
A Matching Lower Bound on the Minimum Weight of SHA-1

Expansion Code

Charanjit S. Jutla
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598
csjutla@watson.ibm.com

Anindya C. Patthak∗

University of Texas at Austin
Austin, TX 78712

anindya@cs.utexas.edu

Abstract

Recently, Wang, Yin, and Yu ([WYY05b]) have used a low weight codeword in the SHA-1
message expansion to show a better than brute force method to find collisions in SHA-1. The
smallest minimum weight codeword they report has a (bit) weight of 25 in the last 60 of the 80
expanded words. In this paper we show, using a computer assisted method, that this is indeed
the smallest weight codeword. In particular, we show that the minimum weight over GF2 of
any non-zero codeword in the SHA-1 (linear) message expansion code, projected on the last 60
words, is at least 25.

1 Introduction

Recently, in the sequence of results ([CJ98, WFLY04, BC04a, BC04b, WYY05a]) culminating in
the celebrated work of [WYY05b] has shown a method to find collisions in SHA-1 with only 269

(SHA-1) hash operations. This is better than the 280 hash operations required to find a collision
using the birthday attack. One key ingredient of their result is a low weight codeword in the SHA-1
(linear) message expansion code, which they found using a computer search. This codeword (of
length 80 32-bit words) has a (bit) weight of only 25, when counting only the bits ON in the last 60
words. In [RO05, MP05] the authors using computer assisted methods, report similar low weight
codewords. However, they give no lower bound.

A useful heuristic that is often used (and we stress that the actual analysis is much more complex)
is that each bit which is ON in the last 60 words contributes to lowering the success probability of
the attack by 22.5. Using the 25 weight codeword, one can then estimate the probability of success
of the attack to be about 2−62 (they actually use a 27 weight codeword, as some other conditions
need to be met as well).

The question then naturally arises as to whether there are other low weight codewords lurking,
especially of weight less than 25 in the last 60 words. We settle this open problem in the negative
in this paper. In a recent paper [JP05], we have developed a novel computer assisted technique to
lower bound the minimum weight of SHA-1 like message expansion codes. The code considered in

∗This work was done while the author was visiting IBM T.J. Watson Research Center, N.Y.

1



that paper yields a minimum weight of 72 in the last 60 words, which we argue makes a modified
SHA-1 (called SHA1-IME) immune to recent differential attacks.

The SHA-1 code by comparison is relatively simple, and since we need to prove a lower bound of
only 25, the method becomes much simpler. However, this serves as a nice example (and a primer)
of how the general technique works for proving much better lower bounds.

2 SHA-1 Message Expansion Code and A Lower Bound

We begin with recalling the message expansion code in SHA-1 ([Uni95]). Let 〈M0, · · · ,M15〉 be the
512 bits input to SHA-1, where each Mi is a word of 32 bits. Then the message expansion phase
outputs 80 words 〈W0, · · · , W79〉 that are computed as follows:

SHA-1 :
Wi = Mi for i = 0, 1, · · · , 15, and

Wi = (Wi−3⊕Wi−8⊕Wi−14⊕Wi−16) <<< 1 for i = 16, · · · , 79.
(1)

The notation “<<< 1” (“<<< i”) denotes a one bit (i bit, respectively) rotation to the left.
Note that above is a linear code.

Unfortunately, the above message expansion code in SHA-1 is not quite satisfactory. This is
observed independently in [RO05] and in [MP05]. To explain it further we rewrite Equation 1 as
follows:

∀i, 0 ≤ i ≤ 63, Wi = Wi+2 ⊕Wi+8 ⊕Wi+13 ⊕ (Wi+16 >>> 1), (2)

where “>>> 1” (“>>> i”) denotes a one bit (i bit respectively) rotation to the right. The above
clearly shows that a difference created in the last 16 words propagates to only up to 4 different bit
positions.

This observation allows the authors in [BC04a, RO05, MP05] to generate low-weight differential
patterns. These patterns are then used to create collisions or near-collisions in reduced version of
SHA-1 with complexity better than the birthday-paradox bound. Extending this further [WYY05b]
reports the first attack on the full 80-step SHA-1 with complexity close to 269 hash functions. In
there, the authors critically observe that the code not only has small weight codewords (≤ 44,
[RO05, WYY05b]) but also that these small weight codewords are even sparser in the last 60
words. Particularly in [WYY05b] the authors report a codeword in SHA-1 message expansion code
that has weight 25 in the last 60 words.

In there, it was left open whether a lower weight codeword (in the last 60 words) exists in the
code. We next prove (with computer assistance) a matching lower bound that 25 is indeed optimal,
i.e., no codeword with weight less than 25 in the last 60 words exists in the SHA-1 message expansion
code.

Theorem 2.1 SHA-1 message expansion code has minimum weight 25 in the last 60 words.

Proof : We employ the proof technique introduced in [JP05]. First observe that it suffices to

2



consider the code of length 60 given by the recurrence relation

for i = 16 to 59 Wi = (Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) <<< 1.

We view each codeword as a matrix consisting of 32 columns, each of length 60.

Now if a codeword has all columns non-zero, we are done, as that gives minimum weight at least
32. So, assume that the codeword has one or more zero columns and at least one non-zero column.

Let C1 be the first non-zero column to the right of a band of zero columns. Let the column C1

be represented by vector 〈xi〉59
i=0. Then x satisfies

for i = 16 to 59 xi−3 ⊕ xi−8 ⊕ xi−14 ⊕ xi−16 = 0,

which can be rewritten as :

for i = 13 to 56 xi ⊕ xi−5 ⊕ xi−11 ⊕ xi−13 = 0. (3)

Thus for any choice of the first 13 bits of x (i.e., i = 0 to 12), the bits from i = 13 to 56 are
determined by the above recurrence. The bits x57 , x58 and x59 are independent, and can be chosen
independently.

Similarly, let C2 be the column to the right of C1, and let the column be denoted by vector y.
Then,

for i = 16 to 59 yi−3 ⊕ yi−8 ⊕ yi−14 ⊕ yi−16 = xi,

which can be rewritten as

for i = 13 to 56 yi ⊕ yi−5 ⊕ yi−11 ⊕ yi−13 = xi+3. (4)

Again, given the full vector x, and the first 13 bits of y, the remaining bits of y are given by this
relation (except the last three bits, which remain independent). We continue like this to the next
column C3, with z denoting the vector. We mention that if the first 13 bits of x are non zero, then
the code expands fast, that is individual weight of x and y are reasonably good.

So, ideally, we would like to show that no matter how one chooses those bits in x, and in y,
and in z, the total weight in the three columns is at least 25. (Of course, we stop early, if just two
columns sufficed.) However this is true with an exception, as C1 which is required to be the first
non-zero column could be pathological in the sense that its first 13 bits can be all zero, and hence
the bits from i = 13 to 56 can also be all zero, and the only non-zero entries come from x57, x58 or
x59. We call such a column pathological. Similarly, given that C1 is pathological, C2 can also be
pathological, with non-zero entries in only its last 6 entries this time, and so on.
We now break the proof into two cases based on the values taken by the first 13 bits of C1.

1. (Non-pathological Case): Assume C1 is non-pathological, that is not all of its first 13 bits
are zero. Then by a computer program it can easily be verified that the combined weight of
Columns C1, C2 and C3 is at least 25.

3



Proof

At least one column zero
and one column non-zero

Non-Pathological Case
(3 Columns enough)

Pathological
Case

Pathological columns ≤ 10
(and 2 more non-pathological column)

Pathological Columns ≥ 11

All Columns
Non-Zero (Trivial)

2. (Pathological Case): Assume C1 is pathological that is each of its first 13 bits is zero. We
now make the following easy claim.

Claim 2.2 If x is pathological, then x0 = x1 = · · · = x56 = 0.

Proof : Since x0 = x1 = · · · = x12 = 0, setting i = 13 in Equation 3 yields x13 = 0. Similarly
setting i = 14, · · · , 56 gives x14 = x15 = · · · = x56 = 0.

Note that a pathological column does not contribute much to the weight of the codeword.
Now denote the columns to the right of C2 by C3, C4 and so on. Assume Ci is the first
non-pathological column (if any). The good thing is that a non-pathological column has
reasonably good weight.

Next consider C2. Assume for the moment that it is pathological. Then by the same argument
as in Claim 2.2 (and Equation 4), it holds that y0 = y1 · · · = y53 = 0 (set i = 13, · · · , 56 and
note that xi = 0 for these values). In general, in a sequence of pathological columns (assume
for the moment that this sequence has less than 12 columns) the ith pathological column
has first 60 − 3 · i entries zero. So, if there are exactly m (for the moment assume m ≤ 12)
pathological columns, then the column Cm+1 (note that Cm+1 cannot be all zero column by
Equation 4) must have a nonzero entry in the first 60− 3 · (m + 1) entries. This is equivalent
to it having a nonzero entry in the first 13 bits. Since otherwise an argument similar to
Claim 2.2 can be used to show that all the initial 60− 3(m + 1) bits are zero. We now divide
the remaining proof into two cases based on the number of consecutive pathological columns.

(a) (Number of consecutive pathological columns is at most 10): In this case, we
restrict ourselves to the case where there are 10 or less pathological columns. In this
case, the combined weight of the pathological columns and at most two following non-
pathological columns can be verified by a computer program to be at least 25.

(b) (Number of consecutive pathological columns is at least 11): If there are a
sequence of 11 or more pathological columns, then they already contribute more than
25 as verified by a computer search.

Hence 25 is the lower bound on the last 60 words of the SHA-1 message expansion code.

4



For completeness, we outline below the (combined) search pseudo-code for the Case 1 and
Case 2(a).

1. Choose the number m of pathological columns (0 ≤ m ≤ 10). For each pathological column
choose the last three bits of that column. The other bits are determined by these bits recalling
that in the ith column, the first 60− 3 · i bits are zero.

2. Now choose the first 13 bits of the first non-pathological column (and also choose its last
three bits). From these bits all its remaining bits can be determined. If the total count is
≥ 25, then go to the next choice in Step (1); otherwise do Step (3).

3. Choose the first 13 bits of the next column (and its last three bits), from which all its other
bits can be determined. If the count is ≥ 25, then go to the next choice in Step (1); otherwise
do Step (4).

4. Choose the first 13 bits of the next column (and its last three bits), from which all its other
bits can be determined. If the count is ≤ 25, output FAIL; otherwise goto the next choice
in Step (1).

While running the above, we found three codewords with weight 25, which are all listed below.
The first one is reported earlier in [WYY05b]. The columns are listed horizontally, and the leftmost
column is the top most column. Note that each of them has five pathological columns. The
pathological columns are separated from the non-pathological columns by a blank line.

Codeword1
pathological count= 6,cnt1 =15, cnt2= 4, cnt3== 0, sum =25::

000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000001
000000000000000000000000000000000000000000000000000000001000
000000000000000000000000000000000000000000000000000001000000
000000000000000000000000000000000000000000000000001000010000
000000000000000000000000000000000000000000000001000000000000

010101100110001101100100010101010000000000000000000000000000
000100010001000100000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000

%%%%%%%%
Codeword2
pathological count= 10,cnt1= 11, cnt2= 2, cnt3= 2, sum =25::

000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000001
000000000000000000000000000000000000000000000000000000001000
000000000000000000000000000000000000000000000000000001000100

5



000000000000000000000000000000000000000000000000001000110001
000000000000000000000000000000000000000000000001000100000000

001000110000010101010010000100000101000000000000000000000000
000100000000000000010000000000000000000000000000000000000000
010100000000000000000000000000000000000000000000000000000000

%%%%%%%%
Codeword3
pathological count= 6,cnt1 = 15, cnt2= 4, cnt3= 0, sum = 25::

000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000010
000000000000000000000000000000000000000000000000000000010000
000000000000000000000000000000000000000000000000000010000000
000000000000000000000000000000000000000000000000010000100000
000000000000000000000000000000000000000000000010000000000000

101011001100011011001000101010100000000000000000000000000000
001000100010001000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000

2.1 Acknowledgment

We thank Yiqun Lisa Yin for suggesting this exercise.

References

[BC04a] E. Biham and R. Chen. Near collisions of SHA-0. In Crypto, 2004.

[BC04b] E. Biham and R. Chen. New results on SHA-0 and SHA-1. In Short talk presented at
CRYPTO’04 Rump Session, 2004.

[CJ98] F. Chabaud and A. Joux. Differential collisions in SHA-0. In Crypto, 1998.

[JP05] Charanjit S. Jutla and Anindya C. Patthak. A Simple and Provably Good Code for
SHA Message Expansion. Cryptology ePrint Archive, Report 2005/247, 2005. http:
//eprint.iacr.org/.

[MP05] K. Matusiewicz and J. Pieprzyk. Finding good differential patterns for attacks on
SHA-1. In International Workshop on Coding and Cryptography, 2005.

[RO05] V. Rijmen and E. Oswald. Update on SHA-1. In Lecture Notes in Computer Science,
Vol. 3376, Springer, 2005.

[Uni93] United States Department of Commerce, National Institute of Standards and Technol-
ogy, Federal Information Processing Standard Publication #180. Secure Hash Standard,
1993.

6



[Uni95] United States Department of Commerce, National Institute of Standards and Tech-
nology, Federal Information Processing Standard Publication #180-1 (addendum to
[Uni93]). Secure Hash Standard, 1995.

[WFLY04] X. Y. Wang, D. G. Feng, X. J. Lai, and H. B. Yu. Collisions for Hash Functions MD4,
MD5, HAVAL-128 and RIPEMD. In Short talk presented at CRYPTO’04 Rump Session
and IACR eprint Archive, August, 2004.

[WYY05a] X. Wang, H. Yu, and Y. L. Yin. Efficient collision search attacks in SHA-0. In Crypto,
2005.

[WYY05b] X. Wang, H. Yu, and Y. L. Yin. Finding collisions in the full SHA-1. In Crypto, 2005.

7


