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Abstract

A mobile agent is a mobile program capable of maintaining its execution states as it migrates
between different execution platforms. A key security problem in the mobile agent paradigm is
that of trust: How to ensure that the past itinerary (of execution platforms) claimed by the agent is
correct. This is necessary in order to establish a reasonable level of trust for the agent before granting
execution privileges.

In this paper we describe a protocol using bilinear pairings that enables trust relationships to be
formed between agent platforms in an ad-hoc manner without actively involving any trusted third
party. This protocol can be used to authenticate agents before granting execution privileges. The
main idea behind our approach is the concept of ‘one-way’ chaining. Our scheme has chosen ciphertext
security assuming the hardness of the Bilinear Diffie Hellman Problem (BDHP).

1 Introduction

Mobile agents are agents that can physically travel across networks and perform tasks on machines
that provide agent hosting capability. This allows processes to migrate from computer to computer, for
processes to split into multiple instances that execute on different machines, and to return to their point
of origin. A detailed discussion of mobile agents is beyond the scope of this paper and the reader is
referred to [1]. Two foremost security challenges for mobile agents are (a) host protection and (b) agent
protection. Our work on mobile agents is focused only on host protection. For work on agent protection
the reader is referred to [2, 3, 4, 5].

In contrast to approaches for host protection based on sandbox environments or other forms of code
validation, our model aims to validate the itinerary of an agent. Our approach to security is based on a
notion of trust which is summarized as follows: If all entities involved with the agent can be authenticated,
a level of trust can be established, which can then be used for granting or denying execution privileges.
Current solutions for host protection rely on tamper proof hardware, an on line trusted third party or
a ‘sandbox’ model of execution [6, 7, 8]. Our method does not require any such measures. We use the
concept of one-way signatures to connect arbitrary hosts in a chain of trust, thus enabling ad-hoc trust
relationships to be formed.

The concept of one-way signature chaining was proposed in [9] and [10] where the authors constructed
authentication protocols for mobile agents using hypothetical cryptographic primitives known as strong
non-commutative associative one-way functions. The authors also asked if an equivalent protocol can
be constructed using any existing cryptographic primitives. In this paper, we answer this question
affirmatively and show that the mobile agent authentication protocol presented in [10] can be constructed
using bilinear pairings, thus settling their open question.

Although the original concept of signature chaining presented in [10] is based on a standard certificate
based Public Key Infrastructure (PKI), it can be shown that their model can be reduced directly to an
Identity-Based Public Key Cryptosystem (ID-PKC) or a Certificate-Less Public Key Cryptosystem (CL-
PKC) due to certain properties of the one-way function used.1 In contrast to this, the protocol presented
in this paper is based on a standard certificate based PKI and it is not known if a direct reduction to an
ID-PKC or a CL-PKC exists.

1The reader is referred to [11] for a discussion of an ID-PKC and to [12] for a discussion of a CL-PKC
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2 Background

Any entity that runs a mobile agent platform server is called a host. We assume that all such hosts are
identified by a public directory. Any host that initiated an agent into the system is called the initiator
of the agent. Agents can migrate autonomously between different host platforms. This act of migration
is called agent transfer. An instance of an agent is a snapshot of its state at any point of execution on
some platform. An itinerary is the ordered list of hosts visited by an agent.

2.1 Agent partitioning

Using the object oriented paradigm, we assume that any instance of a mobile agent can be split (or
partitioned) into a static part (consisting of object methods) which is unchanging as the agent hops
across platforms and a dynamic part (consisting of data and the state information of the interacting
objects) that changes at each hop. Depending on the specific implementation, the partitioning schemes
can differ. However, in this section we enumerate certain properties relevant in our context.

1. Unique: It may be possible that an instance of the agent can be partitioned in more than one ways.
A partition scheme is unique if all instances of the agent have a unique static and dynamic part.

2. Identical : A partition scheme is identical if all instances of the agent have at least one common
static part.

3. Mutually authenticating : We further assume that some static and dynamic parts can be made
mutually inseparable. This means that the agent’s functionality is available if and only if both the
static and dynamic parts correspond to the same agent. Mixing and matching between different
agents is not possible. We say that the scheme is mutually authenticating if all instances of the
agent have at least one mutually inseparable partition.

4. Ideal : A partitioning scheme is ideal if it is unique, identical and mutually authenticating.

2.2 Authentication Requirements

In this section, we give the high-level authentication requirements for our model. we define the following
two requirements:

1. Initiator authentication: Is the claimed initiator the same as the real initiator?

2. Itinerary authentication: Is the claimed itinerary the same as the real itinerary?

Our requirement for unconditional security is itinerary authentication. It is evident, however, that this
will also always involve initiator authentication, since the initiator is the first host in the itinerary. We
introduce the concept of relative authentication to imply that the first host (the initiator) in an itinerary
is unknown. On the other hand, absolute authentication implies that the initiator can be authenticated.

2.3 One-way Chaining

Represent the host platforms as points of an acyclic directed graph. As the agent hops, a new arc directed
from the receiver to the sender is added to the graph. The edges of such a graph will represent a hop-
by-hop path of the agent in the reverse direction from the current host to the initiator. In this notation
the statements “a passed the agent to b” and “There is a path of unit length from b to a” are considered
equivalent. We can consider this graph to describe the path by which trust is propagated in the system.2

1. We say that a direct path exists from b to a if and only if b can prove (in the context of the agent)
something about a that no other host can. That is, b has some extra information about a that
others cannot extract from b’s proof.

2. Let {h0, h1, . . . hn} be a set of hosts for some n ≥ 1. We say a chained path exists from hn to h0 if
and only if there exists a direct path from hx to hx−1 for each x from 1 to n.

2We intuitively define trust to propagate in the reverse direction of the agent. If the agent moves from a to b, we are
interested to know if b trusts a. That is, if there is path from b to a. Moreover we are only interested in those hosts that
modified the dynamic part.
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3. We say that there is a one-way chained path from b to a if and only if there is a chained path from
b to a and there is no (direct or chained) path from a to any other host.

Assume that i is the initiator of the agent, a is any sending host and b is the receiving host. Also,
excepting the act of agent transfer no other interaction is allowed between any hosts. Using this scenario,
authentication can be redefined in the context of b as follows:

(a) Relative: Determine that a chained path from a to i exists.

(b) Absolute: Determine that a one-way chained path from a to i exists.

2.4 Definitions

(a) Fix the alphabet Σ = {0, 1}. The set of strings over Σ is denoted by Σ∗ and the set of all strings
over Σ of length ≤ l are denoted by Σl. For any x, y ∈ Σ∗ the symbol x‖y denotes the concatenation
of x and y. The empty string is denoted by the symbol ε.

(b) If a, b are two variables of the same type, then a ← b denotes that a is set to the value of b. If A
is a non-empty set, then x ← A denotes that x has been uniformly chosen in A. The symbol |A|
denotes the cardinality of A. Throughout this paper we will use the symbol Z to denote the set of
integers and the symbol I to denote the set of all identities {I1, I2, . . .}.

(c) We denote any (ordered) sequence of n elements α1, α2, . . . , αn symbolically by 〈α1, α2, . . . , αn〉. The
empty sequence is a sequence without any elements and is denoted by 〈〉. If S = 〈α1, α2, . . . , αn〉 is
some finite sequence then 〈S, αi〉 = 〈α1, α2, . . . , αn, αi〉 is also a finite sequence. For any finite set
A, the symbol 〈A〉 denotes the set of all sequences having (non-repeating) elements from A.

(d) Fixed Strings: Let L1 and L2 be any two languages. For some x ∈ L1 and some y ∈ L2, the pair
〈x, y〉 is said to be fixed if and only if there exists a (polynomial-time computable) binary function
σ : L1 × L2 7→ {0, 1} such that σ(x, y) = 1 and it is computationally intractable to find another
string ŷ ∈ L2 such that σ(x, ŷ) = 1.

2.5 Bilinear Pairings

The fundamental building blocks of our protocol are a class of primitives known as bilinear pairings3

defined as follows: Let G1 be a cyclic additive group of prime order q and G2 be a cyclic multiplicative
group of the same order. Assume that computing the discrete logarithm in both G1 and G2 is hard. A
bilinear pairing is a map e : G1 ×G1 7→ G2 that satisfies the following properties:

1. Bilinearity : e(aP, bQ) = e(P,Q)ab ∀P,Q ∈ G1 and a, b ∈ Zq

2. Non-degeneracy : P 6= 0⇒ e(P, P ) 6= 1

3. Computability : e is efficiently computable

Typically, the map e will be derived from either the Weil or Tate pairing on an elliptic curve over a
finite field. Despite the fairly complex mathematics involved in constructing such maps, cryptographic
protocols based on pairings can be described entirely without ever referring to the actual implementation.
Pairings and other parameters should be selected in proactive for efficiency and security. We refer the
reader to [19, 11, 20] for details on generating secure parameters for such pairings. A more general
definition of bilinear pairings (also suitable for our purpose) using three groups is a map e : G0×G1 7→ G2

such that an efficiently computable isomorphism G1 7→ G0 exists and the usual properties of bilinearity,
non-degeneracy and computability are satisfied [19]. For simplicity in this paper we assume G0 = G1.

Our motivation to use pairings is due to the fact that the Decisional Diffie-Hellman problem (DDHP)
in G1 is easy while both the Diffie-Hellman Problem (DHP) and the Discrete Logarithm Problem (DLP)
are hard in G1 (see [19] for a proof). Such groups (where DDHP is easy but DHP is hard) are generally
referred to as as Gap Diffie Hellman (GDH) groups [21].

3Bilinear pairings are probably best known for their use in Identity Based Encryption (IBE) by Boneh and Franklin in
2001 [11]. Many other applications of bilinear pairings are known. For example, various types of Identity Based Signatures
(IBS) [13, 14, 15], tripartite one-round key agreement [16], Certificate-Less Public Key Cryptography (CL-PKC) [12],
self-blindable credential certificates [17] and authenticated key agreement [18] are all based on pairings.
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Our scheme is similar to the batch signature scheme presented in [19] or the aggregate signature
schemes in [22] where signatures of many users (on different messages) are verified in one single step. In
our scheme, signatures of many users on the same message are verified at once. Moreover in our scheme,
the exact order of individual signers involved in creating the aggregate signatures is preserved.

3 Problem Formulation

In this section, we will define the problem of host protection using authentication primitives and set out
the goals of our proposed authentication protocol. Although we consider only one agent in our analysis,
this setup can also be used in a multi-agent system. We model our protocol on the following assumptions:

1. The mobile agent will be partitioned using an ideal partitioning scheme (see section 2.1). Without
loss of generality we assume that the identities of the first n participants is the ordered sequence
〈I1, I2, . . . In〉 where Ii ∈ I for each positive integer i. Represent by M , the static part and by Di

the dynamic part of the ith instance. For any agent 〈M,Di〉, the sending, platform is Ii and the
receiving platform is Ii+1 and the initiator is I1. Agents are allowed to travel indefinitely and also
to replicate and branch to different paths. The only restriction is that an agent must not return
back to a past platform (except at the end of its itinerary).

2. To enable absolute authentication, we require that the pair 〈M, I1〉 be fixed (see section 2.4). A
possible approach for this is to involve a Trusted Third Party (TTP) to certify this pair. The TTP
ensures that the same pair cannot be reused again for a certain period of time. We note, however,
that it may also be possible to implicitly fix the pair 〈M, I1〉 (without involving a TTP) using the
methods for code obfuscation, undetachable signatures and watermarking described in [2, 4, 5, 23,
24, 25, 26, 9]. For simplicity, in this paper, we assume a TTP is used to fix the pair 〈M, I1〉.4

3. The mobile agent must always transferred with an accompanying signature. Each receiving platform
Ii must verify the signature of the previous platform before it is executed. Execution should only be
possible if the verification process succeeds and other security policies of the platform are satisfied.

4. Each sending platform Ii must sign the agent after it completes execution and before it is transferred.
Moreover if this sending platform is not the first platform in the chain, it should sign the agent
only if the verification process on the signature of the previous platform succeeded.

5. Each receiving platform would like to know the exact order of the platforms involved in passing
(and executing) the agent. The purpose of the signature scheme is to ensure that the verification
process succeeds if and only if the correct order of participants is given as input to the process.
Any misbehavior (deviation from the signing or verification process) should be detected along with
the concerned participant(s).

6. The itinerary of the agent is ‘ad-hoc’. It is not possible for any platform Ii to determine the exact
future itinerary of the agent (we can consider the agent to be autonomous in this case). Thus, a
sending platform may not know the real identity of the next receiving platform. For simplicity,
we assume that each sending platform Ii does not need to know the identity of the next receiving
platform Ii+1 at the time of signing.

7. Agent transfer is done over a secure channel where confidentiality is assured by the use of encryption.
A Public Key Infrastructure (PKI) will be used for authentication (in the next section, we will
describe this PKI). If needed, the same or a different PKI can be used for encryption.

4 Our Authentication Protocol

A one-time initial setup is necessary during which our participants create a public-key directory. Once
this setup is complete, Any member can initiate an agent into the system. Members can also execute an
agent and transfer agents to other members. Our protocol allows multi-hop agents to be authenticated.

4The concept of liability is worth mentioning here. In most cases, trust and liability go hand in hand: If Alice is trusted,
she is liable if she fails the trust. An attacker will try to gain more trust but not liability. In the situation mentioned here,
if the attacker removes all the names from the list and 〈M, I1〉 is not fixed, it may be possible that the attacker becomes
automatically more liable (since the attacker’s name cannot be removed from the list). We can safely ignore this possibility
in applications where the liability of removing the names outweighs the the benefit gained from such an attack.
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4.1 Initial Setup (Create PKI)

A public directory (or PKI) will be used to authenticate messages (and if necessary to encrypt them).
The PKI we describe is based on bilinear pairings5 and a trusted central authority is responsible for
generating the security parameters. To participate in the protocol each user must have a certified public
key (the process of certification is outside the scope of our protocol). The setup proceeds as follows:

1. Let e : G1 ×G1 7→ G2 be a bilinear mapping as defined in section 2.5. Let P ∈ G1 be a generator
of G1 and let H : Σ∗ 7→ G1 and h : Σ∗ 7→ Σl be two cryptographic hash functions. The parameters
〈e, q, G1, P, H, h〉 are generated by the trusted authority and made public in an authentic way.

2. Each participant Ii generates xi ← Zq as the private key. The corresponding public key is Yi = xiP

3. Each participant who wants to sign messages obtains a certificate from some trusted CA linking
the identity Ii and the public key Yi

This infrastructure can also be used to encrypt messages to any receiver Ij with the (certified or
uncertified) public key xjP using the protocol presented in [29] as follows: The sender will first encrypt
the message with a symmetric cipher using the key derived from Kj = rj(xjP ) where rj ← Zq. The
sender will transmit the ciphertext along with the partial key K̂j = rjP using an insecure public channel.
Receiver Ij can compute the same key-derivation key Kj = xjK̂j to decrypt the ciphertext. This protocol
is secure if the Diffie-Hellman Problem (DHP) in G1 is hard [30].

4.2 Agent Initiation

As mentioned earlier, the initiator I1 will use a TTP to fix the pair 〈M, I1〉 to ensure that a different user
cannot act as the initiator for the same message in the future. I1 sends a request the the TTP to certify
the pair 〈M, I1〉. Denote by C the certificate from the TTP.

4.3 Transfer Protocol

An arbitrary participant Ii will process the agent as follows: On receiving it from Ii−1, it first follows the
verification procedure. Before passing the agent (after execution) to Ii+1, it follows the signing procedure.
The first participant I1, however, only follows the signing procedure. As mentioned earlier, messages and
signatures are send over a secure encrypted channel. Thus, an eavesdropper does not have access to the
signature of Ii sent to Ii+1. In the definitions below we assume that MESSAGE denotes the agent which
consists of both static and dynamic parts.

Notation

1. A correctly formed signature consists of the following components: a certificate CERTIFICATE, a
list of identifiers IDENTIFIER-LIST, a signature on the static part STATIC-PART, a signature on the
dynamic part DYNAMIC-PART.

2. The signing procedure CREATE-CHAIN-SIGNATURE takes three inputs: a valid message MESSAGE, a
valid signature OLD-SIGNATURE and an identifier IDENTIFIER. It either outputs a new valid signature
NEW-SIGNATURE or the error ERROR.

3. The verification procedure, VERIFY-CHAIN-SIGNATURE takes two inputs: a message MESSAGE and a
signature SIGNATURE and outputs TRUE or FALSE.

4. Let j ≥ 0, k ≥ 1 be integers. Define the variables tj ∈ Σ∗, Lj ∈ 〈I〉 and Uj , Vj ∈ G1 as follows:

(a) t0 = ε the empty string, L0 = 〈〉, the empty sequence and U0 = V0 = 0

(b) tk = h(tk−1‖h(Ik))

(c) Uk = xkH(M) + xkH(tk) + Uk−1 =
∑r=k

r=1 xr(H(M) + H(tr))

(d) Vk = xjH(M‖Dk)

(e) Lk = 〈Lk−1, Ik〉 = 〈I1, I2, . . . , Ik〉
5Although bilinear pairings are mostly known for their use in identity based cryptography, other non-identity based

applications also have been proposed [19, 27, 28].
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(A) CREATE-CHAIN-SIGNATURE

This procedure takes as input the MESSAGE 〈M,Di〉, the IDENTIFIER Ii, the signature OLD-SIGNATURE
and outputs NEW-SIGNATURE or ERROR where:

OLD-SIGNATURE = 〈C,Li−1, Ui−1, Vi−1〉 and NEW-SIGNATURE = 〈C,Li, Ui, Vi〉

We describe this procedure algorithmically:

1. Output ERROR if OLD-SIGNATURE, MESSAGE or IDENTIFIER has an has an invalid structure otherwise
extract the following:

(a) Ii from IDENTIFIER

(b) 〈M,Di〉 from MESSAGE

(c) C from CERTIFICATE of OLD-SIGNATURE
(d) Li−1 = 〈I1, I2, . . . , Ii−1〉 from IDENTIFIER-LIST of OLD-SIGNATURE
(e) Ui−1 from STATIC-PART of OLD-SIGNATURE

2. Output ERROR if the private key xi corresponding to Ii is not known otherwise compute the following:

(a) Li = 〈Li−1, Ii〉 = 〈I1, I2, . . . , Ii〉
(b) ti from Li using the algorithm: t0 ← ε, tj ← h(tj−1‖h(Ij))
(c) Ui = xiH(M) + xiH(ti) + Ui−1

(d) Vi = xiH(M‖Di)

3. Set the following variables and output NEW-SIGNATURE:

(a) IDENTIFIER-LIST ← Li

(b) STATIC-PART ← Ui

(c) DYNAMIC-PART ← Vi

(d) NEW-SIGNATURE ← 〈CERTIFICATE, IDENTIFIER-LIST, STATIC-PART, DYNAMIC-PART〉

(B) VERIFY-CHAIN-SIGNATURE

For clarity, we describe the verification procedure to be followed by Ii+1. This procedure takes as input
the MESSAGE 〈M,Di〉, the signature SIGNATURE and outputs TRUE or FALSE. The process can be described
algorithmically:

1. Output FALSE if SIGNATURE or MESSAGE has an invalid structure otherwise extract the following:

(a) 〈M,Di〉 from MESSAGE

(b) C from CERTIFICATE of SIGNATURE
(c) Li = 〈I1, I2, . . . , Ii〉 from IDENTIFIER-LIST of SIGNATURE
(d) Ui from STATIC-PART of SIGNATURE
(e) Vi from DYNAMIC-PART of SIGNATURE

2. Output FALSE if any of the following checks fail otherwise output TRUE:

(a) Check that C is valid for the pair 〈M, I1〉
(b) Check that the sequence Li does not contain any duplicate elements.
(c) (i) Compute 〈t1, t2 . . . ti〉 using the algorithm t0 ← ε, tj ← h(tj−1‖h(Ij))

(ii) Check that Li, h and check that e(Ui, P ) ?=
∏r=i

r=1 e(H(M) + H(tr), Yr)

(d) Check e(Vi, P ) ?= e(H(M‖Di), Yi)
(e) Check that M and Di belong to the same agent (via the mutually authenticating property)

If the output of the VERIFY-CHAIN-SIGNATURE process is TRUE, it can be ascertained (up to the level
of trust placed on the TTP) that the itinerary proclaimed by the agent is correct. Execution privileges
should be granted to the agent only if Ii+1 trusts the TTP and all the identities in the itinerary to
a satisfactory level. Ii+1 can still choose to transfer the agent further even after denying execution
privileges. Notice that our signatures are very similar to the aggregate signatures of Boneh et al. [22].
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4.4 Correctness and Soundness

To prove the correctness and soundness of our scheme, we must first formally define our security goals and
our adversary model. We want to ensure that the ordered list of participants specified in IDENTIFIER-LIST
should correctly and uniquely identify the path of the received message.

(A) Correctness

We must show that if all the participants behave correctly, then the verification process will always
succeed. The correctness of the verification process follows directly from the property of bilinear maps:

1. LHS of step 2(c) of verification process = e(Ui, P )

= e(
∑r=i

r=1 xr(H(M) + H(tr)), P ) =
∏r=i

r=1 e(xr(H(M) + H(tr)), P )

=
∏r=i

r=1 e(H(M) + H(tr), xrP ) =
∏r=i

r=1 e(H(M) + H(tr), Yr)

= RHS of step 2(c)

2. LHS of step 2(d) of verification process = e(Vi, P )

= e(xiH(M ||Di), P ) = e(H(M ||Di), xiP )

= RHS of step 2(d)

(B) Soundness

To prove soundness, we need to show that if any of the users mis-behave, the verification will fail with a
high probability. In other words, we must show that the scheme is existentially unforgeable with respect
to the message M and each sequence Li uniquely and correctly identifies the order of signers.

(B.1) Existential Unforgeability

We must show that our scheme is existentially unforgeable. In other words, it is not possible for any ac-
tive adversary to forge signatures on any new (chosen) messages. This follows from the following theorem:

Theorem 1 Assume that H is a random oracle and the Bilinear Diffie Hellman Problem (BDHP) in
(G1, G2) is hard.Then our scheme is secure against existential forgery.

Proof : We assume that the hash function H is a random oracle. Define a family of hash functions
HZ : Σ∗ 7→ G1 as: HZ(X) = H(X)+Z where Z ← G1. Observe that each function HZ also behaves like
a random oracle. Now let Z = H(M) and X = ti then each value Ui can also considered as an aggregation
of individual signature of Ii on ti according the aggregate signature scheme described in [22] using the
hash function HH(M) for a fixed M because: Ui =

∑r=i
r=1 xr(H(M) + H(tr)) =

∑r=i
r=1 xrHH(M)(tr). Also

since H is a random oracle, it is hard to find another value M1 6= M such that H(M) = H(M1).
Assuming that Ii 6= Ij whenever i 6= j and h(Ii) 6= ε ∀ i, it is also ensured that ti 6= tj whenever

i 6= j (in other words, all ti are distinct). It is shown in theorem 3.2 of [22] that this aggregate signature
scheme is secure against existential forgery if the messages ti are all distinct and the BDHP in (G1, G2)
is hard. This completes the proof of security against existential forgery.

The above analysis only considered the static part M . We note that the signatures Vi on the dynamic
parts Di are secure against existential forgery assuming the hardness of the BDHP as shown in [19].
The value Di is only authenticated up to the previous hop and is therefore irrelavent in the context
of chained signatures. The mutually authenticating property ensures that dynamic parts from different
agents cannot be mixed together

(B.2) Chained Signature Unforgeability

To prove that our chained signature scheme is secure, it remains to be shown that each ti ∈ Σl corre-
sponds to the unique sequence Li ∈ 〈I〉 or alternatively the pairs 〈ti, Li〉 are fixed since otherwise an
attacker might be able to delete or change order of some identities in the list. Our proof is based on the
hardness of inverting the hash function h. Recall that the range of h is Σl, the set strings all strings over
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Σ of length ≤ l. Before we proceed, we need the following result:

Theorem 2 For any random string a ∈ Σ∗, if there is an oracle Q that can compute two strings u, v ∈ Σ∗

such that a = (u‖h(v)) and the length of h(v) is uniformly chosen between 1 and k for some k ≤ l then
h can be inverted for atleast 2k instances with non-negligible probability.

Proof : Let b be a random string of at most k bits. We will use the oracle to invert h by finding a
value c such that b = h(c). Construct the string a = (“1”‖b). The string a is given repeateadly as input
to the oracle which will return different values of 〈u, v〉 for each query such that length of h(v) is uniformly
chosen between 1 and k and is independent of previous queries. For any query, Pr[h(v) 6= b] = k−1

k and
is independent of other queries. Thus, after n queries, Pr[h(v) 6= b ∀ n] = (k−1

k )n and this value can be
made extremely low by choosing large enough n. On the other hand, if h(v) = b then we have inverted
h and found a value c = v such that b = h(c), thus completing the proof.

Corollary 1: If h is non-invertible for all instances then such an oracle Q cannot exist.

Assume that there is an adversary A who is able to compute a sequence LA ∈ 〈I〉 such that LA 6= Li

but ti corresponds to LA. Also let LA =
〈
Iα1 , Iα2 , . . . , Iαj

〉
and Li = 〈I1, I2, . . . , Ii〉. A successful attack

by A will imply that h(tαj−1‖h(Iαj )) = h(ti−1‖h(Ii)). Since h is a random oracle and is collision resistant,
we will trivally assume that (tαj−1‖h(Iαj )) = (ti−1‖h(Ii)) which leads to the following two possibilities:

1. Iαj 6= Ii and tαj−1 6= ti−1

2. Iαj
= Ii and tαj−1 = ti−1

The first possibility is ruled out due to corollary 1 since otherwise, we can simuluate a call to the
oracle Q by challenging A with the value a = (ti−1‖h(Ii)). We will therefore only consider the second
possibility in our analysis.

From the second possibility, tαj−1 = ti−1 or alternatively, h(tαj−2‖h(Iαj−1)) = h(ti−2‖h(Ii−1)). Using
the induction hypothesis and the above analogy, we see that one of the following must hold:

1. i > j. Therefore h(h(Iα1)) = h(ti−j‖h(Ii−j+1)) and ti−j 6= ε
Assume that h is a random oracle and collision resistant. We then have, h(Iα1) = (ti−j‖h(Ii−j+1)).
Alternatively, Iα1 = h−1(ti−j‖h(Ii−j+1). Computing such an Iα1 requires the ability to invert h so
this case is ruled out.

2. i < j. Therefore h(tαj−i‖h(Iαj−1+1)) = h(h(I1)) and tαj−i 6= ε.
Assume that h is collision resistant and thus, h(I1) = (tαj−i‖h(Iαj−1+1)). Setting a = h(I1), we see
from theorem 2 and corollary 1 that computing such an Iαj−1+1 is not feasible and hence this case
is also ruled out.

3. i = j. Therefore Iαi
= Ii and tαi

= ti ∀ i
Alternatively this implies that LA = Li. This is a contradiction to our assumption that LA 6= Li

and therefore such an adversary A cannot exist. This completes our proof of security.

5 Overview of the protocol

The above protocol is an example of a one-way signature chaining scheme. To understand this, see that
step 7 of the verification process involves the public keys of all participating users (in the right order).
Moreover, since M and I1 cannot be un-linked due to the certificate C, it is ensured that a different
initial user cannot be used for M .

We see that the signatures have an “additive” property, demonstrated by the fact that Ii+1 can ‘add’
more information to the signature Ui of Ii by computing Ui+1. Note that computing any Ui just from
Ui+1 is considered infeasible due to the assumed properties of the bilinear map.6 User Ii+1 sends Ui+1

as part of the new signature while it keeps Ui from the old (received) signature as its secret evidence in
case of a dispute. Non-repudiation is provided as follows: (Note that Ii+1 must have saved the entire
signature of Ii). Ii+1 can prove in a court that the message was indeed received from Ii by producing this

6Observe that Ui cannot be computed from Ui+1 without knowledge of xi but knowledge of Ui does not reveal xi.
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signature as a witness and invoking the VERIFY-CHAIN-SIGNATURE procedure. Assuming that all users
are unique, a few points about this protocol are noteworthy:

1. Each Ii who passes the message must include its name in the signature and in the right sequence
for validation to succeed.

2. Users cannot remove names of other users from the list in the signature without knowledge of their
private keys, nor can they change the order or add new names.

3. The dynamic part is only authenticated to the previous hop. The itinerary authentication is done
entirely using the static part. Also, authentication is relative to I1 who in turn authenticates with
the TTP. If, however, it is possible to establish the originator of a message directly from its contents
or by some other means, the TTP can be eliminated. For a discussion on this see [9].

4. The signing and verification procedures are completely non-interactive. Moreover, it is possible
to combine the signing and verifying procedures into a single sign-verify procedure to increase
efficiency. However, there will always be a temporal ordering with verification and signing in our
mobile agent scenario (corresponding to before and after the execution of the mobile agent).

5. The signing process requires two multiplications and one addition in G1. The verification process
requires O(n) multiplications in G2 and O(n) pairing computations. It is easily seen that the
signing time is independent of the number of users. Also, the signature size is constant ignoring
the payload of the identifier list (which cannot be avoided).

Our protocol demonstrates a type of chaining called backward chaining where each receiver of the
message is responsible for “adding” a link to the chain. Likewise, we can also consider forward chaining
where the senders of the message are responsible for creating the chain. In this variant, each sender is
aware of the next receiver during the signing process. Forward chaining has the advantage that the order
of participants can be strictly specified by senders. However, such a scheme also restricts the flexibility
of the system because the message will have to be signed multiple times if sent to many receivers in
parallel. Moreover in a backward chaining scheme, multiple senders within a ‘trust zone’ can use a single
signing gateway without revealing the identity of the recipients. Due to these reasons, we only considered
backward chaining in our work.7

6 Other Applications of Signature Chaining

In this section, we list several applications of signature chaining. If we consider the message without the
dynamic part, we get a simple signature-chaining protocol for message passing, with the message being
M , the static part. For all the applications discussed in this session, we assume that MESSAGE is simply
the static part and the signing and verification procedures and the signature structure are accordingly
modified to exclude all references to the dynamic part (in other words, steps 2(d) and 3(c) of the signing
process and steps 1(e), 2(d) and 2(e) of the verification process are excluded).

Considering that one-way signature chaining enables us to correctly validate the path of any received
message and provides non-repudiation, we can consider several applications: electronic auctions, payment
systems [31], group e-commerce (e-commerce transactions where multiple entities are involved such that
direct interaction is not possible between many of them), electronic work-flow enforcement (ensuring the
order in which participants should be involved),‘secret-passing’ protocols, secure routing, authenticated
mail relaying and spam tracing, token based authentication, IP tracing, mobile IP, intrusion detection,
GRID computing, battlefield modeling, Supply Chain Management, distributed systems and wireless
roaming.

7 Conclusion and Future Directions

In this paper, we proposed an authentication protocol for mobile agents based on bilinear pairings over
elliptic curves. Our method is based on the notion of additive zero knowledge [9] which enables trust

7Forward chaining is easy to construct but inefficient in practice. Each signer Ii simply signs the value (M‖Ii+1) using
any ordinary digital signature scheme. The chained-signatures of Ii is the set of signature of all the previous signers including
this signature.
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to propagate between different provers. We demonstrated that signature chaining can be used to form
ad-hoc trust relationships between multiple participants in a dynamic and non-interactive manner. Our
protocol can be used to authenticate the itinerary of mobile agents without any active involvement of a
Trusted Third Party(TTP). It may be possible to completely eliminate the TTP using methods of code
obfuscation, watermarking and undetachable signatures.

Our protocol uses a standard certificate-based PKI and it is worth researching if a certificate-less or
an identity based scheme can be derived from the certificate based one presented in this paper. The other
aspect of the paper described the concept of agent partitioning (section 2.1). It is an open question if a
secure and ideal partitioning scheme can be constructed for mobile agents. However, it seems plausible
considering the recent developments in java bytecode verifiers [32, 33, 34, 35, 36].
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