
An Authentication Protocol For Mobile Agents

Using Bilinear Pairings

Amitabh Saxena, and Ben Soh
Dept. of Computer Science and Computer Engineering
La Trobe University, Bundoora, VIC, Australia 3086

August 16, 2005

Abstract

A mobile agent is a mobile program capable of maintaining its execu-
tion states as it migrates between different execution platforms. A key
security problem in the mobile agent paradigm is that of trust: How to
ensure that the past itinerary (of execution platforms) claimed by the
agent is correct. This is necessary in order to establish a reasonable level
of trust for the agent before granting execution privileges.

In this paper we describe a protocol using bilinear pairings that enables
trust relationships to be formed between agent platforms in an ad-hoc
manner without actively involving any trusted third party. This protocol
can be used to authenticate agents before granting execution privileges.
The main idea behind our approach is the concept of ‘one-way’ chaining.

1 Introduction

Mobile agents are agents that can physically travel across networks and perform
tasks on machines that provide agent hosting capability. This allows processes to
migrate from computer to computer, for processes to split into multiple instances
that execute on different machines, and to return to their point of origin. A
detailed discussion of mobile agents is beyond the scope of this paper and the
reader is referred to [1]. Two foremost security challenges for mobile agents are
(a) host protection and (b) agent protection. Our work on mobile agents is only
focused only on host protection. For work on agent protection the reader is
referred to [2, 3, 4, 5].

In contrast to approaches for host protection based on sandbox environments
or other forms of code validation, our model aims to validate the itinerary of an
agent. Our approach to security is based on a notion of trust which is summa-
rized as follows: If all entities involved with the agent can be authenticated, a
level of trust can be established, which can then be used for granting or deny-
ing execution privileges. Current solutions for host protection rely on tamper

1



proof hardware, an on line trusted third party or a ‘sandbox’ model of execu-
tion [6, 7, 8]. Our method does not require any such measures. We use the
concept of one-way signatures to connect arbitrary hosts in a chain of trust,
thus enabling ad-hoc trust relationships to be formed.

The concept of one-way signature chaining was proposed in [9] and [10] where
the authors constructed authentication protocols for mobile agents using hypo-
thetical cryptographic primitives known as strong non-commutative associative
one-way functions. The authors also asked if an equivalent protocol can be con-
structed using any existing cryptographic primitives. In this paper, we answer
this question affirmatively and show that the mobile agent authentication pro-
tocol presented in [10] can be constructed using bilinear pairings, thus settling
their open question.

Although the original concept of signature chaining presented in [10] is based
on a standard certificate based Public Key Infrastructure (PKI), it can be shown
that their model can be reduced directly to an Identity-Based Public Key Cryp-
tosystem (ID-PKC) or a Certificate-Less Public Key Cryptosystem (CL-PKC)
due to certain properties of the one-way function used.1 In contrast to this, the
protocol presented in this paper is based on a standard certificate based PKI
and it is not known if a direct reduction to an ID-PKC or a CL-PKC exists.

2 Background

Any entity that runs a mobile agent platform server is called a host. We assume
that all such hosts are identified by a public directory. Any host that initiated
an agent into the system is called the initiator of the agent. Agents can migrate
autonomously between different host platforms. This act of migration is called
agent transfer. We assume that agent transfer is done over a secure channel
using a standard agent transfer protocol. An instance of an agent is a snapshot
of its state at any point of execution on some platform. An itinerary is the
ordered list of hosts already visited by an agent.

2.1 Agent partitioning

Using the object oriented paradigm, we assume that any instance of a mobile
agent can be split (or partitioned) into a static part (consisting of object meth-
ods) which is unchanging as the agent hops across platforms and a dynamic
part (consisting of data and the state information of the interacting objects)
that changes at each hop. Depending on the specific implementation, the par-
titioning schemes can differ. However, in this section we enumerate certain
properties relevant in our context.

1. Unique: It may be possible that an instance of the agent can be partitioned
in more than one ways. A partition scheme is unique if all instances of
the agent have a unique static and dynamic part.

1The reader is referred to [11] for a discussion of an ID-PKC and to [12] for a discussion
of a CL-PKC

2



2. Identical : A partition scheme is identical if all instances of the agent have
at least one common static part.

3. Mutually authenticating : We further assume that some static and dynamic
parts can be made mutually inseparable. This means that the agent’s
functionality is available if and only if both the static and dynamic parts
correspond to the same agent. Mixing and matching between different
agents is not possible. We say that the scheme is mutually authenticating if
all instances of the agent have at least one mutually inseparable partition.

4. Ideal : A partitioning scheme is ideal if it is unique, identical and mutually
authenticating.

2.2 Fixed Strings

Let L1 and L2 be any two languages. For some x ∈ L1 and some y ∈ L2, the
ordered pair (x, y) is said to be fixed if and only if there exists a (polynomial-
time computable) binary function σ : L1 × L2 7→ {0, 1} such that σ(x, y) = 1
and it is computationally intractable to find another string ŷ ∈ L2 such that
σ(x, ŷ) = 1.

2.3 Authentication Requirements

In this section, we give the high-level authentication requirements for our model.
we define the following two requirements:

1. Initiator authentication: Is the claimed initiator the same as the real ini-
tiator?

2. Itinerary authentication: Is the claimed itinerary the same as the real
itinerary?

Our requirement for unconditional security is itinerary authentication. It is
evident, however, that this will also always involve initiator authentication, since
the initiator is the first host in the itinerary. We introduce the concept of rela-
tive authentication to imply that the first host (the initiator) in an itinerary is
unknown. On the other hand, absolute authentication implies that the initiator
can be authenticated.

2.4 One-way Chaining

Represent the host platforms as points of a acyclic directed graph. As the agent
hops, a new arc directed from the receiver to the sender is added to the graph.
The edges of such a graph will represent a hop-by-hop path of the agent in the
reverse direction from the current host to the initiator. In this notation the
statements “a passed the agent to b” and “There is a path of unit length from

3



b to a” are considered equivalent. We can consider this graph to describe the
path by which trust is propagated in the system.2

1. We say that a direct path exists from b to a if and only if b can prove (in
the context of the agent) something about a that no other host can. That
is, b has some extra information about a that others cannot extract from
b’s proof.

2. Let {h0, h1, . . . hn} be a set of hosts for some n ≥ 1. We say a chained
path exists from hn to h0 if and only if there exists a direct path from hx

to hx−1 for each x from 1 to n.

3. We say that there is a one-way chained path from b to a if and only if
there is a chained path from b to a and there is no (direct or chained) path
from a to any other host.

Assume that i is the initiator of the agent, a is any sending host and b is the
receiving host. Also, excepting the act of agent transfer no other interaction is
allowed between any hosts. Using this scenario, authentication can be redefined
in the context of b as follows:

(a) Relative: Determine that a chained path from a to i exists.

(b) Absolute: Determine that a one-way chained path from a to i exists.

3 Our Authentication Protocol

Our implementation of the protocol is based on bilinear pairings. Bilinear pair-
ings were first used in cryptography by Boneh and Franklin in [11] where they
presented the first short and secure IBE scheme. Although bilinear pairings are
mostly known for their use in identity based cryptography, other non-identity
based applications also have been proposed using bilinear pairings [13, 14, 15].
Our authentication protocol presented here is based on an ordinary certificate
based PKI.

3.1 Bilinear Pairings

Let G1 be a cyclic additive group generated by P , whose order is a prime q and
G2 be a cyclic multiplicative group of the same order. Assume that computing
the discrete logarithm in both G1 and G2 is hard. A (non-invertible) bilinear
pairing is a map e : G1 ×G1 7→ G2 and satisfies the following properties:

1. Bilinearity : e(aP, bQ) = e(P,Q)ab For all P,Q ∈ G1 and a, b ∈ Zq.

2. Non-degeneracy : P 6= 0 ⇒ e(P, P ) 6= 1.
2We intuitively define trust to propagate in the reverse direction of the agent. If the agent

moves from a to b, we are interested to know if b trusts a. That is, if there is path from b to
a. Moreover we are only interested in those hosts that modified the dynamic part.

4



3. Computability : e is efficiently computable.

Typically, the map e will be derived from either the Weil or Tate pairing on
an elliptic curve over a finite field. Despite the fairly complex mathematics
involved in constructing such maps, cryptographic protocols based on pairings
can be described entirely without ever referring to the actual implementation.
Pairings and other parameters should be selected in proactive for efficiency and
security.

3.2 Initial Setup

We assume that the mobile agent can be partitioned using an ideal scheme (see
section 2.3). Represent by M , the static part and by Di the dynamic part of
the ith instance. For any agent {M,Di}, the sending, platform is Ii and the
receiving platform is Ii+1. The initiator of the agent is I0.

Let e be a bilinear map as defined in section 3.1. Define a cryptographic hash
functions H : {0, 1}∗ 7→ G1. Let P be a generator of G1. All these parameters
are generated by a central controller. To participate in this protocol, each user
must have a certified public key. We consider the process of certification outside
the scope of our protocol:

Each participant Ii generates a random xi ∈ Zq as the private key. The
corresponding public key is Yi = xiP

3.3 Agent Initiation

To enable absolute authentication, we require that the pair (M, I0) be fixed. A
possible approach for this is to involve a Trusted Third Party (TTP) to certify
the pairs. The TTP ensures that the same pair cannot be reused again for a
certain period of time. We note, however, that it may also be possible to fix the
pair (M, I0) (without involving a TTP) using the methods for code obfuscation,
undetachable signatures and watermarking described in [2, 4, 5, 16, 17, 18, 19, 9].
For simplicity, in this paper, we assume that I0 uses a TTP is used to fix the pair
(M, I0). It asks the TTP to certify the ordered pair (M, I0) using a standard
signature scheme (like RSA).Denote by C, the certificate from the TTP. To avoid
chosen cipher text attacks, a time stamp is included in the certificate. Users
who created their public keys after this time are precluded from participating
in this protocol.

3.4 Transfer Protocol

An arbitrary participant Ii will process the agent as follows: On receiving it
from Ii−1, it first follows the verification procedure. Before passing the agent
(after execution) to Ii+1, it follows the signing procedure. I0, however, only
follows the signing procedure. The certificate C must always accompany the
message.

The following additional definitions will be useful:

5



1. Define U0 = x0H(M) and Ui = xiH(M) + Ui−1 for i > 0
Thus Ui = (x1 + x2 + . . . xi)H(M)

2. Define V0 = Y0 and Vi = Yi + Vi−1 for i > 0

3. Define Wi = xiH(“Ii−1, Ii”)

4. Define Zi = xiH(Di).

Signing

The signature of Ii on the agent {M,Di} is the set: {C,Ui, {W1,W2, . . . Wi}, Zi}.
The list of participants, “I0, I1, . . . Ii” is also assumed to part of the signature.

Verification

For clarity, we describe the verification procedure to be followed by Ii+1. It
consists of five tests and the message is rejected if any of them fail:

1. Verify certificate C and confirm first participant I0.

2. Verify e(Ui, P ) ?= e(Vi,H(M)).

3. Verify e(Wj , P ) ?= e(H(“Ij−1, Ij”), Yj) for all j where (1 ≤ j ≤ i).

4. Verify e(Zi, P ) ?= e(H(Di), Yi).

5. Verify that M and Di belong to the same agent (via the mutually authen-
ticating property).

If all above succeed, accept the itinerary claimed by agent as valid. As a
note, we would like to mention that the signatures verified in steps 3 and 4 of
the verification process can be constructed using any ordinary signature scheme
(like RSA). However it is necessary that the signatures of step 2 be based on
pairings.

3.5 Overview of the protocol

The above protocol is an example of a one-way signature chaining scheme. To
understand this, see that steps 2 and 3 of the verification process involve the
public keys of all participating users (in the right order). Moreover, since M
and I0 cannot be un-linked due to the certificate C, it is ensured that a different
initial user cannot be used for M .

We see that the signatures have an “additive” property, demonstrated by the
fact that Ii+1 can ‘add’ more information to the signature Ui of Ii by computing
Ui+1. Note that computing any Ui just from Ui+1 is considered infeasible due to

6



the assumed properties of the bilinear map.3. User Ii+1 sends Ui+1 as the new
proof while it keeps Ui, the old proof as its secret evidence in case of a dispute.

Assuming that all users are unique, a few points about this protocol are
noteworthy :

1. Each Ii who passes the message must include its name in the signature
and in the right sequence for validation to succeed.

2. Users cannot remove names of other users from the list in the signature
without knowledge of their private keys, nor can they change the order or
add new names.

3. Authentication is relative to I0 who in turn authenticates with the TTP.
If, however, it is possible to establish the originator of a message directly
from its contents or by some other means, the TTP can be eliminated.
For a discussion on this see [9].

4. The signing and verification procedures are completely non-interactive.

5. The dynamic part is only authenticated to the previous hop. The itinerary
authentication is done entirely using the static part.

It is easily seen that the signing time is independent of the number of users.
However, the signature length and the verification time increase linearly with
the number of users in the list. This is not a problem unless the list becomes
very large.

4 Security Analysis

In this section, we outline a rough security analysis of our protocol. We consider
an attack to be successful if the ordered list of names in the signature contains
false information and the verification procedure accepts. Assuming that Ii is
the attacker, a combination of the following attacks are possible:

1. It does not include its name in the list.

2. It adds one or more names to the list.

3. It deletes one or more names from the list or changes the order of names.

We will consider each scenario seperately. We note that a detailed security
analysis of the protocol is out of the scope of this paper but we also note that
the simplicity of the protocol does not demand such analysis.

1. The first possibility is ruled out since otherwise steps 3 and 4 of the veri-
fication process will fail.

3Observe that Ui cannot be computed from Ui+1 without knowledge of xi but knowledge
of Ui does not reveal xi.

7



2. Arbitrary names cannot be added to the list because Ii cannot compute
signatures Mi on behalf of other users. Thus, if a false user is added to
the list, step 3 of the verification process will fail.

3. Finally deleting names or changing order is not possible either. If the order
of participants is changed, the verification process in step 3 will fail with
a very high probability. To see this, we enumerate the following strong
security characterstics of our scheme:

(a) Signature Unforgeability: It is not possible for any participant to
generate signatures for other participants without knowledge of their
private keys assuming the hardness of the Bilinear Diffie-Hellman
problem (BDH). Similarly computing any private keys from the pub-
lic information is will be equivalent to solving the Discrete Logarithm
(DL) problem in G1 (and consequently G2).

(b) Chained Signature Unforgeability: Similarly it is hard to add arbi-
trary participants in the chained signatures without knowledge of
their public key due to the difficulty of the DL problem.

5 Conclusion

In this paper, we used the concept of signature chaining to propose an authen-
tication protocol for mobile agents based on bilinear pairings. Our method is
based on the notion of additive zero knowledge [9] which enables trust to prop-
agate between different provers. We demonstrated that signature chaining can
be used to form ad-hoc trust relationships between multiple participants in a
dynamic and non-interactive manner. Our protocol can be used to authenticate
the itinerary of mobile agents without any active involvement of a Trusted Third
Party(TTP). We also note that it may be possible to completely eliminate the
TTP using methods of code obfuscation, watermarking and undetachable sig-
natures. We note that the size of signatures and the verification time increase
linearly with the number of users. A further improvement would be to try to
find schemes where the verification time and signature size is constant. Finally,
it is worth researching if a certificate-less or an identity based scheme can be
derived from the certificate based one presented in this paper.

References

[1] David Kotz and Robert S. Gray. Mobile agents and the future of the internet.
SIGOPS Oper. Syst. Rev., 33(3):7–13, 1999.

[2] Tomas Sander and Christian F. Tschudin. Protecting mobile agents against ma-
licious hosts. Lecture Notes in Computer Science, 1419:44–60, 1998.

[3] Joy Algesheimer, Christian Cachin, Jan Camenisch, and Günter Karjoth. Crypto-
graphic security for mobile code. In SP ’01: Proceedings of the IEEE Symposium
on Security and Privacy, pages 2–11. IEEE Computer Society, 2001.

8



[4] Panayiotis Kotzanikolaou, Mike Burmester, and Vassilios Chrissikopoulos. Se-
cure transactions with mobile agents in hostile environments. In Australasian
Conference on Information Security and Privacy, pages 289–297, 2000.

[5] Joris Claessens, Bart Preneel, and Joos Vandewalle. (how) can mobile agents do
secure electronic transactions on untrusted hosts? a survey of the security issues
and the current solutions. ACM Trans. Inter. Tech., 3(1):28–48, 2003.

[6] Bennet S. Yee. A sanctuary for mobile agents. In Secure Internet Programming,
pages 261–273, 1999.

[7] U. G. Wilhelm, S. Staamann, and L. Buttyán. Introducing trusted third parties
to the mobile agent paradigm. In J. Vitek and C. Jensen, editors, Secure Internet
Programming: Security Issues for Mobile and Distributed Objects, volume 1603,
pages 471–491. Springer-Verlag, New York, NY, USA, 1999.

[8] G. Karjoth, D.B. Lange, and M. Oshima. A security model for aglets. IEEE
Internet Computing, 1(4):68–77, 1997.

[9] Amitabh Saxena and Ben Soh. Authenticating mobile agent platforms using
signature chaining without trusted third parties. In Proceedings of The 2005 IEEE
International Conference on e-Technology, e-Commerce and e-Service (EEE-05),
pages 282–285, 2005.

[10] Amitabh Saxena and Ben Soh. A novel method for authenticating mobile agents
with one-way signature chaining. In Proceedings of The 7th International Sym-
posium on Autonomous Decentralized Systems (ISADS 05), pages 187–193, 2005.

[11] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil
pairing. pages 213–229, 2001.

[12] Sattam S. Al-Riyami and Kenneth G. Paterson. Certificateless public key cryp-
tography. Cryptology ePrint Archive, Report 2003/126, 2003.

[13] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil
pairing. In ASIACRYPT ’01: Proceedings of the 7th International Conference
on the Theory and Application of Cryptology and Information Security, pages
514–532, London, UK, 2001. Springer-Verlag.

[14] Z. Cheng, L. Vasiu, and R. Comley. Pairing-based one-round tripartite key agree-
ment protocols, 2004.

[15] Ratna Dutta, Rana Barua, and Palash Sarkar. Pairing-based cryptographic pro-
tocols : A survey. Cryptology ePrint Archive, Report 2004/064, 2004.

[16] Christian S. Collberg and Clark Thomborson. Watermarking, tamper-proofing,
and obfuscation - tools for software protection. In IEEE Transactions on Software
Engineering, volume 28, pages 735–746, August 2002.

[17] Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson. Software tamper
resistance: Obstructing static analysis of programs. Technical report, University
of Virginia, 2000.

[18] Julien P. Stern, Gael Hachez, Francois Koeune, and Jean-Jacques Quisquater.
Robust object watermarking: Application to code. In Information Hiding, pages
368–378, 1999.

[19] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
Cryptology ePrint Archive, Report 2001/069, 2001.

9


