n. For any polynomial
time algorithm A that outputs a single bit, we define AdvDist(KDF ) to be

|Pr[A(p, q, g, A,KDF (A,B)) = 1|E1]− Pr[A(p, q, g, A,K) = 1|E2]| (28)

We will assume that AdvDist(KDF ) is negligible as a function of the security
parameter for all polynomial-time algorithms.

B Major Differences from Version 1

This is the second version of this paper to appear on the web, and since the
focus of the paper has changed significantly since the first version was published,
I thought it might be helpful to point the reader to these changes.

– Focus. The original focus of this paper was on the criteria that a KEM
and DEM should fulfil in order that the overall hybrid encryption scheme be
plaintext aware. In particular, much was made of the results of Section 4.3.
However, since the results on encryption simulation seem likely to have a
greater bearing on future research, the focus of the paper has been changed
so that these results are highlighted more prominently.

– A false claim was corrected. The original version of this paper claimed
that a simulatable and PA1 encryption scheme was PA2. Subsequently an
error was found in the proof, and the paper was withdrawn. This version
presents a slightly weaker result, that a simulatable and PA1+ encryption
scheme is PA2, and proves that the Cramer-Shoup scheme is PA1+.

– It has been noted that simulatability implies IND-CCA2 security.
This was noted by Martijn Stam, and pretty much kills off the idea that
encryption simulation can be used to help prove that ECIES is IND-CCA2
secure in the standard model.

– The criteria for a KEM to be PA1 is now necessary as well as
sufficient. Theorem 5 was not in the original version of the paper. This
provides an equivalence between PA1 KEMs and hybrid encryption schemes
that are PA1 regardless of the DEM used. It does not say anything about
schemes that are PA1 with a particular DEM.

– The relationship between PA2[Φ] and IND-CCA2 KEMs has been
corrected. The results of Section 4.4 were originally incorrect. Thanks to
Martijn Stam for pointing this out to me.


