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Abstract

A mobile agent is a mobile program capable of maintaining its execu-
tion states as it migrates between different execution platforms. A key
security problem in the mobile agent paradigm is that of trust: How to
ensure that the past itinerary (of execution platforms) claimed by the
agent is correct. This is necessary in order to establish a reasonable level
of trust for the agent before granting execution privileges.

In this paper we describe a protocol using bilinear pairings that enables
trust relationships to be formed between agent platforms in an ad-hoc
manner without actively involving any trusted third party. This protocol
can be used to authenticate agents before granting execution privileges.
The main idea behind our approach is the concept of ‘one-way’ chaining.

1 Introduction

Mobile agents are agents that can physically travel across networks and perform
tasks on machines that provide agent hosting capability. This allows processes to
migrate from computer to computer, for processes to split into multiple instances
that execute on different machines, and to return to their point of origin. A
detailed discussion of mobile agents is beyond the scope of this paper and the
reader is referred to [1]. Two foremost security challenges for mobile agents are
(a) host protection and (b) agent protection. Our work on mobile agents is only
focused only on host protection. For work on agent protection the reader is
referred to [2, 3, 4, 5].

In contrast to approaches for host protection based on sandbox environments
or other forms of code validation, our model aims to validate the itinerary of an
agent. Our approach to security is based on a notion of trust which is summa-
rized as follows: If all entities involved with the agent can be authenticated, a
level of trust can be established, which can then be used for granting or deny-
ing execution privileges. Current solutions for host protection rely on tamper
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proof hardware, an on line trusted third party or a ‘sandbox’ model of execu-
tion [6, 7, 8]. Our method does not require any such measures. We use the
concept of one-way signatures to connect arbitrary hosts in a chain of trust,
thus enabling ad-hoc trust relationships to be formed.

The concept of one-way signature chaining was proposed in [9] and [10] where
the authors constructed authentication protocols for mobile agents using hypo-
thetical cryptographic primitives known as strong non-commutative associative
one-way functions. The authors also asked if an equivalent protocol can be con-
structed using any existing cryptographic primitives. In this paper, we answer
this question affirmatively and show that the mobile agent authentication pro-
tocol presented in [10] can be constructed using bilinear pairings, thus settling
their open question.

Although the original concept of signature chaining presented in [10] is based
on a standard certificate based Public Key Infrastructure (PKI), it can be shown
that their model can be reduced directly to an Identity-Based Public Key Cryp-
tosystem (ID-PKC) or a Certificate-Less Public Key Cryptosystem (CL-PKC)
due to certain properties of the one-way function used.1 In contrast to this, the
protocol presented in this paper is based on a standard certificate based PKI
and it is not known if a direct reduction to an ID-PKC or a CL-PKC exists.

2 Background

Any entity that runs a mobile agent platform server is called a host. We assume
that all such hosts are identified by a public directory. Any host that initiated
an agent into the system is called the initiator of the agent. Agents can migrate
autonomously between different host platforms. This act of migration is called
agent transfer. We assume that agent transfer is done over a secure channel
using a standard agent transfer protocol. An instance of an agent is a snapshot
of its state at any point of execution on some platform. An itinerary is the
ordered list of hosts already visited by an agent.

2.1 Agent partitioning

Using the object oriented paradigm, we assume that any instance of a mobile
agent can be split (or partitioned) into a static part (consisting of object meth-
ods) which is unchanging as the agent hops across platforms and a dynamic
part (consisting of data and the state information of the interacting objects)
that changes at each hop. Depending on the specific implementation, the par-
titioning schemes can differ. However, in this section we enumerate certain
properties relevant in our context.

1. Unique: It may be possible that an instance of the agent can be partitioned
in more than one ways. A partition scheme is unique if all instances of
the agent have a unique static and dynamic part.

1The reader is referred to [11] for a discussion of an ID-PKC and to [12] for a discussion
of a CL-PKC
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2. Identical : A partition scheme is identical if all instances of the agent have
at least one common static part.

3. Mutually authenticating : We further assume that some static and dynamic
parts can be made mutually inseparable. This means that the agent’s
functionality is available if and only if both the static and dynamic parts
correspond to the same agent. Mixing and matching between different
agents is not possible. We say that the scheme is mutually authenticating if
all instances of the agent have at least one mutually inseparable partition.

4. Ideal : A partitioning scheme is ideal if it is unique, identical and mutually
authenticating.

2.2 Authentication Requirements

In this section, we give the high-level authentication requirements for our model.
we define the following two requirements:

1. Initiator authentication: Is the claimed initiator the same as the real ini-
tiator?

2. Itinerary authentication: Is the claimed itinerary the same as the real
itinerary?

Our requirement for unconditional security is itinerary authentication. It is
evident, however, that this will also always involve initiator authentication, since
the initiator is the first host in the itinerary. We introduce the concept of rela-
tive authentication to imply that the first host (the initiator) in an itinerary is
unknown. On the other hand, absolute authentication implies that the initiator
can be authenticated.

2.3 One-way Chaining

Represent the host platforms as points of an acyclic directed graph. As the
agent hops, a new arc directed from the receiver to the sender is added to the
graph. The edges of such a graph will represent a hop-by-hop path of the agent
in the reverse direction from the current host to the initiator. In this notation
the statements “a passed the agent to b” and “There is a path of unit length
from b to a” are considered equivalent. We can consider this graph to describe
the path by which trust is propagated in the system.2

1. We say that a direct path exists from b to a if and only if b can prove (in
the context of the agent) something about a that no other host can. That
is, b has some extra information about a that others cannot extract from
b’s proof.

2We intuitively define trust to propagate in the reverse direction of the agent. If the agent
moves from a to b, we are interested to know if b trusts a. That is, if there is path from b to
a. Moreover we are only interested in those hosts that modified the dynamic part.
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2. Let {h0, h1, . . . hn} be a set of hosts for some n ≥ 1. We say a chained
path exists from hn to h0 if and only if there exists a direct path from hx

to hx−1 for each x from 1 to n.

3. We say that there is a one-way chained path from b to a if and only if
there is a chained path from b to a and there is no (direct or chained) path
from a to any other host.

Assume that i is the initiator of the agent, a is any sending host and b is the
receiving host. Also, excepting the act of agent transfer no other interaction is
allowed between any hosts. Using this scenario, authentication can be redefined
in the context of b as follows:

(a) Relative: Determine that a chained path from a to i exists.

(b) Absolute: Determine that a one-way chained path from a to i exists.

2.4 Fixed Strings

Let L1 and L2 be any two languages. For some x ∈ L1 and some y ∈ L2, the
ordered pair (x, y) is said to be fixed if and only if there exists a (polynomial-
time computable) binary function σ : L1 × L2 7→ {0, 1} such that σ(x, y) = 1
and it is computationally intractable to find another string ŷ ∈ L2 such that
σ(x, ŷ) = 1.

2.5 Bilinear Pairings

The fundamental building blocks of our protocol are a class of primitives known
as bilinear pairings, first used in cryptography by Boneh, Lynn and Shachamare
in [13].3

Let G1 be a cyclic additive group generated by P , whose order is a prime
q and G2 be a cyclic multiplicative group of the same order. Assume that
computing the discrete logarithm in both G1 and G2 is hard. A bilinear pairing
is a map e : G1 ×G1 7→ G2 and satisfies the following properties:

1. Bilinearity : e(aP, bQ) = e(P,Q)ab For all P,Q ∈ G1 and a, b ∈ Zq.

2. Non-degeneracy : P 6= 0⇒ e(P, P ) 6= 1.

3. Computability : e is efficiently computable.
3Bilinear pairings are probably best known for their use in Identity Based Encryption

(IBE) by Boneh and Franklin in 2001 [11]. Since then, many other applications of bilin-
ear pairings have been discovered. For example, various types of Identity Based Signatures
(IBS) [14, 15, 16, 17, 18, 19, 20], tripartite one-round key agreement [21], Certificate-Less
Public Key Cryptography (CL-PKC) [12], threshold signcryption [22], self-blindable creden-
tial certificates [23] and authenticated key agreement [24] are all based on pairings. Over the
past few years, bilinear pairings have become probably the most researched area of cryptog-
raphy.
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Typically, the map e will be derived from either the Weil or Tate pairing on
an elliptic curve over a finite field. Despite the fairly complex mathematics
involved in constructing such maps, cryptographic protocols based on pairings
can be described entirely without ever referring to the actual implementation.
Pairings and other parameters should be selected in proactive for efficiency and
security. We refer the reader to [13, 11, 25] for details on generating secure
parameters for such pairings.

3 Problem Formulation

In this section, we will define the problem of host protection using authentica-
tion primitives and set out the goals of our proposed authentication protocol.
Although we consider only one agent in our analysis, this setup can also be used
in a multi-agent system. We model our protocol on the following assumptions:

1. The mobile agent can be partitioned using an ideal scheme (see sec-
tion 2.2). Represent by M , the static part and by Di the dynamic part of
the ith instance. For any agent {M,Di}, the sending, platform is Ii and
the receiving platform is Ii+1. The initiator of the agent is I0

2. To enable absolute authentication, we require that the pair (M, I0) be fixed
(see section 2.4). A possible approach for this is to involve a Trusted Third
Party (TTP) to certify this pair. The TTP ensures that the same pair
cannot be reused again for a certain period of time. We note, however,
that it may also be possible to implicitly fix the pair (M, I0) (without
involving a TTP) using the methods for code obfuscation, undetachable
signatures and watermarking described in [2, 4, 5, 26, 27, 28, 29, 9]. For
simplicity, in this paper, we assume a TTP is used to fix the pair (M, I0).4

3. There is no limit to the number of times an agent may be transferred. The
only restriction is that an agent must not return back to a past platform.
The exception to this is when the agent returns back to the originator at
the end of its itinerary.

4. The itinerary of the agent is ‘ad-hoc’. It is not possible for any platform Ii

to determine the exact future itinerary of the agent (we can consider the
agent to be autonomous in this case). Due to this assumption, a sending
platform may not know the real identity of the next receiving platform.
For simplicity, we assume that any sending platform Ii does not know the
identity of the next receiving platform Ii+1 and thus, any receiver of the

4The concept of liability is worth mentioning here. In most cases, trust and liability go
hand in hand: If Alice is trusted, she is liable if she fails the trust. An attacker will try to
gain more trust but not liability. In the situation mentioned here, if the attacker removes all
the names from the list and (M, I0) is not fixed, it may be possible that the attacker becomes
automatically more liable (since the attacker’s name cannot be removed from the list). We
can safely ignore this possibility in applications where the liability of removing the names
outweighs the the benefit gained from such an attack.
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agent is anonymous. This is a useful and necessary assumption considering
the vast implications of mobile agents in e-commerce.

5. Agent transfer is done over an insecure public channel. This is in light of
the above assumption that any receiver of the agent is anonymous.5

6. The mobile agent must always transferred with an accompanying signa-
ture. Each receiving platform Ii must verify the signature of the previous
platform before it is executed. Execution should only be possible if the
verification process succeeds and other security policies of the platform
are satisfied.

7. Each sending platform Ii must sign the agent after it completes execution
and before it is transferred. Moreover if this sending platform is not the
first platform in the chain, it should sign the agent only if the verification
process on the signature of the previous platform succeeded.

8. Each receiving platform would like to know the exact order of the plat-
forms involved in passing (and executing) the agent. The purpose of
the signature scheme is to ensure that the verification process succeeds
if and only if the correct order of participants is given as input to the
process. Any misbehavior (deviation from the signing or verification
process) should be detected along with the concerned participant(s).

9. A Public Key Infrastructure (PKI) will be used for creating and verifying
signatures (in the next section, we will describe this PKI). If needed, the
same or a different PKI can be used for encryption.

4 Our Authentication Protocol

A one-time initial setup is necessary during which our participants create a
public-key directory. Once this setup is complete, Any member can initiate an
agent into the system. Members can also execute an agent and transfer agents
to other members. Our protocol allows multi-hop agents to be authenticated.
First we give some more notation: If A is a non-empty set, then x← A denotes
that x has been uniformly chosen in A. If x and y are two strings then the
symbol x‖y denotes the concatenation of x and y.

4.1 Initial Setup (Create PKI)

In this section we describe how to setup a public directory (or PKI) that will be
used to authenticate messages (and if necessary to encrypt them). The PKI we

5A weak type of secure channel can be obtained by using a ‘proxy’ identity that cannot
be linked to the real identity. Revealing this proxy identity cannot compromise the real
identity of the receiver. To obtain a weak secure channel, we can consider that the agent is
encrypted using an uncertified public key before transfer. This unauthenticated public key
can be specified either by the anonymous receiver or by the agent itself.
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describe is based on bilinear pairings.6 A trusted central authority is responsible
for creating the PKI. To participate in the authentication protocol, each user
must have a certified public key (We consider the process of certification outside
the scope of our protocol). The setup protocol proceeds as follows:

1. Let e be a bilinear map as defined in section 2.5. Define a (one-way)
cryptographic hash functions H : {0, 1}∗ 7→ G1. Let P be a generator of
G1. The parameters 〈e, G1,H, q, P 〉 are generated by the trusted authority
and made public in an authentic way.

2. Each participant Ii generates xi ← Zq as the private key. The correspond-
ing public key is Yi = xiP

3. Each participant who wants to sign messages obtains a certificate from
some trusted CA linking the identity Ii and the public key Yi

This infrastructure can also be used to encrypt messages to any receiver
Ij using the (certified or uncertified) public key xjP as follows: The sender
will first encrypt the message with a symmetric cipher (such as IDEA) using
the key derived from Kj = rj(xjP ) where rj ← Zq. The sender will transmit
the ciphertext along with the partial key Lj = rjP using an insecure public
channel. Receiver Ij can compute the same key-derivation key Kj = xjLj to
decrypt the ciphertext. Observe that this protocol is secure if the Diffie-Hellman
Problem (DHP) is hard in G1. Authentication of the sender will be done using
the protocol described next.

4.2 Agent Initiation

As mentioned earlier, the initiator I0 will use a TTP to fix the pair {M, I0} to
ensure that a different user cannot act as the initiator for the same agent later on.
It asks the TTP to certify the ordered pair (M, I0) using a standard signature
scheme (like RSA). Denote by C, the certificate from the TTP. To avoid chosen
ciphertext attacks, a time stamp is included in the certificate. Users who created
their public keys after this time are precluded from participating in this protocol.

4.3 Transfer Protocol

An arbitrary participant Ii will process the agent as follows: On receiving it
from Ii−1, it first follows the verification procedure and aborts if it fails. Before
passing the agent (after execution) to Ii+1, it follows the signing procedure.7 I0,
however, only follows the signing procedure. The ordered list of participants,
“I0, I1, . . . Ii” and the certificate C are part of the signature. As mentioned ear-
lier, we assume that messages and signatures are send over a secure encrypted

6Although bilinear pairings are mostly known for their use in identity based cryptography,
other non-identity based applications also have been proposed [13, 30, 31]. Our authentication
protocol presented here is based on an ordinary certificate based PKI.

7We observe that it is possible to combine the signing and verifying procedures into a single
sign-verify procedure.
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channel. Thus if both the sender Ii and the receiver Ii+1 are honest, an eaves-
dropper does not have access to the signature of Ii sent to Ii+1.

Essentially our scheme is an ordered group signature scheme (i.e. one where
the order of the individual signers needs to be preserved). Our approach is to
first construct a an ‘un-ordered’ scheme and then use link verifiers to ascertain
the order of any link in the chain. A link verifier is simply a string identifying
the ordered (sender-receiver-message) pair and signed by either the sender or
the receiver. We thus have two types of link verifiers: forward link verifiers
which are signed by the sender and backward link verifiers which are signed
by the receiver. For instance, the backward link verifier for the message M
passing from Alice to Bob is simply the Bob’s signature on the ordered pair
{“Alice,Bob”,M}.

To ensure that the order of the hosts is preserved, we will require all senders
to the include their backward link verifiers for the message being passed.8 We
propose two different variants of our scheme with identical functionality to il-
lustrate how we convert an ordinary unordered scheme to an ordered one.

Notation

In the definitions below we assume that MESSAGE denotes the agent which con-
sists of both static and dynamic parts.

1. A correctly formed signature consists of a certificate CERTIFICATE, a list of
identifiers IDENTIFIER-LIST, a signature on the static part STATIC-PART,
a signature on the dynamic part DYNAMIC-PART and a list of backward link
verifiers BACKWARD-LINK-VERIFIER-LIST

2. The signing procedure CREATE-CHAIN-SIGNATURE takes three inputs: a
valid message MESSAGE, a valid signature OLD-SIGNATURE and an identifier
IDENTIFIER. It outputs a new signature NEW-SIGNATURE or ERROR. We
assume that the current user’s private key is implicitly given as input to
the signing function.

3. The verification procedure, VERIFY-CHAIN-SIGNATURE takes two inputs: a
message MESSAGE and a signature SIGNATURE and outputs TRUE or FALSE.

4. Since I0 is the first participant, it invokes the signing function with an
empty IDENTIFIER-LIST and an empty BACKWARD-LINK-VERIFIER-LIST
while I1, the second participant invokes the signing function with an empty
BACKWARD-LINK-VERIFIER-LIST.

5. Let U0 = x0H(M) and Ui = xiH(M) + Ui−1 for i > 0. Also let V0 = Y0

and Vi = Yi + Vi−1 for i > 0

Thus Ui =
r=i∑
r=0

xrH(M) and Vi =
r=i∑
r=0

Yr =
r=i∑
r=0

xrP

8The use of forward link verifiers is not possible since we assumed that any receiver of the
agent is anonymous (see section 3).
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4.3.1 Variant 1

In this scheme, Ii will also use the same private key xi to sign the dynamic part
Di and the link verifiers. We additionally define:

Wi = xiH(“Ii−1, Ii”‖M) for i > 0 and

Zi = xiH(Di‖M)

(A) CREATE-CHAIN-SIGNATURE

This procedure takes as input the MESSAGE {M,Di}, the IDENTIFIER Ii, the
signature OLD-SIGNATURE and outputs NEW-SIGNATURE or ERROR where

OLD-SIGNATURE ={C,“I0, I1, . . . Ii−1”, Ui−1, {W1,W2, . . . Wi−1}, Zi−1} and
NEW-SIGNATURE ={C,“I0, I1, . . . Ii”, Ui, {W1,W2, . . . Wi}, Zi}

We describe this procedure algorithmically:

1. Output ERROR if OLD-SIGNATURE, MESSAGE or IDENTIFIER has an has an
invalid structure.

2. Extract Ii from IDENTIFIER and extract {M,Di} from MESSAGE. Output
ERROR if the private key xi corresponding to Ii is not known.

3. Extract C from CERTIFICATE of OLD-SIGNATURE

4. Extract “I0, I1, . . . , Ii−1” from IDENTIFIER-LIST of OLD-SIGNATURE

5. Extract Ui−1 from STATIC-PART of OLD-SIGNATURE

6. Extract the ordered list of backward link verifiers {W1,W2, . . . ,Wi−1}
from BACKWARD-LINK-VERIFIER-LIST of OLD-SIGNATURE

7. Create IDENTIFIER-LIST = “I0, I1, I2, . . . , Ii”

8. Create STATIC-PART, Ui = xiH(M) + Ui−1

9. Create DYNAMIC-PART, Zi = xiH(Di‖M)

10. If (i > 0), create the new backward link verifier Wi = xiH(“Ii−1, Ii”‖M)

11. If (i > 0), Create BACKWARD-LINK-VERIFIER-LIST = {W1,W2, . . . Wi}

12. Output NEW-SIGNATURE ={CERTIFICATE, IDENTIFIER-LIST, STATIC-PART,
DYNAMIC-PART, BACKWARD-LINK-VERIFIER-LIST}
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(B) VERIFY-CHAIN-SIGNATURE

For clarity, we describe the verification procedure to be followed by Ii+1. This
procedure takes as input the MESSAGE {M,Di}, the signature SIGNATURE and
outputs TRUE or FALSE. The process can be described algorithmically:

1. Output FALSE if SIGNATURE or MESSAGE has an invalid structure.

2. Extract {M,Di} from MESSAGE

3. Extract C from CERTIFICATE of SIGNATURE and obtain I0. Verify C for
M and I0. Output FALSE if verification fails

4. Extract “I0, I1, I2, . . . , Ii” from IDENTIFIER-LIST of SIGNATURE

5. Extract Ui from STATIC-PART of SIGNATURE

6. Extract Zi from DYNAMIC-PART of SIGNATURE

7. Extract the ordered list of backward link verifiers {W1,W2, . . . ,Wi} from
BACKWARD-LINK-VERIFIER-LIST of SIGNATURE

8. Check that the equality holds: e(Ui, P ) ?= e(Vi,H(M)). Output FALSE if
not.

9. Check that the equality holds: e(Wj , P ) ?= e(H(“Ij−1, Ij”‖M), Yj) ∀j :
1 ≤ j ≤ i. Output FALSE if not.

10. Check that the equality holds: e(Zi, P ) ?= e(H(Di‖M), Yi). Output FALSE
if not.

11. Verify that M and Di belong to the same agent (via the mutually authen-
ticating property). Output FALSE if verification fails.

12. Output TRUE

4.3.2 Variant 2

In this scheme, Ii will use some non-pairing based scheme to sign the dynamic
part Di and the link verifiers.9 Let SIGNi represents the secret signing function
of Ii in the non-pairing based scheme (such as RSA). Denote by VERIFYi, the
public verification function of Ii using this different scheme. All the definitions
are identical to variant 1 except for Wi and Zi which are redefined as:

Wi = SIGNi(“Ii−1, Ii”‖M) for i > 0 and

Zi = SIGNi(Di‖M)

9Note that we still use the pairing based scheme to authenticate the static part.
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(A) CREATE-CHAIN-SIGNATURE

The only difference in the CREATE-CHAIN-SIGNATURE procedure from the first
variant is in steps 9 and 10. The modified steps are:

9. Create DYNAMIC-PART, Zi = SIGNi(Di‖M)

10. If (i > 0), create the new backward link verifier Wi = SIGNi(“Ii−1, Ii”‖M)

(B) VERIFY-CHAIN-SIGNATURE

The only difference in the VERIFY-CHAIN-SIGNATURE procedure from the first
variant is in steps 9 and 10. The modified steps are:

9. Check that VERIFYi((Di‖M), Zi) = TRUE. Output FALSE if not

10. Check that VERIFYi((“Ij−1, Ij”‖M),Wj) = TRUE ∀j : 1 ≤ j ≤ i. Output
FALSE if any of the checks fail.

In the next section, we will demonstrate the security of this protocol (both
variants).

4.4 Correctness and Soundness

In this section, we outline a rough security analysis of our protocol. We consider
an attack to be successful if the ordered list of names in the signature contains
false information and the verification procedure accepts. Assuming that Ii is
the attacker, a combination of the following attacks are possible:

1. It does not include its name in the list.

2. It adds one or more names to the list.

3. It deletes one or more names from the list or changes the order of names.

We will consider each scenario separately. We note that a detailed security
analysis of the protocol is out of the scope of this paper but we also note that
the simplicity of the protocol does not demand such analysis.

1. The first possibility is ruled out since otherwise steps 8, 9, 10 and 11 of
the verification process will simultaneously fail.

2. Arbitrary names cannot be added to the list because Ii cannot compute
signatures Mi on behalf of other users. Thus, if a false user is added to
the list, step 8 (and/or) 9 of the verification process will fail.

3. Finally deleting names or changing order is not possible either. If the
order of participants is changed, the verification process in step 8 will fail
with a very high probability.

Thus, we can enumerate the following strong security characteristics of our
scheme:
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1. Signature Unforgeability: It is not possible for any participant to gen-
erate signatures for other participants without knowledge of their private
keys assuming the hardness of the Bilinear Diffie-Hellman problem (BDH).
Similarly computing any private keys from the public information is will
be equivalent to solving the Discrete Logarithm (DL) problem in G1 (and
consequently G2).

2. Chained Signature Unforgeability: Similarly it is hard to add arbitrary
participants in the chained signatures without knowledge of their public
key due to the difficulty of the DL problem.

5 Overview of the protocol

The above protocol is an example of a one-way signature chaining scheme. To
understand this, see that steps 8 and 9 of the verification process involve the
public keys of all participating users (in the right order). Moreover, since M
and I0 cannot be un-linked due to the certificate C, it is ensured that a different
initial user cannot be used for M .

We see that the signatures have an “additive” property, demonstrated by the
fact that Ii+1 can ‘add’ more information to the signature Ui of Ii by computing
Ui+1. Note that computing any Ui just from Ui+1 is considered infeasible due
to the assumed properties of the bilinear map.10 User Ii+1 sends Ui+1 as part
of the new signature while it keeps Ui from the old (received) signature as its
secret evidence in case of a dispute.

Non-repudiation is provided as follows: (Note that Ii+1 must have saved the
entire signature SIGNATURE of Ii). Ii+1 can prove in a court that the message
MESSAGE was indeed received from Ii by producing this signature as a witness
and running the VERIFY-CHAIN-SIGNATURE procedure.

It is easily seen that the signing time is independent of the number of users.
However, the signature length and the verification time increase linearly with
the number of users in the list. This is not a problem unless the list becomes
very large. Assuming that all users are unique, a few points about this protocol
are noteworthy:

1. Each Ii who passes the message must include its name in the signature
and in the right sequence for validation to succeed.

2. Users cannot remove names of other users from the list in the signature
without knowledge of their private keys, nor can they change the order or
add new names.

3. Authentication is relative to I0 who in turn authenticates with the TTP.
If, however, it is possible to establish the originator of a message directly
from its contents or by some other means, the TTP can be eliminated.
For a discussion on this see [9].

10Observe that Ui cannot be computed from Ui+1 without knowledge of xi but knowledge
of Ui does not reveal xi.
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4. The signing and verification procedures are completely non-interactive.

5. The dynamic part is only authenticated to the previous hop. The itinerary
authentication is done entirely using the static part.

If we consider the message without the dynamic part, we get a simple
signature-chaining protocol for message passing, with the message being M ,
the static part. For all the applications discussed in the next session, we as-
sume that MESSAGE is simply the static part and the signing and verification
procedures and the signature structure are accordingly modified to exclude all
references to the dynamic part (in other words, step 9 of the signing process
and steps 6, 10 and 11 of the verification process are excluded).

6 Applications of Signature Chaining

In this section, we list several applications of signature chaining. The concept of
signature chaining was originally proposed for mobile agent authentication [9,
10], electronic auctions, proxy signatures [32] and digital cash [33] but without
any practical examples.

6.1 Trust Transfer

Assume that Alice has an important message for Bob (eg. “I want a divorce”).
Right now, Bob is on a holiday and by the time he gets back, Alice will be
away on a business trip. Thus, she delegates Carol the responsibility of passing
her message to Bob. Basically, Alice will outline a contract m mentioning the
message and her security requirements. She signs the message and gives it to
Carol. The contract in addition contains a list of names Alice trusts with her
message (of course Carol is one of them). Alice also gives Carol the power to
pass on the delegation to any other user in this trusted list. Delegations are
transferable as long as the person passing delegation and the person receiving
the delegation is in the trusted list.

Ideally, Alice wants to ensure that only trusted people see her message.
However, secrecy is not as important as the integrity of the message. Alice
wants to ensure that Bob accepts the message as valid if and only if it has been
passed to Bob entirely via her list of trusted people. Additionally Alice may
have more complex requirements (eg. even if Adam and Eve are both on her
trusted list, Adam cannot precede Eve in this message passing). Similarly Bob
may also have a trusted list different from Alice’s and would like to accept the
message as valid only if his trust specifications are satisfied.

What is needed is a way to authenticate the path from which a message has
arrived assuming that the originator of the message can be implicitly determined
from the message itself. In our scenario, supposing Alice and Bob are married
and Bob receives the message “I want a divorce” addressed to him, it implicitly
ensures that if the message is authentic, it must be from Alice. A signature
chaining scheme would be needed in this case.
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6.2 Other Applications

Considering that one-way signature chaining enables us to correctly validate
path of any received message and provides non-repudiation, we can consider
various other applications: group e-commerce (e-commerce transactions where
multiple entities are involved such that direct interaction is not possible be-
tween many of them), electronic work-flow enforcement (ensuring the order in
which participants should be involved),‘secret-passing’ protocols, secure routing,
authenticated mail relaying and spam tracing, token based authentication, IP
tracing, mobile IP, intrusion detection, GRID computing, battlefield modeling,
Supply Chain Management, distributed systems and wireless roaming.

7 Conclusion

In this paper, we proposed an authentication protocol for mobile agents based
on bilinear pairings over elliptic curves. Our method is based on the notion of
additive zero knowledge [9] which enables trust to propagate between different
provers. We demonstrated that signature chaining can be used to form ad-
hoc trust relationships between multiple participants in a dynamic and non-
interactive manner. Our protocol can be used to authenticate the itinerary of
mobile agents without any active involvement of a Trusted Third Party(TTP).
We also note that it may be possible to completely eliminate the TTP using
methods of code obfuscation, watermarking and undetachable signatures. We
note that the size of signatures and the verification time increase linearly with
the number of users. A further improvement would be to try to find schemes
where the verification time and signature size is constant. Finally, it is worth
researching if a certificate-less or an identity based scheme can be derived from
the certificate based one presented in this paper.
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